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Abstract The problem of strategic stability of long-range cooperative agreements in dynamic games with

coalition structures is investigated. Based on imputation distribution procedures, a general theoretical framework

of the differential game with a coalition structure is proposed. A few assumptions about the deviation instant for

a coalition are made concerning the behavior of a group of many individuals in certain dynamic environments.

From these, the time-consistent cooperative agreement can be strategically supported by ε-Nash or strong ε-

Nash equilibria. While in games in the extensive form with perfect information, it is somewhat surprising that

without the assumptions of deviation instant for a coalition, Nash or strong Nash equilibria can be constructed.
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1 Introduction

Human behavior is dynamic, and cooperation runs through human behavior. It often happens that

players agree to cooperate over a certain period. It also happens often that some cooperative agreements

are abandoned before reaching the maturity. Therefore, it is important that cooperation remains stable

on a time interval.

When we analyze the problem of stability of long-range cooperative agreements, there are three im-

portant aspects which must be taken into account, including time consistency, strategic stability and the

irrational-behavior-proof condition.

Time consistency involves the property that as the cooperation develops, partners are guided by the

same optimal principle at each instant of time and hence do not possess incentives to deviate from the

previous cooperative behavior. The concept of time consistency and its implementation was initially
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proposed in [18,21–23] and was developed in [19,20,26]. Some new results about time consistency could

be found in [8, 17, 25, 30].

Strategic stability means that the outcome of cooperative agreements must be attained in some Nash

equilibrium, which will guarantee the strategic support of the cooperation. The agreement will be de-

veloped in such a manner that at least individual deviations from the cooperation will not give any

advantage to the deviator. Some results about strategic stability could be found in [3, 5, 6, 9–11,15, 27].

The irrational-behavior-proof condition means that the partners involved in the cooperation must be

sure that even in the worst scenario they will not lose compared with the noncooperative behavior. Since

one cannot be sure that the partners will behave rationally on a long time interval, this aspect must be

also taken into account. The concept of the irrational-behavior-proof condition was initially proposed

in [29]. A further investigation could be found in [7].

Some results of dynamic games with coalition structures are given in [1, 2, 12, 13, 16, 24]. In [27],

the existence of ε-Nash equilibrium in the regularized differential game without coalition structures was

firstly proved. In this paper, we focus on the problem of strategic stability in dynamic games with

coalition structures. We consider the general coalition setting, when not only the grand coalition, but

also a coalition partition of players can be formed.

We build a general theoretical framework of the differential game with a coalition structure based

on imputation distribution procedures (IDP). The notion of IDP is the basic ingredient in our theory.

This notion may be interpreted as the instantaneous payoff of an individual at some moment, which

prescribes the distribution of the total gain among the members of a group and yields the existence of

Nash equilibrium.

To construct ε-Nash or strong ε-Nash equilibria in such games a few assumptions about the deviation

instant for a coalition concerning the behavior of a group of many individuals in certain dynamic envi-

ronments are made. It turns out that ε-Nash or strong ε-Nash equilibria exist in the differential game

with a coalition structure, which guarantees the strategic support of cooperation.

We also consider the problem in games in the extensive form with perfect information, in which it is

somewhat surprising that without the assumptions of deviation instant for a coalition, Nash or strong

Nash equilibria can be constructed.

The paper is organized as follows. In Section 2, we define the basic concepts and set up standard

terminologies and notation about the differential game with a coalition structure. In Section 3, we prove

the existence of ε-Nash equilibrium in a regularized differential game with a coalition structure and the

existence of strong ε-Nash equilibrium in a strictly regularized differential game with a coalition structure.

In Section 4, we consider the problem in a discrete time case with perfect information.

2 Formal definitions and terminologies

In this section, we define the basic concepts of the differential game with a coalition structure and set up

standard terminologies and notation.

Differential game, Γ(x0, T − t0):

We consider an n-person differential game Γ(x0, T − t0) with independent motions on the time interval

[t0, T ] (see [4]). Motion equations have the form

ẋi = f i(xi, ui), ui ∈ Ui ⊂ R
p, xi ∈ X ⊂ R

q, i = 1, 2, . . . , n. (2.1)

It is assumed that the system of differential equations (2.1) satisfies all conditions necessary for the exis-

tence, sustainability and uniqueness of the solution for any n-tuple of measurable controls u1(t), . . . , un(t).

Let N = {1, 2, . . . , n} be the set of players. The payoff of player i is given by

Hi(x0, T − t0;u1(·), . . . , un(·)) =
∫ T

t0

hi(x(τ))dτ,
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where hi(x) is a continuous function and x(τ) = (x1(τ), . . . , xn(τ)) is the solution of (2.1) when open-loop

controls u1(τ), . . . , un(τ) are used and x(t0) = (x1(t0), . . . , xn(t0)) = x0.

Optimal cooperative trajectory, x̄(t):

Suppose that there exist an n-tuple of open-loop controls ū(t) = (ū1(t), . . . , ūn(t)) and a trajectory

x̄(t), t ∈ [t0, T ], such that

max
u1(t),...,un(t)

n∑
i=1

Hi(x0, T − t0;u1(t), . . . , un(t))

=
n∑

i=1

Hi(x0, T − t0; ū1(t), . . . , ūn(t)) =
n∑

i=1

∫ T

t0

hi(x̄(τ))dτ. (2.2)

We shall call a trajectory x̄(t) = (x̄1(t), . . . , x̄n(t)) satisfying (2.2) an optimal cooperative trajectory.

