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1 Introduction and main results

For an elliptic curve E defined over Q, the Birch and Swinnerton-Dyer conjecture [2] predicts a relation

between the special values of its Hasse-Weil L-function and its arithmetic groups, such as the Mordell-Weil

group and the Tate-Shafarevich group.

If E is defined by Weierstrass equation

E : y2 = x3 + ax+ b, a, b ∈ Q,

then for any nonzero square free integer d, the quadratic twist E(d) of E over the field Q(
√
d) has

Weierstrass equation

E(d) : dy2 = x3 + ax+ b, a, b ∈ Q.

In 1952, Heegner [8] proved that a positive integer n congruents to 5, 6, 7 modulo 8 with exactly one

odd prime factor is a congruent number, i.e., the quadratic twist C(n) of the elliptic curve

C : y2 = x3 − x

over the field Q(
√−n) is of positive rank. Heegner [8] constructed the so-called Heegner points and

proved their non-triviality. Later on, Birch [1] used the Atkin-Lehner involution acting on the Heegner

points constructed by modular parametrization of E via X0(N), and obtained some non-triviality results
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of Heegner points. Around the year 2012, Tian et al. [15–17] made a breakthrough on congruent num-

ber problem, where not only the Atkin-Lehner involution but also some other modular involutions are

involved.

In this paper, we generalize the usual Atkin-Lehner operator and the involutions used in [16] to the

special modular automorphisms on Shimura curves. Applying the Euler system property of Heegner

points [10, 11] at both split and inert Kolyvagin primes, we get for a wild class of elliptic curves defined

over Q, a quadratic twist family with any given number of prime factors of the quadratic discriminant,

which has Mordell-Weil rank equal to one. Finally, as an application, we improve some results in [5] on

quadratic twists of the elliptic curve A = (X0(49), [∞]), where [∞] is the infinity cusp identified with

identity element in A(Q).

Notation. Let F be a number field with adéle ring A = FA and let Af = FAf
be the ring of finite

adéles. Let Ẑ =
∏

p Zp and for any Z-module M , let M̂ = M⊗Z Ẑ, for example, F̂ = Af . For any number

field K, let OK denote the ring of integers in K, Kab the maximal abelian extension over K, and

σK : K×
A /K× → Gal(Kab/K), t �→ σK

t

be the reciprocity law morphism in class field theory. If the field in the context is clear, we also write it

for σt. If K/F is a quadratic extension of number fields and c ⊂ OF is an integral ideal, denote

Oc = OF + cOK

to be the unique order O of K with [OK : O] = #(OF /c) and call c its conductor. For each place v of F ,

let Oc,v denote the localization of Oc at v. If B is a quaternion algebra over F and K is an imaginary

quadratic field embedded into B as an F -subalgebra, we denote by K− the K-module of elements j ∈ B

such that jt = tj for all t ∈ K, where t �→ t is the non-trivial element in Gal(K/Q). For a finite set S of

places of F , we let K
×(S)
A denote the S-off idéles of K and be viewed as a subgroup of K×

A by the natural

embedding with all v-components in S being 1. For any Q-algebra L, we write BL (resp. B×
L ) the base

change of B (resp. B×) to L. Denote [ab ] the usual cusp of the upper half plane obtained from P 1(Q).

For a group G and its subgroup H, we denote NG(H) the normalizer of H in G.

In the following of this paper, we shall always consider an elliptic curve E defined over Q with con-

ductor N and an imaginary quadratic field K with discriminant D.

Let XU be a Shmura curve over Q associated to an indefinite quaternion algebra B with level U ⊂ B×
Af
.

Note that any normalizer of U in B̂× defines a modular automorphism of XU over Q.

Let S = SU be a set of finite places of Q containing all places dividing 2ND such that U = USU
S with

US ⊂∏v∈S G(Qv) and US is a maximal open compact subgroup of G(AS
f ).

The first main result of this paper is the following theorem.

Theorem 1.1. Let E be an elliptic curve over Q of conductor N and φ =
∑

n=1 anq
n the associated

new form. Let f : XU → E over Q be a modular parametrization by a Shimura curve XU associated to

an indefinite quaternion algebra B of level U containing Ẑ×. Let K ⊂ B be an imaginary quadratic field

of discriminant D and let H = HU denote the abelian extension over K corresponding to the class group

K×(U ∩ K̂×).
Assume that

(i) E(Q) has no order 4 torsion points;

(ii) (D, 2N) = 1 and [H : K] is odd;

(iii) there exists w ∈ N
̂B×U with w = t0j for some t0 ∈ K̂× and j ∈ K− such that the morphism

f + fw : XU → E is constant valued at a torsion point Q0 /∈ 2E(Q).

For any r � 1, let Σr denote the set of primes � /∈ SU satisfying:

(i) a� ≡ 0 mod 2r+1, (ii) � ≡ 1 mod 4, (iii) σK
t0 (

√
�) =

√
�.

Then for any integer M = �1 · · · �r with �1, . . . , �r ∈ Σr,

rankZE
(DM)(Q) = 1 = ords=1L(E

(DM), s) and rankZE
(M)(Q) = 0 = ords=1L(E

(M), s).
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Remark 1.2. (1) The above set Σr of certain primes may be empty or has finite cardinality. But in

some cases, it has infinite cardinality, for example, when the curve has a special supersingular primes (see

Corollary 1.3).

(2) Since the torsion point Q0 /∈ 2E(Q) must be of even order, the condition (i) implies that

E(Q)[2∞] = E(Q)[2] �= 0.

(3) Some cases of the above theorem are given as follows.

(a) Suppose the imaginary quadratic field K satisfies the Heegner hypothesis and let f : X0(N) → E

be the usual modular parametrization. Then the Atkin-Lehner operator wN is a normalizer of

U0(N) ⊂ GL2(Af )

and there are t0 ∈ K̂×, u ∈ U0(N), j ∈ K− such that

w := wNu = t0j.

The condition (iii) is satisfied if f([0]) /∈ 2E(Q).

(b) Let E be an elliptic curve of square conductor N = M2 and K an imaginary quadratic field such

that any prime factor of N is inert in K. We take B = EndQ(K) and view K as Q-subalgebra naturally.

Let j ∈ B× be the element j(x) = x. Then the maximal order OB := EndZ(OK) of B contains OK and

we have OB = OK + d−1j, where d is the differential of K over Q. Take R = OK + MOB, then we

have that j normalizes R̂×. Note that in this case w acting on f has an eigenvalue −ε(E) by a result

of [14, Theorem 4]. In particular, the condition that fw + f is a constant morphism implies the sign of

L-series is +1.

Corollary 1.3. Let f : XU → E be a modular parametrization of an elliptic curve over Q by a Shimura

curve associated to a quaternion algebra B. Let K ⊂ B be an imaginary quadratic field of discriminant D.

