
SCIENCE CHINA
Mathematics

Progress of Projects Supported by NSFC

. ARTICLES .
July 2016 Vol. 59 No. 7: 1235–1248

doi: 10.1007/s11425-016-5142-5

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 math.scichina.com link.springer.com

An orthogonally accumulated projection method for
symmetric linear system of equations

PENG WuJian1, LIN Qun2 & ZHANG ShuHua3,∗

1Department of Mathematics and Statistics, Zhaoqing University, Zhaoqing 526061, China;
2Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;

3Research Center for Mathematics and Economics, Tianjin University of Finance and Economics, Tianjin 300204, China

Email: wpeng@zqu.edu.cn, linq@lsec.ac.cc.cn, szhang@tjufe.edu.cn

Received September 9, 2015; accepted December 29, 2015; published online April 1, 2016

Abstract A direct as well as iterative method (called the orthogonally accumulated projection method, or

the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this

paper. With the Lanczos process the OAP creates a sequence of mutually orthogonal vectors, on the basis of

which the projections of the unknown vectors are easily obtained, and thus the approximations to the unknown

vectors can be simply constructed by a combination of these projections. This method is an application of the

accumulated projection technique proposed recently by the authors of this paper, and can be regarded as a match

of conjugate gradient method (CG) in its nature since both the CG and the OAP can be regarded as iterative

methods, too. Unlike the CG method which can be only used to solve linear systems with symmetric positive

definite coefficient matrices, the OAP can be used to handle systems with indefinite symmetric matrices. Unlike

classical Krylov subspace methods which usually ignore the issue of loss of orthogonality, OAP uses an effective

approach to detect the loss of orthogonality and a restart strategy is used to handle the loss of orthogonality.

Numerical experiments are presented to demonstrate the efficiency of the OAP.

Keywords iterative method, accumulated projection, conjugate gradient method, Krylov subspace

MSC(2010) 65F10, 15A06

Citation: Peng W J, Lin Q, Zhang S H. An orthogonally accumulated projection method for symmetric linear

system of equations. Sci China Math, 2016, 59: 1235–1248, doi: 10.1007/s11425-016-5142-5

1 Introduction

The study of iterative methods for solving the linear system of equations in the form

Ax = b, (1.1)

where A ∈ R
n×n is nonsingular, especially for large scale computing is of vital importance. Recently,

all current iterative methods are classified as the extended Krylov subspace methods in [13], which are

characterized by their major operations: matrix-vector multiplications with usually one or two fixed

matrices and one or two fixed initial vectors. These include the most well-known stationary methods

such as Jacobi, Gauss-Seidel as well as SOR methods with their iterative matrices formed on the basis

of splitting the coefficient matrices [7] and the row projection methods such as Karcmarz’s method and

Cimmino’s method where the iterative matrices (not explicitly formed in iterations) are constructed by the

successive multiplications of a sequence of projection matrices with a fixed sequence length m depending

∗Corresponding author

1236 Peng W J et al. Sci China Math July 2016 Vol. 59 No. 7

on the splitting of the coefficient matrix into m submatrices [3,6]. The non-stationary iterative methods

are also categorized as the extended Krylov subspace methods, which include the well-known Krylov

subspace methods such as the conjugate gradient method (CG) for symmetric positive definite systems,

MINRES, SYMMLQ for general symmetric but indefinite systems, and GMRES, BiCG, QMR, LSQR, etc.

for general nonsymmetric systems [5,7,11,15,16]; many of these methods (including GMRES, MINRES,

SYMMLQ, MINRES, QMR, LSQR) use the strategy of reducing certain residual errors to search for

approximate solutions, while variants of the CG and BiCG methods use the strategy of producing a

sequence of orthogonal residuals, thus they can reach the exact solutions with n iterations in exact

arithmetic operations, where n is the number of unknowns [7].

It is noticed that current prevalent Krylov subspace methods fall into two categories: the Lanczos-

process-based and the Arnoldi-process-based methods. The former includes CG, BiCG, CGS, QMR,

SYMMLQ, MINRES, LSQR, BICR; and the later includes GMRES, FOM, IOM, etc. Methods based

on the Arnoldi process construct sequences of mutually orthogonal vectors by the Gram-Schmidt process

which requires large flop counts and storage requirements if a long sequence of vectors is required, thus a

restart technique is often used (like restarted GMRES, FOM) or incomplete orthogonalizing is adopted

to avoid the rapidly increasing workload and the storage needs with the price of usually slow convergence;

Lanczos-based methods usually converge much faster than Arnoldi-based methods, since the existence of

three-term recurrence relations among Lanczos vectors makes it more efficient in constructing sequence

of orthogonal vectors and also much fewer storage spaces are needed. The main trouble of this type

of methods is the possible failure caused by the loss of orthogonality which usually comes with the

Lanczos process. The Arnoldi process and the Lanczos process are also widely used to construct effective

iterative schemes for estimating eigenpairs of matrices [9, 10], and their major feature is to use some

kind of orthogonal vectors to form low-rank Krylov subspaces so that the corresponding problems can be

approximately solved much more easily and usually much faster.

