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1 Introduction and main results

For an elliptic curve E defined over Q, the Birch and Swinnerton-Dyer conjecture [2] predicts a relation
between the special values of its Hasse-Weil L-function and its arithmetic groups, such as the Mordell-Weil
group and the Tate-Shafarevich group.

If E is defined by Weierstrass equation

E:y’=a234ax+b, abeQ,

then for any nonzero square free integer d, the quadratic twist E(? of E over the field Q(v/d) has
Weierstrass equation
E@ cdy? =2 +ax+b, a,beQ.

In 1952, Heegner [8] proved that a positive integer n congruents to 5,6,7 modulo 8 with exactly one
odd prime factor is a congruent number, i.e., the quadratic twist C(™ of the elliptic curve

over the field Q(y/—n) is of positive rank. Heegner [8] constructed the so-called Heegner points and
proved their non-triviality. Later on, Birch [1] used the Atkin-Lehner involution acting on the Heegner
points constructed by modular parametrization of E via X((V), and obtained some non-triviality results
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of Heegner points. Around the year 2012, Tian et al. [15-17] made a breakthrough on congruent num-
ber problem, where not only the Atkin-Lehner involution but also some other modular involutions are
involved.

In this paper, we generalize the usual Atkin-Lehner operator and the involutions used in [16] to the
special modular automorphisms on Shimura curves. Applying the Euler system property of Heegner
points [10,11] at both split and inert Kolyvagin primes, we get for a wild class of elliptic curves defined
over Q, a quadratic twist family with any given number of prime factors of the quadratic discriminant,
which has Mordell-Weil rank equal to one. Finally, as an application, we improve some results in [5] on
quadratic twists of the elliptic curve A = (X(49), [00]), where [00] is the infinity cusp identified with
identity element in A(Q).

Notation. Let F' be a number field with adéle rlng A = FA and let Ay = FAf be the ring of finite
adéles. Let Z = H Z,, and for any Z-module M, let M=M ®ZZ for example, F=A ¢. For any number
field K, let O denote the ring of integers in K, K the maximal abelian extension over K, and

KELKYJK* — Gal(K?/K), t— off

be the reciprocity law morphism in class field theory. If the field in the context is clear, we also write it
for oy. If K/F is a quadratic extension of number fields and ¢ C Op is an integral ideal, denote

Oc = OF + COK

to be the unique order O of K with [Of : O] = #(Op/c) and call ¢ its conductor. For each place v of F,
let O, denote the localization of O, at v. If B is a quaternion algebra over F' and K is an imaginary
quadratic field embedded into B as an F-subalgebra, we denote by K~ the K-module of elements j € B
such that jt = tj for all ¢t € K, where ¢ — ¢ is the non-trivial element in Gal(X/Q). For a finite set S of
places of I, we let K g %) denote the S-off idéles of K and be viewed as a subgroup of K by the natural
embedding with all v-components in S being 1. For any Q-algebra L, we write By, (resp. BJ) the base
change of B (resp. B*) to L. Denote [¢] the usual cusp of the upper half plane obtained from P'(Q).
For a group G and its subgroup H, we denote Ng(H) the normalizer of H in G.

In the following of this paper, we shall always consider an elliptic curve E defined over Q with con-
ductor N and an imaginary quadratic field K with discriminant D.

Let Xy be a Shmura curve over Q associated to an indefinite quaternion algebra B with level U C B gf

Note that any normalizer of U in B* defines a modular automorphism of Xy over Q.

Let S = Sy be a set of finite places of Q containing all places dividing 2N D such that U = UsU* with
Us C I1,es G(Qy) and U® is a maximal open compact subgroup of G(A?).

The first main result of this paper is the following theorem.

Theorem 1.1.  Let E be an elliptic curve over Q of conductor N and ¢ =, _, anq" the associated
new form. Let f: Xy — E over Q be a modular parametrization by a Shimura curve Xy associated to
an indefinite quaternion algebra B of level U containing Z*. Let K C B be an imaginary quadratic field
of discriminant D and let H = Hy denote the abelian extension over K corresponding to the class group
K*(UNKX).

Assume that

(i) E(Q) has no order 4 torsion points;

(ii) (D,2N) =1 and [H : K] is odd,

(iii) there exists w € Ng, U with w = toj for some ty € KX and j € K~ such that the morphism
f+ ¥ : Xy — E is constant valued at a torsion point Qo ¢ 2E(Q).
For any r > 1, let ¥, denote the set of primes ¢ ¢ Sy satisfying:

(i) ag =0 mod 2!, (i) £=1mod 4, (i) o (V) = V.
Then for any integer M = {1 -4, with {1,... 0, € X,

rankz EPM)(Q) =1 = ordy— L(EPM) | s)  and  rankz EM)(Q) = 0 = ord,— L(EM) | 5).
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Remark 1.2. (1) The above set X, of certain primes may be empty or has finite cardinality. But in
some cases, it has infinite cardinality, for example, when the curve has a special supersingular primes (see
Corollary 1.3).

(2) Since the torsion point Qo ¢ 2F(Q) must be of even order, the condition (i) implies that

EQ<7] = E@Q)2] #0.

(3) Some cases of the above theorem are given as follows.
(a) Suppose the imaginary quadratic field K satisfies the Heegner hypothesis and let f : Xo(N) — E
be the usual modular parametrization. Then the Atkin-Lehner operator wy is a normalizer of

Uo(N) C GLQ(Af)
and there are to € K*,u € Up(N),j € K~ such that
w = wnu = tpJ.

The condition (iii) is satisfied if f([0]) ¢ 2E(Q).

(b) Let E be an elliptic curve of square conductor N = M? and K an imaginary quadratic field such
that any prime factor of N is inert in K. We take B = Endg(K) and view K as Q-subalgebra naturally.
Let j € B* be the element j(z) = . Then the maximal order Op := Endz(Ok) of B contains O and
we have Op = Ok + 071§, where 0 is the differential of K over Q. Take R = Og + MOp, then we
have that j normalizes R*. Note that in this case w acting on f has an eigenvalue —e(FE) by a result
of [14, Theorem 4]. In particular, the condition that f* + f is a constant morphism implies the sign of
L-series is +1.

