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Abstract Let aj,...,ag9 be nonzero integers not of the same sign, and let b be an integer. Suppose that
ai,...,ag are pairwise coprime and a1 + --- + ag = b (mod 2). We apply the p-adic method of Davenport to
find an explicit P = P(a1,...,ag9,n) such that the cubic equation alp% + 4 agpg = b is solvable with p; < P
for all 1 < j < 9. Tt is proved that one can take P = max{|a1],. .., |ag|}¢ + [b|}/? with ¢ = 2. This improves
upon the earlier result with ¢ = 14 due to Liu (2013).
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1 Introduction

The works of Vinogradov [17] and Hua [7] established that for any natural number k, there exists s = s(k)
such that any sufficiently large integer n satisfying certain congruence conditions can be represented as

n=pi+---+pl,

where p1, ..., ps are prime numbers. In general, one would ask how to find an explicit P = P(ay,...,as,n)
such that the equation

arph + - +aph=n

is solvable in the box p; < P (1 < j < s). Following the pioneer work of Baker [1], Liu and Tsang [12]
made substantial progress for the linear case k = 1 with s = 3 and the quadratic case k = 2 with s =5
in [13]. Their results were considerably improved by Li [10], Choi and Liu [3,4], Liu and Tsang [11], Choi
and Kumchev [2], and Harman and Kumchev [6]. In the cubic case, the classical result of Hua asserts
that every sufficiently large odd number can be represented in the form

n=pit+oot
Leung [9] considered the cubic equation
ap} + -+ agpy =, (1.1)
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where p1,...,pg are prime variables, aq, ..., a9 are nonzero integer coefficients and n € Z. Throughout,
we suppose that

(ai,a;) =1 for 1<i<j<09, (1.2)
and
a1 +---+ag=n (mod 2). (1.3)
Leung established that if a1, ..., ag are not of the same sign, then (1.1) is solvable in primes p; (1 < j <9)
with
p; < max{|ai|, ..., |ag|}?F + |n|"/3, (1.4)

where the implied constant depends only on €. This was refined by Liu [14], who showed that the exponent
20 in (1.4) can be reduced to 14. In this paper, we prove the following theorem.

Theorem 1.1.  Letaq,...,a9 be nonzero integers, and let n € Z. Suppose that aq, . ..,aq and n satisfy
(1.2) and (1.3). If a1,...,a9 are not of the same sign, then there are prime solutions to the equation (1.1)
with

pj < max{|ail, ..., |ao|}? + |n|*/? (1.5)

forall1 <j <9.
The proof can be applied to establish the following parallel result. We omit the details.

Theorem 1.2.  Suppose that aq,...,a9,n are positive integers satisfying (1.2) and (1.3). Then there
exists an absolute constant KK > 0 such that the equation (1.1) is solvable whenever

n > Kmax{|ail,...,|ao|}".

Our improvement comes from the application of the p-adic method of Davenport [5]. In particular, our
treatment of the mean value estimate makes use of the condition that aq,..., a9 are pairwise coprime.

As usual, we abbreviate 2™ to e(z). The letter p, with or without a subscript, always denotes a prime
number. We use ¢ to denote a sufficiently small positive number. Denote by ¢(n) the Euler function.

2 Preliminaries

For X > 1, we define

By Hua’s lemma, one has

1
/ lgx (a)|da < XT/2Fe, (2.1)
0

Let

g<X

(a,
In view of the proof of [16, Theorem 4.4], one has

q
O [t
2 La qX27 qX?
=1

/ lgx (a)|®da < X3. (2.2)
M(X)

We define
2

dg. (2.3)

T(PX) =) Z/ 1 1+f11HP2|6|)’ qu)

q<P 1<a<Aq \qAHP
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Lemma 2.1.  Let T(P, X) be defined as above. Then one has
T(P,X)< X?**H 'p~3/2 L XH'p~1/2,

Proof.  The argument is routine. We include the details for completeness. Note that

a
Z gx ( Ag + /3)
Therefore,

1<a<Ag
(¢, —y®) 1
T(P,X) < <A + XAVg / dp
cg; 1@%3@( Vi 1BI< qarrp V(1+ AHP?|B))

<2 < y o e ;ys) + X\/q> (HP*)™'V/P/q

<P N<agpex VY
<<X2+6H71P73/2+XH71P71/2.

<A Z (q,2° — y3) + X Aq.
I<e#y<X

This completes the proof.
We define

F(a) = Z Z e((3hx? + 3h*Bx 4+ h®B?)a),

where H > 1 and B is a natural number satisfying 1 < BH < P.

Lemma 2.2.  Suppose that |a — a/q| < (gHP)™! for some a € Z and ¢ € N with 1 < ¢ < HP. Then

one has
1 L1y q(1+ HP?o — a/q)\ */?
g1+ HP?|la—afq|) P HP?

