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Abstract We study the stable homotopy types of F 4
n(2)

-polyhedra, i.e., (n − 1)-connected, at most (n

+ 4)-dimensional polyhedra with 2-torsion free homologies. We are able to classify the indecomposable F 4
n(2)

-

polyhedra. The proof relies on the matrix problem technique which was developed in the classification of

representations of algebras and applied to homotopy theory by Baues and Drozd (1999, 2001, 2004).
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1 Introduction

Let Ak
n (n � k+1) be the subcategories of the stable homotopy category consisting of (n− 1)-connected

polyhedra with dimension at most n+ k. It is a fully additive category if we consider the wedge of two

polyhedra as the coproduct of two objects in the categoryAk
n. The classification problem ofAk

n (n � k+1)

is to find a complete list of indecomposable isomorphic classes, i.e., the indecomposable homotopy types

in Ak
n (n � k + 1). For k � 3, all indecomposable stable homotopy types have been described in [3].

For k � 4, Drozd shows the classification problem is wild (in the sense similar to that in representation

of finite dimensional algebras) in [8] by finding a wild subcategory of A4
n (n � 5) whose objects are

polyhedra with 2-torsion homologies.

In another direction, Baues and Drozd [1, 2] also considered full subcategory F k
n of Ak

n (n � k + 1)

consisting of polyhedra with torsion free homology groups. For k � 5, such polyhedra have been classified

to have finite indecomposable homotopy types in [1, 2] or [6, 8]. For k = 6, Drozd [7] got tame type

classification of congruence classes of homotopy types, and proved that, for k > 6, this problem is wild

in [7].

This is the second of a series of papers devoted to the homotopy theory of Ak
n-polyhedra. In [9], Pan

and Zhu noticed that, for (n − 1)-connected and at most (n + k)-dimensional (k < 7) spaces with 2-

and 3-torsion free homologies, the classification of indecomposable stable homotopy types essentially is
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reduced to that of spaces with torsion free homologies. When homologies of the spaces involved have 3-

torsion, the reduction process does not lead to the matrix problem for spaces with torsion free homologies

but to a matrix problem which can be solved. By this we are able to classify homotopy types of the full

subcategory F 4
n(2) of A4

n (n � 5) consisting of polyhedra with 2-torsion free homology groups. We will

discuss the splitting of smash product of Ak
n-polyhedra in a latter publication.

The paper is organized as follows. Section 2 contains some basic notation and facts about stable

homotopy category and classification problem. Our main theorem is given at the end of this section. In

Section 3, Theorem 3.2 and Corollary 3.3 establish a connection between bimodule categories and stable

homotopy categories. In Section 4, we use the known results of indecomposable homotopy types of F 4
n

in [1] to classify the indecomposable isomorphic classes of another matrix problem (A 0,G0) corresponding
to F 4

n . In Section 5, the matrix problem (A ′,G′) used to classify the indecomposable homotopy types

of F 4
n(2) is given. In Section 6, we solve the matrix problem (A ′,G′) by the results of indecomposable

isomorphic classes of matrix problem (A 0,G0). Section 7 presents the concluding remarks.

2 Preliminaries

In this paper, “polyhedron” is used as “finite CW-complex” and “space” means a based space. We denote

by ∗X (or by ∗ if there is no ambiguity) the based point of the space X . Denote by Hot(X,Y ) the set

of homotopy classes of continuous maps X → Y and by CW the homotopy category of polyhedra. The

suspension functor Σ : X �→ X [1] (X [n] = ΣnX) defines a natural map Hot(X,Y ) → Hot(X [n], Y [n]).

Set Hos(X,Y ) = limn→∞ Hot(X [n], Y [n]). If α ∈ Hot(X [n], Y [n]), β ∈ Hot(Y [m], Z[m]), the class

β[n] · α[m] ∈ Hot(X [m+ n], Z[m+ n]) after stabilization is, by definition, the product βα of the classes

of α and β in Hos(X,Z). Thus we obtain the stable homotopy category of polyhedra CWS. Extending

CWS by adding formal negative shifts X [−n](n ∈ N) of polyhedra and setting Hos(X [−n], Y [−m]) :=

Hos(X [m], Y [n]), one gets the category S of [5], which is a fully additive category, and we denote it by

CWS too.

