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1 Introduction

The works of Vinogradov [17] and Hua [7] established that for any natural number k, there exists s = s(k)

such that any sufficiently large integer n satisfying certain congruence conditions can be represented as

n = pk1 + · · ·+ pks ,

where p1, . . . , ps are prime numbers. In general, one would ask how to find an explicit P = P (a1, . . . , as, n)

such that the equation

a1p
k
1 + · · ·+ asp

k
s = n

is solvable in the box pj � P (1 � j � s). Following the pioneer work of Baker [1], Liu and Tsang [12]

made substantial progress for the linear case k = 1 with s = 3 and the quadratic case k = 2 with s = 5

in [13]. Their results were considerably improved by Li [10], Choi and Liu [3,4], Liu and Tsang [11], Choi

and Kumchev [2], and Harman and Kumchev [6]. In the cubic case, the classical result of Hua asserts

that every sufficiently large odd number can be represented in the form

n = p31 + · · ·+ p39.

Leung [9] considered the cubic equation

a1p
3
1 + · · ·+ a9p

3
9 = n, (1.1)
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where p1, . . . , p9 are prime variables, a1, . . . , a9 are nonzero integer coefficients and n ∈ Z. Throughout,

we suppose that

(ai, aj) = 1 for 1 � i < j � 9, (1.2)

and

a1 + · · ·+ a9 ≡ n (mod 2). (1.3)

Leung established that if a1, . . . , a9 are not of the same sign, then (1.1) is solvable in primes pj (1 � j � 9)

with

pj � max{|a1|, . . . , |a9|}20+ε + |n|1/3, (1.4)

where the implied constant depends only on ε. This was refined by Liu [14], who showed that the exponent

20 in (1.4) can be reduced to 14. In this paper, we prove the following theorem.

Theorem 1.1. Let a1, . . . , a9 be nonzero integers, and let n ∈ Z. Suppose that a1, . . . , a9 and n satisfy

(1.2) and (1.3). If a1, . . . , a9 are not of the same sign, then there are prime solutions to the equation (1.1)

with

pj � max{|a1|, . . . , |a9|}2 + |n|1/3 (1.5)

for all 1 � j � 9.

The proof can be applied to establish the following parallel result. We omit the details.

Theorem 1.2. Suppose that a1, . . . , a9, n are positive integers satisfying (1.2) and (1.3). Then there

exists an absolute constant K > 0 such that the equation (1.1) is solvable whenever

n � Kmax{|a1|, . . . , |a9|}7.
Our improvement comes from the application of the p-adic method of Davenport [5]. In particular, our

treatment of the mean value estimate makes use of the condition that a1, . . . , a9 are pairwise coprime.

As usual, we abbreviate e2πiz to e(z). The letter p, with or without a subscript, always denotes a prime

number. We use ε to denote a sufficiently small positive number. Denote by φ(n) the Euler function.

2 Preliminaries

For X � 1, we define

gX(α) =
∑

1�x�X

e(x3α).

By Hua’s lemma, one has ∫ 1

0

|gX(α)|6dα � X7/2+ε. (2.1)

Let

M(X) =
⋃
q�X

q⋃
a=1

(a,q)=1

[
a

q
− 1

qX2
,
a

q
+

1

qX2

]
.

In view of the proof of [16, Theorem 4.4], one has∫
M(X)

|gX(α)|6dα � X3. (2.2)

We define

T (P,X) =
∑
q�P

∑
1�a�Aq

∫
|β|� 1

qAHP

1√
q(1 +AHP 2|β|)

∣∣∣∣gX
(

a

Aq
+ β

)∣∣∣∣
2

dβ. (2.3)
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Lemma 2.1. Let T (P,X) be defined as above. Then one has

T (P,X) � X2+εH−1P−3/2 +XH−1P−1/2.

Proof. The argument is routine. We include the details for completeness. Note that

∑
1�a�Aq

∣∣∣∣gX
(

a

Aq
+ β

)∣∣∣∣
2

� A
∑

1�x �=y�X

(q, x3 − y3) +XAq.

Therefore,

T (P,X) �
∑
q�P

(
A

∑
1�x �=y�X

(q, x3 − y3)√
q

+XA
√
q

)∫
|β|� 1

qAHP

1√
(1 +AHP 2|β|)dβ

�
∑
q�P

( ∑
1�x �=y�X

(q, x3 − y3)√
q

+X
√
q

)
(HP 2)−1

√
P/q

� X2+εH−1P−3/2 +XH−1P−1/2.