Corollary 1.3.  Let f : Xy — E be a modular parametrization of an elliptic curve over Q by a Shimura
curve associated to a quaternion algebra B. Let K C B be an imaginary quadratic field of discriminant D.
Assume the conditions (i)—(iii) in Theorem 1.1 and the following:
(iv) there is a supersingular good prime q for E with ¢ =1 mod 4 and o5 (\/q) = /4.
Then for any integer k > 1, there are infinitely many square-free M with exactly k odd prime factors
such that
orde 1 L(EM) s) =0 and orde; L(EPM s) =1.

Example 1.4. Let E be the elliptic curve of conductor 69 with the equation
Vyraey+y=a>—2—1

Then ¢ = 5 is a supersingular prime for FE.
Note that Corollary 1.3 follows from Theorem 1.1 by the following lemma.

Lemma 1.5. Let E be an elliptic curve defined over Q of conductor N and M a non-zero integer.
Suppose that there is a supersingular good prime q of E with ¢ = 1 mod 4 and (1‘;) = 1. Then for any
integer r > 1, there are infinitely many primes £ ¥ N such that a; = 0 mod 2"+!, ¢ = 1 mod 4, and
(M) =1.

Proof.  Let L be the Galois extension Q(i, v/ M, E[2"F!]) over Q and Frob, C Gal(L/Q) be the conjugate
class of the prime gq. Then by Chebatarev density theorem, there are infinitely many primes ¢, with positive
density, unramified over L such that Frob, = Frob,. Note that a, = 0 implies that a; = 0 mod 2" 1. Tt
is clear that /¢ satisfies the required conditions.

In the following, we give an application of the above non-triviality results to the quadratic twists of
the elliptic curve A = (X(49), [oc]). Using the special value formula in [4] and the induction argument
in [16], we obtain more information on the rank zero and rank one quadratic twists of A.

The following is a proposition on special values of L-function for the rank zero quadratic twists of the
curve A = (X(49), [00]).
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Proposition 1.6.  Let R = q1---q, be a square-free integer with all prime factors q¢; = 1 mod 4 inert
in Q(v/=7). Let N =p1---pip (k= 1) be a square-free integer with all prime factors p; completely split
in Q(A[4],VR). Then for the elliptic curve A = (X0(49), [00]), we have orda(L¥8(AT) 1)) =1 —1, and
ordg(Lalg(A(RN), 1) =2k+r+1.

Remark 1.7. By the main results in [6] and descent theory, we know the above estimate on 2-adic
valuation of algebraic part of L-values is always true. Here, we just give a direct proof for the above
result without using Iwasawa main conjecture.

Another main result of this paper is the following theorem.

Theorem 1.8.  Let A = (Xy(49), [00]) and M = —{yRN be a negative square-free integer, with
e /y =3 mod 4 a prime not equal to 7, which is a non square modulo 7,
e R a positive integer with all prime factors = 1 mod 4 and inert in Q(v/—17),
e N a positive integer with all prime factors splits completely in Q(A[4], VR).
Assume that Q(v/—LoN) has no ideal class of exact order 4. Denote by AM) the quadratic twists of A
over Q(v'M). Then
ord,—1 L(AM) 5) = 1 = rankz AM) (Q),

and III(AM) /Q) is finite of odd order. Moreover, the full £-part BSD conjecture on #(IIL(AM) /Q)[£>])
holds for all primes £ 7M.

In the end of introduction, we briefly give the structure of content for the following sections. In
Section 2, we summarize the basis on Shimura curves and give the proof of Theorem 1.1. In Section 3,
we give the estimate of the two-adic valuation on L-values which will be used in the final section. In
Section 4, we will combine all the results developed before and induction method of Tian to give the
proof of Theorem 1.8 and verify the BSD conjecture.

2 Generalized Birch lemma and its application

In this section, we prove Theorem 1.1 and begin with introducing some basis on Shimura curves.

2.1 Shimura curves and various actions

Let B be an indefinite quaternion algebra over Q with discriminant dp and view B* as a subgroup of
GL2(R) via an isomorphism B ®g R = M(R). Denote B to be the element with positive determinant
in B*. There is a projective system of compact Riemann surfaces

Xy(C) = BX\(H UP) x Bgf/U,
indexed by open compact subgroups U of B gf and with the connection map
pvv : Xu(C) = Xu(C), UCU".

This system has a canonical descent to a projective system of algebraic curves over Q, which is a
projective smooth irreducible, but not necessarily geometrically irreducible algebraic curve over Q.

The Hecke action on Xy is defined as follows. For any ¢ € Bgf, it maps Xy (C) to X;-1574(C), which
on the points is given by [h, g] — [h, gt]. Tt is well known that the Hecke action of the right multiplication
by t also descents to Q.

We know that the structure map Xy (C) — mo(Xy(C)) descents as Xy — SpecFy, where Fyr is the
abelian extension of Q corresponding to the idéle class subgroup Q7 det U C A; . Here X is geometrically
irreducible over Fy, and (X (C)) is the connected components of X (C).

We recall the Galois action on points of Xy as follows. For any imaginary quadratic field K C C, let
p: K* — B* be the normalized embedding with fixed point hg € H. Here normalized embedding means



Cai L et al. Sci China Math July 2016 Vol. 59 No.7 1311

ofs)- )

Let o4 denote its image under Artin’s reciprocity law in class field theory, then for any t € K x,

[ho, g]°" = [ho, p(t)g], Vg€ GLa(Ay).

the one satisfying that

For any j € Nar,q)(p(iK*)) \ p(K*), denote by P ~— P the complex conjugation action, where its
explicit action on points is given by

[ho, 9] = [ho, jg], Vg€ GLa(Ay).
2.2 Modular automorphisms on Shimura curves

For a Shimura curve Xy, we know for each element ¢ in the normalizer of U in B gf, the Hecke action of
right multiplication by ¢ on Xy gives an automorphism on this curve which is defined over Q. Thus we
have the following map,

Ngx (U) — Ath(XU).

Af
Example 2.1.  For the modular curve Xo(N), we know the matrix

Wy = ( ](\)]_ ; ) S GLQ(Q) C GLQ(AJC)

is a normalizer of Uy(NN) in GLa(Af). This automorphism is called Atkin-Lehner involution in literature.

Sometimes, we not only consider a single Shimura curve, but also an imaginary quadratic field K with
an algebraic embedding into B. In this case, the modular automorphism is very subtle.