Assume the conditions (i)–(iii) in Theorem 1.1 and the following:

(iv) there is a supersingular good prime q for E with q ≡ 1 mod 4 and σK
t0 (

√
q) =

√
q.

Then for any integer k � 1, there are infinitely many square-free M with exactly k odd prime factors

such that

ords=1L(E
(M), s) = 0 and ords=1L(E

(DM), s) = 1.

Example 1.4. Let E be the elliptic curve of conductor 69 with the equation

y2 + xy + y = x3 − x− 1.

Then q = 5 is a supersingular prime for E.

Note that Corollary 1.3 follows from Theorem 1.1 by the following lemma.

Lemma 1.5. Let E be an elliptic curve defined over Q of conductor N and M a non-zero integer.

Suppose that there is a supersingular good prime q of E with q ≡ 1 mod 4 and (Mq ) = 1. Then for any

integer r � 1, there are infinitely many primes � � N such that a� ≡ 0 mod 2r+1, � ≡ 1 mod 4, and

(M� ) = 1.

Proof. Let L be the Galois extensionQ(i,
√
M,E[2r+1]) overQ and Frobq ⊂ Gal(L/Q) be the conjugate

class of the prime q. Then by Chebatarev density theorem, there are infinitely many primes �, with positive

density, unramified over L such that Frob� = Frobq. Note that aq = 0 implies that a� ≡ 0 mod 2r+1. It

is clear that � satisfies the required conditions.

In the following, we give an application of the above non-triviality results to the quadratic twists of

the elliptic curve A = (X0(49), [∞]). Using the special value formula in [4] and the induction argument

in [16], we obtain more information on the rank zero and rank one quadratic twists of A.

The following is a proposition on special values of L-function for the rank zero quadratic twists of the

curve A = (X0(49), [∞]).
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Proposition 1.6. Let R = q1 · · · qr be a square-free integer with all prime factors qi ≡ 1 mod 4 inert

in Q(
√−7). Let N = p1 · · · pk (k � 1) be a square-free integer with all prime factors pj completely split

in Q(A[4],
√
R). Then for the elliptic curve A = (X0(49), [∞]), we have ord2(L

alg(A(R), 1)) = r − 1, and

ord2(L
alg(A(RN), 1)) � 2k + r + 1.

Remark 1.7. By the main results in [6] and descent theory, we know the above estimate on 2-adic

valuation of algebraic part of L-values is always true. Here, we just give a direct proof for the above

result without using Iwasawa main conjecture.

Another main result of this paper is the following theorem.

Theorem 1.8. Let A = (X0(49), [∞]) and M = −�0RN be a negative square-free integer, with

• �0 ≡ 3 mod 4 a prime not equal to 7, which is a non square modulo 7,

• R a positive integer with all prime factors ≡ 1 mod 4 and inert in Q(
√−7),

• N a positive integer with all prime factors splits completely in Q(A[4],
√
R).

Assume that Q(
√−�0N) has no ideal class of exact order 4. Denote by A(M) the quadratic twists of A

over Q(
√
M). Then

ords=1L(A
(M), s) = 1 = rankZA

(M)(Q),

and X(A(M)/Q) is finite of odd order. Moreover, the full �-part BSD conjecture on #(X(A(M)/Q)[�∞])

holds for all primes � � 7M .

In the end of introduction, we briefly give the structure of content for the following sections. In

Section 2, we summarize the basis on Shimura curves and give the proof of Theorem 1.1. In Section 3,

we give the estimate of the two-adic valuation on L-values which will be used in the final section. In

Section 4, we will combine all the results developed before and induction method of Tian to give the

proof of Theorem 1.8 and verify the BSD conjecture.

2 Generalized Birch lemma and its application

In this section, we prove Theorem 1.1 and begin with introducing some basis on Shimura curves.

2.1 Shimura curves and various actions

Let B be an indefinite quaternion algebra over Q with discriminant dB and view B× as a subgroup of

GL2(R) via an isomorphism B ⊗Q R ∼= M2(R). Denote B×
+ to be the element with positive determinant

in B×. There is a projective system of compact Riemann surfaces

XU (C) ∼= B×
+\(H ∪ P1)×B×

Af
/U,

indexed by open compact subgroups U of B×
Af

and with the connection map

ϕUU ′ : XU (C) → XU ′(C), U ⊂ U ′.

This system has a canonical descent to a projective system of algebraic curves over Q, which is a

projective smooth irreducible, but not necessarily geometrically irreducible algebraic curve over Q.

The Hecke action on XU is defined as follows. For any t ∈ B×
Af

, it maps XU (C) to Xt−1Ut(C), which

on the points is given by [h, g] �→ [h, gt]. It is well known that the Hecke action of the right multiplication

by t also descents to Q.

We know that the structure map XU (C) → π0(XU (C)) descents as XU → SpecFU , where FU is the

abelian extension ofQ corresponding to the idéle class subgroupQ×
+ detU ⊂ A×

f . HereXU is geometrically

irreducible over FU , and π0(XU (C)) is the connected components of XU (C).

We recall the Galois action on points of XU as follows. For any imaginary quadratic field K ⊂ C, let

ρ : K× → B× be the normalized embedding with fixed point h0 ∈ H. Here normalized embedding means
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the one satisfying that

ρ(t)

(
h0

1

)
= t

(
h0

1

)
.

Let σt denote its image under Artin’s reciprocity law in class field theory, then for any t ∈ K̂×,

[h0, g]
σt = [h0, ρ(t)g], ∀ g ∈ GL2(Af ).

For any j ∈ NGL2(Q)(ρ(K
×)) \ ρ(K×), denote by P �→ P the complex conjugation action, where its

explicit action on points is given by

[h0, g] = [h0, jg], ∀ g ∈ GL2(Af ).

2.2 Modular automorphisms on Shimura curves

For a Shimura curve XU , we know for each element t in the normalizer of U in B̂×
Af

, the Hecke action of

right multiplication by t on XU gives an automorphism on this curve which is defined over Q. Thus we

have the following map,

N
̂B×
Af

(U) → AutQ(XU ).

Example 2.1. For the modular curve X0(N), we know the matrix

WN =

(
0 1

N 0

)
∈ GL2(Q) ⊂ GL2(Af )

is a normalizer of U0(N) in GL2(Af ). This automorphism is called Atkin-Lehner involution in literature.

Sometimes, we not only consider a single Shimura curve, but also an imaginary quadratic field K with

an algebraic embedding into B. In this case, the modular automorphism is very subtle.

Example 2.2. For the modular curve X0(36), let K = Q(
√−q) with q ≡ 3 mod 4 be a prime such

that 2 is inert in K, and 3 is split in K. One can choose an integer a such that q+ a2 ≡ 0 (mod 9). Then

we embed K into M2(Q) in the following manner:

√−q �→
(

a −2
q+a2

2 −a

)
.

