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Abstract A k-coloring (not necessarily proper) of vertices of a graph is called acyclic, if for every pair of

distinct colors i and j the subgraph induced by the edges whose endpoints have colors i and j is acyclic. We

consider some generalized acyclic k-colorings, namely, we require that each color class induces an acyclic or

bounded degree graph. Mainly we focus on graphs with maximum degree 5. We prove that any such graph has

an acyclic 5-coloring such that each color class induces an acyclic graph with maximum degree at most 4. We

prove that the problem of deciding whether a graph G has an acyclic 2-coloring in which each color class induces

a graph with maximum degree at most 3 is NP-complete, even for graphs with maximum degree 5. We also give

a linear-time algorithm for an acyclic t-improper coloring of any graph with maximum degree d assuming that

the number of colors is large enough.
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1 Introduction

We consider only finite, simple graphs. We use standard notation. For a graph G, we denote its vertex

set and edge set by V (G) and E(G), respectively. Let v ∈ V (G). By NG(v) (or N(v)) we denote the

set of the neighbours of v in G. The cardinality of NG(v) is called the degree of v, denoted by dG(v) (or

d(v)). The maximum and minimum vertex degrees in G are denoted by Δ(G) and δ(G), respectively.

For undefined concepts, we refer the reader to [22].

A k-coloring of a graph G is a mapping c from the set of vertices of G to the set {1, 2, . . . , k} of colors.

We can also regard a k-coloring of G as a partition of the set V (G) into color classes V1, V2, . . . , Vk such

that each Vi is the set of vertices with color i. In many situations, it is desired that the subgraph induced

by each set Vi has a given property. For example, requiring that each set Vi is independent defines a

proper k-coloring. If each set Vi induces a graph with a given property we obtain a generalised coloring.

One can also require that for any pair of distinct colors i and j, the subgraph induced by the edges

whose endpoints have colors i and j satisfies a given property, for example, is acyclic. This yields to the

concept of acyclic coloring. In this paper, we concentrate on such generalised acyclic colorings, in which

each color class induces an acyclic graph or a graph with bounded degree. Below we state precisely this

notion. The terminology and notation concerning generalised colorings, which we follow here, can be

found in [6], while the concept of generalised acyclic colorings was introduced in [4].
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Let P1,P2, . . . ,Pk be nonempty classes of graphs closed with respect to isomorphism. A k-coloring of

a graph G is called a (P1,P2, . . . ,Pk)-coloring of G if for each i ∈ {1, 2, . . . , k} the subgraph induced in

G by the color class Vi belongs to Pi. Such a coloring is called an acyclic (P1,P2, . . . , Pk)-coloring if

for every two distinct colors i and j the subgraph induced by the edges whose endpoints have colors i

and j is acyclic. In other words, every bichromatic cycle in G contains at least one monochromatic edge.

Throughout this paper, we use the following notation: Sd for the class of graphs with maximum degree

at most d, and D1 for the class of acyclic graphs. For convenience, an acyclic (P1,P2, . . . ,Pk)-coloring,

where Pi = P , for each i ∈ {1, 2, . . . , k}, is referred to as an acyclic P(k)-coloring.

With this notation, an acyclic k-coloring of a graph G corresponds to an acyclic P(k)-coloring of G,

where the class P is the set of all edgeless graphs. We use χa(G) to denote the acyclic chromatic number.

An acyclic P(k)-coloring of G such that P = Sd is called an acyclic d-improper k-coloring.

The notion of acyclic coloring of graphs was introduced in 1973 by Grűnbaum [17] and has been widely

considered in the recent past. Even more attention has been paid to this problem since it was proved

by Coleman and Cai [12], and Coleman and Moré [13] that acyclic colorings can be used in computing

Hessian matrices via the substitution method (see also [16]).

However, determining χa(G) is quite difficult. Kostochka [19] proved that it is an NP-complete problem

to decide for a given arbitrary graphG whether χa(G) � 3. The acyclic chromatic number was determined

for several families of graphs. In particular, this parameter was studied intensively for the family of graphs

with fixed maximum degree. Using the probabilistic method, Alon et al. [3] showed that any graph of

maximum degree Δ can be acyclically colored using O(Δ4/3) colors. A t-improper analogues of this result

was obtained by Addario-Berry et al. [1]. They proved that any graph of maximum degree Δ has an

acyclic t-improper coloring with O(ΔlnΔ+ (Δ− t)Δ) colors.

Focusing on the family of graphs with small maximum degree, it was shown in [17] that χa(G) � 4 for

any graph with maximum degree 3 (see also [21]). Burstein [11] proved that χa(G) � 5 for any graph

with maximum degree 4. Recently, Kostochka and Stocker [20] proved that χa(G) � 7 for any graph

with maximum degree 5. For graphs with maximum degree 6, Hocquard [18] proved that 11 colors are

enough for an acyclic coloring.

In 1999, Boiron et al. [5] began with the study on the problem of acyclic (P1,P2, . . . , Pk)-colorings of

outerplanar and planar graphs, and bounded degree graphs [4]. In particular, they proved that any graph

G ∈ S3 has an acyclic (D1,S2)-coloring as well as an acyclic S(3)
1 -coloring [4]. Addario-Berry et al. [2]

proved that each graph from S3 has an acyclic (S2,S2)-coloring. This theorem was also proved in [9],

where a polynomial-time algorithm was presented. In [10], a polynomial-time algorithm that provides an

acyclic (D1,LF)-coloring of any graph from S3\{K4,K3,3} was given (LF is the set of acyclic graphs with

maximum degree at most 2). Related problems concerning the class of graphs with maximum degree at

most 4 are considered in [14], where it was proved that any graph from S4 has an acyclic S(3)
3 -coloring, as

well as an acyclic (S3 ∩D1)
(4)-coloring. In the present paper we continue the previous work and consider

acyclic colorings of graphs with maximum degree at most 5. We prove that each graph G ∈ S5 has an

acyclic D(5)
1 -coloring. The number of colors in this theorem cannot be reduced, since the complete graph

K6 needs at least 5 colors in any such coloring. Next, we slightly improve this result, by proving that

any graph from S5 can be acyclically colored with 5 colors in such a way that each color class induces

an acyclic graph with maximum degree at most 4. We also show that the problem of deciding whether a

given graph G ∈ S5 is acyclically (S3,S3)-colorable is NP-complete. We finish the paper with a general

result giving linear-time algorithms for acyclic t-improper colorings of graphs with maximum degree d

assuming that the number of colors is large enough with respect to d.