It seems that the major research focuses on linear system in recent years with various preconditioning

techniques, which lead to some well-known effective preconditioners such as multigrid method [8], block

triangular preconditioner [1] and various incomplete factorization preconditioners [2]. Peng and Lin [13]

also present a type of non-Krylov subspace type methods (AP methods) based on the so-called accumu-

lated projection technique. These types of methods rely on successive projections over subspaces of Rn,

which produce a sequence of projections of the exact solution vector with a monotonically increasing

Euclidean norm. Unlike the well-known row-projection technique which can be shown as a traditional

stationary iterative method [6], the AP methods in [13, 14] do not involve matrix-vector multiplications

with any fixed matrices and fixed vectors. Equipped with some accelerating technique, the AP methods

exhibit some superior behaviors than the traditional extended Krylov subspace methods [13] in some cases.

Our purpose in this paper is to design a class of Krylov subspace methods based on the principle of

accumulated projection to solve linear systems of equations. This type of methods not only keeps the

efficiency of classical Krylov subspace methods, but also uses the restart strategy to handle the loss of

orthogonality, which is generally ignored in classical Krylov subspace methods. For the sake of complete-

ness, we are to briefly review the principle of accumulated projection technique and its applications in the

next section. The other sections are devoted to the exploration of the AP technique in a more intricate

way which leads to a series of algorithms for solving linear systems.

2 The principle of AP technique

Now we review the basic idea of accumulated projection methods. To approximate any vector x in R
n, one

has to construct a subspace W of Rn with a much smaller rank than n so that a “projection” vector p of x

is easily available. Current prevalent methods depend on the strategy of reducing the lengths of residual

vectors to obtain such a projection. While only a few methods use the regular orthogonal projection to

get approximate vectors, which include the so-called General Error Minimizing method (which is similar

Peng W J et al. Sci China Math July 2016 Vol. 59 No. 7 1237

to the GMRES method) [4] and the Line Projection method proposed in [12], both can be classified as

the extended Krylov subspace methods, since both of them depend on a certain Krylov subspace from

which a projection vector is sought. To be able to figure out the projection of x over subspace W , one

has to get some “footprint” of x over W , for example, in GMRES-like methods a basis of vectors of W

in the form of Akb with b as the image of x under the transformation A is required, while in GMERR

and LP methods, the inner-products between x and a basis of W are available. By this observation we

can derive another class of methods for solving linear systems of equations using orthogonal projections.

The basic idea of AP is to use the orthogonal projection of vector x as its approximation, while each

projection is used to form another subspace from which a better approximation is sought. Figure 1 can

be used to illustrate the basic idea. Here xi stands for the approximation to x and ai is the projection

vector of x on some subspace of Rn, and xi+1 is the projection of vector x in a subspace Wi formed by

xi and a subspace W̃i, where projection vector ai of vector x is easily available.

The following algorithm describes a simple implementation of the accumulated projection idea, where

vector ai is orthogonal to vector xi, and hereinafter we use A′ to denote the transpose of matrix A.

Algorithm 1 (Accumulated projection process—AP). The following procedure produces an approxi-

mate vector p to the solution vector x which satisfies Ax = b.

Step 1. Divide matrix A into k blocks: A = [A′
1, A

′
2, . . . , A

′
k]

′, and divide b correspondingly: b =

(b′1, b
′
2, . . . , b

′
k)

′.

Step 2. Initialize p0 as p0 = αA′b, and c0 = α‖b‖2, where α = ‖b‖2/‖A′b‖2.
Step 3. For i = 1 to k

Step 3.1. Construct matrix Wi = [pi−1, A
′
i] and vector l = [ci−1, b

′
i]
′.

Step 3.2. Compute the projection vector pi of x onto subspace ran (Wi) (the range of matrix Wi) and

the scalar ci (= x′pi).

Step 4. Output p (= pk) and c (= ck).

This algorithm forms the basis of some more efficient solvers for linear systems of equations such as

SAP, MSAP, and APAP methods introduced in [13,14]. It is observed that these methods in general are

more efficient than regular Krylov subspace methods in some cases of large scale systems. It is necessary

to mention that these methods do not construct any Krylov subspace, and thus cannot be classified as

the extended Krylov subspace methods. In this paper, we will show that the AP process can be also used

to construct a class of Krylov subspace methods, starting from the so-called orthogonally accumulated

projection solver (OAP) that follows in the next section.

3 An orthogonally accumulated projection method

In this section, we will consider to solve System (1.1) with a symmetric coefficient matrix A. The main

idea is to transform the original system (1.1) into a system

Qx = c, (3.1)

where Q is an orthogonal matrix, i.e., Q′Q = QQ′ = I, where I is the identity matrix. In other words, we

will search for a sequence of orthonormal vectors vi (i = 1, 2, . . . , n) and real numbers ci (i = 1, 2, . . . , n)

so that x′vi = ci, and thus x can be taken as
∑n

i=1 civi. In the meantime, we do not have to spend too

many extra storage spaces to store all vectors vi (i = 1, 2, . . . , n); instead, we will show that a short length

recurrence relationship occurs among consecutive orthogonal vectors, so that only a few extra storage

spaces for these vectors are needed.

In order to figure out how this will work, let us recall the principle of the AP as illustrated in Fig-

ure 1. In general, the sequence of projection vectors ai comes from some predetermined subspaces, and

thus they are not necessary to be orthogonal. However, it is possible for us to work out a way so that all of

1238 Peng W J et al. Sci China Math July 2016 Vol. 59 No. 7

x 2

x 3

x 4

a1

a2

a3

x 1

Figure 1 Accumulated projection

these projection vectors ai (i = 1, 2, . . .) form an orthogonal sequence. The following algorithm depicts

the details.