Characteristic function:

The characteristic function in Γ(x0, T − t0) is defined in a classical way:

V (x0, T − t0;N) =

n∑
i=1

∫ T

t0

hi(x̄(τ))dτ,

V (x0, T − t0; ∅) = 0,

V (x0, T − t0;S) = ValΓS,N\S(x0, T − t0), (2.3)

where ValΓS,N\S(x0, T − t0) is the value of the zero-sum game between coalition S acting as player 1 and

coalition N\S acting as player 2 where the payoff of S equals
∑

i∈S Hi(x0, T − t0;u1(t), . . . , un(t)). In

the special case when S = {i}, V (x0, T − t0; {i}) is the value of the zero-sum game between player i and

coalition N\{i}.
Imputation set, L(x0, T − t0):

Define L(x0, T − t0) as the imputation set of Γ(x0, T − t0) (see [28]):

L(x0, T − t0) =

{
α = (α1, . . . , αn) : αi � V (x0, T − t0; {i}),

∑
i∈N

αi = V (x0, T − t0;N)

}
. (2.4)

Core, C(x0, T − t0):

Define C(x0, T − t0) as the core of Γ(x0, T − t0):

C(x0, T − t0)

=

{
α = (α1, . . . , αn) :

∑
i∈S

αi � V (x0, T − t0;S), ∀S ⊂ N,
∑
i∈N

αi = V (x0, T − t0;N)

}
. (2.5)

Imputation distribution procedure, β(τ):

Let α ∈ L(x0, T − t0). Define the imputation distribution procedure (IDP) (see [19]) as a function

β(τ) = (β1(τ), . . . , βn(τ)), τ ∈ [t0, T ],

such that

αi =

∫ T

t0

βi(τ)dτ. (2.6)

Regularized game, Γα(x0, T − t0):

For every α ∈ L(x0, T − t0), we define the noncooperative game Γα(x0, T − t0) which differs from game

Γ(x0, T − t0) only by payoffs defined along the optimal cooperative trajectory x̄(τ), τ ∈ [t0, T ].

Denote the payoff function in Γα(x0, T − t0) by Hα
i (x0, T − t0;u1(t), . . . , un(t)) and the corresponding

trajectory by x(τ). Then

Hα
i (x0, T − t0;u1(t), . . . , un(t)) = Hi(x0, T − t0;u1(t), . . . , un(t)),
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if there does not exist τ ∈ (t0, T ] such that x(τ) = x̄(τ).

Let t = inf{t′ : x(τ) �= x̄(τ), τ ∈ (t′, T ]}. Then

Hα
i (x0, T − t0;u1(t), . . . , un(t))

=

∫ t

t0

βi(τ)dτ +Hi(x̄(t), T − t;u1(t), . . . , un(t))

=

∫ t

t0

βi(τ)dτ +

∫ T

t

hi(x(τ))dτ,

where hi(x(τ)) is the instantaneous payoff of player i from the state x̄(t).

In a special case, when x(τ) = x̄(τ), τ ∈ (t0, T ], we have

Hα
i (x0, T − t0; ū1(t), . . . , ūn(t)) =

∫ T

t0

βi(τ)dτ = αi.

Consider the current subgames Γ(x̄(t), T − t), imputation sets L(x̄(t), T − t) and cores C(x̄(t), T − t).

Let α(t) ∈ L(x̄(t), T − t). Suppose that α(t) can be selected as a differentiable function of t, t ∈ [t0, T ].

Game Γα(x0, T − t0) is called a regularized game of Γ(x0, T − t0) (α-regularization) if IDP β is defined

in such a way that

αi(t) =

∫ T

t

βi(τ)dτ,

or

βi(t) = −α′
i(t). (2.7)

In particular, if α(t) ∈ C(x̄(t), T − t), Γα(x0, T − t0) is called a strictly regularized game of Γ(x0, T − t0).

Time consistency:

From (2.7), we get

αi =

∫ t

t0

βi(τ)dτ + αi(t). (2.8)

Now suppose that M(x0, T − t0) ⊂ L(x0, T − t0) is some optimality principle in the cooperative version

of game Γ(x0, T − t0), and M(x̄(t), T − t) ⊂ L(x̄(t), T − t) is the same optimality principle defined in the

subgame L(x̄(t), T − t) with initial conditions on the optimal trajectory. M can be the core, the stable

set, the Shapley value, the nucleolus etc. If α ∈ M(x0, T − t0) and α(t) ∈ M(x̄(t), T − t) condition (2.8)

gives us the time consistency of the chosen imputation α or the chosen optimality principle in game

Γ(x0, T − t0).

Differential game with a coalition structure, ΓP(x0, T − t0):

Let P = {S1, . . . , Sm} be a partition of the player set N such that Si ∩ Sj = ∅, i �= j,
⋃m

i=1 Si =

N, |Si| = ni,
∑m

i=1 ni = n.

Suppose that each player i from N is playing in the interests of coalition Sk ∈ P which he belongs to,

trying to maximize the sum of payoffs of coalition members, i.e.,

max
ui,i∈Sk

∑
i∈Sk

Hi(x0, T − t0;u1(t), . . . , un(t)). (2.9)

Define uSk
= {ui, i ∈ Sk} as the strategy of coalition Sk and xSk

= {xi, i ∈ Sk} as the trajectory of

coalition Sk. Write

HSk
(x0, T − t0;uS1(t), . . . , uSm(t)) =

∑
i∈Sk

Hi(x0, T − t0;u1(t), . . . , un(t))

as the payoff of coalition Sk.
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Suppose that coalitions in P are playing cooperatively with objective (2.2) and state dynamics (2.1). We

call the above game the cooperative differential game with a coalition structure denoted by ΓP(x0, T − t0).