Define R =
∏

p Rp ⊂ M2(Af ) such that

• Rp = M2(Zp) for p � 6,

• R2 = OK,2 + 2M2(Z2),

• R3 = {α ∈ M2(Z3) : α ≡ ( ∗ ∗
0 ∗ ) mod 9}. Then letting U = R×, we get a Shimura curve XU . Let

j =

(
1 0

a −1

)
∈ GL2(Q),

then j ∈ K−. Denote

w3 =

(
0 1

9 0

)
∈ GL2(Q3)

to be a local Atkin-Lehner operator. Then the element w = j(3)w3 gives an automorphism on the curve

XU , where j(3) denotes the element j ∈ GL2(Af ) with the component at the place 3 removed. One can

show that the element w = j · (j3w3) := tj, with j ∈ K−, t ∈ K̂×, where the last equality is up to an

element of U. Here j3 means the 3-component of j.

In the above example, we write the automorphism by a product of elements in K̂× and K− up to

elements in U. We will see this kind of automorphism has an arithmetic application for the argument of

the non-triviality of the Heegner point.
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Definition 2.3. Let XU be a Shimura curve, and K ⊂ B be an imaginary quadratic field embedded

in B. We call an automorphism w on Shimura curve XU a special automorphism for the pair (XU ,K), if

w can be written as w = tj, where t ∈ K̂×, j ∈ K−, up to right multiplication by an element in U.

Remark 2.4. • From last section, we know the special automorphism is a combination of the Galois

action and complex conjugation on the points.

• One can show that for the usual modular curve X0(N), an imaginary quadratic field K satisfies

that every prime divisor of N splits in K. The Atkin-Lehner operator WN is a special automorphism on

X0(N).

In the end of this subsection, we give a description of the special automorphism for the pair of a

Shimura curve XU with conductor N2
−N+, and an imaginary quadratic field K = Q(

√−q) with q ≡ 3

mod 4 a prime embedded in B, such that N− is the square free integer with prime divisors inert in K,

while N+ is the integer with prime divisors which are split in K.

Proposition 2.5. For the pair (XU ,K) with XU a Shimura curve of conductor N2
−N+ and imaginary

quadratic field K embedded in B given in the above paragraph, the special automorphism exists.

Proof. Note that 2 may divide N+, so we choose an integer a such that a2 + q ≡ 0 mod 4N+.Write

N− =
∏

i pi, N+ =
∏

j q
nj

j . We embed K into M2(Q) as follows,

√−q �→
(

a −2
q+a2

2 −a

)
.

Define R =
∏

p Rp ⊂ M2(Af ) such that,

• Rp = M2(Zp), for p � N−N+;

• Rpi = 1 + piM2(Zpi ), for pi | N−;
• Rqj = U0(q

nj

j ) := {α ∈ M2(Zqj ) : α ≡ ( ∗ ∗
0 ∗ ) mod q

nj

j }, for qj | N+.

Then let U = R× ⊂ GL2(Af ) and the Shimura curve is XU . Now we claim the following element w is the

special automorphism for (XU ,K),

w := j(N+)
∏

qj |N+

wqj ,

where

j =

(
1 0

a −1

)
∈ GL2(Q) ∩K−

and j(N+) denotes its N+ removed part. The local Atkin-Lehner wqj is

wqj =

(
0 1

q
nj

j 0

)
∈ GL2(Qqj ).

We have w ∈ NU (B̂
×
Af

). Write w in the form w = j · (∏qj |N+
jqjwqj ), where jqj is the qj component of j.

One can show that
∏

qj |N+
jqjwqj ∈ K̂×U. Thus up to element of U, we know w is a special automorphism

for (XU ,K).

2.3 CM points on Shimura curves and Euler system properties

Let E be an elliptic curve defined over Q with conductor N and K be an imaginary quadratic field with

discriminant D.

LetXU be a Shimura curve overQ of level U which parametrizesE. LetK ⊂ B beQ-algebra embedding

and x1 = [h0, 1] ∈ XU with h0 ∈ H the unique fixed point by K× ⊂ G = B×. Let S be a set of finite

places of Q satisfying the following:

1. S contains all places dividing 6ND;

2. U has the form USUS such that US =
∏

v/∈S Kv ⊂ ∏′
v/∈S G(Qv) is a maximal open compact

subgroup and US ⊂∏v∈S G(Qv). Note that dB|N and therefore
∏′

v/∈S G(Qv) ∼= GL2(A
(S)
f ).
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Let NS denote the set of integers with prime divisors which are not in S. For each prime � ∈ NS , fix

an isomorphism α� : B�
∼→ M2(Q�) such that U� is identified with GL2(Z�) and satisfies

1. if � is split in K, then

α(K�) =

{(
a 0

0 b

)
, a, b ∈ Q�

}
;

2. if � is inert in K, then

α(K�) =

{(
a bδ

b a

)
: a, b ∈ Q�

}
,

for some δ ∈ Z×
� \ Z×2

� .

It follows that for any v /∈ S, K×
v ∩Uv = O×

Kv
. For any positive integer k, let g(�k) denote the element(

�k 1

0 1

)
∈ G(Q�)

(
resp.

(
�k 0

0 1

)
∈ G(Q�)

)

in the case � split (resp. inert) in K. For each integer n =
∏

i �
ki

i ∈ NS with �i distinct primes, let

g(n) =
∏
i

g(�ki

i ) ∈ G(Af ), Pn = [h0, g(n)].

Note that Pn is defined over the abelian extension Hn over K which is characterized by

Gal(Hn/K) ∼= K̂×/K× · (g(n)Ug(n)−1 ∩ K̂×),

via the class field theory.

We have the following theorem on norm properties of Heegner points.

Theorem 2.6 (See [10, 12]). For any �,m ∈ NS with � a prime and � � m, then we have that [Hm� :

Hm] = �+ 1 if � is inert in K and �− 1 if � is split and

umTrHm�/Hm
Pm� =

{
T�Pm, if � is inert in K,

(T� −
∑

w | � Frobw)Pm, if � is split in K,

where T� is the Hecke correspondence, Frobw is the Frobenius at w | � in Gal(Hm/K), and um = 1 if

m �= 1 and u1 = [O×
K ∩ U : Z× ∩ U ].

2.4 Generalized Birch lemma and rank one twists

We shall give the Birch lemma and its generalization in arbitrary level modular curve setting in this

subsection. First, we recall the classical Birch lemma in the Γ0(N)-level modular curve setting.

Birch’s lemma. Assume that E is an elliptic curve over Q and f : X0(N) → E is a modular

parametrization mapping the cusp [∞] to O ∈ E. Let K be an imaginary quadratic field of discriminant

D �= −3,−4. Assume that

(1) all prime factors of N split in K,

(2) f([0]) /∈ 2E(Q),

(3) K has odd ideal class number.

Let P ∈ X0(HK) be the CM point and define yK = TrHK/Kf(P ). Then we have that 2yK ∈ E(K)− is of

infinite order.