We will say a polyhedron X is p-torsion free if all homology groups of X are p-torsion free, where

p is a prime. Denote by Ak
n the full subcategory of CW consisting of (n − 1)-connected and at most

(n + k)-dimensional polyhedra, and denote by F k
n (resp. F k

n(2)) the full subcategory of Ak
n consisting

of torsion free (resp. 2-torsion free) polyhedra. The suspension gives a functor Σ : F k
n → F k

n+1 (resp.

Σ : F k
n(2) → F k

n+1(2)). By the Freudenthal Theorem (see [11, Theorem 6.26]), one has the following

proposition.

Proposition 2.1. If dimX � d and Y is (n − 1)-connected, where d < 2n − 1, then the map

Hot(X,Y ) → Hot(X [1], Y [1]) is bijective. If d = 2n − 1, this map is surjective. In particular, the

map Hot(X [m], Y [m])→ Hos(X,Y ) is bijective if m > d− 2n+ 1 and surjective if m = d− 2n+ 1.

From Proposition 2.1, we get the following proposition.

Proposition 2.2. The suspension functor induces equivalences Ak
n

∼−→ Ak
n+1 for all n > k + 1.

Moreover, if n = k+1, the suspension functor Ak
n −→ Ak

n+1 is a full representation equivalence, i.e., it is

full, dense and reflects isomorphisms.

Remark 2.3. If an additive functor F : C → D is a full representation equivalence, denoted by

C F�rep−−−−→ D, then it induces a 1-1 correspondence of indecomposable isomorphic classes of objects of

these two additive categories.

Corollary 2.4. Functors Σ : F k
n → F k

n+1 and Σ : F k
n(2) → F k

n+1(2) are equivalences of categories for

n � k + 2 and full representation equivalences for n = k + 1.

Therefore F k := F k
n and F k

(2) := F k
n(2) with n � k + 2 do not depend on n.

Let C be an additive category with zero object ∗ and biproducts A⊕B for any objects A,B ∈ C, where
X ∈ C means that X is an object of C. X ∈ C is decomposable if there is an isomorphism X ∼= A ⊕ B

where A and B are not isomorphic to ∗, otherwise X is indecomposable. For example, X ∈ CW (resp.

CWS) is indecomposable if we always get one of X1 and X2 is contractible whenever X is homotopy
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equivalent (resp. stable homotopy equivalent) to X1 ∨X2. A decomposition of X ∈ C is an isomorphism

X ∼= A1⊕· · ·⊕An, n <∞, where Ai is indecomposable for i ∈ {1, 2, . . . , n}. The classification problem of

category C is to find a complete list of indecomposable isomorphism types in C and describe the possible

decompositions of objects in C.
Theorem 2.5 (Main theorem). All indecomposable (stable) homotopy types in F 4

n(2) (n � 5) are as

follows:

(i) The polyhedra given in Theorem 6.3;

(ii) the Moore spaces M(Z/pr, n), M(Z/pr, n + 1), M(Z/pr, n + 2) and M(Z/pr, n + 3), where the

prime p 
= 2, r ∈ N+;

(iii) Sn, Sn+1, Sn+2, Sn+3, Sn+4 and Cη = Sn
⋃

η e
n+2, where η is the Hopf map.

3 Techniques

Definition 3.1. Let A and B be additive categories. U is an A-B-bimodule, i.e., a biadditive functor

Aop × B → Ab, the category of abelian groups. We define the bimodule category El(U) as follows:
• the set of objects is the disjoint union

⋃
A∈A,B∈B U(A,B).