Suppose that there exist an n-tuple of open-loop controls ū(t) = (ū1(t), . . . , ūn(t)) and a trajectory

x̄(t) = (x̄1(t), . . . , x̄n(t)), t ∈ [t0, T ] satisfying (2.2). Then the trajectory x̄(t) is an optimal cooperative

trajectory of Γ(x0, T − t0). We define x̄(t) as an optimal cooperative trajectory of ΓP(x0, T − t0) at the

same time.

The characteristic function in ΓP(x0, T − t0) is defined by

V (x0, T − t0;P) =

n∑
i=1

∫ T

t0

hi(x̄(τ))dτ,

V (x0, T − t0; ∅) = 0,

V (x0, T − t0;S) = ValΓS,P\S(x0, T − t0), (2.10)

where ValΓS,P\S(x0, T − t0) is the value of the zero-sum game played between coalition S acting as

player 1 and coalition P\S acting as player 2 where the payoff of coalition S equals

∑
Sk∈S

HSk
(x0, T − t0;uS1(t), . . . , uSm(t)).

Define LP(x0, T − t0) as the imputation set in ΓP(x0, T − t0):

LP(x0, T − t0) =

{
α = (αS1 , . . . , αSm) :

αSk
� V (x0, T − t0; {Sk}),

∑
Sk∈P

αSk
= V (x0, T − t0;P)

}
. (2.11)

Define CP(x0, T − t0) as the core in ΓP(x0, T − t0):

CP(x0, T − t0) =

{
α = (αS1 , . . . , αSm) :

∑
Sk∈S

αSk
� V (x0, T − t0;S), ∀S ⊂ P ,

∑
Sk∈P

αSk
= V (x0, T − t0;P)

}
. (2.12)

Let α ∈ LP(x0, T − t0). Define the imputation distribution procedure (IDP) of ΓP(x0, T − t0) as a

function β(τ) = (βS1(τ), . . . , βSm(τ)), τ ∈ [t0, T ], such that

αSk
=

∫ T

t0

βSk
(τ)dτ, Sk ∈ P . (2.13)

Regularized game with a coalition structure, ΓP
α (x0, T − t0):

For every α ∈ LP(x0, T − t0), we define the noncooperative game ΓP
α (x0, T − t0) which differs from

game ΓP(x0, T − t0) only by payoffs defined along the optimal cooperative trajectory x̄(τ), τ ∈ [t0, T ].

Denote the payoff function in game ΓP
α (x0, T − t0) by Hα

Sk
(x0, T − t0;uS1(t), . . . , uSm(t)) and the cor-

responding trajectory by x(τ). Then

Hα
Sk
(x0, T − t0;uS1(t), . . . , uSm(t)) = HSk

(x0, T − t0;uS1(t), . . . , uSm(t)),

if there does not exist τ ∈ (t0, T ] such that x(τ) = x̄(τ) for τ ∈ (t0, T ].

Let t = inf{t′ : x(τ) �= x̄(τ), τ ∈ (t′, T ]}. Then

Hα
Sk
(x0, T − t0;uS1(t), . . . , uSm(t))

=

∫ t

t0

βSk
(τ)dτ +HSk

(x̄(t), T − t;uS1(t), . . . , uSm(t))
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=

∫ t

t0

βSk
(τ)dτ +

∫ T

t

hSk
(x(τ))dτ,

where hSk
(x(τ)) =

∑
i∈Sk

hi(x(τ)).

In a special case, when x(τ) = x̄(τ), τ ∈ (t0, T ], we have

Hα
Sk
(x0, T − t0;uS1(t), . . . , uSm(t)) =

∫ T

t0

βSk
(τ)dτ = αSk

.

Consider subgames ΓP(x̄(t), T − t), imputation sets LP(x̄(t), T − t) and cores CP(x̄(t), T − t). Let

α(t) ∈ LP(x̄(t), T − t). Suppose that α(t) can be selected as a differentiable function of t, t ∈ [t0, T ].

Game ΓP
α (x0, T − t0) is called the regularized game of ΓP(x0, T − t0) (α-regularization) if IDP β is defined

in such a way that

αSk
(t) =

∫ T

t

βSk
(τ)dτ,

or

βSk
(t) = −α′

Sk
(t). (2.14)

In particular, if α(t) ∈ CP (x̄(t), T − t), ΓP
α (x0, T − t0) is called the strictly regularized game of

ΓP(x0, T − t0).

From (2.14), we get

αSk
=

∫ t

t0

βSk
(τ)dτ + αSk

(t), Sk ∈ P . (2.15)

Now suppose that MP(x0, T − t0) ⊂ LP(x0, T − t0) is some optimality principle in the coopera-

tive version of game ΓP(x0, T − t0), and MP(x̄(t), T − t) ⊂ LP(x̄(t), T − t) is the same optimality

principle defined in the subgame LP(x̄(t), T − t) with initial conditions on the optimal trajectory. If

α ∈ MP(x0, T − t0) and α(t) ∈ MP(x̄(t), T − t), condition (2.15) gives us the time consistency of the

chosen imputation α or the chosen optimality principle in game ΓP(x0, T − t0).

