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Abstract In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically

by using the finite difference method in combination with a convex splitting technique of the energy functional.

For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be

uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct

a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are

nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is

developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out

to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.
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1 Introduction

The process of phase transition has attracted many theoretical and experimental studies in the field of

small molecules or polymer mixture systems [3]. Among various methods for simulating phase transitions

of a uniform thermodynamic system, Cahn-Hilliard dynamics, advanced by Cahn and Hilliard [1] as a

model for spinodal decomposition, turns out to be one of the most suitable models [14]. To take a random

disturbance into account, a stochastic term is usually added into the equation. This stochastic equation,

called the Cahn-Hilliard-Cook model [1], is of the form

∂φ

∂t
= DΔ

δU(φ)

δφ
+ εξ(r, t), r ∈ Ω, t > 0, (1.1)

where φ = φ(r, t) is a conserved field variable representing the concentration of one of the components of

the mixture (or sometimes, the difference between the concentration of the two components of a binary

mixture), U = U(φ) is a coarse-grained free energy functional. The parameter D > 0 is the diffusion
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coefficient (assumed constant here) and ε > 0 describes the strength of the noise. The stochastic term ξ

is required to satisfy the fluctuation-dissipation theorem [3, 18]:

E[ξ(r1, t1)ξ(r2, t2)] = −2DΔδ(r1 − r2)δ(t1 − t2), (1.2)

where E represents the mathematical expectation operator. Recently, the time-dependent Ginzburg-

Landau (TDGL) mesoscopic simulation method, based on the Cahn-Hilliard-Cook model, has been widely

used to describe the phase transitions of mixtures of small molecules [6] and mixtures with polymers and

block copolymers [19]. Here we give a brief review on the applications of the stochastic Cahn-Hilliard

equation (1.1) for the descriptions of the phase separation process.

For the small molecules or atomic systems, the functional U(φ) is usually assumed to have the Ginzburg-

Landau form [16]:

UGL(φ) =

∫
Ω

(
μ

4
φ4 − γ

2
φ2 +

γ2

4μ
+
κ

2
|∇φ|2

)
dr,

where μ, γ and κ are all positive constants. This form of the functional U , combined with (1.1), is

usually used to investigate the phase separation of the small molecule systems, such as binary alloys,

fluid mixtures, inorganic glasses [3].

For the studies of spinodal decomposition in polymer blend, Flory and Huggins developed a lattice

theory and gave the Flory-Huggins free energy [11]. Combined with the contribution made by de Gennes,

the Flory-Huggins-de Gennes free energy functional for mixture of two polymers is given by de Gennes [8],

UFH(φ) =

∫
Ω

(
fFH(φ) +

1

36φ(1− φ)
|∇φ|2

)
dr, (1.3)

where

fFH(φ) =
φ

N1
lnφ+

1− φ

N2
ln(1− φ) + χφ(1 − φ)

is the Flory-Huggins free energy density, N1 and N2 represent the degrees of polymerization of the

polymers 1 and 2, respectively, and χ is the Huggins interaction parameter. Combined with the Flory-

Huggins-de Gennes free energy functional (1.3), (1.1) can be used to describe the phase transition of the

thermodynamic systems of the polymer mixtures, such as a large class of hydrogels, a kind of network

crosslinked by polymer chains.

Macromolecular microsphere composite (MMC) hydrogels, a kind of new hydrogels, have become

more and more popular in polymeric materials because of their high mechanical strength [17]. The

microstructure of MMC hydrogels is composed of both polymer chains and macromolecular microspheres.

Li et al. [21] and Zhai and Zhang [36] have developed a reticular free energy to describe this kind of

structure. Replacing fFH by the reticular free energy in (1.3) and combining the stochastic Cahn-Hilliard

equation (1.1), we obtain a new model, named by MMC-TDGL equation, which simulates the phase

transition of the MMC hydrogels well. The specific expression of the reticular free energy and the form

of the MMC-TDGL equation will be given in Section 2.

For the stochastic Cahn-Hilliard equation (1.1), some studies consider the effect of the stochastic term

that reflects the thermal disturbance driving the system to escape away from the initial state. Many of

them (see [3]) are devoted to considering the random effect in the initial condition, while some works

(see [38]) focus on the minimal energy pathway of a system from one metastable state to another driven

by the stochastic term. In [21], a stochastic function satisfying the fluctuation-dissipation theorem (1.2)

was constructed and (1.1) was discretized by using a semi-implicit finite difference scheme, i.e., the linear

part of φ in (1.1) is treated implicitly while the nonlinear part explicitly. The discrete energy stability

for the non-stochastic case was obtained with a remainder term with respect to the time step. In other

words, the strict energy stability could not be obtained, which motivates us to find some better numerical

schemes.

Recently, energy stable schemes have attracted increasingly attention for phase field models, see [12,15,

26,27,35] and the references therein. As one of the energy stable methods, the convex splitting approach
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has been widely used in the simulation of phase field models [4, 22, 25, 34]. The idea about the convex

splitting was first proposed for gradient systems by Eyre [9]. The fundamental observation is that the

energy F admits a splitting into convex and concave parts, namely, F = Fc−Fe, where Fc and Fe are both

convex. Here we use the notation Fc and Fe in [9], where c refers to the contractive part of the energy

and e refers to the expansive part. A nonlinear stabilized splitting scheme for the Cahn-Hilliard equation

was developed as an example in [9], where the energy functional was split into convex and concave parts,

with the convex part treated implicitly and the concave part explicitly. The unconditionally gradient

stability and unique solvability properties were pointed out by Eyre [10] but not proved. Eyre’s idea was

generalized to the case of the Swift-Hohenberg equation and the phase field crystal equation [34]. The

convex splitting scheme is first-order convergent in time. A rigorous and complete theory framework was

developed, and the unconditionally energy stability and unique solvability were proved strictly therein.

Besides, the convex splitting method has been used to solve the equations of thin film epitaxy [32].

Recently, second-order in time and unconditionally energy stable schemes have been proposed [30], based

on the convex splitting technique, and were solved by using a linear iteration algorithm [5].