Proof.  In view of the proof of the lemma in [15], one has

F(a) < HP”E(

1/2
Fla) < HPYE( .t L, « . (2.4)
P HP?

It follows from (2.4) by the standard argument in Waring’s problem (see [16, Exercise 2 of Chapter 2])
that

1 1 q(1+HPa—a/q)\"?
F HP'te :
() <q(1+HP2|a—a/q|) Tp HP?

We complete the proof.

For any natural number A, we define
a 1 a 1
R(P;A) = — .
(Pia) = U Uq[q qHP’quqHP}

In light of Lemma 2.2, we have

HPte
Fla) < Vol + HP%a — a/q) for o€ R(P;A). (2.5)

We define
Ra(P)={a € [(AHP?*) "' 1+ (AHP?*)™'|: Aa € R(P; A)}. (2.6)

Now we conclude the following.
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Lemma 2.3.  Let Ra(P) be defined as above. Then one has
/ F(Aa)|gx (a)?da < X2rep=1/2+e L x pl/2+e, (2.7)
Ra(P)

Proof.  Since Aa € R(P; A), there exist a € Z and ¢ € Nsuch that 1 <¢< P, 1< a< Aq, (a,q) =1

and
1

< .
qgHPA

a
Aq

o —

By (2.5), one has
HPlJrs HPlJrs

F(Ax - |
(Aa) < Va1 + HP?|Aa — a/q)) \/Q(1+AHP2|O‘_ Aql)

We deduce that
/ F(Aa)|gx (o) Pda < HPYFT(P,X),
Ra(P)

where T'(P, X) is given by (2.3). We establish (2.7) by applying Lemma 2.1.
Lemma 2.4.  Let Ra(P) be defined in (2.6). Then one has

/ F(Aa)|gx (a)|do < HPX?® + X5+ p=1/2+e 4 xi+e pl/2+e,
Ra(P)

Proof.  Let

a 1 a 1
Mo U [ e k)
X —qcaczg Ll X4 aX
(a,9)=1

For o € Ra(P), by Dirichlet’s approximation theorem, there exist a € Z and ¢ € N with —¢ < a < 2g,
1<q¢< X? (a,q) =1and |a—a/q| < (¢X?)~L. For a ¢ M, one has ¢ > X and thus by [16, Lemma 2.4],
gx(a) < X3/ We conclude that

gx () < X3/ for e RA(P)\ M.

Then we deduce

/ F(Aa)|gx ()[fda < XF+ / F(A)|gx () 2da,
Ra(P)\M Ra(P)

and by Lemma 2.3,

/ F(A)|gx (a)|®da <« XOHep=1/2e 4 xite pl/2+e, (2.8)
Ra(P)\M
On applying (2.2), we obtain
/ F(Aa)|gx ()°da < HP / lgx (o) [°der < HPX?. (2.9)
Ra(P)NM M(X)

We complete the proof by combining (2.8) and (2.9).

Lemma 2.5. We have
1
/ F(AO[)|9X(O()|GCZO¢ < HPX3+X5+6P—1/2+€+X4+6P1/2+5 +HP1/2X7/2+€.
0

Proof. Let v = [(AHP%)71,1+ (AHP?)71]\ Ra(P). For any « € t, by Dirichlet’s approximation
theorem, there exist a € Z and ¢ € N with (a,q) =1, 1 < a < Aq, ¢ < HP and |Aa — Z| < (¢gHP) L.
Since a € t, one has ¢ > P. By Lemma 2.2, F(Aa) < HP/?*¢. Thus by (2.1), we obtain

1
/ F(Aa)|gx (a)|%da < HPY?+e / lgx (a)|®da < HPY2+exT/2+e, (2.10)
0

T

We complete the proof by applying (2.10) and Lemma 2.4.
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3 Mean value estimate via Davenport’s method
Let S(A, B) denote the number of solutions to
At —a3) = By} +v5 + 93 —vi — v3 —43), (3.1)

where 1 < 21,20 < P, (2172,B) =1, B | 23 — 23 and 1 < y1, 2,3, ¥4, ¥5, Y6 < Q. Similarly, we define
S~ (A, B) to be the number of solutions to (3.1) with 1 < 1,22 < P, (z122,B) = 1, B | 1 — 2 and
1< Y1,Y2,Y3,Y4,Y5, Ye < Q

Davenport [5] observed that by choosing p =2 (mod 3), the equation

af — 2y =p* (v + v — v5 — i) (3.2)

forces p? | 1 — 2. In our application of Davenport’s method, the parameters B in (3.1) and p® in (3.2)
play the same role.

Since B | 1 — x5 implies B | 23 — 23, we have S~ (A, B) < S(4, B). The first result in this section is
as follows.

