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1 Introduction

Duality plays an important role in studying the solutions of nonlinear programming problems. Many

authors have formulated different duality models, for example, Wolfe dual [11] and Mond-Weir dual

[15]. In 1996, Nanda and Das [16] proposed four types of duality models associated with the nonlinear

programming problem with cone constraints. These results were motivated by the work of Bazaraa and

Goode [3] and Hanson and Mond [9]. Later on, Chandra and Abha [4] identified some shortcomings in

these duals presented by Nanda and Das [16] followed by the corrected versions given below:

(ND)1 max f(u) + yTg(u)− uT∇(f + yTg)(u)

s.t. −∇(f + yTg)(u) ∈ C∗
1 ,

y ∈ C2,

(ND)2 max f(u)

s.t. −∇(f + yTg)(u) ∈ C∗
1 ,

yTg(u)− uT∇(f + yTg)(u) � 0,

y ∈ C2,

(ND)3 max f(u)− uT∇(f + yTg)(u)
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s.t. −∇(f + yTg)(u) ∈ C∗
1 ,

yTg(u) � 0,

y ∈ C2,

(ND)4 max f(u) + yTg(u)

s.t. −∇(f + yTg)(u) ∈ C∗
1 ,

uT∇(f + yTg)(u) � 0,

y ∈ C2.

Furthermore, they also established the corresponding weak and strong duality theorems.

From the weak duality result, it is known that the objective value of a feasible solution to the primal

problem is not less than the corresponding dual one. This result provides a lower bound for the primal

optimal value if a feasible dual solution is known. The strong duality theorem tells us that, whenever

the primal problem has an optimal solution, the dual problem also has one and there is no duality gap.

However, the essential, but the most difficult part of the duality theory, is on the converse duality theorem.

It deals with the issues on how to obtain the primal solution from the dual solution and on conditions

under which there is no gap between the primal problem and the dual problem. In order to handle such

a matter between a nonlinear problem with cone constraints and its corresponding four duality models

mentioned above, Yang et al. [21] established converse duality theorems, under suitable assumptions,

such as nonsingularity, positive/negative definiteness.

The study of second order duality is attractive due to its computational advantage over first order

duality. It provides a tighter bound for the value of the objective function when approximations are used

(see [1, 12, 14, 17, 22]). For multiobjective programming, it appears naturally and frequently in various

areas of our daily life. Thus, it is valuable to investigate multiobjective programming. Nevertheless,

the results of second order duality for multiobjective programming are mostly on symmetric duality

(see [6–8, 10, 13, 18–20, 23, 24]). In particular, Yang et al. [23, 24] studied second order symmetric dual

programs and established duality theorems under F -convexity conditions. Following the work of Yang

et al. [23, 24], Mishra and Lai [13] established second order symmetric dual results for multiobjective

programs under the assumption of cone second-order pseudo-invexity. Gulati et al. [6,7] obtained duality

theorems for second order multiobjective symmetric dual problems under η-bonvexity/η-pseudobonvexity

assumptions. Kailey et al. [10] studied second-order multiobjective mixed symmetric dual under η-

bonvexity/η-pseudobonvexity. Gupta and Kailey [8] investigated second order symmetric dual programs

under generalized cone-invexity.

To the best of our knowledge, there are only a very few works dealing with nonsymmetric type of

second order duality for multiobjective programming with cone constraints. Furthermore, unlike linear

programming, a majority of dual formulations in nonlinear programming do not possess the symmetry

property. Therefore, in this paper, we discuss the second order nonsymmetric dual for a class of multi-

objective programming with cone constraints. Based on the first order duality results of Chandra and

Abha [4] and Yang et al. [21] and the second order duality theorems of Yang et al. [22] and Ahmad and

Agarwal [2] for nonlinear programming with cone constraints, four types of second order duality models

are introduced. Weak duality theorems are presented under the assumptions of F -pseudoconvexity and

F -quasiconvexity, which are more general than invexity. Strong duality theorems are established by using

the characterization of efficient solutions of Chankong and Haimes [5] and the generalized Fritz John type

conditions in [3]. Most importantly, converse duality theorems, which play a crucial role in duality theory,

are discussed under certain suitable assumptions for the primal problem and its four second order duality

models, respectively. Furthermore, some deficiencies in the recent work on the second order converse

duality results obtained by Ahmad and Agarwal [2] are discussed.

2 Preliminaries

Throughout this paper, denote Rn the n-dimensional Euclidean space with its non-negative orthant Rn
+.
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The following conventions will be used: For each x, y ∈ Rn,

x < y ⇔ y − x ∈ intRn
+,

x � y ⇔ y − x ∈ Rn
+\{0},

x � y ⇔ y − x ∈ Rn
+,

x � y ⇔ y − x /∈ Rn
+\{0}.

In the sequel, we need the following definitions.

Definition 2.1. A set C ⊆ Rn is called a cone if for each x ∈ C and λ � 0, λx ∈ C. In addition, if C

is convex, then it is called a convex cone.

Definition 2.2. Let C ⊆ Rn be a cone. The set C∗ = {z ∈ Rn : xTz � 0 for all x ∈ C} is called the

polar of cone C.

Definition 2.3 (See [9]). A functional F : Rn × Rn × Rn → R is said to be sublinear in its third

argument, if for all (x, u) ∈ Rn × Rn,

(i) F (x, u, a1 + a2) � F (x, u, a1) + F (x, u, a2), for all a1, a2 ∈ Rn,

(ii) F (x, u, αa) = αF (x, u, a), for all α ∈ R+ and for all a ∈ Rn.

For convenience, we denote Fx,u(a) = F (x, u, a).

Now we consider a sublinear functional F : Rn × Rn × Rn → R and a twice differentiable function

h : Rn → R. Furthermore, denote by ∇h(u) and ∇2h(u) the gradient and the Hessian matrix of the

function h evaluated at u, respectively.

Definition 2.4 (See [22]). h is said to be second order F - pseudoconvex at u ∈ Rn if

(x, p) ∈ Rn × Rn,

Fx,u[∇h(u) +∇2h(u)p] � 0 ⇒ h(x) � h(u)− 1

2
pT∇2h(u)p.

Definition 2.5 (See [22]). h is said to be second order F - quasiconvex at u ∈ Rn if

(x, p) ∈ Rn × Rn,

h(x) � h(u)− 1

2
pT∇2h(u)p ⇒ Fx,u[∇h(u) +∇2h(u)p] � 0.

In this paper, we consider the following multiobjective programming problem with cone constraints:

(MOP) min f(x)

s.t. g(x) ∈ C∗
2 ,

x ∈ C1,

where f = (f1, f2, . . . , fp) : Rn → Rp and g = (g1, g2, . . . , gm) : Rn → Rm are vector-valued functions

such that each component function is twice continuously differentiable. Let C1 and C2 be two closed

convex cones with nonempty interiors in Rn and Rm, respectively. Furthermore, let

S = {x ∈ Rn : g(x) ∈ C∗
2 , x ∈ C1}

be the feasible set of (MOP).

For (MOP), we need the following notation: For each x, y, u ∈ Rn, and α ∈ Rp,

αT∇f(u) :=

p∑
i=1

αi∇fi(u),

∇f(u)x := [∇f1(u)
Tx, . . . ,∇fp(u)

Tx]T,

xT∇2f(u)y := [xT∇2f1(u)y, . . . , x
T∇2fp(u)y]

T.