• A morphism α→ β, where α ∈ U(A,B), β ∈ U(A′, B′), is a pair of morphisms f : A→ A′, g : B → B′

such that gα = βf ∈ U(A,B′) (We write gα instead of U(1, g)α and βf instead of U(f, 1)β).
Obviously El(U) is a (full) additive category if so are A and B.
Suppose A and B are two full subcategories of CW (or CWS). Then we denote by A†B the full

subcategory of CW (or CWS) consisting of cofibers of maps f : A → B, where A ∈ A, B ∈ B. We also

denote by A†mB the full subcategory of A†B consisting of cofibers of f : A → B such that Hm(f) = 0

and denote by Γ(A,B) the subgroup of Hos(A,B) consisting of maps f : A → B such that Hm(f) = 0,

where A ∈ A, B ∈ B.
Theorem 3.2. Let A and B be two full subcategories of CWS. Suppose that Hos(B,A[1]) = 0 for all

A ∈ A, B ∈ B. Consider H : Aop × B → Ab, i.e., (A,B) �→ Hos(A,B), as an A-B-bimodule. Denote by

I the ideal of category A†B consisting of morphisms which factor both through B and A[1], and by J the

ideal of the category El(H) consisting of morphisms (α, β) : f → f ′ such that β factors through f ′ and α

factors through f . Then

(1) the functor C : El(H)→ A†B (f �→ Cf ) induces an equivalence El(H)/J � A†B/I.
(2) Moreover, I2 = 0, hence the projection A†B → A†B/I is a representation equivalence.

(3) In particular, let n < m � n + k and denote by B̃ the full subcategory of F k
n(2) (n � k + 1)

consisting of all (n − 1)-connected polyhedra of dimension at most m and by Ã the full subcategory of

F k
n(2) (n � k + 1) consisting of all (m− 1)-connected polyhedra of dimension at most n+ k − 1. Then

El(H)/J C �−−−→ Ã†B̃/I P�rep←−−−− Ã†B̃

gives a natural one-to-one correspondence between isomorphic classes of objects of El(H)/J and Ã†B̃.
F k
n(2) is the full subcategory of Ã†B̃ consisting of 2-torsion free polyhedra.

Proof. (1) and (2) of Theorem 3.2 follow directly from [8, Theorem 1.1]. It remains to show that F k
n(2)

is a full subcategory of Ã†B̃. For any X ∈ F k
n(2), let B = Xn+2 be the (n+ 2)-skeleton of X . We get a

cofiber sequence B → X → X/B. Since X/B � A[1] for some A by Proposition 2.2, there is a cofiber

sequence A
f−→ B → X → X/B, i.e., X � Cf . By the homology exact sequence of cofiber sequence, it is

easy to know that A ∈ Ã, B ∈ B̃.
The following corollary follows from [8, Corollary 1.2].

Corollary 3.3. Under conditions of Theorem 3.2, let H0 be an A-B-subbimodule of H such that

f1af2 = 0 whenever a ∈ El(H0), fi ∈ Hos(Bi, Ai) (i = 1, 2). Denote by A†H0
B the full subcategory of
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A†B consisting of cofibers of a ∈ El(H0). IH0 = Mor(A†H0
B) ∩ I and JH0 = Mor(El(H0)) ∩ J . Then

we have

(1) J 2
H0

= I2H0
= 0;

(2) C : El(H0)
P�rep−−−−→ El(H0)/JH0

C �−−−→ A†H0
B/IH0

P�rep←−−−− A†H0
B.

If H0 = Γ : Aop × B → Ab, then A†H0
B = A†mB.

Matrix problem. Let A be a set of matrices which is closed under finite direct sums of matrices and

let G denote the set of admissible transformations on A . We say A ∼= B in A if A can be transformed to

B by admissible transformations, and we say A is decomposable if A ∼= A1⊕A2 for nontrivial A1, A2 ∈ A .

The block matrices (A1
0 ) and (A1 0) are also thought to be decomposable. The matrix problem (A ,G),

or simply A , means to classify the indecomposable isomorphic classes of A (denoted by indA ) under

admissible transformations G. Matrix problem (A ,G) is said to be equivalent to matrix problem (A ′,G′)
if there is a bijective map ϕ : A → A ′ such that A ∼= A′ in A if and only if ϕ(A) ∼= ϕ(A′) in A ′ and
ϕ(A1 ⊕ A2) = ϕ(A1) ⊕ ϕ(A2). It is clear that if two matrix problems are equivalent, then there is a

one-to-one correspondence between their indecomposable isomorphic classes.