In this paper, we work in a similar framework of the convex splitting method for the MMC-TDGL

equation. There are three main purposes of this work. First, we present an unconditionally energy stable

and uniquely solvable difference scheme for solving the MMC-TDGL equation without the stochastic

term. The scheme is based on a convex splitting of the energy functional. To apply the framework of this

method, a convex splitting of the energy functional with the specific reticular free energy should be found

out. We decompose the integrand as a difference of two parts and prove them to be both convex. The

unconditional energy stability and unique solvability of the derived difference scheme are then obtained.

Second, the stochastic term is taken into account with the same discretized form as it in [21], which leads

to a similar difference scheme whose unique solvability is derived directly from the non-stochastic case.

Third, we develop an adaptive time stepping strategy which is efficient for long time simulations of the

MMC-TDGL equation. In [28], an adaptive time stepping method is proposed for the molecular beam

epitaxy models, based on the variation of the energy. Numerical results have demonstrated that the

adaptive time stepping method can save much CPU time without losing the accuracy. Their approach

is to consider the derivative of the energy and to magnify it via a constant α. Because of the high

nonlinearity of the energy in our model, there are longer time intervals during which the energy varies

slightly but the derivative varies faster before the sharp decay. A large α must be used to capture the

moment of the sharp decay accurately, which leads to the low computational efficiency. In order to

overcome this difficulty, we treat α as a function of the time instead of a constant. After the sharp decay,

the energy decreases more and more gently, so we should reduce α to obtain larger time steps. This

strategy allows us not only to capture the sharp decay of the energy more accurately, but also to use the

time steps as large as possible.

Generally speaking, one of the main difficulties for the simulations of the Cahn-Hilliard dynamics is

to approximate the fourth-order derivatives. One approach is to set ψ = δU(φ)/δφ in (1.1) and write

the fourth-order problem (1.1) as a mix-form system consisting of two second-order equations with the

unknowns φ and ψ. In this approach, one just need to approximate the second-order derivatives. This

technique has been widely used to simulate the fourth-order problems, e.g., the Cahn-Hilliard dynamics

and the molecular beam epitaxy models, combining with either finite difference methods [30, 31, 33] or

finite element methods [7, 27, 37]. Another strategy is to discretize directly the fourth-order derivatives

using the second-order accurate center-difference formula. Numerical tests imply that the derived schemes

will be satisfactory as long as the spatial mesh size is sufficiently small, see [12,13] for the Cahn-Hilliard

dynamics, [28,32] for the molecular beam epitaxy models and [2,39] for the phase field crystal equation.

In addition, discretizing the fourth-order derivatives using a fourth-order compact difference scheme could

be found in a recent work [20]. In this paper, we adopt the second technique to deal with the fourth-order

derivative. We will present a group of numerical experiments to show how the numerical solutions depend

on the mesh size, and determine an appropriate mesh giving the reasonable results for the subsequent

simulations.

The rest of the paper is organized as follows. In Section 2, we illustrate the mathematical model of
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the phase transition of the MMC hydrogel. The difference schemes based on a convex splitting of the

energy functional are presented in Section 3. We first give the strict proofs of the unconditionally energy

stability and unique solvability of the scheme for the non-stochastic case. Then we recall the construction

of the stochastic term, provide the scheme with the stochastic term and illustrate the unique solvability.

In Section 4, Newton iteration combined with GMRES algorithm is used to solve the difference scheme

numerically. Besides, an adaptive time-stepping method is given here. In Section 5, some numerical

experiments are conducted to verify the energy stability of the non-stochastic difference scheme and to

compare the stochastic scheme with that developed in the previous work. Concluding remarks are given

in Section 6.

2 The mathematical model: MMC-TDGL equation

In this paper, we consider the MMC-TDGL equation (1.1) in two-dimensional space, with assuming that

Ω = (0, Lx) × (0, Ly) and φ(·, t) subject to the periodic boundary condition. The solutions of (1.1) are

minima of the energy functional

U(φ) =

∫
Ω

(S(φ) +H(φ) + κ(φ)|∇φ|2)dr, (2.1)

where S(φ) +H(φ) is the reticular free energy density [21, 36],

S(φ) =
φ

τ
ln
αφ

τ
+
φ

N
ln
βφ

τ
+ (1− ρφ) ln(1− ρφ), H(φ) = χφ(1 − ρφ), (2.2)

and κ(φ) is the de Gennes coefficient [8],

κ(φ) =
1

36φ(1− φ)
. (2.3)

Here we follow the notation defined in [21,36]. We denote by χ the Huggins interaction parameter, by N

the degree of polymerization of the polymer chains, and by M , which does not appear explicitly in (2.2),

the relative volume of one macromolecular microsphere. The other numbers α, β, τ and ρ depend on M

and N according to

α = π

(√
M

π
+
N

2

)2

, β =
α√
πM

, τ =
√
πMN, ρ = 1 +

M

τ
.

All these parameters are positive. Besides, ρ is a little greater than one, and thus φ ∈ (0, 1/ρ) ⊂ (0, 1).

We will declare the values of M,N and χ in Section 5.

In [21], by using the fact that the derivative and expectation operations can be exchanged, it is proved

that expressing the noise term as ξ = −√
2D∇ · η leads to the relation (1.2), where

η = (η1(r, t), η2(r, t))
T.

Here η1 and η2 are independent two-dimensional space-time Gaussian white noises, satisfying

E[ηl(r, t)] = 0 and E[ηl(r1, t1)ηl(r2, t2)] = δ(r1 − r2)δ(t1 − t2), l = 1, 2.

In the rest of the paper, we set D = 1 for the normalization.

We note the energy non-increasing property of the Cahn-Hilliard equation without the noise term,

which is mentioned in the introduction, i.e.,

d

dt
U(φ(t)) � 0, t > 0.

So we hope to develop a numerical scheme inheriting such a property strictly.
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3 Unconditionally energy stable difference scheme

In essence, the convex splitting method is to approximate the original non-convex energy problem by a

convex energy problem. The foundation is a convex splitting of the non-convex energy, which turns out to

be a sum of convex and concave parts. In this section, we will give a convex splitting of the energy (2.1)

and an unconditionally energy stable scheme based on it. We concentrate mainly on the difference scheme

in the non-stochastic case, namely, ε = 0. The similar difference scheme of the stochastic case will be

illustrated in the last part of this section.