The following definitions and notation, which will be used later in the proofs, deal with a partial k-

coloring of a graph G, defined as an assignment c of colors from the set {1, 2, . . . , k} to a subset C of

V (G). Given a partial k-coloring c of G, the set C is the set of colored vertices. For a vertex v let

nv = |C ∩ N(v)| and pv = |⋃u∈N(v)∩C c(u)|. Clearly, pv � nv. Let Cv denote the multiset of colors

assigned by c to the colored neighbors of v. For S ⊆ V (G) let C(S) =
⋃

v∈S Cv. A vertex v is called

rainbow, if all its colored neighbours have distinct colors.

Let c be a partial k-coloring of G and i, j be distinct colors. A bichromatic cycle (resp. path) having
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no monochromatic edge is called an alternating cycle (resp. path). An (i, j)-alternating cycle (path) is

an alternating cycle (path) with each vertex colored i or j. Let F be a cycle in G containing v. Then

F is called (i, j)-dangerous for v, if coloring v with i results in an (i, j)-alternating cycle. F is called

i-mono-dangerous for v, if coloring v with i results in a monochromatic cycle containing v. When it is

convenient, all (i, j)-dangerous cycles and k-mono-dangerous cycles for v will be called simply dangerous

cycles for v.

2 Acyclic colorings such that each color class induces an acyclic graph

First we show that any graph from S5 has an acyclic D(5)
1 -coloring. We start with the following auxiliary

lemma.

Lemma 2.1. Let G ∈ S5 and c be a partial acyclic D(5)
1 -coloring of G. Assume v is an uncolored

vertex. If nv � 4, then there exists a color for v that allows us to extend c.

Proof. Let c be a partial acyclic D(5)
1 -coloring of G and v be an uncolored vertex with nv � 4. If

nv � 1, then clearly we can color v. Hence, we assume nv � 2. We show that we can color v. The vertex

v cannot be colored with a particular color i (i = 1, . . . , 5) only if there is an (i, j)-dangerous cycle for

v, where j ∈ {1, . . . , 5}, j �= i or if there is an i-mono-dangerous cycle for v. It is easy to observe the

following:

Proposition 2.2. If c is any partial acyclic D(5)
1 -coloring of G ∈ S5 and u ∈ V (G) is rainbow, then

we can color or recolor u with any of 5 colors.

Thus, we need to consider four cases.

Case 1. Assume that exactly two of the colored neighbours of v have the same color, say x, y ∈ N(v)

and c(x) = c(y) = 1, and the others (if exist) have distinct colors or are uncolored. Observe that for each

color i ∈ {2, . . . , 5} there must be an (i, 1)-dangerous cycle and a 1-mono-dangerous cycle for v, passing

through x, since otherwise we can color v. It follows that x is adjacent to at least five distinct colored

vertices, but this is impossible, since d(x) � 5 and x is also adjacent to v (which is uncolored).

Case 2. Assume that exactly three of the colored neighbours of v have the same color, say x, y, z ∈
N(v) and c(x) = c(y) = c(z) = 1. If one of x, y, z has four colored neighbours and is rainbow, then

Proposition 2.2 yields we can recolor this vertex with a color i �∈ Cv and obtain Case 1. It follows

pu � 3, for u ∈ {x, y, z}. Moreover, we cannot color v only if for each color i ∈ {2, . . . , 5} there is an

(i, 1)-dangerous cycle and a 1-mono-dangerous cycle for v. Hence each color i ∈ {1, . . . , 5} belongs to at

least two different multisets among Cx, Cy, Cz . Thus, px + py + pz � 10, which is impossible.

Case 3. If there are two pairs (say, x, y and z, w) of neighbours of v with the same color, w.l.o.g.

c(x) = c(y) = 1 and c(z) = c(w) = 2, then, similarly as above, we may assume none of x, y, z, w has

neighbours with four different colors. Thus, pu � 3, for u ∈ {x, y, z, w}. We may assume that for

each i ∈ {3, 4, 5} there is an (i, 1)-dangerous or an (i, 2)-dangerous cycle for v and that there is also a

1-mono-dangerous and a 2-mono-dangerous cycle for v. Hence each color i ∈ {1, . . . , 5} belongs to at

least two different multisets among Cx, Cy or to at least two different multisets among Cz , Cw. Thus,

at least one of the following occurs: px = py = 3 or pz = pw = 3. W.l.o.g., we may assume the former

holds. Notice, c(x) = c(y). We focus on x. Assume x1, x2, x3 ∈ N(x) \ {v} are all in some dangerous (or

mono-dangerous) cycles for v and c(x1) = c1, c(x2) = c2, c(x3) = c3, ca �= cb for a �= b. If nx = 3, then we

recolor x with 2 and obtain Case 2. Otherwise, we may assume that there is a neighbour x4 of x such

that c(x4) = c3. Observe that we cannot recolor x with a color i ∈ {2, . . . , 5} only if for each i there is

an alternating (c3, i)-path from x3 to x4. Hence 2, . . . , 5 ∈ Cx3 , but this is impossible, since Cx3 already

contains color 1 twice (because x3 is in the dangerous cycle for v).