Algorithm 2 (Orthogonally accumulated projection method—OAP). Let A ∈ R
n×n be a symmetric

and nonsingular matrix and b ∈ R
n a non-zero vector. The following process gives the exact solution x

to the system Ax = b (here we assume that there are no break-downs).

Step 1 (Initializing). Find a vector v �= 0 so that x′v is known. Let v1 = v/‖v‖, c1 = x′v/‖v‖, v0 = 0,

β1 = 0, c0 = 0, and x1 = c1v1.

Step 2. For k = 2 to n

Step 2.1. w = Avk−1, αk−1 = v′k−1w.

Step 2.2. ṽk = w − αk−1vk−1 − βk−1vk−2.

Step 2.3. βk = ‖ṽk‖, and vk = ṽk/βk.

Step 2.4. ck = (b′vk−1 − αk−1ck−1 − βk−1ck−2)/βk.

Step 2.5. xk = xk−1 + ckvk.

Step 3. Output the solution xn.

In this algorithm, we only need storage spaces for three consecutive vectors vk−1, vk, vk+1 instead of

the whole orthogonal matrix Q. We also need two extra vectors w and xk during the process while the

quantities: αk, βk, and ck can be stored in a few predefined variables. Thus the storage of this OAP

algorithm is quite economic. On the other side, the major flop counts come from only one matrix-vector

multiplication in Step 2.1, and this is another advantage of this algorithm.

3.1 The analysis of the OAP

The OAP process involves mainly a key relation among three consecutive vectors: vk+1, vk, and vk−1 in

Step 2, which is stated as follows:

βkvk+1 = Avk − αkvk − βk−1vk−1 (3.2)

for k = 1, 2, . . . , n − 1. Bearing this in mind we can show that all vectors {vk}n1 produced in this way

form an orthogonal sequence, i.e.,

v′ivj = δij =

{
1, i = j,

0, i �= j.
(3.3)

This is stated in the following conclusion.

Peng W J et al. Sci China Math July 2016 Vol. 59 No. 7 1239

Theorem 3.1. Let A be symmetric and nonsingular, b ∈ R
n, and x be the solution to Ax = b. The

vector sequences vk (k = 1, 2, . . . , n) produced in Algorithm 2 are orthonormal, and furthermore we have

ck = x′vk = β−1
k−1(b

′vk−1 − ck−1αk−1 − βk−2ck−1) for k = 2, 3, . . . , n, (3.4)

assuming no breakdown happens, i.e., βk �= 0 for any k = 1, 2, 3, . . . , n− 1.

Proof. First, we show that v′2v1 = 0. Since v0 = 0, from (3.2) we have

β1v2 = Av1 − α1v1.

Multiplying both sides by v′1, we have β1v
′
1v2 = v′1Av1 − α1v

′
1v1 = 0, since v′1v1 = 1 and α1 = v′1Av1.

This gives v′1v2 = 0, since β1 �= 0.

Let m ∈ {3, 4, . . . , n}. Assume that v′ivm = 0 for any i < m holds true. We now show that for

k = m + 1, v′ivk = 0 is also true for any i < k. Thus, by induction we have (3.3). In fact, we know

from (3.2) that

βmv′ivm+1 = v′iAvm − αkv
′
ivm − βm−1v

′
ivm−1

= v′iAvm − αkδi,m − βm−1δi,m−1. (3.5)

If i = m, by (3.5) we obtain

βmv′mvm+1 = v′mAvm − αm = 0,

which leads to v′mvm+1 = 0, since βm �= 0.

If i = m− 1, by (3.5) and (3.2) we also have

v′m−1vm+1 = β−1
m (v′m−1Avm − βm−1)

= β−1
m (v′mAvm−1 − βm−1)

= β−1
m (v′m(βm−1vm − αm−1vm−1 − βm−2vm−2)− βm−1)

= 0,

since A′ = A. If i < m− 1, by (3.2) we gain

Avi = βivi+1 + αivi + βi−1vi−1, (3.6)

and by (3.5) we further have

v′ivm+1 = β−1
m v′iAvm = β−1

m v′mAvi = β−1
m vm(βivi+1 + αivi + βi−1vi−1) = 0.

On the basis of the fact that x′A = (Ax)′ = b, (3.4) comes directly from (3.2) and the definition

ck = x′vk.

3.2 Breakdowns in the OAP process

In this subsection, we show in what situation breakdown will happen and how to handle this problem,

so that the OAP will be finished. As we mentioned previously, a breakdown happens if βk = 0 for some

integer k and βi �= 0 for i < k. In fact, a breakdown signals an invariant subspace of A, as stated in the

following conclusion.

Theorem 3.2. Let βk = 0, and βi �= 0 for i < k. Then, the vector sequences {vi}k1 form the basis of

an invariant subspace W of linear transformation induced by matrix A, i.e., AW ⊂ W.

Proof. Letting v (=
∑k

i=1 sivi) ∈ W = span {v1, v2, . . . , vk}, we need to show that Av ∈ W. As a

matter of fact, Av =
∑k−1

i=1 siAvi + skAvk = u1 + sku2, where u1 =
∑k−1

i=1 siAvi, and u2 = Avk. By (3.6)

we have u1 ∈ span{v1, v2, . . . , vk}, and u2 ∈ span{vk−1, vk}, since βk = 0. Thus, both u1 and u2 belong

to W , which implies that we always have v ∈ W .