ε-Nash and strong ε-Nash equilibria of ΓP
α (x0, T − t0):

In the differential game with a coalition structure, the deviation of strategies of different members in

a coalition happens possibly in different time. And the trajectory realized by the deviation of strategies

of some members possibly has no changing, which cannot be regarded as the actual deviation. To define

ε-Nash and strong ε-Nash equilibria of ΓP
α (x0, T − t0), we shall define the deviation instant for a coalition.

In Γ(x0, T − t0), we say that for player i ∈ N strategy ui(·) is essentially different from strategy ūi(·)
under n-tuple ū(·), if the trajectory xi(·) under n-tuple ū(·) ‖ ui(·) is different from the trajectory x̄i(·)
under ū(·), i.e., there is t ∈ (t0, T ] such that xi(t) �= x̄i(t). If strategies ui(·) and ūi(·) are essentially

different, we define t̄i(ū(·) ‖ ui(·)) = inf{t′ : xi(τ) �= x̄i(τ), τ ∈ (t′, T ]} as the deviation instant between

strategies ui(·) and ūi(·).
We say that coalition Sk ∈ P has the same deviation instant under n-tuple ū(·) if t̄i(ū(·) ‖ ui(·)) is the

same for every i ∈ Sk. We shall write t̄(ū(·) ‖ uSk
(·)) to denote t̄i(ū(·) ‖ ui(·)) if Sk has the same deviation

instant. We say that S ⊂ P has the same deviation instant if t̄(ū(·) ‖ uSk
(·)) is the same for every Sk ∈ S.

Suppose that every Sk ∈ P has the same deviation instant. An m-tuple u∗(·) = (u∗
S1
(·), . . . , u∗

sm(·)) is
an ε-Nash equilibrium of ΓP

α (x0, T − t0) if and only if

Hα
Sk
(x0, T − t0;u

∗(·)) � Hα
Sk
(x0, T − t0;u

∗(·) ‖ uSk
(·))− ε, (2.16)

for all Sk ∈ P and all uSk
.

Suppose that every S ⊂ P has the same deviation instant. An m-tuple u∗(·) = (u∗
S1
(·), . . . , u∗

Sm
(·)) is

a strong ε-Nash equilibrium of ΓP
α (x0, T − t0) if and only if∑

Sk∈S
Hα

Sk
(x0, T − t0;u

∗(·)) �
∑
Sk∈S

Hα
Sk
(x0, T − t0;u

∗(·) ‖ uS(·))− ε, (2.17)

for all S ⊂ P and all uS = {uSk
, Sk ∈ S}.
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3 Existence of ε-Nash and strong ε-Nash equilibria in differential games with

coalition structures

Theorem 3.1. Suppose that every Sk ∈ P has the same deviation instant. For every ε > 0, the

regularized game ΓP
α (x0, T − t0) has an ε-Nash equilibrium with payoff α.

Proof. The proof is based on the construction of ε-Nash equilibrium in piecewise open-loop (POL)

strategies with memory.

Remind the definition of POL strategies with memory in a differential game. Denote by x̂(t) any

admissible trajectory of the system (2.1) on the time interval [t0, t], t ∈ [t0, T ]. The strategy uSi(·) of

player Si is called POL if it consists of the pair (a, σ), where σ is a partition of time interval [t0, T ]:

t0 < t1 < · · · < ts = T, tk+1 − tk = δ > 0, k = 0, 1, 2, . . . , s − 1, and a is a map which corresponds an

open-loop control uSi(t), t ∈ [tk, tk+1) for each point (x̂(tk), tk), tk ∈ σ.

Consider POL strategies ū(·) = (ā, σ), where ā maps each point (x̄(tk), tk) on the optimal cooperative

trajectory to an open-loop control ūSi(t), t ∈ [tk, tk+1) satisfying (2.2) and ā is arbitrary at other points.

Consider a family of zero-sum games ΓP
{Si},P\{Si}(x, T − t) from the initial position x and duration

T−t between coalition S consisting of a single player Si and coalition P\{Si}. The payoff of coalition {Si}
is equal to HSi(x, T − t;uS1(t), . . . , uSm(t)) and the payoff of coalition P\{Si} is equal to (−HSi). Let

û(x, t; ·) be the ε
2 -optimal POL strategy of player P\{Si} in ΓP

{Si},P\{Si}(x, T − t). Note that û(x, t; ·) =
{uSj , Sj ∈ P\{Si}}.

Let x̂(t) = {x̂S1(t), . . . , x̂Sm(t)} be the segment of an admissible trajectory satisfying (2.1) on time

interval [t0, t], t ∈ [t0, T ]. For each Si ∈ P define t̄(Si) = inf{t′ : x̂Si(τ) �= x̄Si(τ), τ ∈ (t′, T ]} and
¯̄t(Sj) = minSi t̄(Si) = t̄(Sj). ¯̄t(Sj) lies in one of the intervals [tk, tk+1), k = 0, 1, . . . , s−1, and ¯̄t(Sj)− t0 is

the length of the time interval starting from t0 on which x̂(t) coincides with the cooperative trajectory x̄(t).

Define the following strategies of coalition Si ∈ P :

u∗
Si
(·) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ūSi(t), for (x̂(tk), tk) on the optimal cooperative trajectory,

ûSi(x̂(tk+1), tk+1; ·), Si-th component of the ε
2 -optimal POL strategy of coalition

P\{Sj} in game ΓP
{Sj},P\{Sj}(x̂(tk+1), T − tk+1),

if tk � ¯̄t(Sj) < tk+1,

arbitrary, for all the other positions.