Case 4. Assume that nv = 4 and all colored neighbours of v have the same color, say x, y, z, w ∈ N(v)

and c(x) = c(y) = c(z) = c(w) = 1. As above, we may assume none of x, y, z, w has neighbours with

four different colors. Moreover, for each i ∈ {2, . . . , 5} there must be an (i, 1)-dangerous cycle and also
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a 1-mono-dangerous cycle for v, since otherwise we can color v. Hence each i ∈ {1, . . . , 5} belongs to at

least two different multisets among Cx, Cy , Cz, Cw. Thus, there are at least two vertices among x, y, z, w,

say x, y, such that px = py = 3. We proceed similarly, as in Case 3.

To prove the next theorem we adapt the method presented in [18]. In particular, we use a notion of

good spanning trees. Let G be a d-regular connected graph. A good spanning tree of G is defined as its

spanning tree that contains a vertex, called root, adjacent to d− 1 leaves.

Theorem 2.3 (See [18]). Every regular connected graph admits a good spanning tree.

Theorem 2.4. Every graph G ∈ S5 has an acyclic D(5)
1 -coloring.

Proof. Let G ∈ S5. Clearly, we can assume G is connected. If δ(G) � 4, then obviously G is 4-

degenerate. Thus, Lemma 2.1 yields there is an acyclic D(5)
1 -coloring of G.

Now we may assume that G is 5-regular. Let T be a good spanning tree of G, rooted at vn, where n

is the order of G (the existence of such a tree follows from Theorem 2.3). Let N(vn) = {v1, v2, v3, v4, u},
where v1, v2, v3 and v4 are leaves in T . We order the vertices of G, from v5 to vn, according to the post

order walk of T . We construct an acyclic D(5)
1 -coloring as follows. First, we color the vertices v1, . . . , v4

with four different colors. Then we successively color vertices v5 up to vn−1 = u, using Lemma 2.1, but

we will never recolor the vertices v1, . . . , v4. Now let us check that this is possible. Assume that we are

going to color vi, where i ∈ {5, . . . , n− 1}. If vi is rainbow or has at most one colored neighbour, then

clearly we can color it. Otherwise, one of the Cases 1–4, considered in Lemma 2.1, occurs. In Case 1

there is no recoloring. In Cases 2–4 it may happen, that we need to recolor a rainbow vertex, say w,

from the neighbourhood of vi. However, we do it only if w has four colored neighbours. We claim that

w �∈ {v1, . . . , v4}. Indeed, if vj is adjacent to vi, for some j ∈ {1, . . . , 4}, then vj has at most three colored

neighbours (d(vj) = 5 and vj has at least two uncolored neighbours, namely vi and vn). In Cases 3

and 4 it is also possible that we recolor another neighbour of vi, say x. But in this case there is always

another neighbour of vi, say y, with the same color as x such that we can recolor y instead of x. Hence if

x ∈ {v1, . . . , v4}, then we recolor y. Clearly, if x is one of v1, . . . , v4, then y is not, because x and y have

the same color.

Now let c be the obtained partial coloring of G, with vn being the only one uncolored vertex. If vn is

rainbow, then Proposition 2.2 yields we can color vn. Otherwise, assume that there are two neighbours

of vn with the same color, say c(v1) = c(u) = 1, and all other neighbours have distinct colors. We cannot

color vn only if for each color α ∈ {2, . . . , 5} there is an (α, 1)-dangerous cycle and there is a 1-mono-

dangerous cycle for vn. Each such cycle passes through both v1 and u. Hence pv1 � 5 and pu � 5, but

this is impossible, because d(v1) = d(u) = 5.

3 Acyclic colorings such that each color class induces an acyclic graph with

bounded degree

Since K6 needs 5 colors in any acyclic coloring in which each color class induces an acyclic graph, we

cannot reduce the number of colors in Theorem 2.4. Nevertheless, we can improve Theorem 2.4 in the

following way.

Theorem 3.1. Every graph G ∈ S5 has an acyclic (S4 ∩ D1)
(5)-coloring.

Proof. Let G ∈ S5. Theorem 2.4 implies that there is an acyclic D(5)
1 -coloring of G. We choose such

a coloring c with the smallest possible number of vertices that have 5 neighbours with its color. Let

v be a vertex that has 5 neighbours colored with c(v). We show that we can recolor v or a neighbour

of v (sometimes we must recolor some other vertices first) in such a way that the obtained coloring is an

acyclic D(5)
1 -coloring of G with smaller number of vertices having 5 neighbours colored with its color. It

is easily seen that it is enough to prove the theorem for 5-regular graphs. Thus, let G be 5-regular.

Assume that c(v) = 1 and Cv = {1, 1, 1, 1, 1}. Let N(v) = {x, y, z, w, t}. A colored vertex u is called

4-saturated, if it has exactly 4 neighbours colored with c(u). First observe the following:
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Claim 1. Suppose that there is a neighbour of v, say x, such that each vertex of N(x) \ {v} is colored

with distinct colors and x has a neighbour, say x1, such that c(x1) �= 1 and x1 is not 4-saturated. Then

we can recolor x with c(x1).

Observe that if we cannot recolor v, then for any color i ∈ {2, . . . , 5} there is an (i, 1)-dangerous

cycle for v. Thus, each color i ∈ {2, . . . , 5} must be contained in at least two different multisets among

Cx, Cy, Cz , Cw, Ct. It follows that there is a neighbour of v, say x, which belongs to at least two dangerous

cycles for v. We will focus on this vertex and consider all possible assignments of colors to its neighbours.

Let N(x) = {v, x1, x2, x3, x4}. We may assume w.l.o.g. that c(x1) = 2, c(x2) = 3 and both x1 and x2

belong to some dangerous cycles for v. Thus we have the following:

Observation 3.2. In both Cx1 and Cx2 color 1 occurs at least twice; neither x1 nor x2 is 4-saturated.

Claim 2. Suppose that in C(N(x) \ {v}) exactly one color occurs twice. Then we can recolor x.