The solution involved in this paper is defined in the sense of efficiency as given below:
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Definition 2.6 (See [5]). A point x̄ ∈ S is said to be an efficient solution of (MOP), if there exists no

other x ∈ S such that f(x) � f(x̄).

We shall use the characterization of efficiency from [5, Theorem 4.11].

Lemma 2.7. x̄ is an efficient solution for (MOP) if and only if x̄ solves

Pk(x̄)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min fk(x)

s.t. fj(x) � fj(x̄) for all j �= k,

g(x) ∈ C∗
2 ,

x ∈ C1,

for all k = 1, . . . , p.

Motivated by the first order duals of Chandra and Abha [4] and the second order duals of Yang et

al. [22] for nonlinear programming with cone constraints, we now introduce four types of second order

nonsymmetric duality models for multiobjective programming problems with cone constraints (MOP) as

follows:

(ND′)1 max f(u) +

{
yTg(u)− 1

2
pT∇2(λTf + yTg)(u)p

− uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

}
e

s.t. − [∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p] ∈ C∗
1 ,

y ∈ C2,

λ > 0, λTe = 1,

(ND′)2 max f(u)−
{
1

2
pT∇2(λTf)(u)p

}
e

s.t. − [∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p] ∈ C∗
1 ,

yTg(u)− 1

2
pT∇2yTg(u)p− uT[∇(λTf + yTg)(u)

+∇2(λTf + yTg)(u)p] � 0,

y ∈ C2,

λ > 0, λTe = 1,

(ND′)3 max f(u)−
{
1

2
pT∇2(λTf)(u)p+ uT[∇(λTf + yTg)(u)

+∇2(λTf + yTg)(u)p]

}
e

s.t. − [∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p] ∈ C∗
1 ,

yTg(u)− 1

2
pT∇2yTg(u)p � 0,

y ∈ C2,

λ > 0, λTe = 1,

(ND′)4 max f(u) +

{
yTg(u)− 1

2
pT∇2(λTf + yTg)(u)p

}
e

s.t. − [∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p] ∈ C∗
1 ,

uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p] � 0,

y ∈ C2,

λ > 0, λTe = 1.
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Remark 2.8. When f : Rn → R, the second order duality models (i.e., (ND′)1, (ND′)2, (ND′)3 and

(ND′)4) for (MOP) reduce to the second order duality models introduced by Yang et al. [22] for nonlinear

programming with cone constraints. In addition, if p = 0, the above second order duality models reduce to

the first order duality models (i.e., (ND)1, (ND)2, (ND)3 and (ND)4) proposed by Chandra and Abha [4],

respectively.

3 Main results

In this section, we establish weak, strong and converse duality theorems between (MOP) and (ND′)1,
(ND′)2, (ND′)3 and (ND′)4, respectively.

First, we present weak duality results, which give the relationships between the objective values of

feasible solutions to the primal problem (MOP) and those to the respective duality models (ND′)1,
(ND′)2, (ND′)3 and (ND′)4.

3.1 Weak duality

The following theorems state that the objective value of any feasible solution of (MOP) is not less than

those of (ND′)1, (ND′)2, (ND′)3 and (ND′)4, respectively, under some appropriate conditions, such as

second order F -pseudoconvexity and second order F -quasiconvexity.

Theorem 3.1 (Weak duality for (MOP) and (ND′)1). Let x and (u, y, λ, p) be feasible for (MOP) and

(ND′)1, respectively. Assume that there exists a sublinear functional F : Rn × Rn × Rn → R such that

λTf(·) + yTg(·) + (·)Tv is second order F -pseudoconvex at u with

v = −[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p].

Then

f(x) � f(u) +

{
yTg(u)− 1

2
pT∇2(λTf + yTg)(u)p

− uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

}
e.

Proof. Assume that

f(x) � f(u) +

{
yTg(u)− 1

2
pT∇2(λTf + yTg)(u)p

− uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

}
e.

Then, from the constraints of (MOP) and (ND′)1, we have

λTf(x) < λTf(u) + yTg(u)− 1

2
pT∇2(λTf + yTg)(u)p

− uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p], (3.1)

− xT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p] � 0, (3.2)

yTg(x) � 0. (3.3)

Putting (3.1)–(3.3) together, we get

λTf(x) + yTg(x)− xT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

< λTf(u) + yTg(u)− uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

− 1

2
pT∇2(λTf + yTg)(u)p.
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Since λTf(·) + yTg(·) + (·)Tv is second order F -pseudoconvex at u with

v = −[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p],

we obtain Fx,u(0) < 0, which contradicts Fx,u(0) = 0. Hence,

f(x) � f(u) +

{
yTg(u)− 1

2
pT∇2(λTf + yTg)(u)p

− uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

}
e.

Remark 3.2. Theorem 3.1 reduces to Theorem 1 presented by Yang et al. [22], when f : Rn → R.
Furthermore, let p = 0 and Fx,u(a) = η(x, u)Ta. Then, the second order F -pseudoconvexity reduces to

psedoinvexity, and Theorem 3.1 reduces to Theorem 1 established by Chandra and Abha [4].

Theorem 3.3 (Weak duality for (MOP) and (ND′)2). Let x and (u, y, λ, p) be feasible for (MOP) and

(ND′)2, respectively. Suppose that there exists a sublinear functional F : Rn × Rn × Rn → R such that

λTf(·) is second order F -pseudoconvex at u and yTg(·) + (·)Tv is second order F -quasiconvex at u with

v = −[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p].

Then

f(x) � f(u)−
[
1

2
pT∇2(λTf)(u)p

]
e.

Proof. Suppose that

f(x) � f(u)−
[
1

2
pT∇2(λTf)(u)p

]
e.

Since λ > 0 and λTe = 1,

λTf(x) < λTf(u)− 1

2
pT∇2(λTf)(u)p.

By virtue of the second order F -pseudoconvexity of λTf(·) at u, we get

Fx,u(∇(λTf)(u) +∇2(λTf)(u)p) < 0. (3.4)

It follows from the sublinearity of F and

v + [∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p] = 0

that

Fx,u(v + [∇(yTg)(u) +∇2(yTg)(u)p]) + Fx,u(∇(λTf)(u) +∇2(λTf)(u)p) � 0,

which combined with (3.4) yields

Fx,u(v + [∇(yTg)(u) +∇2(yTg)(u)p]) > 0.

Then, by the second order F -quasiconvexity of yTg(·) + (·)Tv at u with

v = −[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p],

we have

yTg(x)− xT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

> yTg(u)− uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]− 1

2
pT∇2(yTg)(u)p. (3.5)

Note that

0 � yTg(x)− xT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p],
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which together with (3.5) implies that

yTg(u)− 1

2
pT∇2(yTg)(u)p− uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p] < 0.

This contradicts the feasibility of (u, λ, y, p) for (ND′)2. Therefore,

f(x) � f(u)−
[
1

2
pT∇2(λTf)(u)p

]
e.

Remark 3.4. Similar to Theorem 3.1, Theorem 3.3 reduces to Theorem 2 given by Yang et al. [22],

when f : Rn → R. Furthermore, if we choose p = 0 and Fx,u(a) = η(x, u)Ta, then it is easy to see that

the second order F -pseudoconvexity and the second order F -quasiconvexity reduce to pseudoinvexity and

quasiinvexity, respectively, and Theorem 3.3 reduces to Theorem 2 established by Chandra and Abha [4].