3.1 Discrete-time, continuous-space scheme

The following proposition is a preliminary to the existence of a convex splitting.

Proposition 3.1. (1) S and −H are both convex in (0, 1/ρ), where S and H are defined by (2.2);

(2) K(u, v) := κ(u)v2 is convex in (0, 1/ρ)× R, where κ is defined by (2.3).

Proof. For (1), differentiating S and H twice, we obtain

S′′(φ) =
(
1

τ
+

1

N

)
1

φ
+

ρ2

1− ρφ
, H ′′(φ) = −2χρ.

When φ ∈ (0, 1/ρ), we have S′′(φ) > 0 and H ′′(φ) < 0.

For (2), by some careful calculations, we obtain the Hessian of K:

∇2K =

⎛
⎜⎜⎝
(3u2 − 3u+ 1)v2

18u3(1 − u)3
(2u− 1)v

18u2(1− u)2

(2u− 1)v

18u2(1 − u)2
1

18u(1− u)

⎞
⎟⎟⎠ .

The first-order principal minors of the matrix ∇2K are

D1 =
(3u2 − 3u+ 1)v2

18u3(1− u)3
, D2 =

1

18u(1− u)
.

The second-order principal minor is

D12 = det(∇2K) =
(3u2 − 3u+ 1)v2 − (2u− 1)2v2

182u4(1− u)4
=

v2

182u3(1− u)3
.

These principal minors are all non-negative when u ∈ (0, 1/ρ) and v ∈ R. The Hessian ∇2K is positive

semi-definite and thus K is convex in (0, 1/ρ)× R.

Lemma 3.2 (Existence of a convex splitting). Assume that φ : Ω → (0, 1/ρ) is smooth enough.

Defining

Uc(φ) =

∫
Ω

(S(φ) + κ(φ)|∇φ|2)dr, Ue(φ) = −
∫
Ω

H(φ)dr, (3.1)

we have U(φ) = Uc(φ)− Ue(φ) with Uc and Ue both convex.

Proof. The splitting U(φ) = Uc(φ)− Ue(φ) is obvious. We show the convexity of Uc below. Defining

ec(u) = S(u) +K(u, v) +K(u,w), ee(u) = −H(u), u = (u, v, w) ∈ R
3,

we have

Uc(φ) =

∫
Ω

ec(φ, φx, φy)dr, Ue(φ) =

∫
Ω

ee(φ, φx, φy)dr.

Proposition 3.1 suggests that ec and ee are convex in (0, 1/ρ)×R×R, namely, ∀u,v ∈ (0, 1/ρ)×R×R,

∀λ ∈ (0, 1),

ec(λu + (1− λ)v) � λec(u) + (1− λ)ec(v).
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Setting u = (φ, φx, φy) and v = (ψ, ψx, ψy) and integrating this inequality, we obtain

Uc(λφ + (1− λ)ψ) � λUc(φ) + (1 − λ)Uc(ψ),

which suggests that Uc is convex. Similarly, we know that Ue is convex, too.

The following estimate is the foundation of the energy stability. The proof, which is the same as that

of [34, Theorem 1.1], is independent on the specific form of U(φ) and so is omitted.

Lemma 3.3. Assume that φ, ψ : Ω → R are periodic and smooth enough. If U = Uc − Ue gives a

convex splitting, then

U(φ)− U(ψ) � (δφUc(φ)− δφUe(ψ), φ− ψ)L2 , (3.2)

where δφ denotes the variational derivative.

Given a time step s > 0, for the MMC-TDGL equation with ε = 0, we construct the discrete-time,

continuous-space scheme of (1.1) as follows:

φk+1 − φk

s
= Δμ̃, μ̃(φk+1, φk) := δφUc(φ

k+1)− δφUe(φ
k). (3.3)

Theorem 3.4. The scheme (3.3) is unconditionally energy stable, meaning that for any time step

s > 0, we always have

U(φk+1) � U(φk).

Proof. By choosing φ = φk+1 and ψ = φk in (3.2), we obtain

U(φk+1)− U(φk) � (δφUc(φ
k+1)− δφUe(φ

k), φk+1 − φk)L2 = s(μ̃,Δμ̃)L2 = −s‖∇μ̃‖2L2 � 0,

which completes the proof.

A theoretical analysis for the energy stability based on a convex splitting of the continuous energy is

provided above. For the numerical simulation, however, we need to work on a discretized space. In the

following several parts of this section, we will construct a discrete energy with a convex splitting, and

develop a fully discrete and unconditionally energy stable scheme corresponding to the discrete energy.

3.2 Discretization of two-dimensional space

Here we use the similar notation introduced in [33, 34]. Let

hx = Lx/m, hy = Ly/n,

where m,n ∈ N. Define the x-direction mesh xi = (i − 1
2 )hx, i ∈ Z with respect to (0, Lx) and corre-

sponding node sets

Em = {xi+ 1
2
| i = 0, 1, . . . ,m}, Cm = {xi | i = 1, 2, . . . ,m}, Cm = {xi | i = 0, 1, . . . ,m+ 1}.

Similarly, we can define the y-direction mesh yj and node sets En, Cn, Cn with respect to (0, Ly). Define

the function spaces

Cm×n = {φ : Cm × Cn → R}, Cm×n = {φ : Cm × Cn → R},
Cm×n = {φ : Cm × Cn → R}, Cm×n = {φ : Cm × Cn → R},
Eew
m×n = {f : Em × Cn → R}, Ens

m×n = {f : Cm × En → R}.

The functions in Cm×n, Cm×n, Cm×n and Cm×n are called cell-centered functions, and are denoted by the

Greek symbols φ, ψ with φi,j = φ(xi, yj). The functions in Eew
m×n and Ens

m×n are called east-west edge-

centered functions and north-south edge-centered functions, respectively, and are denoted by the English

symbols f, g. For the east-west edge-centered function f , we let fi+ 1
2 ,j

= f(xi+ 1
2
, yj); for the north-south
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edge-centered function g, we let gi,j+ 1
2
= g(xi, yj+ 1

2
). We say a cell-centered function φ ∈ Cm×n is

periodic if and only if

φm+1,j = φ1,j , φ0,j = φm,j , j = 1, 2, . . . , n,

φi,n+1 = φi,1, φi,0 = φi,n, i = 0, 1, . . . ,m+ 1.