Proof. Let c(x3) = a, c(x4) = b. Since exactly one color in C(N(x) \ {v}) occurs twice, there are (up

to symmetry) three cases to consider.

Case 1. Assume that a = b = 1.

If we cannot recolor x with any color i, for i ∈ {2, 3, 4, 5}, then for each i ∈ {2, 3, 4, 5} there is an

(i, 1)-dangerous cycle for x, passing through both x3 and x4. Thus, Cx3 = {1, . . . , 5}. Furthermore,

none of the neighbours of x3 is 4-saturated. Hence, we can recolor x3 with 4. Thus, by Claim 1 we can

recolor x.

Case 2. Suppose that a ∈ {1, 4, 5} and b ∈ {2, 3}.
For convenience, we may assume that b = 2 and a �= 5. If we cannot recolor x neither with 3 nor

with 5, then there is an (i, 2)-dangerous cycle for x, passing through both x1 and x4, for each i ∈ {3, 5}.
Thus, x4 is not 4-saturated. Next, if we cannot recolor x with 2, then there must be a 2-mono-dangerous

cycle for x, passing through both x1 and x4. It follows that Cx1 = {1, 1, 2, 3, 5}. We may recolor x1

with 5 (since the neighbour of x1 colored with 5 is not 4-saturated). Claim 1 implies we can recolor x.

Case 3. Let b = a and a ∈ {4, 5}.
Assume w.l.o.g. that a = 4. If we cannot recolor x with any color i, for i ∈ {2, 3, 5}, then for each

i ∈ {2, 3, 5} there is an (i, 4)-dangerous cycle for x, passing through both x3 and x4. Thus, neither x3 nor

x4 is 4-saturated. It follows that if we cannot recolor x with 4, then there must be a 4-mono-dangerous

cycle for x, passing through both x3 and x4. Hence, Cx3 = {1, . . . , 5}. We may recolor x3 with 5 (since

the neighbour of x3 colored with 5 is not 4-saturated). From Claim 1 it follows that we can recolor x.

Claims 1 and 2 imply that we have to consider only two cases: Both colors 2, 3 occur twice in Cx and

one of colors from {2, 3} occurs three times.

Case 1. Assume that c(x1) = 2, c(x2) = 3, c(x3) = 2, c(x4) = 3.

Observe the following:

Claim 3. If there is a neighbour xi of x such that in C(N(xi) \ {x}) each color occurs exactly once

and at most one vertex of N(xi) \ {x} is both 4-saturated and colored with either 4 or 5, then we can

recolor x.

Proof. First, we recolor xi either with 4 or 5. Since at most one vertex of N(xi) \ {x} colored with 4

or 5 is 4-saturated and 4, 5 /∈ Cx, such a recoloring is possible. Thus, we obtain the coloring that satisfies

the assertions of Claim 2 and hence we can recolor x.

Claim 4. If x has a neighbour xi such that xi does not have a 4-saturated neighbour colored with 1

and there is neither a 1-mono-dangerous cycle nor a (1, j)-dangerous cycle for xi (for each j ∈ {2, 3, 4, 5})
passing through two vertices of N(xi) \ {x}, then we can recolor x.

Proof. Suppose to the contrary that there is a neighbour xi of x such that none of the colored 1

neighbours of xi is 4-saturated and there is neither a 1-mono-dangerous cycle nor a (1, j)-dangerous cycle

for xi passing through two vertices ofN(xi)\{x} and we cannot recolor x. If we can recolor xi with 1, then

the coloring satisfies the assertions of Claim 2 and hence we can recolor x, a contradiction. Otherwise,



1432 Fiedorowicz A et al. Sci China Math July 2016 Vol. 59 No. 7

there is a 1-mono-dangerous cycle for xi passing through x. For convenience and w.l.o.g. we may assume

that c(xi) = 2. (Thus, i ∈ {1, 3}.) If there is no (a, 3)-dangerous cycle for x (a ∈ {4, 5}), then we may

recolor xi with 1 and x with a. Thus, we assume that both such dangerous cycles are present, and are

passing through x2 and x4. Hence, x4 is not 4-saturated. (Recall that Observation 3.2 yields that also x2

is not 4-saturated.) It follows that we cannot recolor x with 3 only if there is a 3-mono-dangerous cycle for

x, passing through x2 and x4. From the above and Observation 3.2 we clearly obtain Cx2 = {1, 1, 3, 4, 5}.
Therefore x2 satisfies the assertions of Claim 3. This implies that we can recolor x.

Observe that if we can recolor x with 4 or 5, then we are done. This is impossible only if there are

at least two dangerous cycles for x, namely a (4, i)-dangerous cycle and a (5, j)-dangerous cycle, where

i, j ∈ {2, 3}. Up to symmetry, there are two possibilities.

Subcase 1.1. Assume that both a (4, 2)-dangerous cycle and a (5, 3)-dangerous cycle for x are present.

It follows that 4 ∈ Cx1 , 4 ∈ Cx3 and 5 ∈ Cx2 , 5 ∈ Cx4 . Next, we cannot recolor x with 2 only if there

is a (2, 3)-dangerous cycle for x, passing through x2 and x4, or there is a 2-mono-dangerous cycle for x,

passing through x1 and x3. The same argument can be applied if we consider recoloring x with 3. Assume

first that we have for x both a 2-mono-dangerous cycle and a (3, 2)-dangerous cycle, both passing through

x1. Recall that Observation 3.2 yields that color 1 occurs twice in Cx1 . Thus Cx1 = {1, 1, 2, 3, 4} and by