Example 2.2.  For the modular curve X (36), let K = Q(y/—¢) with ¢ = 3 mod 4 be a prime such
that 2 is inert in K, and 3 is split in K. One can choose an integer a such that ¢ +a? = 0 (mod 9). Then

we embed K into M»(Q) in the following manner:
a -2
v ( " g ) |
Define R =[], R, C M2(Ay) such that
o R, = M>(Z,) for p16,
o Ry = Ok 2 + 2M>(Zs),
o Ry ={a € My(Zs) : = (§5) mod 9}. Then letting U = R, we get a Shimura curve Xy. Let
) 1 0
J= ( ) € GL2(Q),
a —1
then 7 € K. Denote

0 1

9 0
to be a local Atkin-Lehner operator. Then the element w = j(3)ws gives an automorphism on the curve
Xy, where j®) denotes the element j € GLq (Ay) with the component at the place 3 removed. One can
show that the element w = j - (jsws) := tj, with j € Kt € K*, where the last equality is up to an
element of U. Here j3 means the 3-component of j.

In the above example, we write the automorphism by a product of elements in KX and K- up to
elements in U. We will see this kind of automorphism has an arithmetic application for the argument of
the non-triviality of the Heegner point.
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Definition 2.3. Let Xy be a Shimura curve, and K C B be an imaginary quadratic field embedded
in B. We call an automorphism w on Shimura curve Xy a special automorphism for the pair (Xy, K), if
w can be written as w = tj, where t € K*,j € K, up to right multiplication by an element in U.

Remark 2.4. e From last section, we know the special automorphism is a combination of the Galois
action and complex conjugation on the points.

e One can show that for the usual modular curve Xo(N), an imaginary quadratic field K satisfies
that every prime divisor of N splits in K. The Atkin-Lehner operator Wy is a special automorphism on
Xo(N).

In the end of this subsection, we give a description of the special automorphism for the pair of a
Shimura curve Xy with conductor N2 Ny, and an imaginary quadratic field K = Q(y/—¢) with ¢ = 3
mod 4 a prime embedded in B, such that N_ is the square free integer with prime divisors inert in K,
while N is the integer with prime divisors which are split in K.

Proposition 2.5.  For the pair (Xy, K) with Xy a Shimura curve of conductor N?> Ny and imaginary

quadratic field K embedded in B given in the above paragraph, the special automorphism exists.

Proof.  Note that 2 may divide N, so we choose an integer a such that a? + ¢ = 0 mod 4N, .Write
N_ =TLpi, Ny =1]; q;-”. We embed K into M3(Q) as follows,

a —2
V=g ' :
q+2az _a

Define R = [[, R, C M2(Ay) such that,
o R, = My(Zy), for pt N_Ny;
o Ry =1 +piM2(Zpa‘,)a for p; | N_;
e Ry, =Us(q;”) = {a € Ma(Zy,) : = (§%) mod ;" }, for ¢; | Ny
Then let U = R* C GL2(Ay) and the Shimura curve is Xy. Now we claim the following element w is the

w ::j(N+) H wq]’
4| N+

special automorphism for (X, K),

where
. 10 _
]:< )EGLQ(Q)QK
a —1

and j(N+) denotes its N removed part. The local Atkin-Lehner We, 18

0 1
Wq; = ( n; 0 ) S GLQ(QqJ)

45

We have w € NU(B\gf). Write w in the form w = j - ([ |y, Jg, W, ), Where jg, is the g; component of j.

One can show that [] 0|N+ Jg; Wq; € K*U. Thus up to element of U, we know w is a special automorphism
for (Xy, K).

2.3 CM points on Shimura curves and Euler system properties

Let E be an elliptic curve defined over Q with conductor N and K be an imaginary quadratic field with
discriminant D.

Let Xy be a Shimura curve over Q of level U which parametrizes E. Let K C B be Q-algebra embedding
and z1 = [ho, 1] € Xy with hg € H the unique fixed point by K* C G = B*. Let S be a set of finite
places of Q satisfying the following:

1. S contains all places dividing 6 N D;

2. U has the form USUg such that U = [Tgs Kv C H;gs G(Qy) is a maximal open compact

subgroup and Us C [[,cq G(Q,). Note that dg|N and therefore HLQS G(Qy) = GL, (A;S)).
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Let Ng denote the set of integers with prime divisors which are not in S. For each prime ¢ € Ng, fix
an isomorphism ay : By = M2(Qy) such that Uy is identified with GL2(Z,) and satisfies

1. if £ is split in K, then
a 0
o K — ,a,b€ Q y

bé
oz(K@:{(a ):a,be(@g},
b a
for some & € Z; \ Z) 2.

It follows that for any v ¢ S, K NU, = OIXCJ. For any positive integer k, let g(¢¥) denote the element

k k
<£0 1)66:(@@) <p (’“}O ‘f)em@n)

in the case ¢ split (resp. inert) in K. For each integer n = [, (¥ € Ng with ¢; distinct primes, let

2. if £ is inert in K, then

g(n) = Hy(ff"') €G(Ay), Pu=lho,g(n)].

Note that P, is defined over the abelian extension H,, over K which is characterized by
Gal(H,/K) = K*/K* - (g(n)Ug(n)"' N K*),

via the class field theory.
We have the following theorem on norm properties of Heegner points.

Theorem 2.6 (See [10,12]).  For any ¢, m € Ng with { a prime and ¢ { m, then we have that [Hp, :
H,|=L0+1iflisinert in K and { — 1 if { is split and

T¢Py,, if £ is inert in K,

Um Tru,,, /5, Pme =
ot {(Te — 3¢ Froby) Py, if £ s split in K,

where Ty is the Hecke correspondence, Frob,, is the Frobenius at w|¢ in Gal(Hp,/K), and uy, = 1 if
m#1 andu =[O0 NU:Z*NU].

2.4 Generalized Birch lemma and rank one twists

We shall give the Birch lemma and its generalization in arbitrary level modular curve setting in this
subsection. First, we recall the classical Birch lemma in the I'g(N)-level modular curve setting.

Birch’s lemma. Assume that E is an elliptic curve over Q and f : Xo(N) — FE is a modular
parametrization mapping the cusp [oo] to O € E. Let K be an imaginary quadratic field of discriminant
D # —3,—4. Assume that

(1) all prime factors of N split in K,

(2) £(10)) ¢ 2E(Q),

(3) K has odd ideal class number.
Let P € Xo(Hp) be the CM point and define yx = Try, /i f(P). Then we have that 2yx € E(K)™ is of
infinite order.