This completes the proof.

We define

F (α) =
∑

1�h�H

∑
1�x�P

e((3hx2 + 3h2Bx+ h3B2)α),

where H � 1 and B is a natural number satisfying 1 � BH � P .

Lemma 2.2. Suppose that |α− a/q| � (qHP )−1 for some a ∈ Z and q ∈ N with 1 � q � HP . Then

one has

F (α) � HP 1+ε

(
1

q(1 +HP 2|α− a/q|) +
1

P
+

q(1 +HP 2|α− a/q|)
HP 2

)1/2

.

Proof. In view of the proof of the lemma in [15], one has

F (α) � HP 1+ε

(
1

q
+

1

P
+

q

HP 2

)1/2

. (2.4)

It follows from (2.4) by the standard argument in Waring’s problem (see [16, Exercise 2 of Chapter 2])

that

F (α) � HP 1+ε

(
1

q(1 +HP 2|α− a/q|) +
1

P
+

q(1 +HP 2|α− a/q|)
HP 2

)1/2

.

We complete the proof.

For any natural number A, we define

R(P ;A) =
⋃
q�P

⋃
1�a�Aq
(a,q)=1

[
a

q
− 1

qHP
,
a

q
+

1

qHP

]
.

In light of Lemma 2.2, we have

F (α) � HP 1+ε√
q(1 +HP 2|α− a/q|) for α ∈ R(P ;A). (2.5)

We define

RA(P ) = {α ∈ [(AHP 2)−1, 1 + (AHP 2)−1] : Aα ∈ R(P ;A)}. (2.6)

Now we conclude the following.
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Lemma 2.3. Let RA(P ) be defined as above. Then one has∫
RA(P )

F (Aα)|gX(α)|2dα � X2+εP−1/2+ε +XP 1/2+ε. (2.7)

Proof. Since Aα ∈ R(P ;A), there exist a ∈ Z and q ∈ N such that 1 � q � P , 1 � a � Aq, (a, q) = 1

and ∣∣∣∣α− a

Aq

∣∣∣∣ � 1

qHPA
.

By (2.5), one has

F (Aα) � HP 1+ε√
q(1 +HP 2|Aα− a/q|) =

HP 1+ε√
q(1 +AHP 2|α− a

Aq |)
.

We deduce that ∫
RA(P )

F (Aα)|gX(α)|2dα � HP 1+εT (P,X),

where T (P,X) is given by (2.3). We establish (2.7) by applying Lemma 2.1.

Lemma 2.4. Let RA(P ) be defined in (2.6). Then one has∫
RA(P )

F (Aα)|gX(α)|6dα � HPX3 +X5+εP−1/2+ε +X4+εP 1/2+ε.

Proof. Let

M =
⋃
q�X

⋃
−q�a�2q
(a,q)=1

[
a

q
− 1

qX2
,
a

q
+

1

qX2

]
.

For α ∈ RA(P ), by Dirichlet’s approximation theorem, there exist a ∈ Z and q ∈ N with −q � a � 2q,

1 � q � X2, (a, q) = 1 and |α−a/q| � (qX2)−1. For α �∈ M, one has q > X and thus by [16, Lemma 2.4],

gX(α) � X3/4+ε. We conclude that

gX(α) � X3/4+ε for α ∈ RA(P ) \M.

Then we deduce ∫
RA(P )\M

F (Aα)|gX(α)|6dα � X3+ε

∫
RA(P )

F (Aα)|gX(α)|2dα,

and by Lemma 2.3, ∫
RA(P )\M

F (Aα)|gX(α)|6dα � X5+εP−1/2+ε +X4+εP 1/2+ε. (2.8)

On applying (2.2), we obtain∫
RA(P )∩M

F (Aα)|gX(α)|6dα � HP

∫
M(X)

|gX(α)|6dα � HPX3. (2.9)

We complete the proof by combining (2.8) and (2.9).

Lemma 2.5. We have∫ 1

0

F (Aα)|gX(α)|6dα � HPX3 +X5+εP−1/2+ε +X4+εP 1/2+ε +HP 1/2X7/2+ε.

Proof. Let r = [(AHP 2)−1, 1 + (AHP 2)−1] \ RA(P ). For any α ∈ r, by Dirichlet’s approximation

theorem, there exist a ∈ Z and q ∈ N with (a, q) = 1, 1 � a � Aq, q � HP and |Aα − a
q | � (qHP )−1.