Theorem 3.5 (Weak duality for (MOP) and (ND′)3). Let x and (u, y, λ, p) be feasible for (MOP) and

(ND′)3, respectively. Suppose that there exists a sublinear functional F : Rn × Rn × Rn → R such that

λTf(·) + (·)Tv is second order F -pseudoconvex at u for v = −[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

and yTg(·) is second order F -quasiconvex at u. Then

f(x) � f(u)−
{
1

2
pT∇2(λTf)(u)p+ uT[∇(λTf + yTg)(u)

+∇2(λTf + yTg)(u)p]

}
e.

Proof. Suppose that

f(x) � f(u)−
{
1

2
pT∇2(λTf)(u)p+ uT[∇(λTf + yTg)(u)

+∇2(λTf + yTg)(u)p]

}
e.

Then, by the constraints of (MOP) and (ND′)3,

λTf(x) < λTf(u)−
{
1

2
pT∇2(λTf)(u)p+ uT[∇(λTf + yTg)(u)

+∇2(λTf + yTg)(u)p]

}
,

and −xT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p] � 0.

It follows from the above two inequalities that

λTf(x)− xT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

< λTf(u)− 1

2
pT∇2(λTf)(u)p− uT[∇(λTf + yTg)(u)

+∇2(λTf + yTg)(u)p].

As λTf(·)+(·)Tv is second order F -pseudoconvex at u for v = −[∇(λTf+yTg)(u)+∇2(λTf+yTg)(u)p],

we get Fx,u(∇(λTf)(u)+v+∇2(λTf)(u)p) < 0, which together with the sublinearity of F and v+[∇(λTf

+ yTg)(u) +∇2(λTf + yTg)(u)p] = 0 implies

Fx,u(∇(yTg)(u) +∇2(yTg)(u)p) > 0.

Owing to the second order F -quasiconvexity of yTg(·) at u, we have yTg(x) > yTg(u)− 1
2p

T∇2(yTg)(u)p.

Note that yTg(x) � 0, thus yTg(u)− 1
2p

T∇2(yTg)(u)p < 0, which contradicts the constraints of (ND′)3.
So,

f(x) � f(u)−
{
1

2
pT∇2(λTf)(u)p+ uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

}
e.
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Remark 3.6. As mentioned in Remark 3.4, Theorem 3.5 reduces to Theorem 3 obtained by Yang et

al. [22], when f : Rn → R. In addition, if

p = 0 and Fx,u(a) = η(x, u)Ta,

then Theorem 3.5 reduces to Theorem 3 established by Chandra and Abha [4].

Theorem 3.7 (Weak duality for (MOP) and (ND′)4). Let x and (u, y, λ, p) be feasible for (MOP) and

(ND′)4, respectively. Suppose that there exists a sublinear functional F : Rn × Rn × Rn → R satisfying

Fx,u(a) + aTu � 0, for all a ∈ C∗
1 , (A)

and λTf(·) + yTg(·) is second order F -pseudoconvex at u. Then

f(x) � f(u) +

{
yTg(u)− 1

2
pT∇2(λTf + yTg)(u)p

}
e.

Proof. Suppose the conclusion is not true. Then

λTf(x) < λTf(u) + yTg(u)− 1

2
pT∇2(λTf + yTg)(u)p.

Since yTg(x) � 0, we get

λTf(x) + yTg(x) < λTf(u) + yTg(u)− 1

2
pT∇2(λTf + yTg)(u)p.

It is easy to see that

Fx,u(∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p) < 0, (3.6)

for λTf(·) + yTg(·) is second order F -pseudoconvex at u.

On the other hand, taking into account the condition of (A) and the constraints of (ND′)4, we have

Fx,u(−[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p])

� uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p] � 0.

Hence, it follows from the sublinearity of F that

Fx,u(∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p) � 0,

contradicting (3.6). Thus,

f(x) � f(u) +

{
yTg(u)− 1

2
pT∇2(λTf + yTg)(u)p

}
e.

Remark 3.8. Similar to the above three theorems, Theorem 3.7 reduces to Theorem 4 presented by

Yang et al. [22], when f : Rn → R. Furthermore, when

p = 0 and Fx,u(a) = η(x, u)Ta,

the condition

“Fx,u(a) + aTu � 0, for all a ∈ C∗
1”

in Theorem 3.7 becomes

“η(x, u) + u ∈ C1”

in the first order weak duality theorem (i.e., Theorem 4) of Chandra and Abha [4], and Theorem 3.7

reduces to Theorem 4 established by Chandra and Abha [4].
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3.2 Strong duality

Based on the above weak duality theorems, we now present strong duality theorems for efficient solutions,

which are focused on how to obtain efficient solutions of four second order duals (ND′)1, (ND′)2, (ND′)3
and (ND′)4 from the ones of the primal programming (MOP), respectively. These results are established

in terms of the characterization of efficient solutions (see Lemma 2.7) and the generalized Fritz John

conditions [3].

Theorem 3.9 (Strong duality for (MOP) and (ND′)1). Let x̄ be an efficient solution of (MOP) at

which a suitable constraint qualification [11] is satisfied. Then there exist λ̄ > 0 and ȳ ∈ C2 such

that (x̄, ȳ, λ̄, p̄ = 0) is feasible for (ND′)1 and the objective values of (MOP) and (ND′)1 are equal.

Furthermore, if hypotheses of Theorem 3.1 are satisfied, then (x̄, ȳ, λ̄, p̄ = 0) is an efficient solution

to (ND′)1.

Proof. Since x̄ is an efficient solution of (MOP) at which a suitable constraint qualification is satisfied,

by Lemma 2.7 and the generalized Fritz John conditions [3], there exist λ̄ ∈ Rp with λ̄ > 0 and ȳ ∈ C2

such that

[∇(λ̄Tf + ȳTg)(x̄)]T(x− x̄) � 0, ∀x ∈ C1, (3.7)

and

ȳTg(x̄) = 0. (3.8)

Since C1 is a convex cone, taking x+ x̄ for each x ∈ C1 into (3.7), we get

[∇(λ̄Tf + ȳTg)(x̄)]Tx � 0, ∀x ∈ C1,

which yields

−∇(λ̄Tf + ȳTg)(x̄) ∈ C∗
1 ,

i.e., (x̄, ȳ, λ̄, p̄ = 0) is feasible for (ND′)1.
Substituting x = 0 and x = 2x̄ in (3.7), respectively, we obtain

x̄T∇(λ̄Tf + ȳTg)(x̄) = 0. (3.9)

Consequently, it follows from (3.8), (3.9) and p̄ = 0 that

f(x̄) = f(x̄) +

{
ȳTg(x̄)− 1

2
p̄T∇2(λ̄Tf + ȳTg)(x̄)p̄

− x̄T[∇(λ̄Tf + ȳTg)(x̄) +∇2(λ̄Tf + ȳTg)(x̄)p̄]

}
e,

which together with the weak duality theorem (see Theorem 3.1) implies that (x̄, ȳ, λ̄, p̄ = 0) is an efficient

solution to (ND′)1.

Remark 3.10. (i) The constraint “λTe = 1” is not essential for (ND′)1. For example, by taking

λ̄ :=
λ̄

λ̄Te
and ȳ :=

ȳ

λ̄Te

in the proof of Theorem 3.9, we obtain all the constraints of (ND′)1.
(ii) Similar to the proof of Theorem 3.9, strong duality theorems between (MOP) and (ND′)i

(i = 2, 3, 4) can also be established, respectively.