Claim 3 we can recolor x, so we are done. We can proceed in this way also in the case when we have for

x both a 3-mono-dangerous cycle and a (2, 3)-dangerous cycle (both passing through x2). Hence we have

two possibilities left. There are either both a 2-mono and a 3-mono-dangerous cycle for x, or both a (2, 3)-

dangerous and a (3, 2)-dangerous cycle for x. We consider only the first situation, since the second one can

be solved analogously. It follows that Cx1 = {1, 1, 2, 4, α} and Cx2 = {1, 1, 3, 5, β}. We focus on the vertex

x1 (see Figure 1). Let N(x1) \ {x} = {x′
1, x

′
2, x

′
3, x

′
4} and c(x′

1) = 1, c(x′
2) = 2, c(x′

3) = 4, c(x′
4) = α. By

Claim 3 we may assume that α ∈ {1, 2, 4}. Claim 4 implies that there is a (1, α)-dangerous or 1-mono-

dangerous cycle for x1, passing through two vertices of {x′
1, x

′
2, x

′
3, x

′
4} (these two vertices are colored

with α) or α = 1 and x′
4 is 4-saturated. In the former case, if recoloring x1 with 4, 5 is impossible, then

there are two dangerous cycles for x1 passing through two vertices of {x′
1, x

′
2, x

′
3, x

′
4} colored with α. Let

x′ ∈ {x′
1, x

′
2, x

′
3} be the vertex with color α. Thus, Cx′ = {2, 1, 2, 4, 5}. We can recolor x′ with 5 (since

the neighbour of x′ colored with 5 is not 4-saturated) and hence by Claim 3 we can recolor x. In the

latter case, when α = 1 and x′
4 is 4-saturated, it is easy to observe that we can recolor x1 with 4 and

then Claim 2 implies we can recolor x.

v
1

x1
y

1 t1 w1

x12 x23 x32 x43

x′
11 x′

22 x′
34 x′

4α

z1

p2 q2 r2

Figure 1 Subcase 1.1. Since there is a (2, 1)-dangerous cycle for v, c(p) = 2. Since there is a 2-mono-dangerous cycle

for x, c(q) = 2. Since there is a (4, 2)-dangerous cycle for x, c(r) = 2
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v
1

x1
y

1 t1 w1

x12 x23 x32 x43

x′
11 x′

24 x′
35 x′

4α

z1

p2 q2 r2

Figure 2 Subcase 1.2. Since there is a (2, 1)-dangerous cycle for v, c(p) = 2. Since there is a (4, 2)-dangerous cycle

for x, c(q) = 2. Since there is a (5, 2)-dangerous cycle for x, c(r) = 2

Subcase 1.2. Suppose that there are both a (4, 2)-dangerous cycle and a (5, 2)-dangerous cycle for x.

It follows that Cx1 = {1, 1, 4, 5, α} (see Figure 2). Let

N(x1) \ {x} = {x′
1, x

′
2, x

′
3, x

′
4}

and c(x′
1) = 1, c(x′

2) = 2, c(x′
3) = 4, c(x′

4) = α. By Claim 3 we may assume that α ∈ {1, 2, 4}. If recoloring
x1 with 1, 4, 5 is impossible, then there are three dangerous cycles for x1 passing through two vertices

of {x′
1, x

′
2, x

′
3, x

′
4} colored with α (Claim 4 implies that the (1, α)-dangerous or 1-mono-dangerous cycle

exists) or α = 1 and x′
4 is 4-saturated. We start with considering the first situation. Let x′ ∈ {x′

1, x
′
2, x

′
3}

be the vertex with color α. Thus, Cx′ = {2, 1, 2, 4, 5}. We can recolor x′ with 3 and hence by Claim 3 we

can recolor x. In the second case, the fact that x′
4 is 4-saturated implies we can recolor x1 with 4 and,

by Claim 2, we can recolor x.

Case 2. Assume that c(x1) = 2, c(x2) = 3, c(x3) = 3, c(x4) = 3.

Similarly as Claims 3 and 4 we can prove the following:

Claim 5. If there is a neighbour xi (i ∈ {2, 3, 4}) of x such that in C(N(xi) \ {x}) each color occurs

exactly once and at most one vertex of N(xi) \ {x} is both 4-saturated and colored with either 4 or 5,

then we can recolor x.

Claim 6. If x has a neighbour xi (i ∈ {2, 3, 4}) such that xi does not have a 4-saturated neighbour

colored with 1 and there is neither a 1-mono-dangerous cycle nor a (1, j)-dangerous cycle for xi passing

through two vertices of N(xi) \ {x}, then we can recolor x.

If we can recolor x with 2, 4 or 5, then we are done. This is impossible only if there is an (i, 3)-dangerous

cycle for x, for each i ∈ {2, 4, 5}. Thus, recoloring x with 3 is impossible if we have a 3-mono-dangerous

cycle for x or one of x2, x3, x4 is 4-saturated. Assume at the beginning that we have a 4-saturated

neighbour of x, say x4. Hence, Cx2 = {1, 1, 2, 4, 5} and we can recolor x2 with 4, so by Claim 2 we can

recolor x. Therefore, we may assume there is a 3-mono-dangerous cycle for x and none of x2, x3, x4 is

4-saturated. Thus, each color i ∈ {2, 3, 4, 5} occurs twice among Cx2 , Cx3 , Cx4 and hence one multiset

contains at least three of these colors. W.l.o.g. we may assume that Cx4 = {1, 2, 3, 4, α} (see Figure 3).

By Claim 5 we may assume that α = 2, 3 or 4. If recoloring x4 with 1, 4, 5 is impossible, then there are

three dangerous cycles for x4 passing through two vertices of {x′
1, x

′
2, x

′
3, x

′
4} colored with α (Claim 6

implies that the (1, α)-dangerous cycle exists). Let x′ ∈ {x′
1, x

′
2, x

′
3} be the vertex with color α. Thus,

Cx′ = {3, 1, 3, 4, 5}. We can recolor x′ with 5 and hence by Claim 5 we can recolor x.
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x12 x23 x33 x43

z1

x′
12 x′

23 x′
34 x′
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p3 q3 r3

Figure 3 Case 2. Since there is a (2, 3)-dangerous cycle for x, c(p) = 3. Since there is a 3-mono-dangerous cycle for x,

c(q) = 3. Since there is a (4, 3)-dangerous cycle for x, c(r) = 3

4 Complexity result

Now we show that the problem of deciding whether a graph G ∈ S5 has an acyclic (S3,S3)-coloring

is NP-complete. First we present some special graphs and their properties. Let G(Cj) and F be the

graphs depicted in Figure 4. It is easy to observe that both G(Cj) and F belong to S5. Their acyclic

(S3,S3)-colorings are presented in Figure 4. The following two observations concerning graph G(Cj) are

straightforward.