Lemma 3.1.  For any € > 0, we have

Proof.  We introduce

On writing h(a) = go(Ba), we have

S(A,B) = > / (a; b1)g(—a; ba) | R ()| dov.

1<by,ba<B
(ble,B) 1
b2 —b3=0 (mod B)

By the Cauchy-Schwarz inequality,

1/2
S(A,B) < (/ lg(a b1 |da> (/ lg(c; bg ) |da>
1<b1,b2gB
1/2
/ lg(e; b1 ) |da>
(ble,B) 1
b3 —b3=0 (mod B)

(b1b2,B)=1
1/2
X ( Z / lg(cv; ba)?h(ar) |da>
1<by,bo<B

b3 —b3=0 (mod B)
(b1b2,B)=1

b2 —b3=0 (mod B)

/ lg(c; b)2h(a)8|da,

v(b) = Z 1.
1<c<B
(¢,B)=1
¢ —b*=0 (mod B)

< <
1<b1,b2<B

1<b<B
(b,B)=1

where
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We complete the proof by observing that v(b) < B¢ and

1
s"aB) = 3 [ lolsbPha)lde
1<b<B V0
(b,B)=1
Lemma 3.2.  Suppose that B < P. For any € > 0, we have
S(A,B) < Bfl+6P2Q3 +P71/2+6Q5+6 +P1/2+6Q4+6 +PQ7/2+6 + B*1+6P3/2Q7/2+6.
Proof. By changing variables x5 = x, 21 = 2 + hB, (3.1) is reduced to
A(3ha® + 3h*Bx + h*B?) = y¥ +y5 + y5 — v} — v5 — . (3.3)

By (2.1), the contribution from h = 0 to S~(A, B) is O(PQ"/?*%). We use S*(A, B) to denote the
number of solutions to equation (3.3) with 1 < h < P/B, 1 <z < P and 1 < y1,92,Y3, Y4, Y5, Ys < Q.
Then it follows from the above that

S7(A,B) < 25%(A, B) + O(PQ"/**).

We complete the proof by applying Lemmas 2.5 and 3.1.

As a consequence of Lemma 3.2, we conclude the following.

Lemma 3.3.  Suppose that AP? = BQ® and A < B < PY2QP with 0 < p < 1/2. For any ¢ > 0, we
have
S(A,B) < B~'p*teQ3tr,

Let S#(A, B) denote the number of solutions to
A(pY = p3) = B(05 + pi + 05 — pg — 17 — p3), (3.4)

where 1 < p1,p2 < P and 1 < p3, p4, ps, pe, 7, P8 < Q.
Lemma 3.4.  Suppose that AP?> = BQ® and A < B < P/2Q? with 0 < p < 1/2. If (A,B) = 1, then
we have

S#(A, B) < B~1P?TeQ3tr.

Proof.  Since (A, B) = 1, the equation (3.4) forces that B | p$ —p3. The contribution from (pips, B) = 1
is at most S(A, B). Note that (pi1p2, B) > 1 implies p; | B and ps | B, and thus the contribution from
(p1p2, B) > 1is O(B°Q7/?*¢). The desired estimate follows from Lemma 3.3 immediately.

4 Proof of Theorem 1.1

For X > 2, we define

fx(@) = Y e(pa).

p<X

Lemma 4.1.  Suppose that there exist a € Z and q¢ € N with (a,q) = 1, 1 < ¢ < X such that
o —a/q] < (¢X?)~L. Then one has

q°(log X)X 4+ x/124e

IO <+ X3 - afq)

)

where ¢ is an absolute constant.

Proof.  This follows from [8, Theorem 2] and [18, Lemma 8.5]
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Lemma 4.2.  Suppose that 6 < 1/18. Let « € R, a € Z and q € N with
(a,9) =1, 1<g<N™C  Ja—a/q <N?/O(N)~"
Suppose that X > N°/18 and N = AX3. Then one has
¢°(log X)X /(¢ 4)
Va(l+ Nla—a/q|)
Proof.  The desired conclusion follows from Lemma 4.1 by noting
¢° (log X)°X \/(g, A)
Va(l+ Nla —a/q))
provided that § < 1/18.