1240 Peng W J et al. Sci China Math July 2016 Vol. 59 No. 7

Unlike a breakdown in the GMRES which means a happy ending, in OAP this does not necessarily

mean the appearance of an exact solution. Instead a breakdown in the OAP depends on the choice of its

initial vector v1. The rest of this subsection is devoted to handling breakdowns. For the sake of simplicity,

we call βk (= 0) as our breakdown point if βi �= 0 for i < k. First, let us show some conclusion that may

sound surprising.

Theorem 3.3. Let βk be the breakdown point in Algorithm 2, rk = b − Axk be the related residual

vector, and W = span {v1, v2, . . . , vk}. Then (i) W⊥ is also an invariant subspace of A, and (ii) r′kvi = 0

for i = 1, 2, . . . , k.

Proof. Let W = span{v1, v2, . . . , vk} be the invariant subspace associated with the breakdown point βk.

Let vk+1, vk+2, . . . , vn be an orthogonal basis of W⊥, the complementary subspace of W in R
n. To see

that W⊥ is an invariant subspace of A, we have to show that for any v ∈ W⊥, there holds Av ∈ W⊥.
As a matter of fact, for any u ∈ W , let ũ = Au, then ũ ∈ W , since W is an invariant subspace of A.

Therefore, we have

u′Av = v′Au = v′ũ = 0,

which means that Av is orthogonal to any vectors in W. Hence, we must have Av ∈ W⊥.
Apparently, vectors v1, v2, . . . , vn form an orthonormal basis of Rn and thus there exists a sequence of

real numbers ci (i = 1, 2, . . . , n), such that x =
∑n

i=1 civi and obviously we have xk =
∑k

i=1 civi.

Note that rk = b−Axk =
∑n

i=k+1 ciAvi, thus rk ∈ W⊥, which leads to (ii).

Based on the above discussion, we now show how to handle breakdowns in the OAP process described

in Algorithm 2. Actually, when rk is not a zero vector, we only need to set vk+1 as vk+1 = αArk, where

α is a scalar such that vk+1 is a unit vector. Obviously, we have ck+1 = x′vk+1 = αb′rk. Note that if rk
is zero vector, there is no necessity to move on to the next vector vk+1. Thus, a modified version of the

OAP is stated as the following algorithm.

Algorithm 3 (An iterative orthogonally accumulated projection method—iterative OAP). Let A be

a symmetric and nonsingular matrix and b ∈ R
n a non-zero vector. Let ε be a given tolerance. The

following process gives the exact solution x to the system Ax = b.

Step 1 (Initializing). Find a vector v �= 0 so that x′v is known. Let v1 = v/‖v‖, c1 = x′v/‖v‖, v0 = 0,

β1 = 0, c0 = 0, and x1 = c1v1.

Step 2. Set k = 1, rk = b−Axk, and c = c21.

Step 3. While ‖rk‖ > ε

Step 3.1. k = k + 1, w = Avk−1, αk−1 = v′k−1w.

Step 3.2. ṽk = w − αk−1vk−1 − βk−1vk−2.

Step 3.3. βk = ‖ṽk‖.
Step 3.4. If βk �= 0, set vk = ṽk/βk, and ck = (b′vk−1 − αk−1ck−1 − βk−1ck−2)/βk; else set w = Ark,

α = ‖w‖, and vk = w/α, ck = αb′rk.

Step 3.5. xk = xk−1 + ckvk, rk = b−Axk, c = c+ c2k.

Step 4. Output the solution xk (and c if needed).

Note that in this algorithm we set up an extra quantity c to store the sum of c2k (k = 1, 2, . . . , n). It is

easy to see that c = x′xk for each k. The purpose of this action is clear when we discuss the expansibility

of the AP technique.

Compared with Algorithm 2, there are two matrix-vector multiplications needed in each loop (in

Steps 2.1 and 2.5) in this algorithm. It is possible for us to alleviate part of the flops by reducing one

matrix-vector multiplication based on the relation between the residual vector and the three consecutive

orthogonal vectors stated in the following theorem.

Peng W J et al. Sci China Math July 2016 Vol. 59 No. 7 1241

Theorem 3.4. Let rk = b − Axk be the residual vector associated with approximation vector xk in

Algorithm 3 and let Δrk = rk−1 − rk. Then

βkvk+1 = c−1
k Δrk − αkvk − βk−1vk−1. (3.7)

Proof. Since xk =
∑k

i=1 civi, we have

rk = b−Axk = b−A(xk−1 + ckvk) = (b −Axk−1)− ckAvk = rk−1 − ckAvk,

which leads to

Avk = c−1
k Δrk. (3.8)

Combining (3.6) with (3.8) implies that

c−1
k Δrk = βkvk+1 + αkvk + βk−1vk−1,

which yields (3.7) directly.