Observation 4.1. In any acyclic (S3,S3)-coloring of G(Cj) the vertices uj,1, uj,2, uj,3 are not all

colored with the same color.

Observation 4.2. Any partition of the set {uj,1, uj,2, uj,3} into two nonempty parts can be extended

to an acyclic (S3,S3)-coloring of G(Cj).

uj,1
uj,2 uj,3

d

e

a

c
g

b

x′

i

x

h

G(Cj) F

Figure 4 Graphs G(Cj) and F
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A colored vertex v is called 3-saturated, if it has exactly 3 neighbours colored with c(v). Considering

the graph F , its important properties are the following.

Observation 4.3. In any acyclic (S3,S3)-coloring f of F , both x and x′ have the same color, x has

exactly two neighbours colored with f(x), and x′ has exactly one neighbour colored with f(x′).

Proof. Let f be an acyclic (S3,S3)-coloring of F . We prove that f has the desired properties, by

considering all possible colorings of the vertices a, b, c.

Case 1. Assume that a, b, c all have the same color, say 1.

If d also has color 1, then i, h, e, g and x′ must be colored with 2, because each of a, b, c, d is 3-saturated.

There is an alternating path between h and i, hence x must be colored with 2. Clearly, such a coloring

has the desired properties.

Suppose now that d has color 2. It follows that e and g must be colored with 1, since otherwise we

have an alternating cycle. Thus, c has four neighbours in its own color, a contradiction.

Case 2. Suppose two vertices among a, b, c are colored with 1 and the remaining one is colored with 2.

There are three possibilities.

Assume a, b have color 1, c has color 2. Observe that d, e, g must have color 1, since otherwise an

alternating cycle occurs. Hence b is 3-saturated, thus x′ must be colored with 2. It follows that there is

an alternating cycle induced by x′, b, c, e, a contradiction.

Suppose now that a, c have color 1, b has color 2. Clearly, d, e must have color 1, otherwise an

alternating cycle occurs. Thus, d is 3-saturated. Hence i must be colored with 2. Furthermore, each of

c, e, a is 3-saturated, thus g, x′, h must have color 2. There is an alternating path between h and i, hence

x must have color 2. Again, such a coloring has the desired properties.

Finally, assume b, c have color 1 and a has color 2. It follows d, g must be colored with 1, otherwise we

would have an alternating cycle. Thus, c is 3-saturated, therefore e must have color 2, but then vertices

d, a, c, e induce an alternating cycle. A contradiction follows.

Observation 4.4. In any acyclic (S3,S3)-coloring of F there is no alternating path between the ver-

tices x and x′.

Let m be a positive integer. Based on the graph F , we construct a graph Gm(vi). We take m copies of

F , say F1, F2, . . . , Fm. In each copy Fs, vertices x and x′ are denoted by xi,s and x′
i,s, respectively. Next,

for s ∈ {1, . . . ,m− 1}, we identify x′
i,s with xi,s+1, and denote the obtained vertex by vi,s+1. Finally, we

identify xi,1 with x′
i,m and denote the new vertex by vi,1. Observe that Gm(vi) ∈ S5 and the vertices vi,s

are all of degree 4. Such a graph for m = 3 is presented in Figure 5.

Observation 4.5. For any positive integer m, the graph Gm(vi) has an acyclic (S3,S3)-coloring. In

any such a coloring the vertices vi,s are 3-saturated and are all in the same color, for s ∈ {1, . . . ,m}.
Proof. This follows from the construction of Gm(vi) and Observations 4.3 and 4.4.

Theorem 4.6. The problem of deciding whether a graph admits an acyclic (S3,S3)-coloring is NP-

complete, even for graphs with maximum degree at most 5.

Proof. Clearly the problem of acyclic (S3,S3)-coloring is in NP. We will show that it is NP-complete. We

use the reduction from the problem Not-All-Equal-3-SAT without negative literals (3NN-SAT problem,

for short) whose NP-completeness was proved in [15]. Let C = {C1, . . . , Cm} be a set of clauses and

let V = {v1, . . . , vn} be a set of Boolean variables. Furthermore, Cj ⊆ V and for j ∈ {1, . . . ,m},
Cj = (cj1, cj2, cj3). In 3NN-SAT we ask if there is a truth assignment such that in each clause there exist

at least one true variable and at least one false variable. Note that there are no negative variables.

Given an example C of 3NN-SAT we create an instance of our problem, i.e., the graph G, in the

following way. For each variable vi ∈ V we take the graph Gm(vi) and for each clause Cj ∈ C we take

the graph G(Cj). To obtain the graph G we connect graphs Gm(vi) and G(Cj) in such a way that

for i = 1, . . . , n, j = 1, . . . ,m, k = 1, 2, 3, we add an edge vi,juj,k if and only if cjk is the variable vi.

Observe that for j ∈ {1, . . . ,m}, k ∈ {1, 2, 3} each vertex uj,k is adjacent to exactly one vertex from
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vi,1

vi,2

vi,3

Figure 5 Graph G3(vi)

graphs Gm(v1), . . . , G
m(vn) and for i ∈ {1, . . . , n}, s ∈ {1, . . . ,m} each vertex vi,s is adjacent to at

most one vertex from graphs G(C1), . . . , G(Cm). Thus, G ∈ S5. We will prove that G has an acyclic

(S3,S3)-coloring if and only if C ∈ 3NN-SAT.