(iii) In the same way, when choosing f : Rn → R, it follows that the strong duality theorems between

(MOP) and the four second order duality models (i.e., (ND′)1, (ND′)2, (ND′)3 and (ND′)4) reduce to

the corresponding strong duality theorems given by Yang et al. [22], respectively. Moreover, if p = 0 and

Fx,u(a) = η(x, u)Ta, then the above results reduce to those established by Chandra and Abha [4].



1294 Tang L P et al. Sci China Math July 2016 Vol. 59 No. 7

3.3 Converse duality

In what follows, we move our attention to converse duality theorems between the primal problem (MOP)

and four second order duals (ND′)1, (ND′)2, (ND′)3 and (ND′)4 under appropriate assumptions, respec-

tively. These results are about the issue that how to get efficient solutions of the primal programming

(MOP) from those of second order duals (ND′)1, (ND′)2, (ND′)3 and (ND′)4, respectively.
As pointed out in Remark 3.10(i), the constraint

“λTe = 1”

is not essential to the four second order duals (i.e., (ND′)1, (ND′)2, (ND′)3 and (ND′)4). So, in the

following converse duality theorems, we do not consider this constraint “λTe = 1” unless otherwise

stated.

Theorem 3.11 (Converse duality for (MOP) and (ND′)1). Let (ū, ȳ, λ̄, p̄) be an efficient solution to

(ND′)1. Suppose that

(i) the n× n Hessian matrix ∇2(λ̄Tf + ȳTg)(ū) is nonsingular, and,

(ii) p̄T∇(λ̄Tf)(ū) + 1
2 p̄

T∇2(λ̄Tf)(ū)p̄ = 0 ⇒ p̄ = 0.

Then ū is feasible for (MOP), and the objective values of (MOP) and (ND′)1 are equal.

In addition, if the assumptions of weak duality theorem (see Theorem 3.1) are satisfied for all feasible

solutions of (MOP) and (ND′)1, then ū is an efficient solution of (MOP).

Proof. Let

L = αT

{
f(u) +

{
yTg(u)− 1

2
pT∇2(λTf + yTg)(u)p− uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

}
e

}

+ βT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]− δTy + ηTλ.

Since (ū, λ̄, ȳ, p̄) is an efficient solution for (ND′)1, it follows from Lemma 2.7 and the generalized Fritz

John type necessary conditions [3] that there exist α ∈ Rp
+, β ∈ C1, η ∈ Rp

+ and δ ∈ C∗
2 such that

∂L

∂u

∣∣∣∣
(ū,ȳ,λ̄,p̄)

= (α− αTeλ̄)T∇f(ū) +

(
β − 1

2
αTep̄− αTeū

)T

∇(∇2(λ̄Tf + ȳTg)(ū)p̄)

+ (β − αTep̄− αTeū)T∇2(λ̄Tf + ȳTg)(ū) = 0, (3.10)

∂L

∂λ

∣∣∣∣
(ū,ȳ,λ̄,p̄)

=

(
β − 1

2
αTep̄− αTeū

)T

∇2f(ū)p̄+∇f(ū)(β − αTeū) + η = 0, (3.11)

∂L

∂y

∣∣∣∣
(ū,ȳ,λ̄,p̄)

= αTeg(ū) +

(
β − 1

2
αTep̄− αTeū

)T

∇2g(ū)p̄+∇g(ū)(β − αTeū)− δ = 0, (3.12)

∂L

∂p

∣∣∣∣
(ū,ȳ,λ̄,p̄)

= (β − αTep̄− αTeū)T∇2(λ̄Tf + ȳTg)(ū) = 0, (3.13)

βT[∇(λ̄Tf + ȳTg)(ū) +∇2(λ̄Tf + ȳTg)(ū)p̄] = 0, (3.14)

δTȳ = 0, (3.15)

ηTλ̄ = 0, (3.16)

(α, β, η, δ) �= 0. (3.17)

Since λ̄ > 0 and η ∈ Rn
+, it is clear from (3.16) that

η = 0. (3.18)

Note that ∇2(λ̄Tf + ȳTg)(ū) is nonsingular. Thus, by (3.13), we have

β = αTep̄+ αTeū. (3.19)
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Now, we claim that α �= 0. Otherwise, by (3.19) and (3.12), we obtain

β = 0, δ = 0,

i.e.,

(α, β, η, δ) = 0,

contradicting (3.17). Therefore,

α � 0, and αTe > 0.

Multiplying (3.11) by λ̄, we get from (3.19) that

αTe

[
p̄T∇(λ̄Tf)(ū) +

1

2
p̄T∇2(λ̄Tf)(ū)p̄

]
= 0.

Since αTe > 0,

p̄T∇(λ̄Tf)(ū) +
1

2
p̄T∇2(λ̄Tf)(ū)p̄ = 0.

By Assumption (ii), we obtain

p̄ = 0. (3.20)

Thus, (3.19) reduces to

β = (αTe)ū.

As αTe > 0 and β ∈ C1, it follows that

ū =
β

αTe
∈ C1. (3.21)

Substituting p̄ = 0 and β = (αTe)ū into (3.12), we have

(αTe)g(ū) = δ ∈ C∗
2 .

For αTe > 0, we get

g(ū) =
δ

αTe
∈ C∗

2 , (3.22)

which together with (3.21) implies that ū is feasible for (MOP).

On the other hand, it follows directly from substituting (3.21) into (3.14) that

ūT[∇(λ̄Tf + ȳTg)(ū) +∇2(λ̄Tf + ȳTg)(ū)p̄] = 0. (3.23)

Multiplying (3.22) by ȳ, it is clear from (3.15) that

ȳTg(ū) =
1

αTe
δTȳ = 0, (3.24)

as αTe > 0.

Putting (3.20), (3.23) and (3.24) together, we arrive at

f(ū) = f(ū) +

{
ȳTg(ū)− 1

2
p̄T∇2(λ̄Tf + ȳTg)(ū)p̄

− ūT[∇(λ̄Tf + ȳTg)(ū) +∇2(λ̄Tf + ȳTg)(ū)p̄]

}
e.

This implies that the objective values of (MOP) and (ND′)1 are equal. The efficiency of ū for (MOP)

follows from the weak duality theorem (see Theorem 3.1).

This converse duality result between (MOP) and (ND′)1 reveals the fact that under assumptions of

the weak duality theorem (see Theorem 3.1) between (MOP) and (ND′)1, when (ū, ȳ, λ̄, p̄) is an efficient

solution of (ND′)1, the Hessian matrix ∇2(λ̄Tf + ȳTg)(ū) is nonsingular, and
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p̄T∇(λ̄Tf)(ū) +
1

2
p̄T∇2(λ̄Tf)(ū)p̄ = 0 ⇒ p̄ = 0,

we can conclude that ū is an efficient solution of (MOP).

Remark 3.12. (i) Note that the condition

“p̄T∇(λ̄Tf)(ū) +
1

2
p̄T∇2(λ̄Tf)(ū)p̄ = 0 ⇒ p̄ = 0”

in Theorem 3.11 is different from the assumption

“p̄T∇(∇2f(ū)p̄+∇2ȳTg(ū)p̄) = 0 ⇒ p̄ = 0”

in [2, Theorem 1]. In fact, the primal and the second order duality models discussed in [2] are single-

objective, but our models are multi-objective. There are some essential differences between scalar and

multiobjective programming. This is why the conditions are not the same. Furthermore, the assumption

in [2],

“p̄T∇(∇2f(ū)p̄+∇2ȳTg(ū)p̄) = 0 ⇒ p̄ = 0”

requires the third derivative, but our condition

“p̄T∇(λ̄Tf)(ū) +
1

2
p̄T∇2(λ̄Tf)(ū)p̄ = 0 ⇒ p̄ = 0”

only needs the second derivative. In this sense, our condition is superior to the one in [2].