Remark 2.7. The condition in the Birch lemma has the following meaning: The condition (1) gives
a sufficient condition to construct the CM point on X((V). The condition (2) follows from the relation
f+ f~ = const and that this constant point is not in 2E(Q). In the following, we will generalize these
two conditions to the special automorphisms that we defined.
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In the case of arbitrary level modular curve parametrization, Birch’s lemma has the following general-
ization. Before stating this lemma, we make the following convention on the 2-index of an element in an
abelian group.

For any finitely generated abelian group & and an element a € &, define the 2-index of a to be oo if
a € &, and otherwise the maximal non-negative integer r such that a € 2”&+ G, but a ¢ 2B 4 By
Note that C'a for any odd integer C' has the same 2-index as a.

Lemma 2.8. Let E be an elliptic curve over Q of conductor N and let f : Xy — E be a modular
parametrization by a Shimura curve associated to an indefinite quaternion algebra B with level U O Zx.
Let K C B be an imaginary quadratic field of discriminant D # —3,—4. Assume that

(1) there is an element w = toj € Ng, U which is a special automorphism for (Xv, K) and such that
f =+ f* is a constant map with value in a torsion point Q ¢ 2E(Q).

(2) (D, 2N) =1 and [H : K] is odd, where H is the abelian extension over K such that Gal(H/K) =
KX/K>< Un KX) under the reciprocity law in class field theory.
Let C be the cardinality of the odd part of E(K )ior, and yx := C-Trg /i f(P1) € E(K). If 29 denotes the
the 2-part order of the point yix + Yy, then we have

yx € E(K)\ 2E(K) + E(K )tor, (2.1)

and also the relation
Pyx € BE(K)"\2°E(K)” + E(K),,. (2.2)

Moreover, yi + yrx € E(Q)[2%°]\ {O} is a multiple of Q.

We first give an example of Lemma 2.8, where the usual Heegner hypothesis, i.e., the condition (1) in
Birch’s lemma, is not satisfied.

Example 2.9 (Continue with Example 2.2).  From [7], we know E = Xy has the equation
E:y? =227

One can show that the cusp
[0], [o0] € E(Q)tor = Z/2Z.

We may assume [0] = T with 7' the unique nonzero two torsion point on F(Q). One can show that
[00] + [o0]® = T, so from this generalized Birch’s lemma we know that E(~%)(Q) has rank equal to one.
For more precise information on this example, see [3].

Remark 2.10. Birch considered the action of Atkin-Lehner operator wy on Xo(N) in the case
where Heegner hypothesis is satisfied. Birch made the assumption that the modular parametrization
f: Xo(N) — E satisfies f([0]) ¢ 2E(Q). This assumption implies that the eigenvalue of wy must be —1.
Otherwise, f owy — f is a constant morphism with image f([0]) # 0, but wy has the fixed point

[V =N=1] € To(N)\H* = Xo(N)(C),

where the constant map takes value 0 € E(Q), a contradiction.

Let C € Z be the integer such that f*wy = C¢(q)dq/q, where wqg is the Néron differential on E
and ¢(q) is the normalized new form associated to E (it is conjectured that C' = 1 if f is an optimal
parametrization). Let a € Hq(Xo(IV)(C),R) be the path represented by the imaginary axis from 0 to ico
on H. Let "' be the reduced fraction with n > 1 such that nf.a = my;, where v is a generator of
H,(E(C),Z)". Note that n is the order of f([0]) in E(Q)tor. It follows that

L(B,1) = / 2mig(z)dz = C ! [ w= C*”Zm.

In particular, if n # 1 then L(F, 1) # 0.
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Proof of Lemma 2.8.  Let P; = [hg, 1] be the CM point on Xy with hg € H the unique point fixed by
K. Then P; is defined over H. Note that for any ¢t € K*, let 0, € Gal(H/K) be the image of ¢ under
the reciprocity law map. We have that

[ho,t]"" = [ho, tw] = [ho, ttoj] = [ho, jtto] = [ho, tto].
It follows that for any ¢ € K X

Q = f([ho, 1)) + f([ho, tw]) = f(P1)7* + f(P1)70.

Let h = [H : K]. Then taking summation of the above equality over all t € K*/K*(UNK*) and noting
that o, = 04-1 on H by the assumption that Z* C U, we have that

T :=yx +yx = hCQ € E(Q)2°]\ 2E(Q) + E(Q)[2°™])

is of order 2% and it follows that 2%y € E(K)~.

We now claim that E(K)[2*°] = E(Q)[2°°]. Otherwise let P € E(K)[2*°]\ E(Q), then K = Q(P)
which is only ramified at 2 and primes dividing N, which contradicts that (2N, D) = 1.

Suppose that 20y € 20 B(K)™ 4+ E(K )ior and let 2%yx = 20y +t with y € E(K)™ and t € E(K)[2].
Then s :=yx —y € E(K)[2*°] = E(Q)[2°°] and therefore

T=yr+yx =2s € 2E(Q),
a contradiction. We have shown that

2yx € B(K)~ \ 2°E(K)™ + E(K);,

tor-

Suppose that yx € 2E(K) + E(K)or- Say yx = 2y + ¢ for some y € F(K) and t € E(K)[2*] =
E(Q)[2°°]. Tt follows that T =y + yx = 2(y + y) + 2t € 2E(Q), a contradiction. Thus we have that

yx € E(K)\2E(K) + E(K)or-

Remark 2.11.  In the statement of Lemma 2.8, the relation (2.1) gives that the point in yx € E(K)
is non-torsion, while the relation (2.2) gives that the group E(P)(Q) should have rank one.

With the above generalized Birch’s lemma and Euler system property, we can get a family of rank
zero and rank one quadratic twists of elliptic curves which are parametrized by arbitrary level of modular
curves.

Theorem 2.12.  Let E be an elliptic curve over Q of conductor N and ¢ =Y _, anq™ the associated
new form. Let f: Xy — E over Q be a modular parametrization by a Shimura curve Xy associated to
an indefinite quaternion algebra B of level U D Z*. Let K C B be an imaginary quadratic field with
discriminant D # —3,—4. Assume that

(1) E(Q) has no order 4 torsion points;

(2) (D,2N) =1 and [H : K] is odd, where H is the abelian extension over K such that Gal(H/K) =
I/(\'X/K>< Un I?X) under the reciprocity law in class field theory;

(3) there exists w = toj € Ng, U which is a special automorphism for the pair (Xy, K) and such that
f+ f* is a constant morphism with value in a torsion point Qo ¢ 2E(Q).