Assume first that C ∈ 3NN-SAT. We construct the coloring c as follows. If the variable vi was assigned

true, then all vertices vi,s are colored with 1, otherwise we color them with 2. We will prove that this

coloring can be extended to an acyclic (S3,S3)-coloring of G. Observation 4.5 yields that this coloring

can be extended to an acyclic (S3,S3)-coloring of each graph Gm(vi). Furthermore, all vertices vi,s are 3-

saturated, hence a vertex uj,k is colored with 1, if its corresponding variable in the clause Cj was assigned

false, and with 2 otherwise. Since C ∈ 3NN-SAT, we have the partition of each set {uj,1, uj,2, uj,3} into

two nonempty parts. Observation 4.2 yields it can be extended to an acyclic (S3,S3)-coloring of each

graph G(Cj). We claim that such a coloring is an acyclic (S3,S3)-coloring of G. Indeed, if there is an

alternating cycle, then such a cycle passes through vi,s and vi,s+1, but Observation 4.4 implies there is

no alternating path joining them. Thus, the obtained coloring is an acyclic (S3,S3)-coloring of G.

Now let c be an acyclic (S3,S3)-coloring of G. Observation 4.5 yields for s = 1, . . . ,m, the vertices

vi,s in each graph G(vi) all have the same color and are 3-saturated. Thus, uj,k from the graph G(Cj)

must have a color distinct from the color of its neighbour vi,j . Hence for i = 1, . . . , n vertices uj,k,

corresponding in the graphs G(Cj) to the variable cj,k = vi all have the same color. Furthermore, in

G(Cj), the vertices uj,1, uj,2, uj,3 do not all have the same color, which follows from Observation 4.1.

Thus, the following assignment cj,k := true if uj,k has color 1, cj,k := false for otherwise, shows C ∈
3NN-SAT.

5 Results for graphs with fixed maximum degree

Kostochka and Stocker [20] proved that there exists a linear-time algorithm computing an acyclic coloring

of any graph with maximum degree d with at most � (d+1)2

4 �+1 colors. Using a similar method, we prove

analogous results for acyclic improper colorings of graphs with maximum degree d. We need a definition

first. Recall that for a given partial k-coloring of a graph G, a vertex is rainbow, if all its colored

neighbours have distinct colors. A partial k-coloring of G is called rainbow if every uncolored vertex is

rainbow.

Theorem 5.1. For every fixed d, d � 4, there exists a linear (in n) algorithm finding an acyclic

(d−1)-improper coloring for any n-vertex graph G with maximum degree at most d using �d2

4 �+1 colors.

Proof. Let G be a graph with maximum degree d and c be its partial coloring. By C we denote the

set of colored vertices of G. The algorithm proceeds as follows: We choose an uncolored vertex v with
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the most number of colored neighbours, then we greedily color v with color ci such that:

(1) if v has exactly one colored neighbour, then ci /∈ c(N(v)) ∪ c(
⋃

x∈N(v)\C N(x));

(2) if v has more than one colored neighbour, then ci /∈ c(
⋃

x∈N(v)\C N(x)).

First, we claim that we can always find such a color ci in {1, . . . , �d2

4 �+1}. Suppose that v has exactly

one colored neighbour. Since v is an uncolored vertex with the most number of colored neighbours, each

uncolored neighbour of v has at most one colored neighbour. Thus,

∣∣∣∣c(N(v)) ∪ c

( ⋃
x∈N(v)\C

N(x)

)∣∣∣∣ � d �
⌊
d2

4

⌋
.

Suppose that v has exactly k colored neighbours. It clearly follows that

∣∣∣∣c
( ⋃

x∈N(v)\C
N(x)

)∣∣∣∣ � (d− k)k �
⌊
d

2

⌋⌈
d

2

⌉
=

⌊
d2

4

⌋
.

Now we show that we eventually obtain an acyclic (d − 1)-improper coloring. After each step the

partial coloring is rainbow. Thus, if we color the vertex v, then we do not create any alternating cycle.

Finally, it suffices to prove that after each step any colored vertex has at least one neighbour colored

with a color other than its own (if G has more than one colored vertex). Indeed, if an uncolored vertex

v has exactly one colored neighbour, then according to our algorithm we color v with a color that is not

in Cv. Suppose now that the uncolored vertex v has more than one colored neighbour and till now after

each step any colored vertex has at least one neighbour with a color distinct from its own. The vertex v

is rainbow, hence if we color v, then v will still have this property. Each colored neighbour of v has this

property, hence coloring v will not destroy this property.

For the runtime analysis, we propose the following detailed algorithm for an acyclic (d − 1)-improper

k-coloring of a graph G ∈ Sd, with

k =

⌊
d2

4

⌋
+ 1.

The graph G is represented by the lists of incidences. For each vertex v we add to its list of incidences

two additional values: u(v) which stores the number of colored neighbours of v, c(v) which stores the

color of v. If v is uncolored, then we have c(v) = 0. We also maintain d+ 1 lists A0, A1, . . . , Ad to store

vertices and we put a vertex v to Aj if u(v) = j. Initially, we put c(v) = u(v) = 0 for each vertex v, A0

contains all vertices, and i = 0, n = |V (G)|.
(1) while i < n do

(2) choose the largest index j such that Aj is nonempty;

(3) choose v to be the first vertex on Aj ;

(4) if u(v) = j then

(5) {
(6) if u(v) = 1 then choose the first color a �∈ c(N(v)) ∪ c(

⋃
y∈N(v):c(y)=0N(y))

(7) else choose the first color a /∈ c(
⋃

y∈N(v):c(y)=0N(y));

(8) c(v) := a; /* color v with a */

(9) delete v from Aj ;

(10) for each neighbour y of v do

(11) if c(y) = 0 then {u(y) + +; add y to Au(y);}
(12) i ++;

(13) }
(14) else delete v from Aj . /* v is already colored */

Let us compute the running time of the algorithm. Observe first that the while loop iterates at most

(d+1)n times. Steps (2) and (3) take O(d) time. Choosing an admissible color for a vertex v (in Steps (6)

or (7)) and coloring v takes O(d2) time, since we have to check the colors of the vertices which are at

distance at most two from v. Updating the list Aj takes a constant amount of time. The for loop in
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step (10) iterates at most d times and each iteration takes a constant amount of time. The last step also

takes a constant amount of time. Hence, for each iteration of the while loop we need O(d2) time. Thus

for fixed d, the running time of the algorithm is O(n).