Since α ∈ r, one has q > P . By Lemma 2.2, F (Aα) � HP 1/2+ε. Thus by (2.1), we obtain∫
r

F (Aα)|gX(α)|6dα � HP 1/2+ε

∫ 1

0

|gX(α)|6dα � HP 1/2+εX7/2+ε. (2.10)

We complete the proof by applying (2.10) and Lemma 2.4.
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3 Mean value estimate via Davenport’s method

Let S(A,B) denote the number of solutions to

A(x3
1 − x3

2) = B(y31 + y32 + y33 − y34 − y35 − y36), (3.1)

where 1 � x1, x2 � P , (x1x2, B) = 1, B | x3
1 − x3

2 and 1 � y1, y2, y3, y4, y5, y6 � Q. Similarly, we define

S−(A,B) to be the number of solutions to (3.1) with 1 � x1, x2 � P , (x1x2, B) = 1, B | x1 − x2 and

1 � y1, y2, y3, y4, y5, y6 � Q.

Davenport [5] observed that by choosing p ≡ 2 (mod 3), the equation

x3
1 − x3

2 = p3(y31 + y32 − y33 − y34) (3.2)

forces p3 | x1 − x2. In our application of Davenport’s method, the parameters B in (3.1) and p3 in (3.2)

play the same role.

Since B | x1 − x2 implies B | x3
1 − x3

2, we have S−(A,B) � S(A,B). The first result in this section is

as follows.

Lemma 3.1. For any ε > 0, we have

S(A,B) � BεS−(A,B).

Proof. We introduce

g(α; b) =
∑

1�x�P
x≡b (mod B)

e(Ax3α).

On writing h(α) = gQ(Bα), we have

S(A,B) =
∑

1�b1,b2�B
(b1b2,B)=1

b31−b32≡0 (mod B)

∫ 1

0

g(α; b1)g(−α; b2)|h(α)6|dα.

By the Cauchy-Schwarz inequality,

S(A,B) �
∑

1�b1,b2�B
(b1b2,B)=1

b31−b32≡0 (mod B)

(∫ 1

0

|g(α; b1)2h(α)6|dα
)1/2(∫ 1

0

|g(α; b2)2h(α)6|dα
)1/2

�
( ∑

1�b1,b2�B
(b1b2,B)=1

b31−b32≡0 (mod B)

∫ 1

0

|g(α; b1)2h(α)6|dα
)1/2

×
( ∑

1�b1,b2�B
(b1b2,B)=1

b31−b32≡0 (mod B)

∫ 1

0

|g(α; b2)2h(α)6|dα
)1/2

=
∑

1�b�B
(b,B)=1

υ(b)

∫ 1

0

|g(α; b)2h(α)6|dα,

where

υ(b) =
∑

1�c�B
(c,B)=1

c3−b3≡0 (mod B)

1.
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We complete the proof by observing that υ(b) � Bε and

S−(A,B) =
∑

1�b�B
(b,B)=1

∫ 1

0

|g(α; b)2h(α)6|dα.

Lemma 3.2. Suppose that B < P . For any ε > 0, we have

S(A,B) � B−1+εP 2Q3 + P−1/2+εQ5+ε + P 1/2+εQ4+ε + PQ7/2+ε +B−1+εP 3/2Q7/2+ε.

Proof. By changing variables x2 = x, x1 = x+ hB, (3.1) is reduced to

A(3hx2 + 3h2Bx+ h3B2) = y31 + y32 + y33 − y34 − y35 − y36 . (3.3)

By (2.1), the contribution from h = 0 to S−(A,B) is O(PQ7/2+ε). We use S+(A,B) to denote the

number of solutions to equation (3.3) with 1 � h � P/B, 1 � x � P and 1 � y1, y2, y3, y4, y5, y6 � Q.

Then it follows from the above that

S−(A,B) � 2S+(A,B) +O(PQ7/2+ε).

We complete the proof by applying Lemmas 2.5 and 3.1.

As a consequence of Lemma 3.2, we conclude the following.

Lemma 3.3. Suppose that AP 3 = BQ3 and A � B � P 1/2Qρ with 0 � ρ � 1/2. For any ε > 0, we

have

S(A,B) � B−1P 2+εQ3+ρ.

Let S#(A,B) denote the number of solutions to

A(p31 − p32) = B(p33 + p34 + p35 − p36 − p37 − p38), (3.4)

where 1 � p1, p2 � P and 1 � p3, p4, p5, p6, p7, p8 � Q.