Remark 2.7. The condition in the Birch lemma has the following meaning: The condition (1) gives

a sufficient condition to construct the CM point on X0(N). The condition (2) follows from the relation

f + fWN = const and that this constant point is not in 2E(Q). In the following, we will generalize these

two conditions to the special automorphisms that we defined.
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In the case of arbitrary level modular curve parametrization, Birch’s lemma has the following general-

ization. Before stating this lemma, we make the following convention on the 2-index of an element in an

abelian group.

For any finitely generated abelian group G and an element a ∈ G, define the 2-index of a to be ∞ if

a ∈ Gtor and otherwise the maximal non-negative integer r such that a ∈ 2rG+Gtor but a /∈ 2r+1G+Gtor.

Note that Ca for any odd integer C has the same 2-index as a.

Lemma 2.8. Let E be an elliptic curve over Q of conductor N and let f : XU → E be a modular

parametrization by a Shimura curve associated to an indefinite quaternion algebra B with level U ⊃ Ẑ×.
Let K ⊂ B be an imaginary quadratic field of discriminant D �= −3,−4. Assume that

(1) there is an element w = t0j ∈ N
̂B×U which is a special automorphism for (XU ,K) and such that

f + fw is a constant map with value in a torsion point Q /∈ 2E(Q).

(2) (D, 2N) = 1 and [H : K] is odd, where H is the abelian extension over K such that Gal(H/K) ∼=
K̂×/K×(U ∩ K̂×) under the reciprocity law in class field theory.

Let C be the cardinality of the odd part of E(K)tor, and yK := C ·TrH/Kf(P1) ∈ E(K). If 2δ denotes the

the 2-part order of the point yK + yK , then we have

yK ∈ E(K) \ 2E(K) + E(K)tor, (2.1)

and also the relation

2δyK ∈ E(K)− \ 2δE(K)− + E(K)−tor. (2.2)

Moreover, yK + yK ∈ E(Q)[2∞] \ {O} is a multiple of Q.

We first give an example of Lemma 2.8, where the usual Heegner hypothesis, i.e., the condition (1) in

Birch’s lemma, is not satisfied.

Example 2.9 (Continue with Example 2.2). From [7], we know E = XU has the equation

E : y2 = x3 − 27.

One can show that the cusp

[0], [∞] ∈ E(Q)tor = Z/2Z.

We may assume [0] = T with T the unique nonzero two torsion point on E(Q). One can show that

[∞] + [∞]w = T, so from this generalized Birch’s lemma we know that E(−q)(Q) has rank equal to one.

For more precise information on this example, see [3].

Remark 2.10. Birch considered the action of Atkin-Lehner operator wN on X0(N) in the case

where Heegner hypothesis is satisfied. Birch made the assumption that the modular parametrization

f : X0(N) → E satisfies f([0]) /∈ 2E(Q). This assumption implies that the eigenvalue of wN must be −1.

Otherwise, f ◦ wN − f is a constant morphism with image f([0]) �= 0, but wN has the fixed point

[
√
−N−1] ∈ Γ0(N)\H∗ = X0(N)(C),

where the constant map takes value 0 ∈ E(Q), a contradiction.

Let C ∈ Z be the integer such that f∗w0 = Cφ(q)dq/q, where w0 is the Néron differential on E

and φ(q) is the normalized new form associated to E (it is conjectured that C = 1 if f is an optimal

parametrization). Let α ∈ H1(X0(N)(C),R) be the path represented by the imaginary axis from 0 to i∞
on H. Let m

n be the reduced fraction with n � 1 such that nf∗α = mγ+, where γ+ is a generator of

H1(E(C),Z)+. Note that n is the order of f([0]) in E(Q)tor. It follows that

L(E, 1) =

∫
α

2πiφ(z)dz = C−1

∫
f∗α

w0 = C−1m

n
Ω+.

In particular, if n �= 1 then L(E, 1) �= 0.
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Proof of Lemma 2.8. Let P1 = [h0, 1] be the CM point on XU with h0 ∈ H the unique point fixed by

K×. Then P1 is defined over H . Note that for any t ∈ K̂×, let σt ∈ Gal(H/K) be the image of t under

the reciprocity law map. We have that

[h0, t]
w = [h0, tw] = [h0, tt0j] = [h0, jtt0] = [h0, tt0].

It follows that for any t ∈ K̂×,

Q = f([h0, t]) + f([h0, tw]) = f(P1)
σt + f(P1)

σtt0 .

Let h = [H : K]. Then taking summation of the above equality over all t ∈ K̂×/K×(U ∩ K̂×) and noting

that σt = σt−1 on H by the assumption that Ẑ× ⊂ U , we have that

T := yK + yK = hCQ ∈ E(Q)[2δ] \ (2E(Q) + E(Q)[2δ−1])

is of order 2δ and it follows that 2δyK ∈ E(K)−.
We now claim that E(K)[2∞] = E(Q)[2∞]. Otherwise let P ∈ E(K)[2∞] \ E(Q), then K = Q(P )

which is only ramified at 2 and primes dividing N , which contradicts that (2N,D) = 1.

Suppose that 2δyK ∈ 2δE(K)− +E(K)tor and let 2δyK = 2δy+ t with y ∈ E(K)− and t ∈ E(K)[2∞].

Then s := yK − y ∈ E(K)[2∞] = E(Q)[2∞] and therefore

T = yK + yK = 2s ∈ 2E(Q),

a contradiction. We have shown that

2δyK ∈ E(K)− \ 2δE(K)− + E(K)−tor.

Suppose that yK ∈ 2E(K) + E(K)tor. Say yK = 2y + t for some y ∈ E(K) and t ∈ E(K)[2∞] =

E(Q)[2∞]. It follows that T = yK + yK = 2(y + y) + 2t ∈ 2E(Q), a contradiction. Thus we have that

yK ∈ E(K)\2E(K) + E(K)tor.

Remark 2.11. In the statement of Lemma 2.8, the relation (2.1) gives that the point in yK ∈ E(K)

is non-torsion, while the relation (2.2) gives that the group E(D)(Q) should have rank one.

With the above generalized Birch’s lemma and Euler system property, we can get a family of rank

zero and rank one quadratic twists of elliptic curves which are parametrized by arbitrary level of modular

curves.

Theorem 2.12. Let E be an elliptic curve over Q of conductor N and φ =
∑

n=1 anq
n the associated

new form. Let f : XU → E over Q be a modular parametrization by a Shimura curve XU associated to

an indefinite quaternion algebra B of level U ⊃ Ẑ×. Let K ⊂ B be an imaginary quadratic field with

discriminant D �= −3,−4. Assume that

(1) E(Q) has no order 4 torsion points;

(2) (D, 2N) = 1 and [H : K] is odd, where H is the abelian extension over K such that Gal(H/K) ∼=
K̂×/K×(U ∩ K̂×) under the reciprocity law in class field theory;

(3) there exists w = t0j ∈ N
̂B×U which is a special automorphism for the pair (XU ,K) and such that

f + fw is a constant morphism with value in a torsion point Q0 /∈ 2E(Q).