(ii) Furthermore, if

p = 0 and Fx,u(a) = η(x, u)Ta,

then the concept of the second order F -pseudoconvexity reduces to pseudo-invexity, and Theorem 3.11

completely reduces to Theorem 1 established by Yang et al. [21].

Before presenting the second order converse duality theorems of (ND′)2 and (ND′)3, we should point

out that there is some drawback in Assumption (ii) of Theorems 2 and 3 established by Ahmad and

Agarwal [2]: “the vectors {[∇2f(ū)]j , [∇2(ȳTg)(ū)]j , j = 1, . . . , n} are linearly independent, where

[∇2f(ū)]j is the j-th row of ∇2f(ū) and [∇2(ȳTg)(ū)]j is the j-th row of ∇2(ȳTg)(ū).” Note that both

of the matrices ∇2f(ū) and ∇2(ȳTg)(ū) are n× n, and the number of n-dimensional vectors {[∇2f(ū)]j ,

[∇2(ȳTg)(ū)]j , j = 1, . . . , n} is 2n. Consequently, the vectors {[∇2f(ū)]j , [∇2(ȳTg)(ū)]j , j = 1, . . . , n}
are linearly dependent. Therefore, this assumption is unreasonable.

In order to overcome this deficiency, we impose some restriction on the second order duality models

(ND′)2 and (ND′)3, given in the following theorem.

Theorem 3.13 (Converse duality for (MOP) and (ND′)2). Let (ū, ȳ, λ̄, p̄) be an efficient solution to

(ND′)2. Suppose that

(i) ∇(λ̄Tf + ȳTg)(ū) = 0,

(ii) the n× n Hessian matrix ∇2(λ̄Tf)(ū) is positive or negative definite,

(iii) the n × n Hessian matrix ∇2(ȳTg)(ū) is positive definite and ȳTg(ū) � 0, or the n × n Hessian

matrix ∇2(ȳTg)(ū) is negative definite and ȳTg(ū) � 0,

(iv) the n× n Hessian matrix ∇2(λ̄Tf)(ū) +∇2(ȳTg)(ū) is nonsingular, and,

(v) the vectors {∇fi(ū), i = 1, . . . , p} are linearly independent, where ∇fi(ū) is the i-th row of ∇f(ū).

Then ū is feasible for (MOP), and the objective values of (MOP) and (ND′)2 are equal.

Furthermore, if the hypotheses of weak duality theorem (see Theorem 3.3) are satisfied for all feasible

solutions of (MOP) and (ND′)2, then ū is an efficient solution to (MOP).

Proof. Let

L = αT

[
f(u)− 1

2
pT∇2(λTf)(u)pe

]
+ βT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]
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+ γ

{
yTg(u)− 1

2
pT∇2yTg(u)p− uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

}
− δTy + ηTλ.

Since (ū, ȳ, λ̄, p̄) is an efficient solution for (ND′)2, it follows from Lemma 2.7 and the generalized Fritz

John type necessary conditions [3] that there exist α ∈ Rp
+, β ∈ C1, γ ∈ R+, δ ∈ C∗

2 and η ∈ Rp
+ such that

∂L

∂u

∣∣∣∣
(ū,ȳ,λ̄,p̄)

= (α− γλ̄)T∇f(ū) + (β − γū− γp̄)T∇2(λ̄Tf + ȳTg)(ū)

+

(
β − 1

2
αTep̄− γū

)T

∇(∇2(λ̄Tf)(ū)p̄)

+

(
β − 1

2
γp̄− γū

)T

∇(∇2(ȳTg)(ū)p̄) = 0, (3.25)

∂L

∂λ

∣∣∣∣
(ū,ȳ,λ̄,p̄)

= ∇f(ū)(β − γū) +

(
β − 1

2
αTep̄− γū

)T

∇2f(ū)p̄+ η = 0, (3.26)

∂L

∂y

∣∣∣∣
(ū,ȳ,λ̄,p̄)

= γg(ū) +∇g(ū)(β − γū) +

(
β − 1

2
γp̄− γū

)T

∇2g(ū)p̄− δ = 0, (3.27)

∂L

∂p

∣∣∣∣
(ū,ȳ,λ̄,p̄)

= (β − αTep̄− γū)T∇2(λ̄Tf)(ū) + (β − γp̄− γū)T∇2(ȳTg)(ū) = 0, (3.28)

βT[∇(λ̄Tf + ȳTg)(ū) +∇2(λ̄Tf + ȳTg)(ū)p̄] = 0, (3.29)

γ

{
ȳTg(ū)− 1

2
p̄T∇2ȳTg(ū)p̄− ūT[∇(λ̄Tf + ȳTg)(ū) +∇2(λ̄Tf + ȳTg)(ū)p̄]

}
= 0, (3.30)

δTȳ = 0, (3.31)

ηTλ̄ = 0, (3.32)

(α, β, γ, η) �= 0. (3.33)

Since λ̄ > 0 and η ∈ Rn
+, it is clear from (3.32) that

η = 0. (3.34)

Multiplying (3.27) by ȳ and combining with (3.30) and (3.31), we have

βT[∇(ȳTg)(ū) +∇2(ȳTg)(ū)p̄] + γūT[∇(λ̄Tf)(ū) +∇2(λ̄Tf)(ū)p̄] = 0. (3.35)

Subtracting (3.29) from (3.35), we obtain

(β − γū)T[∇(λ̄Tf)(ū) +∇2(λ̄Tf)(ū)p̄] = 0. (3.36)

Multiplying (3.26) by λ̄ and combining with (3.34) and (3.36), we get

1

2
(αTe)p̄T∇2(λ̄Tf)(ū)p̄ = 0.

Since ∇2(λ̄Tf)(ū) is positive or negative definite,

(αTe) · p̄ = 0. (3.37)

First, we show γ > 0. If not, then γ = 0. It follows from (3.37) that (3.28) implies

βT[∇2(λ̄Tf)(ū) +∇2(ȳTg)(ū)] = 0.

Since ∇2(λ̄Tf)(ū) +∇2(ȳTg)(ū) is nonsingular, β = 0. Thus, from (3.25), we have

p∑
i=1

αi∇fi(ū) = 0,
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because β = 0, γ = 0 and (αTe) · p̄ = 0. However, the vectors {∇fi(ū), i = 1, . . . , p} are linearly

independent and the above equation yields

α = 0,

contradicting (3.33). Hence, γ > 0.

Now, we claim that α �= 0. Suppose that α = 0. As ∇(λ̄Tf + ȳTg)(ū) = 0, it follows from (3.29) that

βT[∇2(λ̄Tf)(ū) +∇2(ȳTg)(ū)]p̄ = 0,

which together with (3.28) yields that

γūT[∇2(λ̄Tf)(ū)p̄+∇2(ȳTg)(ū)]p̄+ γp̄T∇2(ȳTg)(ū)p̄ = 0, (3.38)

since (αTe) · p̄ = 0. Taking (3.38) and ∇(λ̄Tf + ȳTg)(ū) = 0 into (3.30), we obtain that

γ

{
ȳTg(ū) +

1

2
p̄T∇2(ȳTg)(ū)p̄

}
= 0. (3.39)

As γ �= 0, (3.39) yields

ȳTg(ū) +
1

2
p̄T∇2ȳTg(ū)p̄ = 0. (3.40)

By Assumption (iii), p̄ = 0. Thus, (3.28) reduces to

(β − γū)T∇2(λ̄Tf + ȳTg)(ū) = 0.