Let S be a set of finite places of Q containing all places dividing 2ND such that U = UsU® with
Us CIl,e5G(Qy) and U?S is a mazimal open compact subgroup of G(A?). For any r > 1, let ¥, denote
the set of primes £ ¢ S satisfying:

(i) ag =0 mod 21, (i) £=1mod 4, (iii) off (V) = VL.

Here o : I?X/K>< — Gal(K®/K) is the reciprocity law morphism in class field theory. Then for any
integer M = 0y - - £, with £1,... 0, € X,

rankz EPM)(Q) =1 = orde— L(EPM) | s)  and  rankz EM)(Q) = 0 = ord,— L(EM) | 5).
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We prove this theorem by arguing the non-triviality of the Heegner points and applying the theorem
of Kolyvagin and Gross-Zagier.

First, we give the construction of the Heegner point in our situation.

Denote Hjs to be the ring class field of K with conductor M and let x5, denote the character over K
defining the extension K (v/M).

Consider the CM point of conductor M,

Py = [ho, g(M)] € Xy (Hy),
which is defined over H,;, the abelian extension over K such that
Gal(Hy /K) = KX /K*(g(M)Ug(M)~' n K*)

via the reciprocity law map in class field theory.
Let C be an odd integer killing the odd part of E(Hp)tor, and we define the Heegner point

ym=C- > f(Pu)7xm(0).

oc€Gal(Hy /K)

Denote Hg = K (v/{1,...,v/{). Tt is clear that Hy is contained in Hj; and the prime 2 is unramified

over Hy. So we have
E(Ho)[2*] = E(Q)[2].

The following theorem is a generalization of Lemma 2.8, from which Theorem 2.12 follows.
Theorem 2.13. Let E,K,M = {1 ---{, be as in Theorem 2.12. Then the point yps has 2-index r — 1
in E(Q(v'DM))~. Moreover, yar = 2"x for some x € E(Hy) with x+x =T € E(Q)[2] being of order 2.
Remark 2.14. In the case r = 0, the statement is understood as that y € E(K) \ 2E(K) + E(K)tor
and 2y € E(K)~ has 2-index 0 in F(K)~. The case r = 0 has already been proved by Lemma 2.8.

Proof of Theorem 2.13.  We use induction on the number s of primes ¢ | M which splits in K.

First, we consider the initial case with s = 0, i.e., all primes ¢1, ..., £, are inert in K. Note that it is
Birch’s lemma’s case when r = 0 and we now assume that r» > 0.

Recall that Hy = K(v/¢1,...,V/¢,) and let yo = C - Try,, /u, f(Par). For each positive divisor d of M,
let xq denote the character over K defining K (v/d) and let

ya :=C" > F(Pu)xalo).
oc€Gal(Hy /K)

For each positive divisor d of M with d # M, by the norm relation of Heegner points, we have that
(noting that each ay is divisible by 2"+1):

Ya = < 11 az) yg = 2"bayy,
£\ Myd
where we denote the primitive point of conductor d by

yi=C- > f(Pa)7xalo),

oc€Gal(Hy/K)

bg=2"" H ay.

(| M/d

and the integer by is defined by

From the following computation,

=% 3 P

d| M d| M teGal(Hy /K)
- ¥ ( 3 xd<t>) 7(P)
teGal(ij/K) dlM

=2"yo,
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we get the relation

> ya=2"y.

d| M

Thus we can write y,; in the following form,

ym = 2R, where R := (yo - Z bdy2>v
d| M,d#M

which shows that 2-index of y is at least r in E(Hy). Noting that ofX (v/¢;) = /s, i.e., o¢,|n, = 1, and
that

T

[Ha s Hol = [H: K]-T]

i=1

l; +1
2

is an odd number by our assumption that ¢; = 1 mod 4 and [H : K] is odd, we know that
T:=R+R=vyy+yo=[Hm:Ho| C-Qy€ E(H)27] = E(Q)[2]

is of order 2.
Consider the (injective) descent map

§: BE(K(VM))/2"E(K(VM)) - HY(K(VM), E[2"]),
and the inflation-restriction exact sequence
0 — H'(Ho/K(VM), E[2"|(Hy)) — HY (K(VM), E[2"]) — H'(Hy, E[2"]).
Note that 6(yas) has image zero in H'(Hy, E[2"]) since yy = 2"R with R € E(Hp). Thus
S(yar) € H' (Ho/ K (VAD), E[2")(Hy)).
which is killed by 2. Tt follows that 2yas € 2" E(K(v/M)) and then
yu = 2"tz + t,

for some z € E(K(vM)) and t € E(Q)[2].
Noting the relation yys = 2" R and the previous result, we also get

z=2R+s

for some s € E(Q)[2].
We now claim that z € E(Q(v/DM))~, i.e., the 2-index of 3 in E(Q(vDM))~ is at least r — 1.
Let o € Gal(K(v/M)/K) be the non-trivial element and still let o denote its fixed lift to Hy. Then

0=ym+ysy =2"(R+ R%)

gives
R+ R € B[2"|(Ho) = E(Q)[2],

and note the relation
z=2R+s, seEQ)[]2],

which implies that
z4+2z7 =0.

On the other hand, we have seen that

T :=yo+yo=[Hm:Hol-C-Qo
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is of order 2. Then
z4+z=2(R+ R)=2T =0.

Now, consider the biquadratic extension K (v M) = Q(vD,vM) over Q, and the relation
z4+2=0, z2+4+27=0.

We get the result
2 € E(QWWDM))~.

Therefore,
yu € 2" E(Q(VDM))” + E(Q)[2]

has 2-index in E(Q(v/DM))~ at least r — 1.

Now, we show that the 2-index of y, is exactly r—1, i.e., yar ¢ 2" E(Q(vV' DM))™ 4+ E(Q);or. Otherwise,
suppose we have yyr = 2"z 4t for some z € E(Q(vDM))~ and t € E(Q(vVDM));.,- By ym = 2" R, we
have that (z — R) € E(Q)[2], and it follows that

0=(z+2) —(R+R)=—(v0+vp),

which contradicts that y, + yo is of order 2.

Thus we complete the proof of the case where all primes ¢| M are inert in K.