Now we define some operators on the function spaces. The edge-to-center averages and differences,

ax, dx : Eew
m×n → Cm×n and ay, dy : Ens

m×n → Cm×n; the center-to-edge averages and differences, Ax, Dx :

Cm×n → Eew
m×n and Ay, Dy : Cm×n → Ens

m×n; and the two-dimensional discrete Laplacian, Δh : Cm×n

→ Cm×n, are defined componentwise by

axfi,j =
1

2
(fi+ 1

2 ,j
+ fi− 1

2 ,j
), dxfi,j =

1

hx
(fi+ 1

2 ,j
− fi− 1

2 ,j
), i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

aygi,j =
1

2
(gi,j+ 1

2
+ gi,j− 1

2
), dygi,j =

1

hy
(gi,j+ 1

2
− gi,j− 1

2
), i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

Axφi+ 1
2 ,j

=
1

2
(φi+1,j + φi,j), Dxφi+ 1

2 ,j
=

1

hx
(φi+1,j − φi,j), i = 0, 1, . . . ,m, j = 1, 2, . . . , n,

Ayφi,j+ 1
2
=

1

2
(φi,j+1 + φi,j), Dyφi,j+ 1

2
=

1

hy
(φi,j+1 − φi,j), i = 1, 2, . . . ,m, j = 0, 1, . . . , n,

Δhφi,j = dx(Dxφ)i,j + dy(Dyφ)i,j , i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

The weighted inner-product (·, ·)h, [·, ·]ew and [·, ·]ns are defined as follows:

(φ, ψ)h = hxhy

m∑
i=1

n∑
j=1

φi,jψi,j , φ, ψ ∈ Cm×n,

[f, g]ew = hxhy

m∑
i=1

n∑
j=1

ax(fg)i,j , f, g ∈ Eew
m×n,

[f, g]ns = hxhy

m∑
i=1

n∑
j=1

ay(fg)i,j , f, g ∈ Ens
m×n.

The following proposition follows directly and the proof is omitted.

Proposition 3.5. Assume that φ, ψ ∈ Cm×n, f ∈ Eew
m×n, g ∈ Ens

m×n and φ, ψ are periodic. Then

(1) [f,Axφ]ew = (axf, φ)h, [f,Dxφ]ew = −(dxf, φ)h;

(2) [g,Ayφ]ns = (ayg, φ)h, [g,Dyφ]ns = −(dyg, φ)h;

(3) (φ,Δhψ)h = −[Dxφ,Dxψ]ew − [Dyφ,Dyψ]ns = (Δhφ, ψ)h.

3.3 A convex splitting of the discrete energy

With the preparation above, we turn to discussing the discrete energy and the fully discrete scheme.

Define the discrete energy F : Cm×n → R as

F (φ) = hxhy

m∑
i=1

n∑
j=1

(S(φi,j) +H(φi,j) + κ(φi,j)(ax((Dxφ)
2)i,j + ay((Dyφ)

2)i,j)). (3.4)

Lemma 3.6 (Existence of a convex splitting). Assume that φ ∈ Cm×n is periodic. Defining

Fc(φ) = hxhy

m∑
i=1

n∑
j=1

(S(φi,j) + κ(φi,j)(ax((Dxφ)
2)i,j + ay((Dyφ)

2)i,j)), (3.5)

Fe(φ) = −hxhy
m∑
i=1

n∑
j=1

H(φi,j), (3.6)

we have F (φ) = Fc(φ)− Fe(φ) with Fc and Fe both convex.
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Proof. Let K(u, v) be the function defined in Proposition 3.1(2). Then

Fc(φ) = hxhy

m∑
i=1

n∑
j=1

(
S(φi,j) +

1

2
K(φi,j , Dxφi+ 1

2 ,j
) +

1

2
K(φi,j , Dxφi− 1

2 ,j
)

+
1

2
K(φi,j , Dyφi,j+ 1

2
) +

1

2
K(φi,j , Dyφi,j− 1

2
)

)
.

From Proposition 3.1, Fc and Fe are linear combinations of some convex functions, and thus convex.

Here we give the expressions of the variational derivatives δφFc(φ) and δφFe(φ) as follows:

δφFc(φ) = S′(φ) + κ′(φ)(ax((Dxφ)
2) + ay((Dyφ)

2)) − 2dx(Axκ(φ)Dxφ)− 2dy(Ayκ(φ)Dyφ),

δφFe(φ) = −H ′(φ).

Now we describe the fully discrete scheme for the MMC-TDGL equation with ε = 0. The scheme is

the following: Given φk ∈ Cm×n periodic, find φk+1 ∈ Cm×n periodic such that

φk+1 − φk = sΔhμ
k+1, (3.7)

μk+1 = δφFc(φ
k+1)− δφFe(φ

k)

= S′(φk+1) + κ′(φk+1)(ax((Dxφ
k+1)2) + ay((Dyφ

k+1)2))

− 2dx(Axκ(φ
k+1)Dxφ

k+1)− 2dy(Ayκ(φ
k+1)Dyφ

k+1) +H ′(φk), (3.8)

where

S′(φ) =
(
1

τ
+

1

N

)
lnφ− ρ ln(1− ρφ), H ′(φ) = −2χρφ, κ′(φ) =

2φ− 1

36φ2(1− φ)2
.

Since μ follows the Laplacian Δh, we omit the constants in the expressions S′(φ) and H ′(φ) above.
So far, we have developed the fully discrete scheme based on a convex splitting of the discrete en-

ergy (3.4). The difference scheme is a system of nonlinear equations with respect to φk+1, so we have

to solve it iteratively. Before solving it, we analyze the unique solvability and the energy stability of

the scheme.

3.4 Unconditional unique solvability

Suppose c ∈ R, and define Mc to be the whole functions in Cm×n with c-mean, namely,

Mc =

{
φ ∈ Cm×n

∣∣∣∣ 1

mn

m∑
i=1

n∑
j=1

φi,j = c

}
.

We just discuss on the zero-mean function space M0, because φ− c ∈ M0 provided φ ∈ Mc.

Lemma 3.7. For any φ ∈ M0, there exists a unique periodic ψ ∈ M0 such that −Δhψ = φ.