Let S be a set of finite places of Q containing all places dividing 2ND such that U = USU
S with

US ⊂∏v∈S G(Qv) and US is a maximal open compact subgroup of G(AS
f ). For any r � 1, let Σr denote

the set of primes � /∈ S satisfying:

(i) a� ≡ 0 mod 2r+1, (ii) � ≡ 1 mod 4, (iii) σK
t0 (

√
�) =

√
�.

Here σ : K̂×/K× → Gal(Kab/K) is the reciprocity law morphism in class field theory. Then for any

integer M = �1 · · · �r with �1, . . . , �r ∈ Σr,

rankZE
(DM)(Q) = 1 = ords=1L(E

(DM), s) and rankZE
(M)(Q) = 0 = ords=1L(E

(M), s).
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We prove this theorem by arguing the non-triviality of the Heegner points and applying the theorem

of Kolyvagin and Gross-Zagier.

First, we give the construction of the Heegner point in our situation.

Denote HM to be the ring class field of K with conductor M and let χM denote the character over K

defining the extension K(
√
M).

Consider the CM point of conductor M,

PM = [h0, g(M)] ∈ XU (HM ),

which is defined over HM , the abelian extension over K such that

Gal(HM/K) ∼= K̂×/K×(g(M)Ug(M)−1 ∩ K̂×)

via the reciprocity law map in class field theory.

Let C be an odd integer killing the odd part of E(H0)tor, and we define the Heegner point

yM := C ·
∑

σ∈Gal(HM/K)

f(PM )σχM (σ).

Denote H0 = K(
√
�1, . . . ,

√
�r). It is clear that H0 is contained in HM and the prime 2 is unramified

over H0. So we have

E(H0)[2
∞] = E(Q)[2].

The following theorem is a generalization of Lemma 2.8, from which Theorem 2.12 follows.

Theorem 2.13. Let E,K,M = �1 · · · �r be as in Theorem 2.12. Then the point yM has 2-index r − 1

in E(Q(
√
DM))−. Moreover, yM = 2rx for some x ∈ E(H0) with x+ x = T ∈ E(Q)[2] being of order 2.

Remark 2.14. In the case r = 0, the statement is understood as that y ∈ E(K) \ 2E(K) + E(K)tor
and 2y ∈ E(K)− has 2-index 0 in E(K)−. The case r = 0 has already been proved by Lemma 2.8.

Proof of Theorem 2.13. We use induction on the number s of primes � |M which splits in K.

First, we consider the initial case with s = 0, i.e., all primes �1, . . . , �r are inert in K. Note that it is

Birch’s lemma’s case when r = 0 and we now assume that r > 0.

Recall that H0 = K(
√
�1, . . . ,

√
�r) and let y0 = C · TrHM/H0

f(PM ). For each positive divisor d of M ,

let χd denote the character over K defining K(
√
d) and let

yd := C ·
∑

σ∈Gal(HM/K)

f(PM )σχd(σ).

For each positive divisor d of M with d �= M , by the norm relation of Heegner points, we have that

(noting that each a� is divisible by 2r+1):

yd =

( ∏
� |M/d

a�

)
y0d = 2rbdy

0
d,

where we denote the primitive point of conductor d by

y0d := C ·
∑

σ∈Gal(Hd/K)

f(Pd)
σχd(σ),

and the integer bd is defined by

bd = 2−r
∏

� |M/d

a�.

From the following computation,∑
d |M

yd =
∑
d |M

∑
t∈Gal(HM/K)

f(P )tχd(t)

=
∑

t∈Gal(HM/K)

(∑
d |M

χd(t)

)
f(P )t

=2ry0,
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we get the relation ∑
d |M

yd = 2r · y0.

Thus we can write yM in the following form,

yM = 2rR, where R :=

(
y0 −

∑
d |M,d �=M

bdy
0
d

)
,

which shows that 2-index of y is at least r in E(H0). Noting that σK
t0 (

√
�i) =

√
�i, i.e., σt0 |H0 = 1, and

that

[HM : H0] = [H : K] ·
r∏

i=1

�i + 1

2

is an odd number by our assumption that �i ≡ 1 mod 4 and [H : K] is odd, we know that

T := R+R = y0 + y0 = [HM : H0] · C ·Q0 ∈ E(H0)[2
∞] = E(Q)[2]

is of order 2.

Consider the (injective) descent map

δ : E(K(
√
M))/2rE(K(

√
M)) → H1(K(

√
M), E[2r]),

and the inflation-restriction exact sequence

0 → H1(H0/K(
√
M), E[2r](H0)) → H1(K(

√
M), E[2r]) → H1(H0, E[2r]).

Note that δ(yM ) has image zero in H1(H0, E[2r]) since yM = 2rR with R ∈ E(H0). Thus

δ(yM ) ∈ H1(H0/K(
√
M), E[2r](H0)),

which is killed by 2. It follows that 2yM ∈ 2rE(K(
√
M)) and then

yM = 2r−1z + t,

for some z ∈ E(K(
√
M)) and t ∈ E(Q)[2].

Noting the relation yM = 2rR and the previous result, we also get

z = 2R+ s

for some s ∈ E(Q)[2].

We now claim that z ∈ E(Q(
√
DM))−, i.e., the 2-index of yM in E(Q(

√
DM))− is at least r − 1.

Let σ ∈ Gal(K(
√
M)/K) be the non-trivial element and still let σ denote its fixed lift to H0. Then

0 = yM + yσM = 2r(R +Rσ)

gives

R+Rσ ∈ E[2r](H0) = E(Q)[2],

and note the relation

z = 2R+ s, s ∈ E(Q)[2],

which implies that

z + zσ = 0.

On the other hand, we have seen that

T := y0 + y0 = [HM : H0] · C ·Q0
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is of order 2. Then

z + z = 2(R+R) = 2T = 0.

Now, consider the biquadratic extension K(
√
M) = Q(

√
D,

√
M) over Q, and the relation

z + z = 0, z + zσ = 0.

We get the result

z ∈ E(Q(
√
DM))−.

Therefore,

yM ∈ 2r−1E(Q(
√
DM))− + E(Q)[2]

has 2-index in E(Q(
√
DM))− at least r − 1.

Now, we show that the 2-index of yM is exactly r−1, i.e., yM /∈ 2rE(Q(
√
DM))−+E(Q)tor. Otherwise,

suppose we have yM = 2rz + t for some z ∈ E(Q(
√
DM))− and t ∈ E(Q(

√
DM))−tor. By yM = 2rR, we

have that (z −R) ∈ E(Q)[2], and it follows that

0 = (z + z)− (R+R) = −(y0 + y0),

which contradicts that y0 + y0 is of order 2.

Thus we complete the proof of the case where all primes � |M are inert in K.