Since ∇2(λ̄Tf)(ū) + ∇2(ȳTg)(ū) is nonsingular, β = γū, which together with α = 0, p̄ = 0 and γ �= 0

shows that (3.25) reduces to ∇(λ̄Tf)(ū) = 0. Noting that the vectors {∇fi(ū), i = 1, . . . , p} are linearly

independent, we get λ̄ = 0, contradicting λ̄ > 0. Thus, α �= 0, and αTe > 0.

We may now claim that p̄ = 0. As αTe > 0, (3.37) implies

p̄ = 0.

As p̄ = 0, (3.28) reduces to

(β − γū)T[∇2(λ̄Tf)(ū) +∇2(ȳTg)(ū)] = 0.

Since ∇2(λ̄Tf)(ū) +∇2(ȳTg)(ū) is nonsingular,

β = γū, (3.41)

which implies

ū =
1

γ
β ∈ C1, (3.42)

as γ > 0.

From (3.27) and (3.41) along with γ > 0 and p̄ = 0, we get

g(ū) =
1

γ
δ ∈ C∗

2 . (3.43)

Consequently, it follows from (3.42) and (3.43) that ū is feasible for (MOP). Furthermore, from p̄ = 0,

we have

f(ū) = f(ū)−
[
1

2
p̄T∇2(λ̄Tf)(ū)p̄

]
e,

i.e., the objective values of (MOP) and (ND′)2 are equal. The efficiency of ū for (MOP) follows from the

weak duality theorem (see Theorem 3.3).
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This converse duality result between (MOP) and (ND′)2 reveals the fact that under mild assumptions,

such as positive or negative definiteness, nonsingularity and linearly independent property, feasible so-

lutions of (MOP) can be derived from efficient solutions of the second order duality model (ND′)2, and
the values of objective functions for both problems are equal. In addition, if the conditions of the weak

duality theorem (see Theorem 3.3) between (MOP) and (ND′)2 hold, these feasible solutions are efficient

solutions to (MOP) .

Remark 3.14. When f : Rn → R, Condition (v) in such a second order converse duality theorem

between (MOP) and (ND′)2 (see Theorem 3.13)

“the vectors {∇fi(ū), i = 1, . . . , p} are linearly independent”

reduces to

“∇f(ū) �= 0”.

However, even when we assume that p = 0 and Fx,u(a) = η(x, u)Ta, Theorem 3.13 could not completely

reduce to Theorem 2 given by Yang et al. [21], some other conditions are needed in Theorem 3.13 to ensure

α �= 0. This is because both of the primal and second order duality models (see (MOP), (ND′)2) are

multiobjective programming, and there are more parameters in the case of second order duality models.

As mentioned above, there exists some shortcoming in Assumption (ii) of Theorem 3 established by

Ahmad and Agarwal [2]. Accordingly, like Theorem 3.13, some restriction on the duality model (ND′)3
is imposed to obtain the second order converse duality theorem between (MOP) and (ND′)3.

Theorem 3.15 (Converse duality for (MOP) and (ND′)3). Let (ū, ȳ, λ̄, p̄) be an efficient solution for

(ND′)3. Suppose that

(i) ∇ȳTg(ū) �= 0,

(ii) ∇(λ̄Tf + ȳTg)(ū) = 0,

(iii) ∇2(ȳTg)(ū) is positive definite and ȳTg(ū) � 0, or, ∇2(ȳTg)(ū) is negative definite and ȳTg(ū) � 0,

(iv) ∇2(λ̄Tf)(ū) is positive or negative definite,

(v) the n× n Hessian matrix ∇2(λ̄Tf)(ū) +∇2(ȳTg)(ū) is nonsingular, and,

(vi) the vectors {∇fi(ū), i = 1, . . . , p} are linearly independent, where ∇fi(ū) is the i-th row of ∇f(ū).

Then ū is feasible for (MOP), and the objective values of (MOP) and (ND′)3 are equal.

In addition, if the hypotheses of weak duality theorem (see Theorem 3.5) are satisfied for all feasible

solutions of (MOP) and (ND′)3, then ū is an efficient solution of (MOP).

Proof. Let

L = αT

{
f(u)−

{
1

2
pT∇2(λTf)(u)p+ uT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

}
e

}

+ βT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p] + γ

[
yTg(u)− 1

2
pT∇2(yTg)(u)p

]
+ ηTλ.

Since (ū, ȳ, λ̄, p̄) is an efficient solution for (ND′)3, it follows from Lemma 2.7 and the generalized Fritz

John conditions [3] that there exist α ∈ Rp
+, β ∈ C1, γ ∈ R+ and η ∈ Rp

+ such that

∂L

∂u

∣∣∣∣
(ū,ȳ,λ̄,p̄)

= (α− αTeλ̄)T∇f(ū)

+ (γ − αTe)∇(ȳTg)(ū) +

(
β − 1

2
αTep̄− αTeū

)T

∇(∇2(λ̄Tf)(ū)p̄)

+

(
β − 1

2
γp̄− αTeū

)T

∇(∇2(ȳTg)(ū)p̄) + (β − αTeū− αTep̄)T∇2(λ̄Tf + ȳTg)(ū)

= 0, (3.44)

∂L

∂λ

∣∣∣∣
(ū,ȳ,λ̄,p̄)

= ∇f(ū)(β − αTeū) +

(
β − 1

2
αTep̄− αTeū

)T

∇2f(ū)p̄+ η = 0, (3.45)
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(y − ȳ)T
∂L

∂y

∣∣∣∣
(ū,ȳ,λ̄,p̄)

=

[
γg(ū) +

(
β − 1

2
γp̄− αTeū

)T

∇2g(ū)p̄

+∇g(ū)(β − αTeū)

]T
(y − ȳ) � 0, ∀ y ∈ C2, (3.46)

∂L

∂p

∣∣∣∣
(ū,ȳ,λ̄,p̄)

= (β − αTep̄− αTeū)T∇2(λ̄Tf)(ū) + (β − γp̄− αTeū)T∇2(ȳTg)(ū) = 0, (3.47)

βT[∇(λ̄Tf + ȳTg)(ū) +∇2(λ̄Tf + ȳTg)(ū)p̄] = 0, (3.48)

γ

[
ȳTg(ū)− 1

2
p̄T∇2(ȳTg)(ū)p̄

]
= 0, (3.49)

ηTλ̄ = 0, (3.50)

(α, β, γ, η) �= 0. (3.51)

Since λ̄ > 0 and η ∈ Rn
+, it is clear from (3.50) that

η = 0.