Proof. Let L = −Δh. We show that L is symmetric and positive definite on the periodic zero-mean

function space. The symmetry is suggested by Proposition 3.5(3). Suppose ψ ∈ M0 is periodic. Then

(L(ψ), ψ)h = [Dxψ,Dxψ]ew + [Dyψ,Dyψ]ns � 0.

The equality is achieved only if Dxψ = 0 and Dyψ = 0 at every point, which suggests that ψ is a constant

function. With the restriction that ψ has zero mean, this constant must be zero, which proves that L is

positive definite.

Theorem 3.8 (Unique solvability). The difference scheme (3.7)–(3.8) is uniquely solvable for any time

step s > 0.
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Proof. From the proof of Lemma 3.7, the operator L := −sΔh is positive definite, so it is nonsingular

and L−1 is also positive definite. Define a functional on M0,

G(φ) =
1

2
(L−1(φ), φ)h − (L−1(φ), φk)h + Fc(φ)− (φ, δφFe(φ

k))h. (3.9)

With a little work, we can obtain its variational derivative

δφG(φ) = L−1(φ− φk) + δφFc(φ) − δφFe(φ
k).

For any ψ ∈ M0, we have

d2G(φ + λψ)

dλ2

∣∣∣∣
λ=0

= (L−1(ψ), ψ)h +
d2Fc(φ + λψ)

dλ2

∣∣∣∣
λ=0

.

The convexity of Fc and the positive definiteness of L−1 imply the convexity of G on M0.

Supposing that φk+1 solves the scheme (3.7)–(3.8), we obtain

φk+1 − φk + L(δφFc(φ
k+1)− δφFe(φ

k)) = 0,

namely,

δφG(φ
k+1) = L−1(φk+1 − φk) + δφFc(φ

k+1)− δφFe(φ
k) = 0,

which implies, φk+1 solves (3.7)–(3.8) if and only if δφG(φ
k+1) = 0. The convexity of G suggests that G

is minimized by φk+1, which is unique.

3.5 Unconditional energy stability

The following lemma is a discrete form of Lemma 3.3.

Lemma 3.9. Assume that φ, ψ ∈ Cm×n are periodic. If F = Fc − Fe gives a convex splitting, then

F (φ) − F (ψ) � (δφFc(φ)− δφFe(ψ), φ − ψ)h. (3.10)

Proof. Define a continuously differentiable function in R as jc(s) = Fc(φ + sψ). With the convexity

of Fc, we get the convexity of jc in R, so jc(1)− jc(0) � j′c(0)(1− 0), i.e.,

Fc(φ+ ψ)− Fc(φ) � (δφFc(φ), ψ)h.

Replacing ψ by ψ − φ leads to

Fc(ψ)− Fc(φ) � (δφFc(φ), ψ − φ)h.

Repeating the deduction above on Fe and exchanging φ and ψ lead to

Fe(φ) − Fe(ψ) � (δφFe(ψ), φ − ψ)h.

Adding the two inequalities and multiplying by −1 give the result.

Theorem 3.10 (Energy stability). The scheme (3.7)–(3.8) is unconditionally energy stable, meaning

that for any time step s > 0, we always have

F (φk+1) � F (φk).

Proof. By choosing φ = φk+1 and ψ = φk in (3.10), we obtain

F (φk+1)− F (φk) � (δφFc(φ
k+1)− δφFe(φ

k), φk+1 − φk)h

= s(μk+1,Δhμ
k+1)h = −s([Dxμ

k+1, Dxμ
k+1]ew + [Dyμ

k+1, Dyμ
k+1]ns) � 0,

where the last equality is given by Proposition 3.5.
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3.6 The difference scheme in the stochastic case

Before giving the difference scheme, we recall the discretization of the stochastic term

ξ(r, t) = −
√
2∇ · η. (3.11)

See [21] in detail.

In the theory of the stochastic process (see [23]), the space-time Gaussian white noise can be represented

as η = dW/dt, where W (t) is the standard Wiener process on L2(Ω). Separating the variables of the

Wiener process W , we obtain

W (t, x, y) =
∑
p,q

βpq(t)epq(x, y), (x, y) ∈ Ω, t � 0,

where {epq} is a set of normal orthogonal basis on L2(Ω), βpq(t) = (W (t), epq)L2(Ω), and {βpq(t)} is a

sequence of independent Wiener process, thus

βpq(tk+1)− βpq(tk)√
s

∼ N(0, 1).

Using the mid-rectangle quadrature formula, we approximate η
k+ 1

2
ij as

η
k+ 1

2

ij =

(
dW

dt

)k+ 1
2

ij

≈ 1

hxhys

∫ (i+ 1
2 )hx

(i− 1
2 )hx

∫ (j+ 1
2 )hy

(j− 1
2 )hy

∫ tk+1

tk

dW

dt
dxdydt

=
1

hxhys

∑
p,q

(βpq(tk+1)− βpq(tk))

∫ (i+ 1
2 )hx

(i− 1
2 )hx

∫ (j+ 1
2 )hy

(j− 1
2 )hy

epq dxdy.

For i = 1, 2, . . . ,m and j = 1, 2, . . . , n, we choose

eij =
1√
hxhy

1[(i− 1
2 )hx,(i+

1
2 )hx)×[(j− 1

2 )hy,(j+
1
2 )hy).

For p �= i or q �= j, by orthogonalizing the basis functions, we obtain∫ (i+ 1
2 )hx

(i− 1
2 )hx

∫ (j+ 1
2 )hy

(j− 1
2 )hy

epq dxdy = 0.

Then we have

η
k+ 1

2

ij ≈ 1

hxhys
(βij(tk+1)− βij(tk))

√
hxhy =

1√
hxhys

βij(tk+1)− βij(tk)√
s

=
1√
hxhys

rkij ,

where {rkij} is a sequence of standard normal random variables. Therefore, the discretized form of the

stochastic term (3.11) is

ξ
k+ 1

2

ij = −
√
2√

hxhys
(axDx(r1)

k
ij + ayDy(r2)

k
ij), (3.12)

where (r1)
k
ij and (r2)

k
ij are standard normal random variables.