3.3 The connection between the OAP and the Lanczos tridiagonal procedure

It is well known that any symmetric matrix A can be converted to a symmetric three-diagonal matrix by

an orthogonal transformation, i.e., there exists an orthogonal matrix V such that

V ′AV = T or AV = V T, (3.9)

where T is a symmetric tridiagonal matrix. Let Vk be the n × k matrix formed by the first k columns

of V , and Tk be the k-th principal submatrix of T formed by the first k rows and first k columns of T ,

i.e., Vk = [v1, v2, . . . , vk] and Tk has the form

Tk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 β1 0 · · · 0 0

β1 α2 β2 · · · 0 0

0 β2 α3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · αk−1 βk−1

0 0 0 · · · βk−1 αk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.10)

Then, we have by (3.9) that

AVk = VkTk + βkvk+1e
′
k,

where ek ∈ R
k is the last column of the identity matrix I ∈ R

k×k, or comparing each column of (3.9) we

have

Avk = βkvk+1 + αkvk + βk−1vk−1,

which is nothing but the three-term recurrence relation (3.2). A Lanczos process begins with a given unit

vector v1 and then searches the rest of the orthonormal basis by equating each column of (3.9), which

ends up exactly the major part of our OAP process.

It is well known that the Lanczos process suffers from the loss of orthogonality in general, especially

when A is ill-conditioned. Our next section is thus devoted to discussing the strategies to handle this

issue.

1242 Peng W J et al. Sci China Math July 2016 Vol. 59 No. 7

4 The control of orthogonality

As we have already mentioned, since the conjugate gradient method is an implementation of the Lanczos

tridiagonalization process, the OAP can be also regarded as such a process. It is thus necessary for us to

treat the loss of orthogonality with caution. In this section, we present some approaches to tackle this

task.

First we need to check at each iteration whether or not the loss of orthogonality happens. Note that

in exact arithmetic operations, the approximation vector xk in the OAP process should be orthogonal to

each new unit vector vk+1, thus we can calculate at each iteration the angle θ between vectors xk and

vk+1. If θ is away from 90 degrees, this means a loss of orthogonality happens. One can reset v1 as xk

and restart the OAP process again; however, a more reliable approach seems to be simply restarting the

OAP process on the residual equation defined as

Aek = rk, (4.1)

where ek = x− xk is the unknown here and rk = b−Axk. The details come as follows.

Algorithm 4 (An iterative orthogonally accumulated projection method—iterative OAP version 2).

Let A be a symmetric and nonsingular matrix and b ∈ R
n a non-zero vector. Let ε be a given tolerance.

The following process gives an approximate solution xk to the system Ax = b.

Step 1 (Initializing). Find a vector v �= 0 so that x′v is known. Let v1 = v/‖v‖, c1 = x′v/‖v‖, v0 = 0,

β1 = 0, c0 = 0, and x1 = c1v1.

Step 2. Set k = 1, rk = b−Axk, and c = c21.

Step 3. While ‖rk‖ > ε

Step 3.1. k = k + 1, w = Avk−1, αk−1 = v′k−1w.

Step 3.2. ṽk = w − αk−1vk−1 − βk−1vk−2.

Step 3.3. βk = ‖ṽk‖.
Step 3.4. If βk �= 0, set vk = ṽk/βk, and ck = (b′vk−1 − αk−1ck−1 − βk−1ck−2)/βk; else set w = Ark,

α = ‖w‖, and vk = w/α, ck = αb′rk.

Step 3.5. Calculate θ = arcos (x′vk/
√
c).

Step 3.6. If θ = π/2, set xk = xk−1 + ckvk, rk = b−Axk, and c = c+ c2k; else stop the loop.

Step 4. Output the solution xk and c.

Remark 4.1. In actual implementation, θ cannot be exactly 90 degrees, thus a small tolerance should

be set instead. For example, one can change the condition as (θ − π/2) < τ , where τ is a small positive

number far less than 1.

The above algorithm is a modified version of Algorithm 3, and it simply adds one step to check the

loss of orthogonality. Again the quantity c is the inner-product between x and xk. The next algorithm

then uses Algorithm 4 and restarts the OAP each time a loss of orthogonality happens.

Algorithm 5 (A progressive orthogonally accumulated projection method—POAP). Let A be a sym-

metric and nonsingular matrix and b ∈ R
n a non-zero vector. Let ε be a given tolerance. The following

process gives an approximate solution x to the system Ax = b.

Step 1 (Initializing). Set x = 0, r = b.

Step 2. While ‖r‖ > ε

Step 2.1. Call Algorithm 4 to solve Ay = r, and let yk be the output approximation.

Step 2.2. Update x = x+ yk.

Step 2.3. Calculate r = b−Ax.

Step 3. Output the solution x.

Peng W J et al. Sci China Math July 2016 Vol. 59 No. 7 1243

5 Generalization

In this section, we generalize the OAP method to solve systems with unsymmetric coefficient matrices,

and we also talk about some strategies for accelerating the OAP methods.

5.1 The OAP for systems with unsymmetric coefficient matrix

Just like the CGNE and the CGNR to the CG, the same approach can be used to get corresponding

OAP versions, namely the OAPNE and the OAPNR for unsymmetric systems.

The basic idea of the OAPNR is to multiply both sides of (1.1) by A′ if A is square but not symmetric,

and then apply the OAP process to the equivalent system A′Ax = A′b. In practical implementation, the

matrix A′A is never explicitly formed. The details come as follows.

Algorithm 6 (An orthogonally accumulated projection on normal equation residual method—OAPNR).

Let A be a symmetric and nonsingular matrix and b ∈ R
n a non-zero vector. Let ε be a given tolerance.

The following process gives an approximate solution xk to the system Ax = b.

Step 1 (Initializing). Find a vector v �= 0 so that x′v is known. Let v1 = v/‖v‖, c1 = x′v/‖v‖, v0 = 0,

β = ‖b‖, β1 = 0, c0 = 0, and x1 = c1v1.