Lemma 3.4. Suppose that AP 3 = BQ3 and A � B � P 1/2Qρ with 0 � ρ � 1/2. If (A,B) = 1, then

we have

S#(A,B) � B−1P 2+εQ3+ρ.

Proof. Since (A,B) = 1, the equation (3.4) forces that B | p31−p32. The contribution from (p1p2, B) = 1

is at most S(A,B). Note that (p1p2, B) > 1 implies p1 | B and p2 | B, and thus the contribution from

(p1p2, B) > 1 is O(BεQ7/2+ε). The desired estimate follows from Lemma 3.3 immediately.

4 Proof of Theorem 1.1

For X � 2, we define

fX(α) =
∑
p�X

e(p3α).

Lemma 4.1. Suppose that there exist a ∈ Z and q ∈ N with (a, q) = 1, 1 � q � X such that

|α− a/q| � (qX2)−1. Then one has

fX(α) � qε(logX)cX√
q(1 +X3|α− a/q|) +X11/12+ε,

where c is an absolute constant.

Proof. This follows from [8, Theorem 2] and [18, Lemma 8.5]
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Lemma 4.2. Suppose that δ < 1/18. Let α ∈ R, a ∈ Z and q ∈ N with

(a, q) = 1, 1 � q � N5δ/6, |α− a/q| � N5δ/6(qN)−1.

Suppose that X � N5/18 and N = AX3. Then one has

fX(Aα) � qε(logX)X
√
(q, A)√

q(1 +N |α− a/q|) .

Proof. The desired conclusion follows from Lemma 4.1 by noting

qε(logX)cX
√
(q, A)√

q(1 +N |α− a/q|) � XN−5δ/12 � X1−3δ/2 � X11/12+ε

provided that δ < 1/18.

Lemma 4.3. Let δ < 1/12. Suppose that AjX
3
j = N and AjX

2δ
j �

√
N/2 for all 1 � j � 5. Suppose

that |α− a/q| � N5δ/6(qN)−1 for some a ∈ Z and q ∈ N with

(a, q) = 1 and N5δ/6 < q � N1−5δ/6.

If A1, . . . , A5 are pairwise coprime, then there exists 1 � j � 5 such that

fXj (Ajα) � X1−δ+ε
j .

Proof. Suppose that fXj (Ajα) � X1−δ+ε
j for all 1 � j � 5. Then for 1 � j � 5, we deduce from

Lemma 4.1 that∣∣∣∣Ajα− aj
qj

∣∣∣∣ � X2δ
j

qjX3
j

for some aj ∈ Z, qj ∈ N with (aj , qj) = 1, qj � X2δ
j .

Then for any 1 � i < j � 5, one has

|aiAjqj − ajAiqi
∣∣ = AiAjqiqj

∣∣∣∣ ai
Aiqi

− aj
Ajqj

∣∣∣∣ � AiAjqiqj

(∣∣∣∣α− ai
Aiqi

∣∣∣∣+
∣∣∣∣α− aj

Ajqj

∣∣∣∣
)

� AiAjqiqj

(
X2δ

i

qiN
+

X2δ
j

qjN

)
�

2AiAjX
2δ
i X2δ

j

N
� 1

2
.

Thus there exist a ∈ Z and q ∈ N with (a, q) = 1 such that
aj

Ajqj
= a

q for all 1 � j � 5. Therefore

q = q1A
′
1 = · · · = q5A

′
5, where A′

j | Aj . On recalling that A1, . . . , A5 are pairwise coprime, we have

q = q′A′
1A

′
2A

′
3A

′
4A

′
5 for some q′ ∈ N. Without loss of generality, we assume that A′

1 � A′
2 � · · · � A′

5,

and thus A′
1 � (q′A′

1A
′
2A

′
3A

′
4)

1/4 = q
1/4
5 � X

δ/2
5 . It follows that q = q1A

′
1 � X2δ

1 X
δ/2
5 � N5δ/6 and

∣∣∣∣α− a

q

∣∣∣∣ =
∣∣∣∣α− a1

A1q1

∣∣∣∣ � X2δ
1

q1N
� X

5δ/2
1

qN
� N5δ/6

qN
.

We complete the proof.

Without loss of generality, we assume that 0 < |a1| < |a2| < · · · < |a9|. Suppose that P1 = K(|a9|2 +
|b|1/3), where K > 1 is a sufficiently large constant. Then we define Pj = (|a1|/|aj|)1/3P1 for 2 � j � 9.

We write N = |a1|P 3
1 and

P =

9∏
j=1

Pj .