Definition 3.4. Let A be a set of some matrices and “·” be a “product” of two matrices defined in

A (“·” may not be the usual matrix product). We say that M ∈ A is invertible in A if there is a matrix

N ∈ A such that M ·N = N ·M = I ∈ A , where I is the identity matrix.

In the following context, for a matrix problem (A ,G), saying a matrix M ∈ A is invertible always

means that M is invertible in A .

4 The solution of a new matrix problem of the category F 4
n (n ��� 5)

In the following context, the tabulations

* * *

* * *

represent the matrices or block matrices. For any category C, denote by indC the set of indecomposable

isomorphic classes of C.
indF 4

n is known in [1] and Drozd [8] got a matrix problem corresponding to F 4
n . Here we need a new

matrix problem (A 0,G0) for the classification problem of F 4
n .

When n � 5, denote by B0 the full subcategory of F 4
n (n � 5) consisting of all (n − 1)-connected

polyhedra of dimension at most n + 2 and by A0 the full subcategory of F 4
n (n � 5) consisting of all

(n+ 1)-connected polyhedra of dimension at most n+ 2. Then F 4
n = A0†n+2B0. From [4] we know

indA0 = {Sn+2, Sn+3}, indB0 =
{
Sn, Sn+1, Sn+2, Cη = Sn

⋃
η

en+2

}
.

Now taking m = n+ 2, we obtain the A0-B0 subbimodule Γ of H :

Γ : Aop
0 × B0 → Ab(A,B) �→ Γ(A,B),

where Γ(A,B) is the subgroup of Hos(A,B) defined in Section 3. Take H0 = Γ in Corollary 3.3. Then

f1af2 = 0 whenever fi ∈ Hos(Bi, Ai) (i = 1, 2), a ∈ Γ(A2, B1), Ai ∈ A0 and Bi ∈ B0. Hence by

Corollary 3.3, we have

C : El(Γ)
P�rep−−−−→ El(Γ)/JΓ C �−−−→ A0†n+2B0/IΓ

P�rep←−−−− A0†n+2B0.

Objects of El(Γ) can be represented by 5 × 2 block matrices (γij), where block γij has entries from

the (ij)-th cell of Table 1. Morphisms γ → γ′ are given by block matrices α = (αij)2×2, β = (βij)5×5,

αij has entries from the (ij)-th cell of Table 2 and βij has entries from the (ij)-th cell of Table 3. Their
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Table 1 Γ(A0,B0)

B0

A0
Sn+2 Sn+3

Sn
Z/2 Z/24

Sn+1 Z/2 Z/2

Sn+2 0 Z/2

Cη : n 0 Z/12

n+ 2 0 0

Table 2 Hos(A0,A0)

A0

A0
Sn+2 Sn+3

Sn+2
Z Z/2

Sn+3 0 Z

Table 3 Hos(B0,B0)

B0

B0
Sn Sn+1 Sn+2 Cη : n n+ 2

Sn Z Z/2 Z/2 2Z 0

Sn+1 0 Z Z/2 0 0

Sn+2 0 0 Z 0 Z

Cη : n Z 0 Z/2= Z
= 0

n+ 2 0 0 2Z= 0 Z=

sizes are compatible with those of γij and γ′
ij and βγ = γ′α. Such a morphism is invertible if and only

if α and β are invertible in Hos(A0,A0) and Hos(B0,B0), respectively. It is equivalent to say that all

diagonal blocks of α and β are square, and both det(α) and det(β) equal ±1. Since only entries from

Z and 2Z give nonzero input to the determinants, they belong indeed to Z. We get the corresponding

matrix problem of El(Γ) which is denoted by (A 0,G0).
In Table 3, Hos(Cη, Cη) is identified with the ring(

Z
= 0

0 Z
=

)
=

{(
a 0

0 b

)∣∣∣∣∣ a ≡ b (mod 2)

}
;

Hos(Sn+2, Cη) is identified with the subgroup ( Z/2
=

2Z= ) of(
Z/2

2Z

)
=

{(
ε

2a

)∣∣∣∣∣ ε ∈ Z/2, a ∈ Z

}
,

which is the image of the following injective map

Hos(Sn+2, Cη)
F−→
(

Z/2

2Z

)
, f �→

(
ε

2a

)
.