We shall show that u∗(·) = (u∗
S1
(·), . . . , u∗

Sm
(·)) is an ε-Nash equilibrium in ΓP

α (x0, T − t0). We have

to show that

Hα
Si
(x0, T − t0;u

∗(·)) � Hα
Si
(x0, T − t0;u

∗(·) ‖ uSi(·))− ε, (3.1)

for all Si ∈ P and all uSi .

It is easy to see that when the m-tuple u∗(·) is played, the game develops along the optimal trajectory

x̄(t). If under u∗(·) ‖ uSi(·) the trajectory x̄(t) is also realized then (3.1) will be true.

Now suppose that under u∗(·) ‖ uSi(·) the trajectory x(t) is different from x̄(t). Suppose t̄(Si) ∈
[tk, tk+1). Since the motion of coalitions are independent, we get xSj (tk+1) = x̄Sj (tk+1) for Sj ∈
P\{Si}. From the definition of u∗(·) it follows that the coalitions in P\{Si} will use their strategies

ûSj(x(tk+1), tk+1; ·) and coalition Si starting from position (x(tk+1), tk+1) will get no more than

V (x(tk+1), T − tk+1; {Si}) + ε

2
,

where V (x(tk+1), T − tk+1; {Si}) is the value of game ΓP
{Si},P\{Si}(x(tk+1), T − tk+1).

By choosing δ = tk+1−tk sufficiently small, one can achieve that integral
∫ tk+1

tk
hSi(x(τ))dτ will be small

(less than ε
4 ). Then the total payoff Hα

Si
(x0, T − t0;u

∗(·) ‖ uSi(·)) of coalition Si in game ΓP
α (x0, T − t0)

when the m-tuple of strategies u∗(·) ‖ uSi(·) is played cannot exceed the amount∫ tk

t0

βSi(τ)dτ +

∫ tk+1

tk

hSi(x(τ))dτ + V (x(tk+1), T − tk+1; {Si}) + ε

2
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�
∫ tk

t0

βSi(τ)dτ + V (x(tk+1), T − tk+1; {Si}) + 3ε

4
. (3.2)

When the m-tuple u∗(·) is played, the payoff Hα
Si
(x0, T − t0;u

∗(·)) of coalition Si is equal to

αSi =

∫ T

t0

βSi(τ)dτ =

∫ tk

t0

βSi(τ)dτ + αSi(tk).

But αSi(tk) ∈ LP(x̄(tk), T − tk), then we get

αSi(tk) � V (x̄(tk), T − tk; {Si}).
From the continuity of function V and trajectory x(t) by appropriate choice of δ = tk+1 − tk the

following inequality can be guaranteed:

V (x̄(tk), T − tk; {Si}) � V (x(tk+1), T − tk+1; {Si})− ε

4
.

So Hα
Si
(x0, T − t0;u

∗(·)) will be no less than

∫ tk

t0

βSi(τ)dτ + V (x(tk+1), T − tk+1; {Si})− ε

4
. (3.3)

Combining (3.2) and (3.3), we finish the proof of Theorem 3.1.

This means that the cooperative solution (any imputation) can be strategically supported in a regu-

larized game ΓP
α (x0, T − t0) by a specially constructed ε-Nash equilibrium.

Theorem 3.2. Suppose that every S ⊂ P has the same deviation instant. For every ε > 0, the strictly

regularized game ΓP
α (x0, T − t0) has a strong ε-Nash equilibrium with payoff α.

Proof. The proof is based on the construction of strong ε-Nash equilibrium in piecewise open-loop

(POL) strategies with memory.

Consider POL strategies ū(·) = (ā, σ), where ā maps each point (x̄(tk), tk) on the optimal cooperative

trajectory to an open-loop control ūSi(t), t ∈ [tk, tk+1), Si ∈ P , satisfying (2.2) and ā is arbitrary at other

points.

Consider a family of zero-sum games ΓP
S,P\S(x, T − t) from the initial position x and duration T −

t between coalition S and coalition P\S where the payoff of coalition S equals
∑

Si∈S HSi(x, T − t;

uS1(t), . . . , uSm(t)). Let ûP\S(x, t; ·) be the ε
2 -optimal POL strategy of coalition P\S in ΓP

S,P\S(x, T − t).

Note that ûP\S(x, t; ·) = {uSj , Sj ∈ P\S}.
Let x̂(t) = {x̂S1(t), . . . , x̂Sm(t)} be the segment of an admissible trajectory satisfying (2.1) on time

interval [t0, t], t ∈ [t0, T ]. Since every S ⊂ P has the same deviation instant, for every S ⊂ P we can

define t̄(S) = t̄(Si) = inf{t′ : x̂Si(τ) �= x̄Si(τ), τ ∈ (t′, T ]}, Si ∈ S and ¯̄t(S) = minS t̄(S). ¯̄t(S) lies in one

of the intervals [tk, tk+1), k = 0, 1, 2, . . . , s − 1. And ¯̄t(S) − t0 is the length of the time interval starting

from t0 on which x̂(t) coincides with the cooperative trajectory x̄(t).

Define the following strategies of coalition Si ∈ P :

u∗
Si
(·) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ūSi(t), for (x̂(tk), tk) on the optimal cooperative trajectory,

ûSi(x̂(tk+1), tk+1; ·), Si-th component of the ε
2 -optimal POL strategy of

coalition P\S in game ΓP
S,P\S(x̂(tk+1), T − tk+1),

if tk � ¯̄t(S) < tk+1,

arbitrary, for all the other positions.