Now we describe the difference scheme for the MMC-TDGL equation with ε > 0 as follows: Given

φk ∈ Cm×n periodic, find φk+1 ∈ Cm×n periodic such that

φk+1 − φk = sΔhμ
k+1 + sεξk+

1
2 , (3.13)

where μk+1 is still expressed as (3.8),

ξk+
1
2 = {ξk+ 1

2

ij : 1 � i � m, 1 � j � n}
with components given by (3.12). Since the stochastic term ξk+

1
2 does not depend on the unknown φk+1,

the unique solvability of (3.13) is the direct corollary of Theorem 3.8.

Corollary 3.11 (Unique solvability). The difference schemes (3.13) and (3.8) are uniquely solvable

for any time step s > 0.
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4 Numerical methods for solving the difference scheme

In the last section, we present an unconditionally energy stable difference scheme (3.7)–(3.8) for the

non-stochastic MMC-TDGL equation. It is obvious, as mentioned above, that the scheme is nonlinear

with respect to the unknown φk+1, and we have to solve it iteratively. To start the iteration, we need

to choose an appropriate initial value, which may affect the convergence of the iteration, as well as, the

limit of a convergent iteration. Fortunately, the unique solvability (see Theorem 3.8 or Corollary 3.11)

guarantees that the limit is rightly the solution as long as the iteration converges whatever the initial

value is. Now the problem is to generate a convergent iteration. The proof of Theorem 3.8 indicates that

φk+1 is the unique minimum of a convex functional G, which motivates us to convert the problem that

to solve the schemes (3.7)–(3.8) or (3.13) and (3.8) to a variation problem that to find the minimum of

the objective functional G using optimization methods. Here, we adopt the standard Newton method

to search the minimum and the GMRES method [29] to solve the Newton equation. The optimization

theories ensure the convergence of the Newton iterative procedure (see [24]).

4.1 Newton-GMRES method

For convenience, we view the functional G as an mn-variable function. The Newton-GMRES procedure

for finding φk+1 with given φk is as follows:

1. Let x(0) = φk and x(l) is the l-th iteration of φk+1;

2. solving the Newton equation ∇2G(x(l))p(l) = −∇G(x(l)) by GMRES method;

3. let x(l+1) = x(l) + p(l);

4. if ‖p(l)‖ < tol, let φk+1 = x(l+1); otherwise, let l = l + 1 and turn to Step 2.

According to the expression of G and the positive definiteness of L = −sΔh, the Newton equation

∇2G(φ)ψ = −∇G(φ) can be rewritten as

ψ − sΔh(M(φ)ψ) = −(φ− φk + sεξk+
1
2 ) + sΔh(δφFc(φ) − δφFe(φ

k)), (4.1)

where M(φ) = 1
hxhy

∇2Fc(φ) and

M(φ)ψ = S′′(φ)ψ + κ′′(φ)ψ(ax((Dxφ)
2) + ay((Dyφ)

2)) + 2κ′(φ)(ax(DxφDxψ) + ay(DyφDyψ))

− 2dx(Ax(κ
′(φ)ψ)Dxφ+Axκ(φ)Dxψ)− 2dy(Ay(κ

′(φ)ψ)Dyφ+Ayκ(φ)Dyψ).

The sparse linear equations (4.1) with respect to the Newton step ψ will be solved by the GMRES

method.

4.2 Adaptive time stepping technique

For the problems with the property of long time energy decreasing, adaptive time stepping approaches

are usually utilized to save the CPU time. The basic idea for this technique is that a small time step will

be used when the energy decays sharply and a large time step will be used otherwise. One efficient way

to adjust the time steps is given by [28],

sk+1 = max

{
smin,

smax√
1 + α|U ′(tk)|2

}
, α = const., (4.2)

where U(t) = U(φ(·, t)) is the energy defined by (2.1). The smallest and largest time steps smin and smax

give the lower and upper bound of the adaptive time steps, respectively, namely, smin � sk+1 � smax.

The large |U ′(tk)| leads to the small time step sk+1, which corresponds to the sharp decay of the energy.

The constant α is often evaluated by 105 or higher magnitude to control sk+1 in a narrow range so as

to capture the moment when the energy decays sharply. We use the non-stochastic case to illustrate the

adaptive time stepping method. The derivative of the energy can be calculate by numerically integrating

the following:

U ′(tk) =
(∫

Ω

δU

δφ

∂φ

∂t
dr

)∣∣∣∣
t=tk

= −
(∫

Ω

∣∣∣∣∇δU

δφ

∣∣∣∣
2

dr

)∣∣∣∣
t=tk

. (4.3)
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Not only MMC-TDGL equation has the property of long time energy decreasing in the non-stochastic

case, but also there are some intervals when the energy decays gently. In such intervals, we hope to use

a little bigger time steps. Even though |U ′(t)| is not very large now, it may be magnified by α so that

sk+1 is too small to accelerate the computation. So we consider a variant of (4.2), and especially, we

treat α as a function with respect to tk. Our idea for the choice of α is as follows: α is kept on a lower

magnitude when |U ′| changes from a big value to a small one; during this period, |U ′| is dominant for

adjusting the time step. When |U ′| starts to increase, which means the energy will decay more and more

sharply, we raise α rapidly to a higher magnitude, and keep α|U ′|2 above a certain magnitude; during this

period, α is dominant. Whether |U ′| increases or decreases is reflected via the sign of the second-order

derivative U ′′. More precisely, we define αk as the following form:

αk =

{
αmin, U ′′(tk) � 0,

αmin −AU ′′(tk), U ′′(tk) < 0,
(4.4)

where αmin is a lower bound of αk and A is a positive constant used to magnify the effect of U ′′(tk). Here
the second-order derivative U ′′(tk) is approximated by the backward difference

U ′′(tk) ≈ U ′(tk)− U ′(tk−1)

sk
,

and U ′(tk) is calculated by (4.3).

5 Numerical experiments

Our experiments are divided into two parts. First, we use the difference scheme (3.7)–(3.8) with the

adaptive time stepping technique (4.2) and (4.4) to solve the MMC-TDGL equation (1.1) in the non-

stochastic case. The results demonstrate the unconditional energy stability of the difference scheme

and the advantage of the adaptive time stepping method. Second, we use the difference scheme (3.13)

and (3.8) with the uniform time step to simulate the MMC-TDGL equation (1.1) with various noise

strengths. We observe the effect of the stochastic term and compare the results here with those presented

in [21].