Now assume that the number s of the split prime factors of M is greater than 0. Write M = M+M−
with M+ (resp. M−) the product of prime factors of M split (resp. inert) in K. By Euler system property

of the Heegner points, we know for each positive divisor d of M ,

yd =

( ∏
� |M−/(d,M−)

a� ·
∏

� |M+/(d,M+)

(a� − Frw�
− Frw�

)

)
y0d,

where

y0d = C ·
∑

σ∈Gal(Hd/K)

f(Pd)
σχd(σ).

Considering the relation,

yM +
∑

1�d |M,d �=M

yd = 2ry0,

we have that

yM +
∑

M−|d|M,d �=M

(±2μ(M/d))y0d ≡ 2ry0 mod 2r+1E(H0)
−,

where E(H0)
− is the subgroup of elements P ∈ E(H0) such that P + P = 0.

By induction, we know that each y0d = 2μ(d)xd with xd ∈ E(H0) such that xd + xd = T ∈ E(Q)[2] is

of order 2. It follows that

yM ≡ 2r
(
y0 −

∑
M−|d|M,d �=M

(±xd)

)
mod 2r+1E(H0)

−.

It is now clear that yM = 2rxM for some xM ∈ E(H0) with xM + xM = T ∈ E(H0)tor being of even

order. It follows the same as before by Kummer descent, and one can get 2yM ∈ 2rE(K(
√
M)).

Thus we may write

yM = 2r−1z + t

with z ∈ E(K(
√
M)) and t ∈ E(Q)[2]. It follows from 2r−1z + t = 2rxM that

(z − 2xM ) ∈ E(H0)[2
∞] = E(Q)[2].

Writing explicitly z = 2xM + s, with s ∈ E(Q)[2], we get z + z = 0.
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Now, choose σ ∈ Gal(K(
√
M)/K) to be the non-trivial element and lift this element to Gal(H0/K).

From the definition of yM we get

2r(xM + xσ
M ) = yM + yσM = 0.

Thus

xM + xσ
M ∈ E(H0)[2

r] = E(Q)[2].

From the relation z = 2xM + s we get

z + zσ = 0.

It follows that yM ∈ E(Q(
√
DM))− has 2-index at least r − 1.

Now, we show yM has 2-index exactly equal to r − 1. Suppose that the 2-index of yM is no less

than r. We may write yM = 2rzM + t with some zM ∈ E(Q(
√
DM))− and t ∈ E(Q(

√
DM))−tor. Then

we have that (zM − xM ) ∈ E(Q)[2] and therefore (xM + xM ) = (zM + zM ) = 0, which contradicts

xM + xM = T �= 0 .

3 Special value of L-function for rank zero twists of X0(49)

In this section, we will prove a result on the estimate of special values of L-function for the rank zero

twist of the elliptic curve A = (X0(49), [∞]). This result will be used in the final section to compare the

height relation of the Heegner points.

First, we recall the explicit Waldspurger formula for the curve A, which is already proved in [5].

Theorem 3.1 (Explicit Waldspurger formula). Let A = (X0(49), [∞]), K be an imaginary quadratic

field with discriminant D, and χ an unramified quadratic character over K. Assume that L(s, A, χ) has

global root number equal to +1 (thus 7 must be ramified in K and χ must be corresponding to K(
√
d) for

some positive fundamental discriminant d dividing D). Let f be the Gross-Prasad test vector for (A,χ).

Then we have ∣∣∣∣ ∑
t∈ ̂K×/K× ̂O×

B

f(t)χ(t)

∣∣∣∣2 = 22+δL(alg)(A(d), 1)L(alg)(A(D/d), 1),

where δ = 0 if K7
∼= Q7(

√−7), and δ = 1 if K7
∼= Q7(

√−35).

Now, using this formula we get the following proposition which is the main result of this section.

Proposition 3.2. Let R = q1 · · · qr be a square-free integer with all prime factors qi ≡ 1 mod 4 inert

in Q(
√−7). Let N = p1 · · · pk (k � 1) be a square-free integer with all prime factors pj completely split

in Q(A[4],
√
R). Then for the elliptic curve A = (X0(49), [∞]), we have that ord2(L

alg(A(R), 1)) = r− 1,

and ord2(L
alg(A(RN), 1)) � 2k + r + 1 .

We remark here that the first assertion in the proposition on two-adic valuation of L-value for the

curve A(R) has been already done in [5, Theorem 5.7]. So in the following proof we only discuss the

second assertion for the curve A(RN).

Proof of Proposition 3.2. The key idea for proving the proposition is similar to that in [5, Theorem 5.8].

But here we include all the details for completeness.

Keep the same notation as in [5] (note that we write R+, N+ for R,N here), take K = Q(
√−7RN).

We may assume r � 1, since the case r = 0 is already treated in [5, Proposition 5.10].

We begin to treat the case r = 1, then the assumption under this case in the proposition for the pi’s

is the same as those made in [5, Theorem 5.11]. Thus refering the proof there we get the assertion.

The difference in the argument in this proposition is that the assumption on pi may not always give

#(2A) an even number and this difference appears in the case of r = 2.

First we remark that in the case r = 2, analyzing the Rédei matrix, we can see that #(2A) is even.

While for even r � 4’s case, we need not use the fact that #(2A) is an even number.
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We prove the case of r � 2 with r even uniformly in the following. Noting K7
∼= Q7(

√−7), we choose

the test vector f for (A,χ(RN)) according to [5, Theorem 5.3]. We use induction on k+ r. Then we have∑
1�d |RN, μ((d,R)) even

yd =
∑

1�d |RN

yd = 2r+k
∑
t∈2A

f(t).

Noting that in this case, from [5, Lemma 5.6], we have yd = yn/d, and so the above summation can be

rewritten as ∑
1�d |RN, μ((d,R+)) even, d�

√
RN

yd = 2r+k−1
∑
t∈2A

f(t).

Analyze all the terms in the above formula except yRN . By induction hypothesis,

y2s = 4L(alg)(A(s), 1)L(alg)(A(R
s ·N+), 1), ∀ s |R, even μ(s)

gives ord2(ys) � k + r
2 + 1.

Also we know that

y2st = 4L(alg)(A(st), 1)L(alg)(A(
R+
s ·Nt ), 1), ∀ s |R, even μ(s), 1 �= t |N, st �= NR

gives ord2(yst) � k + r
2 + 2.

Note also that

ord2

(
2r+k−1

∑
t∈2A

f(t)

)
� r + k − 1

for all r � 4, and

ord2

(
2r+k−1

∑
t∈2A

f(t)

)
� r + k

for r = 2.

Putting all these facts together, we obtain

ord2(yN+R+) � k +
r

2
+ 1,

whence, using Waldspurger’s formula in Theorem 3.1, we obtain

ord2(L
(alg)(A(NR), 1)) � 2k + r + 1.

This completes the proof in this case.