Step 2. Set k = 1, rk = A′(b −Axk).

Step 3. While ‖rk‖ > εβ

Step 3.1. k = k + 1, w = A′(Avk−1), αk−1 = v′k−1w.

Step 3.2. ṽk = w − αk−1vk−1 − βk−1vk−2.

Step 3.3. βk = ‖ṽk‖.
Step 3.4. If βk �= 0, set vk = ṽk/βk, and ck = (b′Avk−1 − αk−1ck−1 − βk−1ck−2)/βk; else set

w = A′(Ark), α = ‖w‖, and vk = w/α, ck = αb′rk.

Step 3.5. Calculate θ = arcos (x′
kvk/‖xk‖).

Step 3.6. If θ = π/2, set xk = xk−1 + ckvk, rk = A′(b−Axk); else stop the loop.

Step 4. Output the solution xk.

Another approach to handle System (1.1) with A ∈ R
n×m unsymmetric is to solve the equation

AA′y = b first, and then obtain x by letting x = A′y. Again, it is not necessary to explicitly form matrix

AA′ unless A is sparse. The following algorithm gives the details.

Algorithm 7 (An orthogonally accumulated projection on normal equation error method—OAPNE).

Let A ∈ R
n×m in (1.1) be an unsymmetric matrix and b ∈ R

n a non-zero vector with n � m. Let ε be a

given tolerance. The following process gives an approximate solution x to the system Ax = b.

Step 1 (Initializing). Find a vector v �= 0 so that x′Av is known. Let v1 = v/‖v‖, c1 = x′Av/‖v‖,
v0 = 0, β = ‖b‖, β1 = 0, c0 = 0, and y1 = c1v1.

Step 2. Set k = 1, and rk = b−A(A′yk).

Step 3. While ‖rk‖ > εβ

Step 3.1. k = k + 1, w = A(A′vk−1), αk−1 = v′k−1w.

Step 3.2. ṽk = w − αk−1vk−1 − βk−1vk−2.

Step 3.3. βk = ‖ṽk‖.
Step 3.4. If βk �= 0, set vk = ṽk/βk, and ck = (b′vk−1−αk−1ck−1−βk−1ck−2)/βk; else set w = A(A′rk),
α = ‖w‖, and vk = w/α, ck = αb′rk.

Step 3.5. Calculate θ = arcos (y′kvk/‖yk‖).
Step 3.6. If θ = π/2, set yk = yk−1 + ckvk, rk = b−AA′yk; else stop the loop.

Step 4. Output the solution xk = A′yk.

1244 Peng W J et al. Sci China Math July 2016 Vol. 59 No. 7

Remark 5.1. Again in the actual implementation, θ in Algorithms 6 and 7 cannot be exactly 90

degrees, thus a small tolerance should be set instead. For example, one can change the condition as

|θ − π/2| < τ , where τ is a small positive number far less than 1.

Both the OAPNE and the OAPNR methods suffer from numerical instability, since they essentially

use the OAP to solve the system AA′y = Ab or A′Ax = A′Ab, and the condition number of its coefficient

matrix is the square of cond (A). However, by using the same strategy as that applied in Algorithm 5,

one can get improved numerical behavior of these two approaches.

5.2 The expansibility of the AP technique

One of the major features of the AP technique, which makes it more attractive than other projection

techniques, is its expansibility, i.e., this technique actually helps us to expand the original linear system

to a system with more equations. In other words, System (1.1) can be expanded into

Ãx = b̃, (5.1)

where Ã ∈ R
(n+k)×n contains A as its submatrix and b̃ ∈ R

n+k also contains all of b’s elements while x

keeps unchanged. This expansion provides us with great opportunity to search a better approximation

to x, or speeds up the approximating process. Two accelerative approaches of such a type are introduced

in [13, 14]. In this section, we will use an approach similar to that in [13] to accelerate our POAP

algorithm.

Let x ∈ R
n, v ∈ R

n, and c ∈ R. For the sake of simplicity, we call the pair (v, c) as an AP projection

of x if c = x′v. The following conclusion provides a foundation of accelerative scheme derived from AP

technique.

Theorem 5.1. Let x ∈ R
n be the solution to the system (1.1) with A symmetric, (xk, ck) be an AP

projection of x, and (pk, dk) be an AP projection of ek with ek = x − xk. Then, (x̃k, c̃k) is also an AP

projection of x with x̃ = xk + pk and c̃k = ck + x′
kpk + dk.

Proof. We need to show that

x̃′xk = c̃k.

Note that

x′x̃k = x′(xk + pk) = x′xk + x′pk = x′xk + (xk + ek)
′pk = x′xk + x′

kpk + e′kpk. (5.2)

Since (xk, ck) and (pk, dk) are the AP projections of x and ek respectively, we have x′xk = ck and

e′kpk = dk. Plugging them into (5.2), we have immediately that x′x̃k = ck + x′
kpk + dk = c̃k.

Based on this observation, we can further improve the performance of the POAP by inserting an

accelerating step. The following algorithm gives one of such strategies.

Algorithm 8 (An accelerated progressive orthogonally accumulated projection method). Let A be

a symmetric and nonsingular matrix and b ∈ R
n a non-zero vector. Let ε be a given tolerance. The

following process produces xk approximate to the exact solution x to the system Ax = b.

Step 1 (Initializing). Set x0 = 0, r = b, c0 = 0, and k = 0.