Now assume that the number s of the split prime factors of M is greater than 0. Write M = M M_
with M (resp. M_) the product of prime factors of M split (resp. inert) in K. By Euler system property
of the Heegner points, we know for each positive divisor d of M,

Ya = ( H Qg - H (af - Frwz - Frwz)) yg,

CM_J(dM2) 0| My /(d, M)

where

yi=C- > f(Pa)7xalo).

oc€Gal(Hy/K)

Considering the relation,

ym+ Y va=2"y,
1<d| M,d#M

we have that
ym + Z (21 M/ 0 = 9y mod 2" E(H,) ",
M_ |d|M,d#M
where E(Hy)~ is the subgroup of elements P € E(Hj) such that P+ P = 0.
By induction, we know that each vy = 2#(d) g with 24 € E(Hp) such that zg+ x4 = T € E(Q)[2] is
of order 2. It follows that

ym =2 (yo - Z (ix@) mod 2" E(Hp)~.
M_|d|M,d#M

It is now clear that yy; = 2"z for some zpr € E(Hp) with ap + 2y = T € E(Hp)tor being of even
order. Tt follows the same as before by Kummer descent, and one can get 2yys € 2" E(K (v M)).
Thus we may write
yv =2" "tz 4t

with 2 € E(K(vM)) and t € E(Q)[2]. Tt follows from 271z 4t = 2"z, that
(2 = 2znm) € E(Ho)[2™] = E(Q)[2].

Writing explicitly z = 2z + s, with s € E(Q)[2], we get z 4+ z = 0.
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Now, choose o € Gal(K(v/M)/K) to be the non-trivial element and lift this element to Gal(Hy/K).
From the definition of yy; we get

2"(zm + 23y) = ym + Y3 =0

Thus
ry +xq € E(Ho)[2"] = E(Q)[2].

From the relation z = 2xy; + s we get
z+ 27 =0.

It follows that yas € E(Q(v/DM))~ has 2-index at least r — 1.
Now, we show yp; has 2-index exactly equal to r — 1. Suppose that the 2-index of y,; is no less
than 7. We may write yas = 2"2p + t with some 2y, € E(Q(vDM))~ and t € E(Q(v'DM)),,,. Then

we have that (zpr — zar) € E(Q)[2] and therefore (zas + 2a) = (2 + 2m) = 0, which contradicts
zy +xpy =T # 0.

3 Special value of L-function for rank zero twists of X(49)

In this section, we will prove a result on the estimate of special values of L-function for the rank zero
twist of the elliptic curve A = (X(49), [cc]). This result will be used in the final section to compare the
height relation of the Heegner points.

First, we recall the explicit Waldspurger formula for the curve A, which is already proved in [5].

Theorem 3.1 (Explicit Waldspurger formula).  Let A = (X¢(49), [00]), K be an imaginary quadratic
field with discriminant D, and x an unramified quadratic character over K. Assume that L(s, A, x) has
global root number equal to +1 (thus 7 must be ramified in K and x must be corresponding to K (\/d) for
some positive fundamental discriminant d dividing D). Let f be the Gross-Prasad test vector for (A, x).

Then we have )

S Fx(b)| = 2L (AD, ) LEDAP/D 1),
teKx /K*x O}
where § = 0 if K7 = Q7(\/=7), and § =1 if K7 = Q7(v/—35).

Now, using this formula we get the following proposition which is the main result of this section.

Proposition 3.2. Let R = q1---q, be a square-free integer with all prime factors q; = 1 mod 4 inert
in Q(v/=T7). Let N =py---py (k> 1) be a square-free integer with all prime factors p; completely split
in Q(A[4],VR). Then for the elliptic curve A = (X((49), [oc]), we have that ordg(L¥&(AF) 1)) =1 —1,
and ordy(LM8(AFN) 1)) > 2k +r 41 .

We remark here that the first assertion in the proposition on two-adic valuation of L-value for the
curve A has been already done in [5, Theorem 5.7]. So in the following proof we only discuss the
second assertion for the curve AN),

Proof of Proposition 3.2.  The key idea for proving the proposition is similar to that in [5, Theorem 5.8].
But here we include all the details for completeness.

Keep the same notation as in [5] (note that we write Ry, Ny for R, N here), take K = Q(v/—7TRN).
We may assume r > 1, since the case r = 0 is already treated in [5, Proposition 5.10].

We begin to treat the case r = 1, then the assumption under this case in the proposition for the p;’s
is the same as those made in [5, Theorem 5.11]. Thus refering the proof there we get the assertion.

The difference in the argument in this proposition is that the assumption on p; may not always give
#(2A) an even number and this difference appears in the case of r = 2.

First we remark that in the case r = 2, analyzing the Rédei matrix, we can see that #(2.A4) is even.
While for even r > 4’s case, we need not use the fact that #(2.4) is an even number.
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We prove the case of r > 2 with r even uniformly in the following. Noting K7 = Q(v/—7), we choose
the test vector f for (A, x("Y)) according to [5, Theorem 5.3]. We use induction on k 4 r. Then we have

> ya= Y, wa=2""">" f(1).

1<d| RN, p((d,R)) even 1<d| RN te2.A

Noting that in this case, from [5, Lemma 5.6], we have yq = ¥,,/4, and so the above summation can be

> ya =213 ().

1<d| RN, pu((d,Ry)) even, d=vRN te2A

rewritten as

Analyze all the terms in the above formula except yrn. By induction hypothesis,
y? = 4L®18) (A, 1)L(alg)(A(§'N+), 1), Vs|R, even u(s)

gives orda(ys) > k + 5 + 1.
Also we know that

R
y2, = 4L®8) (A 1)) (4(« s+'zy), 1), Vs|R, evenu(s), 1#t|N, st#NR

gives orda(ys) = k4 5 + 2.
Note also that

ords <2r+k_1 Z f(t)) >r+k—1

te2A
for all » > 4, and

ords (2”"“_1 Z f(t)) >r+k

te2A
for r = 2.
Putting all these facts together, we obtain

r
ordg(yN+R+) >k + 9 —+ ].,

whence, using Waldspurger’s formula in Theorem 3.1, we obtain
ordy (L®8) (ANE) 1)) > 2k + 7 4 1.

This completes the proof in this case.