While for the case of odd r � 3, we do not use the fact that #(2A) is an even number. Noting

K7
∼= Q7(

√−35), we choose f to be the test vector for (A,χ(R+N+)) according to [5, Theorem 5.3],

similar to the even case, by using induction method on r + k. We have∑
1�d |R+N+, odd μ((d,R+))

yd =
∑

1�d |R+N+

yd = 2r+k
∑
t∈2A

f(t).

We analyze all the terms except yR+N+ as follows.

By induction hypothesis,

y2s = 8L(alg)(A(s), 1)L(alg)(A(
R+
s ·N+), 1), ∀ s |R+, odd μ(s)

gives ord2(ys) � k + r+3
2 , while

y2st = 8L(alg)(A(st), 1)L(alg)(A(
R+
s ·N+

t ), 1), ∀ s |R+, odd μ(s), 1 �= t |N+, st �= N+R+

gives ord2(yst) � k + r+5
2 .

Note also that ord2(2
r+k

∑
t∈2A f(t)) � r + k.

Putting these facts together, we obtain ord2(yN+R+) � k + r+3
2 , whence using the Waldspurger’s

formula in Theorem 3.1 gives

ord2(L
(alg)(A(N+R+), 1)) � 2k + r + 1.
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4 Rank one quadratic twist and BSD conjecture

In this section, we will prove the main theorem concerning an infinite quadratic rank one twist family for

the elliptic curve of conductor 49, which generalizes the result in [5].

First, we state the main theorem.

Theorem 4.1. Let A = (X0(49), [∞]) and M = −�0RN be a square-free integer, where �0 ≡ 3 mod 4

is a prime not equal to 7 and is a non square modulo 7, R is a positive integer with all prime factors

≡ 1 mod 4 inert in Q(
√−7), and N is a positive integer with all prime factors splits completely in the

field Q(A[4],
√
R). Assume that

KN = Q(
√
−�0N)

has no ideal class of exact order 4. Then for the quadratic twist A(M) of A by the field Q(
√
M), we have

ords=1L(A
(M), s) = 1 = rankZA

(M)(Q),

and the Shafarevich-Tate group X(A(M)/Q) is finite of odd order. Moreover, the p-part of the full BSD

conjecture holds for all primes p � 7M .

We prove Theorem 4.1 via constructing the Heegner points, and show that the corresponding point is

non-torsion.

Assume that M = −�0RN is an integer in Theorem 4.1. Let HR be the ring class field of KN of

conductor R and let H0 ⊂ H be the maximal exponential-2 sub-extension over KN . It is clear that H0

is generated over Q by
√
�∗, where � runs all prime factors of M and

�∗ = (−1)
�−1
2 � ≡ 1 mod 4.

In particular, KN (
√
R) ⊂ H0.

Let P ∈ A(HR) be the CM point of conductor R, and let χR be the quadratic character of KN defining

the extension KN (
√
R) over KN . We define the Heegner point,

yR =
∑

σ∈Gal(HR/KN )

P σχR(σ) ∈ A(KN (
√
R)).

It is clear that Theorem 4.1 follows from the below theorem and together with an application of explicit

Gross-Zagier formula in [4], we can verify the two-part BSD conjecture for E(M).

Theorem 4.2. Let M = −�0RN be a negative square-free integer and assume that

(1) �0 �= 7 is a prime ≡ 3 mod 4, which is a non square modulo 7,

(2) R is a product of r primes congruent to 1 modulo 4, which is inert in Q(
√−7),

(3) N is a product of k primes complete split in Q(A[4]) and Q(
√
R).

Let A be the elliptic curve as in Theorem 4.1. Then the Heegner point yR satisfies

yR ∈ 2k+r−1A(Q(
√
M))− +A(Q(

√
M))tor.

Note that when k = r = 0, the above statement is understood as 2yR ∈ A(Q(
√
M))−.

Moreover, if KN = Q(
√−�0N) has no order 4 ideal class, then

yR /∈ 2k+rA(Q(
√
M))− +A(Q(

√
M))tor.

Remark 4.3. The conditions here generalize [5, Theorem 6.1] in two sides. First we remove the

conditions on the prime factor of R that should be inert in Q(
√−�0), second we generalize the condition

for the pi’s, and just need them split completely in Q(A[4],
√
R).

Proof of Theorem 4.2. The proof of the theorem combines the generalized Birch lemma, the Euler

system properties for the inert and split prime, the explicit Gross-Zagier formula and Tian’s induction

argument on Heegner points.
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Keeping the same notation as above, we denote s to be the number of primes dividing R which splits

in KN . We use induction on s, and in each s’s argument we argue by induction on k, the number of

primes divide N .

We begin to deal with the case s = 0, and induct on the number k of the primes dividing N. The case

of k = 0 has been already done according to Theorem 2.12. Now we treat the case k � 1. For any d |RN,

denote the character χd to correspond the quadratic extension KN (
√
d) of KN , and define the Heegner

point by

yd :=
∑

σt∈Gal(HR/KN )

P σtχd(σt).

By considering the Galois action of the nontrivial element of the group Gal(KN (
√
d)/KN ) and complex

conjugation on the point yd, we know that this point belongs to A(Q(
√−l0Nd))−. Noting the property

of Euler system for the inert primes, we know when R � d, i.e., there exists a prime q | R such that q � D,

then aq = 0, and

yd =
∑

σ∈Gal(HR/q/KN )

χD(σ)(TrHR/HR/q
PR)

σ =
∑

σ∈Gal(HR/q/KN )

χD(σ)(aqPR/q)
σ = 0.

Define y0 := TrHR/H0
P, and then by the observation∑

d |RN

χd(σt) = 2k+rδσt∈Gal(HR/H0).

Here,

δσt∈Gal(HR/H0) =

{
1, if σt ∈ Gal(HR/H0),

0, otherwise.

We get ∑
R|d|RN

yd =
∑

d |RN

yd = 2k+ry0.

Write the above formula in the following form,

yR = 2k+ry0 −
∑

1<d |N
ydR. (4.1)

By the earlier observation, we know

ydR ∈ A(Q(
√
−l0RNd))

−, where Nd =
N

d
.

Similarly, let K0 = Q(
√−�0Nd) and construct the analogous point y, denoted by y0dR. By the theorem

of Kolyvagin, we know that either y0dR is torsion point, or the Q-vector space A(Q(
√−�0RNd))

− ⊗Z Q is

of one dimension, and we can do the ratio, by explicit Gross-Zagier formula theorem in [4]:

[ydR : y0dR]
2 =

ĥK(ydR)

ĥK0(y
0
dR)

=
L(alg)(1, A(dR))

L(alg)(1, A(R))
.

By induction hypothesis (with respect to k’s induction), we know that

ydR = 2k+ry′dR.

Using this relation and (4.1), we know that

yR = 2k+r

(
y0 −

∑
1<d |N

y′dR

)
=: 2k+rxR. (4.2)
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We remark here that when Q(
√−l0N) has no ideal class of order 4, we will get that the degree [HR : H0]

is odd and

xR + xR = y0 + y0 = T,

where T is the nontrivial order 2 point on A over Q.