Step 2. While ‖r‖ > ε

Step 2.1. k = k + 1. Call Algorithm 4 to get the AP projection (yk, dk) of y which satisfies Ay = r.

Step 2.2. Calculate ck = ck−1 + x′
kyk + dk.

Step 2.3. Update x̃k = xk−1 + yk.

Step 2.4. Update xk as the AP projection of x over subspace span{x̃k, xk−1}.
Step 2.5. Calculate r = b−Axk.

Step 3. Output the solution xk.

Peng W J et al. Sci China Math July 2016 Vol. 59 No. 7 1245

6 Numerical experiments

In this section, we will examine the numerical behaviors of the orthogonally accumulated projection

methods proposed in the previous sections. The linear systems of equations tested here are generated

from numerical partial differential equations.

As the first example, we consider the regular one dimensional two-point boundary value problem as

follows:

− ∂

∂t

(
p(t)

∂x(t)

∂t

)
+ q(t)x(t) = f(t), t ∈ (0, 1),

with x(0) = x(1) = 0. We use the finite element method to discretize the problem, and the basis functions

used here are hierarchical bases. The resulted coefficient matrices are of the form shown in Figure 2. In

Figure 2(a), the initial number of subintervals is taken as 5, and the mesh is refined eight times so that

the total number of grids is 5 ∗ 28 − 1 (= 1279); while in Figure 2(b) the initial number of subintervals is

taken as 20, and the mesh is refined five times, and thus the total number of grids is 20 ∗ 25 − 1 (= 639).

Table 1 shows the comparison of the relative error ‖x − x̃‖/‖x‖ among the POAP and some other

prevalent Krylov subspace methods, where x and x̃ are the exact solution and the approximate solutions

obtained by using different iterative methods, and the stopping criteria is set to be

‖b−Ax̃‖/‖b‖ < 10−6,

and n is the number of unknowns. In these tests, we use the following settings: p(t) = t, q(t) = 1, and

f(t) is taken such that the real solution x(t) has the form x(t) = e(3−t) sin(πt). It can be seen from Table 1

that the POAP method usually produces more accurate approximate solutions in terms of relative errors.

In the second experiment, we use a regular two-dimensional BVP problem

Δu = f (6.1)

defined on an L-shaped domain

[0, 1]×
[
0,

1

2

]
∪
[
0,

1

2

]
×
[
1

2
, 1

]
,

where f(t, s) is taken so that the exact solution is u(t, s) = sin(πt) sin(πs). We use the five-point finite

difference scheme to discretize the problem, and the zero patterns of the resulting coefficient matrices are

shown in Figures 3. The comparison of the relative errors among the OAP and other Krylov subspace

methods are shown in Table 2. Again one can see that the approximate solutions obtained by the POAP

show better relative errors than other Krylov subspace methods in general.

p

M

M

Zero pattern of A

Matrix columns (nz = 22447, n = 1279)

M
at

ri
x

ro
w

s

(a) The distribution of non-zero elements of

A when the initial mesh grid is 5 points

M

M

Zero pattern of A

M
at

ri
x

ro
w

s

Matrix columns (nz = 3271)

(b) The distribution of non-zero elements

of A when the initial mesh grid is 20 points

Figure 2 Example 1: The pattern of non-zero elements distribution

1246 Peng W J et al. Sci China Math July 2016 Vol. 59 No. 7

Table 1 The comparison of relative errors

n POAP MINRES LSQR CG SYMMLQ QMR BICG

31 5.5227e−7 9.5420e−7 1.3502e−7 9.0996e−7 9.0996e−7 9.5420e−7 9.0996e−7

63 4.8098e−7 6.9631e−6 1.0474e−5 8.7554e−7 8.7562e−7 6.9633e−6 8.7547e−7

127 1.2362e−6 8.4231e−6 3.5963e−6 3.3800e−6 3.3028e−6 8.4226e−6 3.3008e−6

255 2.6426e−6 1.0753e−5 2.2577e−5 7.9867e−6 7.9867e−6 1.0753e−5 7.9867e−6

511 1.8415e−6 3.8084e−5 7.5859e−5 2.0105e−5 2.0105e−5 3.8085e−5 2.0105e−5

1023 1.0641e−5 1.3964e−4 1.6183e−4 5.1029e−5 5.1029e−5 1.3964e−4 5.1029e−5

2047 1.7943e−6 6.1468e−4 3.3880e−4 9.5182e−5 9.5182e−5 6.1468e−4 9.5181e−5

M

M

Zero pattern of A

M
at

ri
x

ro
w

s

Matrix columns (nz = 4840)

(a) The distribution of non-zero elements of A

M

M

Zero pattern of A

M
at

ri
x

ro
w

s

Matrix columns (nz = 24700)

(b) The distribution of non-zero elements of A

Figure 3 Example 2: The pattern of non-zero elements distribution

Table 2 The comparison of the relative errors

n POAP MINRES LSQR CG SYMMLQ QMR BICG

300 8.8078e−8 7.5369e−7 8.7918e−7 4.0907e−7 4.0907e−7 7.5369e−7 4.0907e−7

1000 5.6365e−7 3.4215e−6 1.7742e−6 1.2624e−6 1.2624e−6 3.4215e−6 1.2624e−6

1800 2.6799e−7 4.0848e−6 2.9232e−6 1.7059e−6 1.7059e−6 4.0848e−6 1.7059e−6

2400 3.0539e−7 7.6561e−6 2.3775e−6 1.7835e−6 1.7835e−6 7.6561e−6 1.7835e−6

5000 2.5900e−7 7.4162e−6 4.1379e−6 2.7286e−6 2.7286e−6 7.4162e−6 2.7286e−6

6800 2.0703e−7 9.6869e−6 1.3799e−5 1.9012e−6 1.9012e−6 9.6869e−6 1.9012e−6

In order to check the behaviors of the POAP method on systems with extremely ill-conditioned coef-

ficient matrices, we use the Hilbert matrices in the third experiment. The exact solution is the values of

function f(x) at grid points xi = ih, h = 1/(n+ 1) (i = 1, 2, . . . , n) with

f(x) = x(1 − x)e3(1−x).