We consider the domain Ω = (0, 50)× (0, 50) and set χ = 2.37, M = 0.16, N = 4.34 in the model. The

tolerance of the Newton iteration method is set to be 10−9; the tolerance and the restart times of the

GMRES method for solving the Newton equation are 10−8 and 40, respectively.

5.1 The non-stochastic case

The difference scheme (3.7)–(3.8) is used to solve the MMC-TDGL equation with ε = 0. The initial

condition is set to be φ(r, 0) = 0.6 + ζ(r), where ζ(r) is a random disturbance whose values range from

−0.15 to 0.15 on each mesh point (xi, yj) of the m×n grid. We first carry out a group of experiments to

see how the numerical solutions depend on the spatial scales so that we can choose an appropriate grid

for the further simulations with fewer calculations and without losing the accuracy.

We fix the time step s = 0.001 and usem = n = 50, 100, 200 and 400 to solve the equation, respectively.

The random disturbance ζ(r) is evaluated on the 400×400 grid, and then restricted on the corresponding

nodes in the other coarse grids. The numerical solutions at t = 5 with y = 25 fixed are plotted in Figure 1.

It is found from (a) that the curve with m = n = 200 has obvious difference from those with m = n = 100

and 50, while from (b), that it has almost no difference from those with m = n = 400 except for tiny bias

near x = 2 and x = 23. By the comparison, we see the convergence as the spatial scale turns smaller, and

we are convinced that the numerical solutions on the 200×200 grid are reasonable. The rest experiments

will be carried out on the 200 × 200 grid. Both the constant and adaptive time steps are adopted to

obtain the numerical solutions.

We first use different constant time steps s = 0.0001, s = 0.001, s = 0.01 and s = 0.1 to solve the

equation. Figure 2 shows the numerical results. The numerical solutions at t = 20 and t = 3 are plotted
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Figure 1 Numerical results obtained by the scheme (3.7)–(3.8) with various spatial scales
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(a) Solution at t = 20 with y = 25 fixed
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(b) Solution at t = 3 with y = 25 fixed
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(d) Energy evolution: 1.8 � t � 5.5

Figure 2 Numerical results obtained by the scheme (3.7)–(3.8) with the constant time steps

in Figures 2(a) and 2(b), respectively. It is found that the solutions with s � 0.001 have few biases, while

the solutions with s � 0.01 include large numerical errors. The energy evolution is shown in Figure 2(c).

It is obvious that the curve corresponding to s = 0.1 goes far from the others from about t = 2. Besides,

we can see that other three curves match well after t = 6, but the simulations with larger time steps
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fail to capture the rapid transition of the phase (see Figure 2(d)). Therefore, the time step s = 0.001 is

suitable for the simulation of the MMC-TDGL equation with ε = 0.

For the adaptive time stepping technique, in order to enhance the efficiency as far as possible, we divide

the evolution into two periods. In the first period, from the beginning to the occurrence of the sharp

decay of the energy, the adaptive time step is calculated by (4.2) with α replaced by αk defined via (4.4),

where we set smin = 0.001, smax = 0.1, αmin = 105 and A = 106. We choose αmin and A large enough to

capture the moment of the rapid decay. In the second period, after the sharp decay of the energy, which

we mark by |U ′| < 3, we just set αk ≡ 100, with smin and smax holding, to loosen the restriction for the

time steps to accelerate the computation. Here we set the maximum time to be T = 20 and compare the

results obtained by the adaptive time steps with those obtained by the constant time step s = 0.001.

Figure 3 shows the numerical results. The numerical solutions at t = 20 and t = 3 are plotted

in Figures 3(a) and 3(b), respectively. It is found that the adaptive time stepping technique preforms

satisfactorily. The energy evolution is shown in Figure 3(c). It is observed that the adaptive time stepping

method captures the phase structure during the evolution, especially for the phase transition stage where

the energy decays sharply (see Figures 3(b) and 3(d)).

The corresponding time step evolution is presented in Figure 4. We see that the time step turns larger

when |U ′| becomes smaller, while the time step turns smaller when the energy decreases quickly. After

the sharp energy decay, at about t = 6, the parameter α is set to be 100, so the time step enlarges rapidly.

After t = 6, the time step increases overall except some fluctuations because of the alteration of the sign
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(b) Solution at t = 3 with y = 25 fixed
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Figure 3 Numerical results obtained by the scheme (3.7)–(3.8) and adaptive time stepping method
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Figure 4 Adaptive time step evolution

Table 1 CPU time (seconds) comparison

t 1 5 10 15 20

constant 1,205 12,334 36,124 61,799 86,681

adaptive 1,023 11,473 23,798 35,501 45,464

of U ′′. The time step approaches the maximum smax when the evolution goes on for sufficiently long time.

Table 1 lists the CPU time cost by using both constant and adaptive time stepping approaches. At the

early period of the computation, both approaches cost similar CPU time because the solution transits

quickly and the small time steps are required. Later, as the solution transits more and more slowly, the

adaptive time stepping approach loosens the restriction for the time steps, and as a result, the CPU time

becomes significantly less in the comparison. Though the last time step does not reach the maximum

smax in the considered interval [0, 20], as shown in Figure 4, the CPU time of the adaptive time stepping

approach is almost half of that of the constant case.

Here we see that the simulation with a larger time step performs well in the interval where the energy

decreases gently because of the unconditional energy stability of the difference scheme (3.7)–(3.8), while

the linear scheme developed in [21] will give wrong results with a step s > 0.003 because the iterative

method used to solve the scheme does not converge at some iterative step. The adaptive time stepping

approach is efficient for the simulation because the moment at which the energy decays rapidly can be

captured accurately and the large steps can be used without breaking down the iterations.

5.2 The stochastic case

The scheme (3.13) and (3.8) with the uniform time step s = 0.001 is used to simulate the MMC-TDGL

equation in the stochastic case.

The first experiment is to show the energy evolution though we do not obtain a theoretical result on

it. The noise strength is set to be 10−4 and the initial condition is φ(r, 0) = 0.6 + ζ(r), where ζ(r) is

still a random disturbance as above, which implies that φ(r, 0) corresponds to an unstable state. We will

concentrate the energy evolution in the time interval [0, 10]. Because of the existence of the stochastic

term, we simulate 100 independent samples to see the mean energy evolution, which is shown in Figure 5.