As C2 is a convex cone, it follows from (3.46) that

γ(ȳTg(ū)) + (β − αTeū)T∇(ȳTg)(ū) +

(
β − 1

2
γp̄− αTeū

)T

∇2(ȳTg)(ū)p̄ = 0, (3.52)

which together with (3.49) implies

(β − αTeū)T[∇(ȳTg)(ū) +∇2(ȳTg)(ū)p̄] = 0. (3.53)

First, we show that α �= 0. Suppose that α = 0. Then, (3.45), (3.47) and (3.53), respectively reduce to

∇f(ū)β + βT∇2f(ū)p̄ = 0, (3.54)

βT∇2(λ̄Tf)(ū) + (β − γp̄)T∇2(ȳTg)(ū) = 0, (3.55)

βT[∇(ȳTg)(ū) +∇2(ȳTg)(ū)p̄] = 0. (3.56)

Multiplying (3.54) by λ̄ and combining with (3.56), we get

βT[∇(λ̄Tf + ȳTg)(ū) +∇2(λ̄Tf + ȳTg)(ū)p̄] = 0, (3.57)

which together with (3.55) yields

βT∇(λ̄Tf + ȳTg)(ū) = −γp̄T∇2(ȳTg)(ū)p̄. (3.58)

By Assumption (ii), (3.58) implies

γp̄T∇2(ȳTg)(ū)p̄ = 0.

As ∇2(ȳTg)(ū) is positive or negative definite,

γp̄ = 0.

Substituting it into (3.55), we have

β = 0,

since the n × n Hessian matrix ∇2(λ̄Tf)(ū) + ∇2(ȳTg)(ū) is nonsingular. Letting α = 0, γp̄ = 0 and

β = 0 in (3.44), we have

γ∇(ȳTg)(ū) = 0.

By Assumption (i), γ = 0. So (α, β, γ, η) = 0, contradicting (3.51). Therefore,

α � 0 and αTe > 0.
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We now claim that γ �= 0. If not, (3.47) reduces to

(β − αTeū)T∇2(λ̄Tf + ȳTg)(ū) = αTep̄T∇2(λ̄Tf)(ū). (3.59)

It follows from (3.45), (3.53) and (3.59) that

−1

2
αTep̄T∇2(λ̄Tf)(ū)p̄ = (β − αTeū)T∇(λ̄Tf + ȳTg)(ū)p̄.

Since ∇(λ̄Tf + ȳTg)(ū) = 0 and αTe > 0,

p̄T∇2(λ̄Tf)(ū)p̄ = 0,

which yields

p̄ = 0,

for ∇2(λ̄Tf)(ū) being positive or negative definite. Then, it is clear from (3.59) that

(β − αTeū)T∇2(λ̄Tf + ȳTg)(ū) = 0.

Because the n× n Hessian matrix ∇2(λ̄Tf)(ū) +∇2(ȳTg)(ū) is nonsingular,

β = αTeū.

Substituting p̄ = 0 and β = αTeū into (3.44), we have

∇(αTf)(ū)− αTe∇(λ̄Tf + ȳTg)(ū) = ∇(αTf)(ū) = 0.

Note that the vectors {∇fi(ū), i = 1, . . . , p, ∇(ȳTg)(ū)} are linearly independent, so α = 0. This

contradicts α � 0. So γ > 0.

Then (3.49) gives

ȳTg(ū)− 1

2
p̄T∇2(ȳTg)(ū)p̄ = 0.

By Assumption (iii),

p̄ = 0.

Consequently, (3.47) reduces to

(β − αTeū)T[∇2(λ̄Tf)(ū) +∇2(ȳTg)(ū)] = 0,

which yields

β = (αTe)ū, (3.60)

due to the nonsingularity of ∇2(λ̄Tf + ȳTg)(ū).

Clearly, (3.60) implies that

ū =
1

αTe
β ∈ C1, (3.61)

since αTe > 0.

Combining with (3.46), (3.60) and p̄ = 0, we have

g(ū) ∈ C∗
2 , (3.62)

as γ > 0 and C2 is a convex cone.

Accordingly, it follows from (3.61) and (3.62) that ū is feasible for (MOP). In addition, by (3.48)

and (3.60) along with αTe > 0 and p̄ = 0, we have

f(ū) = f(ū)−
{
1

2
p̄T∇2(λ̄Tf)(ū)p̄+ ūT[∇(λ̄Tf + ȳTg)(ū)

+∇2(λ̄Tf + ȳTg)(ū)p̄]

}
e,

i.e., the objective values of (MOP) and (ND′)3 are equal. The efficiency of ū for (MOP) follows from the

weak duality theorem (see Theorem 3.5).
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Similar to Theorem 3.13, this converse duality result between (MOP) and (ND′)3 indicates that under

suitable assumptions, feasible solutions of (MOP) can be derived from efficient solutions of second order

duality model (ND′)3, and the values of objective functions for both problems are equal. In addition, if

the conditions of weak duality theorem (see Theorem 3.5) between (MOP) and (ND′)3 hold, then these

feasible solutions are efficient solutions to (MOP).

Remark 3.16. (i) We should point out that Condition (iii) in this converse duality theorem

“the vectors {∇fi(ū), i = 1, . . . , p} are linearly independent”

indicates that the number p cannot be more than n.

(ii) Such a second order converse duality theorem between (MOP) and (ND′)3 (see Theorem 3.15) is

still stronger than that in Theorem 3 given by Yang et al. [21], even under the situation that f : Rn → R,
p = 0 and Fx,u(a) = η(x, u)Ta. Note that both of the primal and dual problems (i.e., (MOP) and

(ND′)3) are multiobjective programming, and there are more parameters in the case of second order

duality models. This is why we need to strengthen conditions for this second order converse duality

theorem.

Theorem 3.17 (Converse duality for (MOP) and (ND′)4). Let (ū, ȳ, λ̄, p̄) be an efficient solution to

(ND′)4. Suppose that

(i) either (a) ∇2(λ̄Tf + ȳTg)(ū) is positive definite and p̄T[∇(λ̄Tf + ȳTg)(ū)] � 0, or, (b) ∇2(λ̄Tf +

ȳTg)(ū) is negative definite and p̄T[∇(λ̄Tf + ȳTg)(ū)] � 0,

(ii) the vectors {∇fi(ū), i = 1, . . . , p, ∇(ȳTg)(ū)} are linearly independent, where ∇fi(ū) is the i-th

row of ∇f(ū).

Then ū is feasible for (MOP), and the objective values of (MOP) and (ND′)4 are equal.

Moreover, if the hypotheses of the weak duality theorem (see Theorem 3.7) are satisfied for all feasible

solutions of (MOP) and (ND′)4, then ū is an efficient solution of (MOP).

Proof. Let

L = αT

{
f(u) +

[
yTg(u)− 1

2
pT∇2(λTf + yTg)(u)p

]
e

}
+ βT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p]

− γuT[∇(λTf + yTg)(u) +∇2(λTf + yTg)(u)p] + ηTλ.