We shall show that u∗(·) = (u∗
S1
(·), . . . , u∗

Sm
(·)) is a strong ε-Nash equilibrium in ΓP

α (x0, T − t0). We

have to show that
∑
Si∈S

Hα
Si
(x0, T − t0;u

∗(·)) �
∑
Si∈S

Hα
Si
(x0, T − t0;u

∗(·) ‖ uS(·))− ε, (3.4)
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for all S ⊂ P and all uS = {uSi, Si ∈ S}.
It is easy to see that when the m-tuple u∗(·) is played, the game develops along the optimal trajectory

x̄(t). If under u∗(·) ‖ uS(·) the trajectory x̄(t) is also realized then (3.4) will be true.

Now suppose that under u∗(·) ‖ uS(·) the trajectory x(t) is different from x̄(t). Suppose t̄(S) ∈
[tk, tk+1). Since the motion of coalitions are independent, we get xSj (tk+1) = x̄Sj (tk+1) for Sj ∈ P\S.

From the definition of u∗(·) it follows that coalitions in P\S will use their strategies ûSj(x(tk+1), tk+1; ·)
and coalition S starting from the position (x(tk+1), tk+1) will get no more than

V (x(tk+1), T − tk+1;S) + ε

2
,

where V (x(tk+1), T − tk+1;S) is the value of the game ΓP
S,P\S(x(tk+1), T − tk+1).

By choosing δ = tk+1− tk sufficiently small, one can achieve that the integral
∫ tk+1

tk

∑
Si∈S hSi(x(τ))dτ

will be small (less than ε
4 ). Then the total payoff

∑
Si∈S Hα

Si
(x0, T − t0;u

∗(·) ‖ uSi(·)) of coalition S in

game ΓP
α (x0, T − t0) when the m-tuple of strategies u∗(·) ‖ uS(·) is played cannot exceed the amount

∑
Si∈S

∫ tk

t0

βSi(τ)dτ +
∑
Si∈S

∫ tk+1

tk

hSi(x(τ))dτ + V (x(tk+1), T − tk+1;S) + ε

2

�
∑
Si∈S

∫ tk

t0

βSi(τ)dτ + V (x(tk+1), T − tk+1;S) + 3ε

4
. (3.5)

When the m-tuple u∗(·) is played the payoff
∑

Si∈S Hα
Si
(x0, T − t0;u

∗(·)) of coalition S is equal to

∑
Si∈S

αSi =
∑
Si∈S

∫ T

t0

βSi(τ)dτ =
∑
Si∈S

∫ tk

t0

βSi(τ)dτ +
∑
Si∈S

αSi(tk).

But αSi(tk) ∈ CP(x̄(tk), T − tk), then we get

∑
Si∈S

αSi(tk) � V (x̄(tk), T − tk;S).

From the continuity of function V and trajectory x(t) by appropriate choice of δ = tk+1 − tk the

following inequality can be guaranteed:

V (x̄(tk), T − tk;S) � V (x(tk+1), T − tk+1;S) − ε

4
.

So
∑

Si∈S Hα
Si
(x0, T − t0;u

∗(·)) will be no less than

∑
Si∈S

∫ tk

t0

βSi(τ)dτ + V (x(tk+1), T − tk+1;S)− ε

4
. (3.6)

Combining (3.5) and (3.6), we finish the proof of Theorem 3.2.

4 Discrete time case with perfect information

In what follows we consider the problem of strategic stability in the game with a coalition structure in

the extensive form with perfect information. We need to set up standard terminology and notation. But

in this case, the assumptions of deviation instant for a coalition disappear.

A game tree is a finite oriented treelike graph K with the root x0. Let x be some vertex (position).

We denote by K(x) a subtree K with the root in x. We denote by Z(x) the immediate successors of x.

A vertex y, directly following after x, is called an alternative in x (y ∈ Z(x)). The player who makes a

decision in x will be denoted by i(x).

Let N = {1, 2, . . . , n} be the set of all players in the game. A game in the extensive form with perfect

information (see [14]), G(x0) is a graph tree K(x0), with the following additional properties:
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• The set of vertices is split up into n+1 subsets P1, P2, . . . , Pn+1, which form a partition of the set of

all vertices of the graph tree K. The vertices in Pi are called personal positions of player i, i = 1, 2, . . . , n;

vertices in Pn+1 are called terminal positions.

• In each vertex x the system of real numbers h(x) = (h1(x), . . . , hn(x)) is defined, where hi(x) is

interpreted as the stage payoff of player i in the vertex x.

A strategy of player i is a mapping Fi(·), which associates to each position x ∈ Pi a unique alternative

y ∈ Z(x). Denote by Hi(x, ;u1(·), . . . , un(·)) the payoff function of player i ∈ N in the subgame G(x)

starting from the position x. Hi(x, ;u1(·), . . . , un(·)) =
∑ν

k=1 hi(x
′
k), where (x′

1, x
′
2, . . . , x

′
ν) is the path

realized in the subgame G(x), when the n-tuple of strategies (u1(·), . . . , un(·)) is played, x′
1 = x.

Denote by ū(·) = (ū1(·), . . . , ūn(·)) the n-tuple of strategies and the path x̄ = (x̄0, x̄1, . . . , x̄l), x̄l ∈ Pn+1

such that

max
u1(·),...,un(·)

n∑
i=1

Hi(x0;u1(·), . . . , un(·)) =
n∑

i=1

Hi(x0; ū1(·), . . . , ūn(·)) =
n∑

i=1

l∑
k=0

hi(x̄k). (4.1)

A path x̄ = (x̄0, x̄1, . . . , x̄l) satisfying (4.1) we shall call an optimal cooperative path.