We define

r(n) =
∑

a1p
3
1+···+a9p

3
9=n

1�pj�Pj(1�j�9)

1.
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We introduce the singular series

S(a1, . . . , a9, n) =

∞∑
q=1

1

φ9(q)

q∑
a=1

(a,q)=1

( 9∏
j=1

C(q, aja)

)
e(−an/q),

where

C(q, a) =

q∑
x=1

(x,q)=1

e(ax3/q).

The singular integral is given by

I(n) =

∫ ∞

−∞

( 9∏
j=1

∫ Pj

1

e(ajx
3β)

log x
dx

)
e(−nβ)dβ.

We point out that

S(a1, . . . , a9, n) � 1 if a1 + · · ·+ a9 ≡ n (mod 2),

and

I(n) � P(logN)−9N−1 if a1, . . . , a9 are not of the same sign.

Therefore Theorem 1.1 follows from

r(n) = S(a1, . . . , a9, n)I(n) +O(PN−1L−1/100),

where L = (logN)C with C a sufficiently large constant. We define

fj(α) = fPj (ajα) (1 � j � 9),

and write

F(α) =

9∏
j=1

fj(α).

By orthogonality, we have

r(n) =

∫ 1

0

F(α)e(−nα)dα.

Suppose that 1/20 < δ < 1/18. Let

M(X) =
⋃
q�X

q⋃
a=1

(a,q)=1

[
a

q
− X

qN
,
a

q
+

X

qN

]
.

We define

M = M(L), n = M(N5δ/6) \M(L), m =

[
N5δ/6

N
, 1 +

N5δ/6

N

]
\M(N5δ/6).

We have

r(n) =

∫
M

F(α)e(−nα)dα +

∫
n

F(α)e(−nα)dα +

∫
m

F(α)e(−nα)dα.

The standard argument in the Waring-Goldbach problem leads to∫
M

F (α)e(−nα)dα = S(a1, . . . , a9, n)I(n) +O(PN−1L−1/100). (4.1)
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Therefore it suffices to consider the contribution from the integration over m ∪ n.

Note that N = |a1|P 3
1 = · · · = |a9|P 3

9 . For all 1 � j � 9, we easily check

Pj = (|a1|/|aj|)1/3P1 � |a1|1/3P 5/6
1 � (|a1|P 3

1 )
5/18 = N5/18. (4.2)

Thus by Lemma 4.3, for α ∈ m, there exists 2 � j � 6 such that fj(α) � P 1−δ+ε
j . We write {2, 3, 4, 5, 6}\

{j} = {k1, k2, k3, k}. Then
∫
m

|F (α)|dα � P 1−δ+ε
j

( 3∏
i=1

∫ 1

0

|f1(α)2fki(α)
6|dα

)1/6( 9∏
i=7

∫ 1

0

|fk(α)2fi(α)6|dα
)1/6

.

For 1 � i � 3, by Lemma 3.4 with ρ = 0, we have

∫ 1

0

|f1(α)2fki(α)
6|dα � N−1+εP 2

1P
6
ki
.

For 7 � i � 9, by (4.2), one has

P
1/2
k P

1/10
i � P

1/2
1 � |a9| > |ai|.

Then we apply Lemma 3.4 with ρ = 1/10 to conclude that

∫ 1

0

|fk(α)2fi(α)6|dα � N−1+εP 2
kP

6+1/10
i � N−1+εP 2

kP
6
i P

1/10
j (7 � i � 9).

It follows from the above that ∫
m

|F (α)|dα � P
1/20−δ+ε
j N−1P . (4.3)

We introduce the function Ψ(α) on M(N5δ/6) by taking

Ψ(α) =
1

q(1 +N |β|)

when α = a/q + β with 1 � a � q � N5δ/6, (a, q) = 1 and |β| � N5δ/6(qN)−1. We have by Lemma 4.2

that

F (α) � P(logN)cΨ(α)3.9 for α ∈ M(N5δ/6).

In particular, one has

F (α) � P(logN)cL−3.9 for α ∈ n.

Therefore,

∫
n

|F (α)|dα � P 10
39 (logN)

10c
39 L−1

∫
n

|F (α)| 2939 dα

� P(logN)cL−1

∫
M(N5δ/6)

Ψ(α)2.9dα.

It follows that ∫
n

|F (α)|dα � P(logN)cL−1N−1. (4.4)

We complete the proof of Theorem 1.1 by combining (4.1), (4.3) and (4.4).
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