Since (ū, λ̄, ȳ, p̄) is an efficient solution to (ND′)4, it follows from Lemma 2.7 and the generalized Fritz

John conditions [3] that there exist α ∈ Rp
+, β ∈ C1, γ ∈ R+ and η ∈ Rp

+ such that

∂L

∂u

∣∣∣∣
(ū,ȳ,λ̄,p̄)

= (α− γλ̄)T∇f(ū) + (αTe − γ)∇(ȳTg)(ū) +

(
β − 1

2
αTep̄− γū

)T

∇(∇2(λ̄Tf + ȳTg)(ū)p̄)

+ (β − γp̄− γū)T∇2(λ̄Tf + ȳTg)(ū) = 0, (3.63)

∂L

∂λ

∣∣∣∣
(ū,ȳ,λ̄,p̄)

= ∇f(ū)(β − γū) +

(
β − 1

2
αTep̄− γū

)T

∇2f(ū)p̄+ η = 0, (3.64)

(y − ȳ)T
∂L

∂y

∣∣∣∣
(ū,ȳ,λ̄,p̄)

=

[
αTeg(ū) +

(
β − 1

2
αTep̄− γū

)T

∇2g(ū)p̄

+∇g(ū)(β − γū)

]T
(y − ȳ) � 0, ∀ y ∈ C2, (3.65)

∂L

∂p

∣∣∣∣
(ū,ȳ,λ̄,p̄)

= (β − αTep̄− γū)T∇2(λ̄Tf + ȳTg)(ū) = 0, (3.66)

βT[∇(λ̄Tf + ȳTg)(ū) +∇2(λ̄Tf + ȳTg)(ū)p̄] = 0, (3.67)

γūT[∇(λ̄Tf + ȳTg)(ū) +∇2(λ̄Tf + ȳTg)(ū)p̄] = 0, (3.68)

ηTλ̄ = 0, (3.69)

(α, β, γ, η) �= 0. (3.70)
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Since λ̄ > 0 and η ∈ Rn
+, it is clear from (3.69) that

η = 0.

By Assumption (i), ∇2(λ̄Tf + ȳTg)(ū) is clearly nonsingular. Thus, by (3.66), we get

β = αTep̄+ γū. (3.71)

We can claim that α �= 0. Indeed, if α = 0, it follows from (3.71) that

β = γū,

which along with (3.63) implies

γ[∇(λ̄Tf)(ū) +∇(ȳTg)(ū) + p̄T∇2(λ̄Tf + ȳTg)(ū)] = 0.

Now, consider the following two cases: Case 1. γ = 0. Then β = 0, i.e., (α, β, γ, η) = 0, contracting

(3.70); Case 2. γ �= 0. Then

∇(λ̄Tf)(ū) +∇(ȳTg)(ū) +∇2(λ̄Tf + ȳTg)(ū)p̄ = 0. (3.72)

Multiplying (3.72) by p̄, we get

p̄T[∇(λ̄Tf)(ū) +∇(ȳTg)(ū)] + p̄T∇2(λ̄Tf + ȳTg)(ū)p̄ = 0.

By Assumption (i), we obtain p̄ = 0, which together with (3.72) yields

p∑
i=1

λ̄i∇fi(ū) +∇(ȳTg)(ū) = 0.

This contradicts Assumption (ii). Hence,

α � 0 and αTe > 0.

Now, we should show p̄ = 0. It follows from (3.67) and (3.68) that

(β − γū)T[∇(λ̄Tf + ȳTg)(ū) +∇2(λ̄Tf + ȳTg)(ū)p̄] = 0,

which combined with (3.71) and αTe > 0 yields

p̄T[∇(λ̄Tf + ȳTg)(ū) +∇2(λ̄Tf + ȳTg)(ū)p̄] = 0.

By Assumption (i),

p̄ = 0.

Accordingly, (3.71) reduces to

β = γū, (3.73)

which together with (3.63) and p̄ = 0 yields

p∑
i=1

(αi − γλ̄i)∇fi(ū) + (αTe− γ)∇(ȳTg)(ū) = 0.

Since the vectors {∇fi(ū), i = 1, . . . , p, ∇(ȳTg)(ū)} are linearly independent,

γ = αTe > 0.

Therefore, (3.73) shows

ū =
1

γ
β ∈ C1. (3.74)
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Substituting (3.73) and p̄ = 0 in (3.65), we obtain

(αTe)g(ū)T(y − ȳ) � 0, ∀ y ∈ C2, (3.75)

which implies

g(ū) ∈ C∗
2 , (3.76)

and

ȳTg(ū) = 0, (3.77)

since αTe > 0 and C2 is a convex cone.

Consequently, it follows form (3.74) and (3.76) that ū is feasible for (MOP). From (3.77) and p̄ = 0,

we have

f(ū) = f(ū) +

{
(ȳTg)(ū)− 1

2
p̄T∇2(λ̄Tf + ȳTg)(ū)p̄

}
e,

i.e., the objective values of (MOP) and (ND′)4 are equal. The efficiency of ū for (MOP) follows from the

weak duality theorem (see Theorem 3.7).

Remark 3.18. (i) Also, as mentioned in Remark 3.16(i), Theorem 3.17(ii),

“the vectors {∇fi(ū), i = 1, . . . , p, ∇(ȳTg)(ū)} are linearly independent”

indicates that the number p cannot be more than n.

(ii) Note that in the second order duality theorem (see [2, Theorem 4]) given by Ahmad and Agarwal [2]

for nonlinear programming, the condition

“∇f(ū) +∇(ȳTg)(ū) +∇2f(ū)p̄+∇2(ȳTg)(ū)p̄ �= 0”

is essentially

“∇f(ū) +∇(ȳTg)(ū) �= 0”,

since p̄ = 0. Therefore, the linearly independent property in Theorem 3.17(ii) is stronger than the above

condition, even for the case when f : Rn → R. The main reason is that both of the primal and dual

problems (i.e., (MOP) and (ND′)4) are multiobjective programming.

(iii) In addition, in spite of p = 0 and Fxu(a) = η(x, u)Ta, the linearly independent property in

Assumption (ii) of such a converse duality theorem (see Theorem 3.17) between (MOP) and (ND′)4 is

also stronger than the condition

“∇f(ū) +∇(ȳTg)(ū) �= 0”

used in the first order duality theorem (see Theorem 4) established by Yang et al. [21] for nonlinear

programming. This is because that both of the primal and dual problems (i.e., (MOP) and (ND′)4) are
multiobjective programming, and there are more parameters in the second order duality model (ND′)4.

4 Conclusion

Due to the computational advantage of the second order duality over the first order duality as well as

the importance of multiobjective programming in practical applications, this paper is devoted to second

order duals for a multiobjective programming with cone constraints. Based on the first order duals of

Chandra and Abha [4] and the second order duals of Yang et al. [22] for nonlinear programming problems

with cone constraints, four types of second order duality models are derived.

(i) Under the assumptions of second order F -pseudoconvexity and second order F -quasiconvexity, weak

duality theorems are presented between (MOP) and (ND′)1, (ND′)2, (ND′)3 and (ND′)4, respectively.
(ii) Strong duality theorems are established by using the characterization of efficient solutions [5] and

the generalized Fritz John conditions [3].
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(iii) Converse duality theorems, the essential parts of duality theory, are discussed under certain suitable

assumptions for the primal problem and four second order duality models, respectively. Note that there

are some stronger conditions than those for the first order converse duality theorems of Yang et al. [21]

and second order converse duality results of Ahmad and Agarwal [2] for nonlinear programming with

cone constraints. These are due to the differences between scalar and multiobjective programming.

(iv) Meanwhile, we point out that there are some deficiencies in the second order converse duality

theorems (see Theorems 2 and 3) of Ahmad and Agarwal [2]: “the vectors {[∇2f(ū)]j , [∇2(ȳTg)(ū)]j ,

j = 1, . . . , n} are linearly independent, where [∇2f(ū)]j is the j-th row of ∇2f(ū) and [∇2(ȳTg)(ū)]j
is the j-th row of ∇2(ȳTg)(ū).” In order to overcome this drawback, we impose some more restrictive

conditions in the second order converse duality theorems (see Theorems 3.13 and 3.15).

Taking into account that the conditions imposed in Theorems 3.13 and 3.15 are quite strong, it is worth-

while to relax these conditions by weaker conditions in the second order converse duality Theorems 3.13

and 3.15.
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