Define the characteristic function in G(x0) in a classical way:

V (x0;N) =

n∑
i=1

l∑
k=0

hi(x̄k),

V (x0; ∅) = 0,

V (x0;S) = ValGS,N\S(x0), (4.2)

where ValGS,N\S(x0) is the value of the zero-sum game played between coalition S acting as player 1

and coalition N\S acting as player 2 where the payoff of coalition S equals
∑

i∈S Hi(x0;u1(·), . . . , un(·)).
In the special case when S = {i}, V (x0; {i}) is the value of zero-sum game between player i and coalition

N\{i}.
Define L(x0) as the imputation set in game G(x0):

L(x0) =

{
α = (α1, . . . , αn) : αi � V (x0; {i}),

∑
i∈N

αi = V (x0;N)

}
. (4.3)

Define C(x0) as the core in game G(x0):

C(x0) =

{
α = (α1, . . . , αn) :

∑
i∈S

αi � V (x0;S), ∀S ⊂ N,
∑
i∈N

αi = V (x0;N)

}
. (4.4)

Let α ∈ L(x0). Define the imputation distribution procedure (IDP) as a function β(k) = (β1(k), . . . ,

βn(k)), k = 0, 1, . . . , l, such that

αi =

l∑
k=0

βi(k). (4.5)

For every α ∈ L(x0), we define the noncooperative game Gα(x0), which differs from game G(x0) only

by payoffs defined along the optimal cooperative path x̄ = (x̄0, x̄1, . . . , x̄l). Suppose under the strategy

profile (u1(·), . . . , un(·)), the path (x0, . . . , xl′ ) is realized. Denote the payoff function in game Gα(x0) by

Hα
i (x0;u1(·), . . . , un(·)) =

r−1∑
k=0

βi(k) +
l′∑

k=r

hi(xk),

where r = min{k : xk �= x̄k, k = 0, 1, . . . , l′}.
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Consider subgames G(x̄k) and imputation sets L(x̄k). Let α(k) ∈ L(x̄k). Game Gα(x0) is called a

regularized game of G(x0) (α-regularization) if IDP β is defined in such a way that

αi(k) =
l∑

j=k

βi(j),

or

βi(k) = αi(k)− αi(k + 1), k = 0, 1, . . . , l − 1, βi(l) = αi(l), αi(0) = αi. (4.6)

In particular, if α(k) ∈ C(x̄k), Gα(x0) is called a strictly regularized game of G(x0).

From (4.6), we get

αi =

k−1∑
j=0

βi(j) + αi(k). (4.7)

Now suppose that M(x0) ⊂ L(x0) is some optimality principle in the cooperative version of game

G(x0), and M(x̄k) ⊂ L(x̄k) is the same optimality principle defined in the subgame L(x̄k) with initial

conditions on the optimal path. If α ∈ M(x0) and α(k) ∈ M(x̄k), (4.7) gives us the time consistency of

the chosen imputation α or the chosen optimality principle in game G(x0).

Let P = {S1, . . . , Sm} be a partition of the player set N . Suppose that each player i ∈ N is playing in

the interests of coalition Sk ∈ P which he belongs to, trying to maximize the sum of payoffs of coalition

members, i.e.,

max
ui,i∈Sk

∑
i∈Sk

Hi(x0;u1(·), . . . , un(·)). (4.8)

Define uSk
= {ui, i ∈ Sk} as the strategy of coalition Sk. Write

HSk
(x0;uS1(·), . . . , uSm(·)) =

∑
i∈Sk

Hi(x0;u1(·), . . . , un(·))

as the payoff of coalition Sk.

Suppose that coalitions in P are playing cooperatively with objective (4.1). We call the above game

as the cooperative game in the extensive form with a coalition structure, denoted by GP(x0).

Suppose that there exist an n-tuple of strategies ū(·) = (ū1(·), . . . , ūn(·)) and the path x̄ = (x̄0, x̄1,

. . . , x̄l), x̄l ∈ Pn+1 satisfying (4.1). Then the path x̄ is an optimal cooperative path of G(x0). We define x̄

as an optimal cooperative path of GP(x0) at the same time.

The characteristic function in GP (x0, T − t0) is defined by:

V (x0;P) =

n∑
i=1

l∑
k=0

hi(x̄k),

V (x0; ∅) = 0,

V (x0;S) = ValGS,P\S(x0), (4.9)

where ValGS,P\S(x0) is the value of the zero-sum game played between coalition S acting as player 1 and

coalition P\S acting as player 2 where the payoff of coalition S equals
∑

Sk∈S HSk
(x0;uS1(·), . . . , uSm(·)).

Define LP(x0) as the imputation set in game GP (x0):

LP(x0) =

{
α = (αS1 , . . . , αSm) : αSk

� V (x0; {Sk}),
∑
Sk∈P

αSk
= V (x0;P)

}
. (4.10)

Define CP(x0) as the core in game GP(x0):

CP(x0) =

{
α = (αS1 , . . . , αSm) :

∑
Sk∈S

αSk
� V (x0;S), ∀S ⊂ P ,

∑
Sk∈P

αSk
= V (x0;P)

}
. (4.11)
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Let α ∈ LP(x0). Define the imputation distribution procedure (IDP) of GP(x0) as a function β(j) =

(βS1(j), , . . . , βSm(j)), j = 0, 1, . . . , l, such that

αSk
=

l∑
j=0

βSk
(j), Sk ∈ P . (4.12)

For every α ∈ L(x0), we define the noncooperative game GP
α (x0), which differs from game GP (x0) only

by payoffs defined along the optimal cooperative path x̄ = (x̄0, x̄1, . . . , x̄l).