While for the case of odd r > 3, we do not use the fact that #(2.A4) is an even number. Noting
K7 = Qr(v/—35), we choose f to be the test vector for (A, x+N+)) according to [5, Theorem 5.3],
similar to the even case, by using induction method on r + k. We have

> ya= >, ya=2""Y" f(t)
1<d| Ry Ny, o0dd p((d,Ry)) 1<d| Ry Ny te2A
We analyze all the terms except yr, v, as follows.
By induction hypothesis,
R
y2 = SLER (A HLED(ACT VO 1) Vs | Ry, odd u(s)

gives orda(ys) = k + ”2'3, while

Ry N
y.?t - 8L(alg) (A(St)a 1)L(alg) (A( j. ;r)v 1); Vs | RJrv odd ,LL(S), 1 7é t | NJrv st 7é N+R+

gives ords(yst) = k + ”"‘2"5.

Note also that ords(2"F 3, o 4 f(1) =7 + k.

Putting these facts together, we obtain orda(yn,r,) = k+ 7
formula in Theorem 3.1 gives

+3

»~, whence using the Waldspurger’s

ordg (L@ (AN+E+) 1)) > 2k + 7 + 1.
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4 Rank one quadratic twist and BSD conjecture

In this section, we will prove the main theorem concerning an infinite quadratic rank one twist family for
the elliptic curve of conductor 49, which generalizes the result in [5].

First, we state the main theorem.
Theorem 4.1.  Let A = (X(49),[o0]) and M = —loRN be a square-free integer, where {y = 3 mod 4
is a prime not equal to 7 and is a non square modulo 7, R is a positive integer with all prime factors

= 1 mod 4 inert in Q(v/=7), and N is a positive integer with all prime factors splits completely in the
field Q(A[4],VR). Assume that

Ky =Q(v/~tN)
has no ideal class of exact order 4. Then for the quadratic twist AM) of A by the field Q(v/M), we have

orde— L(AM) 5) = 1 = rank; A (Q),

and the Shafarevich-Tate group TII(AM) /Q) is finite of odd order. Moreover, the p-part of the full BSD
conjecture holds for all primes p{ 7M.

We prove Theorem 4.1 via constructing the Heegner points, and show that the corresponding point is
non-torsion.

Assume that M = —¢yRN is an integer in Theorem 4.1. Let Hg be the ring class field of Ky of
conductor R and let Hy C H be the maximal exponential-2 sub-extension over K. It is clear that Hy
is generated over Q by v/¢*, where ¢ runs all prime factors of M and

= (—1)/'51€ =1 mod 4.

In particular, K (v R) C H.
Let P € A(HRg) be the CM point of conductor R, and let x g be the quadratic character of K defining
the extension K (V. R) over K. We define the Heegner point,

YR = Z PUXR(O') EA(KN(\/R))
oc€Gal(Hp/Kn)

It is clear that Theorem 4.1 follows from the below theorem and together with an application of explicit
Gross-Zagier formula in [4], we can verify the two-part BSD conjecture for E(M),

Theorem 4.2.  Let M = —{4RN be a negative square-free integer and assume that
(1) by # 7 is a prime = 3 mod 4, which is a non square modulo 7,

(2) R is a product of v primes congruent to 1 modulo 4, which is inert in Q(v/—7),
(3) N is a product of k primes complete split in Q(A[4]) and Q(v/R).

Let A be the elliptic curve as in Theorem 4.1. Then the Heegner point ygr satisfies

yr € 2"TTTAQ(VM))T + A(Q(VM))or-

Note that when k = r = 0, the above statement is understood as 2yr € A(Q(v/M))~.
Moreover, if Ky = Q(v/—{oN) has no order 4 ideal class, then

yr ¢ 2" AQ(VM))T + AQ(VM))ior-

Remark 4.3. The conditions here generalize [5, Theorem 6.1] in two sides. First we remove the
conditions on the prime factor of R that should be inert in Q(y/—/p), second we generalize the condition
for the p;’s, and just need them split completely in Q(A[4], \/R)

Proof of Theorem 4.2.  The proof of the theorem combines the generalized Birch lemma, the Euler
system properties for the inert and split prime, the explicit Gross-Zagier formula and Tian’s induction
argument on Heegner points.
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Keeping the same notation as above, we denote s to be the number of primes dividing R which splits
in K. We use induction on s, and in each s’s argument we argue by induction on k, the number of
primes divide N.

We begin to deal with the case s = 0, and induct on the number k of the primes dividing N. The case
of k = 0 has been already done according to Theorem 2.12. Now we treat the case k > 1. For any d| RN,
denote the character x4 to correspond the quadratic extension K N(\/ d) of Ky, and define the Heegner
point by

= > PTxalon).
o1€Gal(Hr/KnN)
By considering the Galois action of the nontrivial element of the group Gal(Kx(v/d)/Ky) and complex
conjugation on the point y4, we know that this point belongs to A(Q(v/—loNd))~. Noting the property
of Euler system for the inert primes, we know when R {1 d, i.e., there exists a prime ¢ | R such that ¢ { D,
then a4 = 0, and

Yg = Z XD(U)(TYHR/HR/QPR)U: Z XD(O')(aqPR/q)U:O.
oc€Gal(Hg/q/KnN) UeGal(HR/q/KN)

Define yo := Try, /m, P, and then by the observation

Z xd(ot) = 2k+r50t€Gal(HR/Ho)-
d| RN
Here,
1, if oy € Gal(HR/Ho),
0o, eGal(Hr/Ho) = .
0, otherwise.

We get,

o ova= Y va=2""y.

R|d|RN d| RN

Write the above formula in the following form,

yr =25y — Z YdR- (4.1)
1<d|N

By the earlier observation, we know

N
YdR € A(Q(\/—ZORNd))_, where Ny = 4

Similarly, let Ko = Q(v/—{oNq) and construct the analogous point y, denoted by y95. By the theorem

of Kolyvagin, we know that either 9 is torsion point, or the Q-vector space A(Q(v/—loRN4))” @7 Q is
of one dimension, and we can do the ratio, by explicit Gross-Zagier formula theorem in [4]:

0 2 hx(yar) _ LE®(1, AWR)
[yar : Yarl” = ~ = 7 (alg) (R)Y °
hio(y9p)  LM®(1,AU9)
By induction hypothesis (with respect to k’s induction), we know that

Yar = 2"y g

Using this relation and (4.1), we know that

yr = 287 (yo - > yim) = 2" g, (4.2)
1<d|N
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We remark here that when Q(v/—loN) has no ideal class of order 4, we will get that the degree [Hg : Ho)
is odd and