For any f ∈ Hos(Sn+2, Cη), let S
n+1 η−→ Sn i−→ Cη

q−→ Sn+2 be the cofiber sequence and Sn+3 ηn+2−−−→ Sn+2

be the suspension of η. Then qf = 2aιn+2 ∈ Hos(Sn+2, Sn+2) ∼= Z for some a ∈ Z, where ιn+2 : Sn+2 →
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Sn+2 is the identity map. Let

ε =

{
1, if fηn+2 
= 0,

0, if fηn+2 = 0,

and F be defined by mapping f to ( ε
2a ).

In order to make the product of matrices in Table 3 compatible with the composition of the corre-

sponding maps, special rules for the matrix product in Table 3 is needed:
(1) For (2a 0) and ( 1

2b ) respectively in

Cη : n, n+ 2

Sn 2Z 0

and
Sn+2

Cη : n Z/2=

n+ 2 2Z=

,

(2a 0)( 1
2b ) = a in

Sn+2

Sn Z/2
, where a is the image of a under the quotient map Z→ Z/2.

(2) For ( a0 ) and (ε), respectively in

Sn

Cη : n Z

n+ 2 0

and
Sn+2

Sn Z/2
, ( a0 )(ε) = ( 00 ) in

Sn+2

Cη : n Z/2=

n+ 2 2Z=

.

(3) Keep elements in zero blocks being zero. For example, for any (a) and (0 b), respectively in

Sn+2

Sn Z/2
and

Cη : n, n+ 2

Sn+2 0 Z

,

(a)(0 b) = (0 0) in

Cη : n, n+ 2

Sn+2
Z 0

,

where the second element is not ab but 0.

Denote byWx (respectivelyW y) the x- horizontal (respectively y-vertical) stripe, where x ∈ {Sn, Sn+1,

Sn+2, Cη : n, Cη : n+ 2}, y ∈ {Sn+2, Sn+3}, and denote by W y
x the block corresponding to x-horizontal

stripe and y-vertical stripe. Let dimWx = the number of rows in Wx, dim W y = the number of columns in

W y. Table 1 represents the matrix set A 0. By right multiplication with invertible matrices in Table 2 and

left multiplication with invertible matrices in Table 3, Tables 2 and 3 provide admissible transformations

G0 (see [6]) for matrices in Table 1, i.e.,

(a) “elementary-row transformations” of Wx consisting of following three types:

• (j + ai)-type: The replacement of the j-th row αj of Wx by αj + aαi, where αi is the i-th row of

Wx, a ∈ Z.

• (ai)-type: The multiplication of the i-th row αi of Wx by a ∈ {±1}.
• (i, j)-type: The transposition of the i-th and j-th row.

(b) “Elementary-column transformations” of W y which also have three types as for elementary-row

transformations.
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• (Restriction on (a) and (b)) If one performs a (j + ai)-type (respectively (ai)-type and (i, j)-type)

elementary-row transformation of WCη:n, then one has to perform (j + a′i)-type (respectively (a′i)-type
and (i, j)-type) elementary-row transformation of WCη :n+2 simultaneously where a ≡ a′ (mod 2) and vice

versa.

(c) Adding k times of a column of WSn+2

to a column of WSn+3

.

(d) Adding k times of a row of WSn+1 or WSn+2 to a row of WSn .

(e) Adding k times of a row of WSn+2 to a row of WSn+1 .

(f) (i) Adding k times of a row of WSn to a row of WCη :n.

(ii) Adding 2k times of a row of WCη :n to a row of WSn .

(g) Adding 6k times of a row of WSn+2 to a row of WCη :n,

where k is an integer.