Noting (4.2), we know xR ∈ A(H0). So from the following two exact sequences,

0 → A(Q(
√−l0NR))

2k+rA(Q(
√−l0NR))

→ H1(Q(
√
−l0NR), A[2k+r])

and

0 → H1(Gal(H0/Q(
√
−l0NR)), A[2]) → H1(Q(

√
−l0NR), A[2k+r]) → H1(H0, A[2

k+r])

we know that the image of yR in H1(H0, A[2
k+r]) is zero, so

2yR ∈ 2k+rA(Q(
√
−l0NR))−.

Thus,

yR ∈ 2k+r−1A(Q(
√
−l0NR))− +A(Q(

√
−l0NR))tor.

Now, we claim that if Q(
√−l0N) has no ideal class of order 4, then

yR /∈ 2k+rA(Q(
√
−l0NR))− +A(Q(

√
−l0NR))tor

otherwise, we have

yR = 2k+rzR + T

with zR ∈ A(Q(
√−l0NR))−, T ∈ A(Q(

√−l0NR))tor = A(Q)[2].

Thus from the formula (4.2), we know

zR = y0 −
∑

1<d |N
y0dR + t, t ∈ A(Q)[2],

so from the degree [HR : H0] being odd and this formula, we know that

zR + zR = y0 + y0 = T

with T the nontrivial two torsion point in A(Q).

But our assumption on zR gives

zR + zR = 0.

This contradiction gives our claim.

Now we prove the case s = 0, while for the general s > 0 case, we also use induction on k, the number

of prime divisors of N. The initial k = 0’s case has been already done by Theorem 2.12. Now for the case

of k > 0, first we know that ∑
d |RN

yd = 2k+ry0.

With the same reason as above, we know yd �= 0 only if R− | d, here R− denotes the products of the prime

factors of R which are inert in K.

Write the above formula as follows,

yR +
∑

R−|d|R d �=R

yd +
∑

R−|d|RN μ(d,N)�1

yd = 2k+ry0. (4.3)

We call the above formula’s second term the type I and the third term the type II. We will treat them

separately.
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For the type I terms, by the Euler system properties for the split primes, we have

yd =
∑

σ∈Gal(Hd/KN )

(TrHR/Hd
P )σχd(σ) = 2μ(R/d)y′d,

where y′d is just the corresponding Heegner point constructed from Hd (which is just up to the plus or

minus sign).

Notice that the split prime divisor of d is less than s, so by induction hypothesis with respect to s, we

know

y′d = 2r−μ(R/d)+kYd,

where

Yd ∈ A(H0).

So we have yd = 2k+rYd and noticing that when the field KN has no ideal class of order four, by the

argument in the induction hypothesis with respect to s, we have

Yd + Y d = T for all R−|d|R with d �= R.

For the type II terms, write yd = yst, with s |R, 1 < t |N. Similar to that before, we know

yst ∈ A(Q(
√

−l0sNt))
− with Nt =

N

t
.

Let K0 = Q(
√−l0Nt) and construct the analogous point y, denoted by y0st. By the theorem of Kolyvagin,

we know that either y0st is a torsion point, or the Q-vector space A(Q(
√−l0sNt))

−⊗ZQ is one-dimensional,

and we can do the ratio, by explicit Gross-Zagier formula in [4]:

[yst : y
0
st]

2 =
ĥK(yst)

ĥK0(y
0
st)

=
L(alg)(1, A(st))

L(alg)(1, A(s))
.

Using the induction hypothesis both with respect to s and k, we know

yst = 2k+ry′st with y′st ∈ A(Q(
√
−l0sNt))

−.

Thus from (4.3), we know

yR = 2k+rZR with ZR ∈ A(H0).

Using the same cohomology argument as the case s = 0, we get

2yR ∈ 2k+rA(Q(
√
−l0NR))−,

equivalently,

yR ∈ 2k+r−1A(Q(
√
−l0NR))− +A(Q(

√
−l0NR))tor.

Now, assume the field KN has no ideal class of order four. Then we claim that

yR /∈ 2k+rA(Q(
√

−l0NR))− +A(Q(
√
−l0NR))tor.

Otherwise, suppose we have

yR = 2k+rzR + t,

with zR ∈ A(Q(
√−l0NR))−, t ∈ A(Q(

√−l0NR))tor = A(Q)[2]. Similarly to the case s = 0, we get

zR = y0 −
∑
type I

Yd −
∑
typeII

y′d + s, s ∈ A(Q)[2].

So from the number of the type I terms in the summation being odd, we get

zR + zR = T

contradicting our choice of zR. This gives the assertion for k, moreover the assertion for s. Now the

theorem is proved.
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Now, applying the explicit L-value formula in [4], we give the verification of the two-part BSD conjecture

for the above rank one quadratic twist families of A.

Proof of Theorem 4.1. Consider the curve A, which is given by the equation

y2 = x3 + 21x2 + 112x.

From the Tamagawa numbers and periods of their quadratic twists result in [5, Propositions 3.10 and

3.12], first we know that elliptic curve A(R) has Mordell-Weil rank 0 and the full BSD holds for A(R), i.e.,

L(1, A(R))/Ω(R) = 2r−1#X(A(R)/Q).

By the theorem of Kolyvagin and Gross-Zagier, we know that

ords=1L(A
(M), s) = 1 = rankZA

(M)(Q)

and the full BSD for A(M) becomes

L′(1, A(M))/Ω(M) ?
= 22k+r · R(A(M)) ·#X(A(M)/Q).

The explicit Gross-Zagier formula for KN = Q(
√−�0N) and χ = χR quadratic character of Gal(HR/KN)

defining KN(
√
R) is

L′(1, A, χR) =
8π2(φ, φ)Γ0(N)√

�0NR2
· (2ĥQ(yR)).

Note that

Ω(R)Ω(M) =
8π2(φ, φ)Γ0(N)√

�0NR2
,

thus the BSD conjecture for A(M) is reduced to

[A(M)(Q)/A(M)(Q)tor : ZyM ]2
?
= 22(k+r−1) ·#X(A(M)/Q) ·#X(A(R)/Q). (∗)

It follows from Kolyvagin’s work that the right-hand side is finite. For any prime � � 14M , the �-part of

BSD follows from the work of Perrion-Riou [13] and Kobayashi [9].

Now, we show the 2-part of the BSD conjecture for A(M). It follows from Theorem 4.2 that the 2-

part of the left-hand side of (∗) is 2(k + r − 1). It follows from the 2-descent computation, for example

see [5, Section 3], that

dimF2 Sel
(2)(A(M)/Q)/A(M)[2](Q) = 1 and dimF2 Sel

(2)(A(R)/Q)/A(R)[2](Q) = 0.

Thus #X(A(M)/Q)#X(A(R)/Q) is an odd integer and thus the 2-part of (∗) holds.
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