TR+TR=Yo+ Yo =T,

where T' is the nontrivial order 2 point on A over Q.
Noting (4.2), we know xr € A(Hp). So from the following two exact sequences,

A(Q(V~lNR))

2k+r A(Q(v/—loNR)) — HY(Q(v/~loNR), A[2¥7))

and
0 — H'(Gal(Ho/Q(v/~loNR)), A[2]) = H'(Q(v/~IloNR), A[25*"]) — H'(H,, A[2F*7])

we know that the image of yg in H'(Hg, A[28*"]) is zero, so

2yr € 21" A(Q(v/~1oNR)) ™.
Thus,
yr € 2" AQ(V=10NR))” + AQ(V/ 10N R))ior-
Now, we claim that if Q(v/—IpN) has no ideal class of order 4, then

yr ¢ 2" A(Q(V~10NR))™ + A(Q(V/~loNR))sor

otherwise, we have
yr =22+ T

with zr € A(Q(V—INR))™,T € A(Q(V-IoNR))ior = A(Q)[2].

Thus from the formula (4.2), we know

ZR = Yo — Z yar +1t, te€ AQ)]2],

1<d|N

so from the degree [Hg : Hp] being odd and this formula, we know that
Zrtzr=Yo+ty, =T

with 7" the nontrivial two torsion point in A(Q).
But our assumption on zp gives
zr+2r =0.

This contradiction gives our claim.

Now we prove the case s = 0, while for the general s > 0 case, we also use induction on k, the number
of prime divisors of N. The initial £ = 0’s case has been already done by Theorem 2.12. Now for the case
of k> 0, first we know that

> ya =2y,

d| RN

With the same reason as above, we know y4 # 0 only if R_ | d, here R_ denotes the products of the prime
factors of R which are inert in K.
Write the above formula as follows,

Yr + Z Ya + Z ya = 2" yo. (4.3)
R_|d|R d#R R_|d|RN p(d,N)>1

We call the above formula’s second term the type I and the third term the type II. We will treat them
separately.
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For the type I terms, by the Euler system properties for the split primes, we have
= D (Trmym,P) xale) = 24Dy,
occ€Gal(Hy/KnN)

where 3/, is just the corresponding Heegner point constructed from H, (which is just up to the plus or
minus sign).
Notice that the split prime divisor of d is less than s, so by induction hypothesis with respect to s, we

know
y& _ 27"—H(R/d)+kyd7
where
Yy € A(Hyp).

So we have yq = 2¥*"Y; and noticing that when the field Ky has no ideal class of order four, by the
argument in the induction hypothesis with respect to s, we have

Yo+Y,=T forall R_|d|R with d#R.
For the type II terms, write yq = yst, with s| R, 1 < ¢| N. Similar to that before, we know

. N
Yt € A(Q(v/—losNy))~  with Ne=",

Let Ko = Q(v/—loN;) and construct the analogous point y, denoted by y%,. By the theorem of Kolyvagin,
we know that either yY, is a torsion point, or the Q-vector space A(Q(v/—lpsN;))~ ®zQ is one-dimensional,
and we can do the ratio, by explicit Gross-Zagier formula in [4]:

hic(ys)  L@®)(1, AGD)

072 = :
[Yst © Yst) hao () L@9(1,A)

Using the induction hypothesis both with respect to s and k, we know

Yst = QkHy./st with i, € A(@(\/—losNt))’-

Thus from (4.3), we know
YR = 2k+TZR with Zi € A(Ho)

Using the same cohomology argument as the case s = 0, we get

2yr € 2" A(Q(v/~IoNR)) ™,

equivalently,
yr € 2T TLA(Q(V/~10NR)) ™ + AQ(V~1oNR) )tor-

Now, assume the field Ky has no ideal class of order four. Then we claim that

yr ¢ 2" A(Q(V/~10NR))™ + AQ(V—1o0NR))1or-

Otherwise, suppose we have
yr =2z + 4,

with zg € A(Q(vV/—IoNR))™,t € A(Q(v/~IloNR))or = A(Q)[2]. Similarly to the case s = 0, we get
sr=yo— Y Ya— Y yi+s seAQ)]2

type I typell

So from the number of the type I terms in the summation being odd, we get
z2r+zr=T

contradicting our choice of zi. This gives the assertion for k, moreover the assertion for s. Now the
theorem is proved.
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Now, applying the explicit L-value formula in [4], we give the verification of the two-part BSD conjecture
for the above rank one quadratic twist families of A.

Proof of Theorem 4.1.  Consider the curve A, which is given by the equation
y? =23 4+ 2122 + 1122.

From the Tamagawa numbers and periods of their quadratic twists result in [5, Propositions 3.10 and
3.12], first we know that elliptic curve AU has Mordell-Weil rank 0 and the full BSD holds for A i.e.,

L(1, ARy /QE) = or =14 1II(AW) /Q).
By the theorem of Kolyvagin and Gross-Zagier, we know that

orde—1 L(AM) s) =1 = rankz AM)(Q)
and the full BSD for A) becomes

L’(LA(M))/Q(M) 2 92k+r R(A(M)) ) #HI(A(M)/Q).

The explicit Gross-Zagier formula for Ky = Q(v/—¢oN) and x = x g quadratic character of Gal(Hr/K )
defining KN(\/R) is
_ 87%(¢, P)ry () o

L/(laAva) - \/&)NR2 (QhQ(yR))
Note that )
QRIQ(M) _ 87°(, ¢)F0(N)
VI NR2
thus the BSD conjecture for A is reduced to
[AM(Q) /A (Q)gor : Zyyar)? = 22EF77D - 1I(AM) Q) - #1(AP) Q). (%)

It follows from Kolyvagin’s work that the right-hand side is finite. For any prime ¢t 140, the ¢-part of
BSD follows from the work of Perrion-Riou [13] and Kobayashi [9].

Now, we show the 2-part of the BSD conjecture for AM). Tt follows from Theorem 4.2 that the 2-
part of the left-hand side of () is 2(k +r — 1). It follows from the 2-descent computation, for example
see [5, Section 3], that

dimg, Sel® (AM) /Q)/JAM[2)(Q) =1 and  dimp, Sel® (A% /Q) /AT [2](Q) = 0.

Thus #II(AM) /Q)#II (AT /Q) is an odd integer and thus the 2-part of (x) holds.
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