Suppose under the strategy profile (uS1(·), . . . , uSm(·)) the path (x0, . . . , xl′) is realized. Denote the

payoff function in game GP
α (x0) by

Hα
Sk
(x0;uS1(·), . . . , uSm(·)) =

r−1∑
j=0

βSk
(j) +

l′∑
j=r

hSk
(xj),

where r = min{j : xj �= x̄j , j = 0, 1, . . . , l′} and hSk
(xj) =

∑
i∈Sk

hi(xj).

Consider subgames GP(x̄k) and imputation sets LP(x̄k). Let α(k) ∈ LP(x̄k). Game GP
α (x0) is called

a regularized game of GP(x0) (α-regularization) if IDP β is defined in such a way that

αSi(k) =

l∑
j=k

βSi(j),

or

βSi(k) = αSi(k)− αSi(k + 1), k = 0, 1, . . . , l − 1, βSi(l) = αSi(l), αSi(0) = αSi . (4.13)

In particular, if α(k) ∈ CP (x̄k), G
P
α (x0) is called a strictly regularized game of GP(x0).

From (4.13), we get

αSi =

k−1∑
j=0

βSi(j) + αSi(k), Si ∈ P . (4.14)

Now suppose that MP(x0) ⊂ LP(x0) is some optimality principle in the cooperative version of game

GP(x0), and MP(x̄k) ⊂ LP(x̄k) is the same optimality principle defined in the subgame LP(x̄k) with

initial conditions on the optimal path. If α ∈ MP(x0) and α(k) ∈ MP(x̄k), (4.14) gives us the time

consistency of the chosen imputation α or the chosen optimality principle in game GP(x0).

In the game in extensive form with a coalition structure, the deviation of strategies of different members

in a coalition can bring the changing of the path directly. To define Nash or strong Nash equilibria of

GP
α (x0), we do not need the assumptions of deviation instant for a coalition.

An m-tuple u∗(·) = (u∗
S1
(·), . . . , u∗

sm(·)) is a Nash equilibrium of GP
α (x0) if and only if

Hα
Sk
(x0;u

∗(·)) � Hα
Sk
(x0;u

∗(·) ‖ uSk
(·)), (4.15)

for all Sk ∈ P and all uSk
.

An m-tuple u∗(·) = (u∗
S1
(·), . . . , u∗

Sm
(·)) is a strong Nash equilibrium of GP

α (x0) if and only if

∑
Sk∈S

Hα
Sk
(x0;u

∗(·)) �
∑
Sk∈S

Hα
Sk
(x0;u

∗(·) ‖ uS(·)), (4.16)

for all S ⊂ P and all uS = {uSk
, Sk ∈ S}.

Theorem 4.1. The regularized game GP
α (x0) has a Nash equilibrium with payoff α.

Proof. Since α(k) ∈ LP(x̄k) in game GP(x̄k), along the optimal cooperative path we have

αSi(k) � V (x̄k; {Si}), Si ∈ P , k = 0, 1, . . . , l.



Wang L et al. Sci China Math May 2016 Vol. 59 No. 5 1027

At the same time αSi(k) =
∑l

j=k βSi(j), and we get

l∑
j=k

βSi(j) � V (x̄k; {Si}). (4.17)

But
∑l

j=k βSi(j) is the payoff of coalition Si in the subgame GP
α (x̄k) along the optimal cooperative

path, and from (4.17) using the arguments similar to those in the proof of Theorem 3.1, one can construct

a Nash equilibrium with payoff α, which leads to the optimal cooperative path x̄.

Theorem 4.2. The strictly regularized game GP
α (x0) has a strong Nash equilibrium with payoff α.

Proof. Since α(k) ∈ CP (x̄k) in game GP(x̄k), along the optimal cooperative path we have

∑
Si∈S

αSi(k) � V (x̄k;S), ∀S ⊂ P , k = 0, 1, . . . , l.

At the same time
∑

Si∈S αSi(k) =
∑

Si∈S
∑l

j=k βSi(j), and we get

∑
Si∈S

l∑
j=k

βSi(j) � V (x̄k;S). (4.18)

But
∑

Si∈S
∑l

j=k βSi(j) is the payoff of coalition S in the subgame GP
α (x̄k) along the optimal cooper-

ative path, and from (4.18) using the arguments similar to those in the proof of Theorem 3.2, one can

construct a strong Nash equilibrium with payoff α, which leads to the optimal cooperative path x̄.

It should be noticed that if every S ⊂ P has the same deviation instant, a strong ε-Nash equilibrium

is also an ε-Nash equilibrium in the strictly regularized game ΓP
α (x0, T − t0). So the existence of strong

ε-Nash equilibrium implies the existence of ε-Nash equilibrium in ΓP
α (x0, T − t0). And if every S ⊂ N has

the same deviation instant, we can easily construct a strong ε-Nash equilibrium in the strictly regularized

game ΓP
α (x0, T − t0) from a strong ε-Nash equilibrium in the strictly regularized game Γα(x0, T − t0)

(see [27]). So the existence of strong ε-Nash equilibrium in the strictly regularized game Γα(x0, T − t0)

implies the existence of strong ε-Nash equilibrium in the strictly regularized game ΓP
α (x0, T − t0). While

in the discrete time case with perfect information, without the assumptions of deviation instant for a

coalition we can get the similar conclusions.
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