Figure 4(a) shows the exact solution and the approximated solutions by the different Krylov subspace

methods, and Figure 4(b) shows the difference between the exact solution and the approximated solutions.

One can see in this case that all iterative methods produce quite accurate approximate solutions. The

relative errors are shown in Table 3.

Peng W J et al. Sci China Math July 2016 Vol. 59 No. 7 1247

1.0

f(
x)

x

1.0

1.8

1.2

1.4

1.6

0.8

0

0.2

0.4

0.6

−0.2
0 0.1 0.90.80.70.60.50.40.30.2

(a) The exact solution and approximate solutions

x

f(
x)
−
f
(x
)

h

1.00 0.1 0.90.80.70.60.50.40.30.2

0.05

0.01

0.02

0.03

0.04

0

−0.02

−0.01

−0.03

(b) The difference between exact solution and approx-

imate solutions

Figure 4 Systems with Hilbert matrices

Table 3 The comparison of relative errors

n POAP MINRES LSQR CG SYMMLQ QMR BICG

500 0.004730 0.012670 0.013636 0.012663 0.012663 0.012679 0.012663

1000 0.011740 0.014192 0.015387 0.014189 0.014189 0.014195 0.014189

1500 0.013727 0.012885 0.013685 0.012883 0.012883 0.012885 0.012883

2000 0.013220 0.013324 0.014098 0.013323 0.013323 0.013324 0.013323

2500 0.013571 0.013895 0.015126 0.013891 0.013891 0.013893 0.013891

3000 0.013701 0.014611 0.013697 0.014601 0.014601 0.014619 0.014602

7 Concluding remarks

It should be mentioned that according to its construction, the OAP methods presented in this paper

still belong to the so-called extended Krylov subspace methods, since they rely on the construction of a

Krylov subspace based on the matrix-vector multiplication between the coefficient matrix A and a certain

initial vector. In addition, the approximate solutions also come from this Krylov subspace. Unlike the

most other Krylov subspace methods where the approximation vectors are searched under some criteria

of reducing residual norms, the OAP algorithms depend on the construction of an orthonormal basis

of Rn, while this is efficiently carried out by the three-term recurrence relation among the basis vectors

and the “coordinates” of the sought-after solution under this sequence of orthonormal vectors are also

calculated economically. Therefore, in exact arithmetic operations the OAP will produce the solution

after n iterations at most.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos.

91430108 and 11171251) and the Major Program of Tianjin University of Finance and Economics (Grant No.

ZD1302).

References

1 Bai Z Z. Rotated block triangular preconditioning based on PMHSS. Sci China Math, 2013, 56: 2523–2538

2 Benzi M. Preconditioning techniques for large linear systems: A survey. J Comput Phys, 2002, 182: 418–477

3 Bramley R, Sameh A. Row projection methods for large nonsymmetric linear systems. SIAM J Sci Comput, 1992, 13:

168–193

4 Ehrig R, Deuflhard P. GMERR—an error minimizing variant of GMRES. Technical Report SC-97-63, ZIB, 1997

1248 Peng W J et al. Sci China Math July 2016 Vol. 59 No. 7

5 Freund R W, Nachtigal N M. QMR: A quasi-minimal residual method for non-Hermitian linear systems. Numer Math,

1991, 60: 315–339

6 Galäntai A. Projectors and Projection Methods. Berlin: Springer, 2004

7 Golub G H, Van Loan C F. Matrix Computations. Baltimore-London: The Johns Hopkins University Press, 1996

8 Hackbusch W. Multi-Grid Methods and Applications. Berlin: Springer-Verlag, 1985

9 Jia Z X. Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenproblems. Linear Algebra

Appl, 1997, 259: 1–23

10 Jia Z X. On convergence of the inexact Rayleigh quotient iteration with the Lanczos method used for solving linear

systems. Sci China Math, 2013, 56: 2145–2160

11 Paige C C, Saunders M A. Solution of sparse indefinite systems of linear equations. SIAM J Numer Anal, 1975, 12:

617–629

12 Peng W. A line-projection method for solving linear system of equations. Pacific J Appl Math, 2013, 5: 17–28

13 Peng W, Lin Q. A non-Krylov subspace method for solving large and sparse linear system of equations. Numer Math

Theor Meth Appl, 2016, 9: 289–314

14 Peng W, Zhang S. A stationary accumulated projection method for linear system of equations. ArXiv:1603.05356,

2016

15 Saad Y. Iterative Methods for Sparse Linear Systems, 2nd ed. Philadelphia: SIAM, 2003

16 van der Vorst H A. Iterative Krylov Methods for Large Linear Systems. Cambridge: Cambridge University Press, 2003