The bold black line represents the mean value of the 100 samples and the thin blue line represents one

of them. It is found that the energy begins to decrease rapidly at about t = 2, which suggests the phase



1830 Li X et al. Sci China Math September 2016 Vol. 59 No. 9

0 1 2 3 4 5 6 7 8 9 10
1515

1520

1525

1530

1535

1540

1545

1550

1555

1560

t

U
(t

)

 

 
100 samples
1 sample

(a) 0 � t � 10

0.19 0.20 0.21 0.22 0.23 0.24
1557.72045

1557.72046

1557.72047

1557.72048

1557.72049

1557.7205

t

U
(t

)

 

 
100 samples
1 sample

(b) 0.19 � t � 0.24

0.32 0.33 0.34 0.35 0.36 0.37

1557.7204

1557.72041

1557.72042

1557.72043

t

U
(t

)

 

 
100 samples
1 sample

(c) 0.32 � t � 0.37

0.50 0.51 0.52 0.53 0.54 0.55
1557.72031

1557.72032

1557.72033

1557.72034

1557.72035

1557.72036

t

U
(t

)

 

 
100 samples
1 sample

(d) 0.5 � t � 0.55

Figure 5 Energy evolution for the results obtained by the scheme (3.13) and (3.8)
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Figure 6 Evolution for ε = 10−4 (up) and ε = 10−3 (below)
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Figure 7 Energy evolution for ε = 10−4 and 10−3

transition happens and the energy decays at each step after this moment. As the noise is dominant

before t = 2 and the geometric evolution dominates after the occurrence of the phase transition, we just

need to pay more attention to some subintervals of [0, 2]. It is observed from Figures 5(b)–5(d) that the

mean energy does decrease throughout, although the energy of one of the samples may increase at some

moments.

The second experiment is to compare the numerical solutions with those presented in the existing

work [21]. The noise strength is set to be 10−4 and 10−3, respectively, the Huggins parameter is χ = 1.975

and the initial state is uniform, namely, φ(r, 0) ≡ 0.3. We will concentrate the structures of the numerical

solutions φ(r, t) at t = 8, t = 13, t = 19 and t = 25. Figure 6 presents the results corresponding to the

cases ε = 10−4 and ε = 10−3. Because of the existence of the stochastic term, these structures cannot

be identical completely to the figures presented in [21]. Nevertheless, we still observe the same transition

processes of the phase structures by the comparison.

Since the initial uniform state is metastable, the system must climb over an energy barrier so that the

phase transition occurs, which is possible as long as the noise is sufficiently strong. Obviously, the noise

with strength either 10−3 or 10−4 is able to lead to the phase transition. It is observed from Figure 7

that the phase transition process relates to the noise strength ε. We find from Figures 7(a) and 7(b) that

the larger ε is, the faster the phase transition occurs, which is the same phenomenon as we have seen

in our previous work [21]. Furthermore, Figures 7(c) and 7(d) show that the energy curves in a short

interval from the beginning for the cases ε = 10−3 and ε = 10−4, respectively, and the energy barrier on

the transition path is observed. More precisely, we find that both the energy curves increase in a very

short time interval, and then keep the decay trend with tiny oscillations till the end, which is consistent

with the phenomena illustrated in [38]. In addition, if we denote by ΔU(ε) the difference between the

initial and maximum energy under the noise with strength ε, we find from the labels of y-axis in (c) and
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(d) that ΔU(10−3) ≈ 100ΔU(10−4). It is suggested that the state that the system reaches with ε = 10−3

is more “unstable” than that with ε = 10−4, which is why the phase transition is faster for the case

ε = 10−3 and slower for the case ε = 10−4.

6 Conclusions

In this paper, we develop an unconditionally energy stable difference scheme for a Cahn-Hilliard equation,

i.e., the MMC-TDGL equation in the non-stochastic case. The method is based on a convex splitting of

the energy functional, namely, a sum of convex and concave parts. The unconditional energy stability of

the difference scheme for the non-stochastic case is obtained via a fundamental estimate of the convex

splitting. The unconditional unique solvability is proved by constructing a convex functional whose

unique minimum is rightly the solution of the scheme. Based on this fact, an optimization algorithm, the

Newton method, is used to solve the difference scheme. For the MMC-TDGL equation in the stochastic

case, we develop the difference scheme by using the same technique as the non-stochastic case without

proving the energy law. We sample one hundred trajectories with the same initial unstable state and

observe that the mean of their energies decreases strictly. The results of the stochastic simulations are

consistent with the existing work [21] and the energy barrier on the transition path is observed.

Since the difference scheme for the non-stochastic is unconditionally stable, we consider the adaptive

time stepping techniques to accelerate the long time simulation. Based on the energy variation, we use an

adaptive time stepping formula (4.2), where we consider α as a function with respect to the second-order

derivative U ′′ instead of the constant in [28]. The basic idea is that we desire a large α when U ′′ changes
from positive to negative in order to capture the moment when the energy begins to decay rapidly.

Numerical experiments show the efficiency of the adaptive time stepping method, i.e., using the large

time steps for computation without losing accuracy. The adaptive time stepping strategy developed in

this paper is appropriate to other problems with both flat and sharp decay of the energy.

According to the framework of the convex splitting method in [34], the difference scheme (3.7)–(3.8)

should be first-order convergent in time. One of the future works in this direction is to carry out

more rigorous analysis for some error estimates for the scheme (3.7)–(3.8). Obtaining a satisfactory

error estimate for a numerical scheme for the MMC-TDGL equation seems difficult, since the free energy

functional presents high nonlinearity and singularity in both bulk and interface parts so that the common

strategies, such as the technique used in [34], will not work. We need to find some proper functions or

appropriate upper bounds to control the singular parts. Under the framework given in [30], second-order

(in time) convex splitting schemes for the MMC-TDGL equation may be constructed. Still, it is difficult

to obtain the rigorous error estimates. We will put efforts on error estimates on energy stable schemes

for the MMC-TDGL equation in the future work. Other future works in this direction include the linear

difference schemes with the unconditional energy stability, which is important in improving the efficiency

of the simulations for the complicated nonlinear equations.
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