Theorem 5.2. Let d and t be fixed such that 2 � t � �d
2� − 1. There exists a linear (in n) algorithm

finding an acyclic (d − t)-improper coloring for any n-vertex graph G with maximum degree at most d

using �d2

4 �+ t+ 1 colors.

Proof. Similarly, as in the previous proof, the algorithm will color vertices of G such that after each

step we obtain a rainbow partial coloring c of G with some additional restrictions. In each step of

the algorithm we choose an uncolored vertex v with the most number of colored neighbours. Let v be

the vertex with exactly k colored neighbours. Observe that there is an ordering v1, v2, . . . , vk of colored

neighbours of v such that each vertex vi (i = 2, . . . , k) had at least i−1 colored neighbours at the moment

when it was colored. Indeed, if we order the neighbours of v such that vi is (in this ordering) before vj ,

if vi was colored before vj , then we obtain such an ordering. Clearly, each vertex vi had at least i − 1

colored neighbours at the moment when it was colored, otherwise v should be colored before vi. Hence

each vertex vi (i = 2, . . . , k) has at least i − 1 neighbours colored with distinct colors. We color v with

color ci such that

(1) if k � t, then ci /∈ c({v1, v2, . . . , vk}) ∪ c(
⋃

x∈N(v)\C N(x));

(2) if k > t, then ci /∈ c({v1, v2, . . . , vt}) ∪ c(
⋃

x∈N(v)\C N(x)).

First, we claim that we can always find such a color ci in{
1, . . . ,

⌊
d2

4

⌋
+ t+ 1

}
.

Since the vertex v has k colored neighbours and it is the vertex with the most number of colored neigh-

bours, we have ∣∣∣∣c
( ⋃

x∈N(v)\C
N(x)

)∣∣∣∣ � (d− k)k �
⌊
d

2

⌋⌈
d

2

⌉
=

⌊
d2

4

⌋
.

Now, we show that after each step the obtained partial coloring has no alternating cycle and for each

colored vertex v the following holds: Either v has at least t colored neighbours which have colors distinct

from the color of v, or all colored neighbours of v have distinct colors (if v has less than t + 1 colored

neighbours). If we color the first vertex, then it obviously holds. Suppose that till now after each step

this property holds and now we color the vertex v which has k colored neighbours. Since v is rainbow,

coloring v does not create any alternating cycle. If k � t, then we color v with a color distinct from

the colors of its neighbours. Thus, all neighbours of v are colored with distinct colors. Furthermore, for

each neighbour u of v the following holds: Either u has at least t neighbours colored with colors distinct

from the color of u, or all colored neighbours of u have distinct colors (if u has less than t + 1 colored

neighbours). Suppose now that k > t. We color v with the color distinct from the colors of v1, v2, . . . , vt.

Thus, v has at least t neighbours colored with colors distinct from its own color. Before we color v,

any vertex among vt+1, . . . , vk has at least t colored neighbours, so each of vt+1, . . . , vk has at least t

neighbours colored with a color distinct from its own. So after coloring v they still have this property.

Since we color v with a color distinct from the colors of v1, v2, . . . , vt, after coloring v the neighbours of

v1, v2, . . . , vt have this property. Hence the algorithm creates a (d− t)-improper coloring. For the running

time, it is enough to observe that an algorithm, similar to that given in the proof of Theorem 5.1, will

work.

It is an easy observation that if a graph G admits an acyclic t-improper coloring, then G also has

an acyclic p-improper coloring, for any p � t. From this fact and since an acyclic coloring can be

always treated as an acyclic s-improper coloring, with s = 0, the next result follows directly from the

aforementioned theorem of Kostochka and Stocker [20].

Corollary 5.3. Let d and t be fixed such that t � 	d
2
. There exists a linear (in n) algorithm finding an

acyclic t-improper coloring for any n-vertex graph G with maximum degree at most d using � (d+1)2

4 �+ 1

colors.
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6 Concluding remarks

In the paper, we consider acyclic improper colorings of graphs with bounded degree. In particular, we

give a linear-time algorithm for an acyclic t-improper coloring of any graph with maximum degree at

most d, provided that the number of colors used is large enough with respect to d. Fixing the maximum

degree to five, we obtain results which are more exact. Namely, we show that every such graph has an

acyclic coloring with five colors in which each color class induces an acyclic graph (see Theorem 2.4) and

we further improve this result (see Theorem 3.1) as follows: Every graph with maximum degree at most

five admits an acyclic coloring with five colors such that each color class induces an acyclic graph with

maximum degree at most four.

It might be interesting, how the above mentioned result can be further improved. One possible way is

to put stronger condition on the color classes. We post the following problem:

Open Problem 6.1. Let G be a graph with maximum degree at most five. For which properties P
graph G admits an acyclic (P)(5)-coloring?

We prove that the property D1 ∩ S4 (of acyclic graphs with maximum degree at most four) can be

taken as P . Finding the smallest such property is a challenging question. If we additionally assume

that the property P has to be hereditary, then the above problem coincides with the problem of finding

the acyclic reducible bounds for S5 (see, e.g., [7, 8] for the definition and some results concerning acyclic

reducible bounds).

On the other hand, one can think about reducing the number of colors used. Since the complete graph

on five vertices is, as far as we know, the only one graph that actually requires 5 colors, maybe it can be

possible to use less colors, while excluding K5.
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