Lemma 4.3.  Let § < 1/12. Suppose that A; X3} = N and AjXJ2‘S <VN/2 for all 1 < j < 5. Suppose
that |a — a/q| < N°/S(gN)~* for some a € Z and q € N with

fx(Aa) <

> XN-9/12 5, x1-36/2 5 x11/124e

(a,q) =1 and N°/6 < q< N'759/6,
If Ay, ..., As are pairwise coprime, then there exists 1 < j < 5 such that
fx;(Ajo) < X]70F2

Proof.  Suppose that fx,(Aja) > X;_‘HE for all 1 < 7 < 5. Then for 1 < j < 5, we deduce from
Lemma 4.1 that

X2

a; J
3
Qij

4;

<

‘A]a — < for some a; €Z, ¢; €N with (a5,¢;) =1, ¢ < X2

)

Then for any 1 < i < j < 5, one has

a; a; Qa;
_ < AiAiqiq _
Aiqi Ajgy 9345 ( “ A
X2 Xj?5> _ 24;A; X2X%

< AAsqigi [ <.
‘ jqzq](qiN—i—qjN N 2

aj

la;Ajq; — ajAigi| = Aidjqiq; Ajq;

+‘a—

Thus there exist @ € Z and ¢ € N with (a,¢) = 1 such that Aa_{zv = Z for all 1 < j < 5. Therefore
JH47

q = qA} = = g A5, where A, | A;. On recalling that Ay,..., A5 are pairwise coprime, we have

q = q AJAL AL A AL for some ¢’ € N. Without loss of generality, we assume that 4] < A, < --- < AL,

and thus A} < (¢’ A} ALAL ANV = qé/4 < X§/2. It follows that ¢ = g1 A} < Xlz‘ng/2 < N%/6 and

ay

56/2
o — ‘:‘a— <X126<X1/ <N56/6
q A

S qN T gN T gN

We complete the proof.

Without loss of generality, we assume that 0 < |ai| < |az| < -+ < |ag|. Suppose that P; = K(|ag|* +
b|'/3), where K > 1 is a sufficiently large constant. Then we define P; = (|a1|/|a;|)/3P; for 2 < j < 9.
We write N = |a;| P} and

9
P=1]P-
j=1

We define

a1p?+---+agpg:n
1<p; <P;(1K5<9)
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We introduce the singular series
q 9
Slarvvan ) =Y ot p (H

where

We point out that
S(ay,...,a9,n)>1 if a1 +---+ag=n (mod 2),
and
J(n) > PlogN)" "N~ if ay,...,a9 arenot of the same sign.
Therefore Theorem 1.1 follows from
r(n) = &(ay,. .., a9, n)I(n) + O(PN 1 L71/100),
where £ = (log N)¢ with C a sufficiently large constant. We define
fila) = fp;(a;a) (1<5<9),

and write

7j=1
By orthogonality, we have
1
r(n) = | Fla)e(—na)da
0
Suppose that 1/20 < § < 1/18. Let
q
a X a X
M(X) = X ey ]
o q<XaL:J1 [q gN q gN
h (aqq):l
We define
N56/6 N56/6
M= ML), n = MNT/) \ ML), m[ SN }\smuv“/ﬁ)
We have

= / Fa)e(—na)do + / Fa)e(—na)do + / F(a)e(—na)do.
m n m
The standard argument in the Waring-Goldbach problem leads to

/ F(a)e(—na)da = &(ay, . .., ag,n)I(n) + O(PN~LL71/100), (4.1)
m
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Therefore it suffices to consider the contribution from the integration over m U n.
Note that N = |a1| P = -+ = |ag|P§. For all 1 < j < 9, we easily check

Py = (jarl/la;)' 2Py 2 |aa| V2P 2 (Jaa | P])P/1® = N/8, (4.2)

Thus by Lemma 4.3, for a € m, there exists 2 < j < 6 such that f;(a) < le—6+s. We write {2, 3,4,5,6}\
{7} = {k1, k2, k3, k}. Then

[ 1F@)ida < P;—“E(ﬁ / @), (@)"}da) 1/6 ( il / 1 ula fie)"da
m i=1 =7

For 1 <i < 3, by Lemma 3.4 with p = 0, we have

1/6

1
/0 [F1(@)? fi (0)°|da < N~ P2PE

For 7 < i <9, by (4.2), one has
Pkl/zpil/lo > P11/2 > lao| > |asl.

Then we apply Lemma 3.4 with p = 1/10 to conclude that
1
- 6+1/10 - 10 .
/O | fi(@)? fi(@)®|da < N=1+ep2pSti/10 < v 1+EP,§P§PJ.1/ (7<i<9).
It follows from the above that

/| (a)|da < P04 N~1p, (4.3)

We introduce the function ¥(a) on M(N9/) by taking

1

Y@= 1+ N

when a = a/q + f with 1 < a < ¢ < N/, (a,q) =1 and || < N°*/6(¢gN)~'. We have by Lemma 4.2
that

F(a) < P(log N)*W(a)>® for o e M(N/G).
In particular, one has
F(a) < P(log N)°L™39 for a€n.
Therefore,

/|F )dor < P35 (log N) 55 L~ /|F )5 dov

< P(log N)L™ / U(a)*da.

Noé/G
It follows that
/ |F(a)|da < P(log N)° LN L. (4.4)
n
We complete the proof of Theorem 1.1 by combining (4.1), (4.3) and (4.4).
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