Remark 4.1. When admissible transformations above are performed on block matrix γ = (γij), where

block γij has entries from (ij)-cell of Table 1, we should note that

(1) If (ij)-cell of Table 1 is zero, then γij keeps being zero after admissible transformations.

(2) Adding 1 ∈ Z/2 to an element a ∈ Z/24 gives a+12 in Z/24, since η3 is 12 in Z/24 = Hos(Sn+3, Sn).

(3) The reason for (g) is as follow: In the definition of the injective map F above, for any f ∈
Hos(Sn+2, Cη), fη = ix for some x ∈ Hos(Sn+3, Sn) = Z/24. If qf = 2ιn+2 ∈ Hos(Sn+2, Sn+2) then

x = 6 (see [12, Proposition 6(iii)]).

From the known fact that

ind(A 0) ∼= indEl(Γ) ∼= ind(A0†n+2B0) = indF 4
n ,

we have the following results.

List (∗) (I) X(ηvη) = Sn ∨ Sn+2
⋃

i1η
en+2

⋃
i1v+i2η

en+4 corresponds to

Sn+3

Sn+2 1

Cη : n v

n+ 2 0

,

where v ∈ {1, 2, 3} ⊂ Z/12.

(II) (1) X(ηηvηη) = Sn ∨ Sn+1
⋃

i1ηη
en+3

⋃
i1v+i2ηη

en+4 corresponds to

Sn+2 Sn+3

Sn 1 v

Sn+1 0 1

.

(2) X(ηηvη) = Sn ∨ Sn+2
⋃

i1ηη
en+3

⋃
i1v+i2η

en+4 corresponds to

Sn+2 Sn+3

Sn 1 v

Sn+2 0 1

.

(3) X(ηvηη) = Sn ∨ Sn+1
⋃

i1η
en+2

⋃
i1v+i2η

en+4 corresponds to

Sn+3

Sn+1 1

Cη : n v

n+ 2 0

.

(4) X(ηηv) = Sn
⋃

ηη e
n+3

⋃
v e

n+4 corresponds to

Sn+2 Sn+3

Sn 1 v
.
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(5) X(vηη) = Sn ∨ Sn+1
⋃

i1v+i2ηη
en+4 corresponds to

Sn+3

Sn v

Sn+1 1

.

(6) X(ηv) = Sn
⋃

η e
n+2

⋃
v e

n+4 corresponds to

Sn+3

Cη : n v

n+ 2 0

.

(7) X(vη) = Sn ∨ Sn+2
⋃

i1v+i2η
en+4 corresponds to

Sn+3

Sn v

Sn+2 1

,

where v ∈ {1, 2, 3, 4, 5, 6} ⊂ Z/24 in the cases (1), (2), (4), (5), (7) of (II), and v ∈ {1, 2, 3, 4, 5, 6}⊂Z/12
in the cases (3), (6) of (II).

(III) X(v) = Sn
⋃

v e
n+4 corresponds to

Sn+3

Sn v
,

where v ∈ {1, 2, . . . , 12} ⊂ Z/24.

(IV) (1) X(η1) = Sn+1
⋃

η e
n+3 corresponds to

Sn+2

Sn+1 1
.

(2) X(η2) = Sn+2
⋃

η e
n+4 corresponds to

Sn+3

Sn+2 1
.

(3) X(ηη)0 = Sn
⋃

ηη e
n+3 corresponds to

Sn+2

Sn 1
.

(4) X(ηη)1 = Sn+1
⋃

ηη e
n+4 corresponds to

Sn+3

Sn+1 1
.

For a wedge of spaces X ∨ Y , i1 : X ↪→ X ∨ Y and i2 : X ↪→ X ∨ Y above are the canonical inclusions.

Remark 4.2. Indecomposable homotopy types in {A[1] | A ∈ indA0} and indB0 of F 4
n are not

contained in List (*). An element A[1] of {A[1] | A ∈ indA0} (resp. B of indB0) can be considered as a

mapping cone of map A→ ∗ (resp. ∗ → B) in A0†n+2B0 which corresponds to 0× 1 matrix (resp. 1× 0

matrix) in A 0. For a general matrix problem (A ,G), these 0 × 1 and 1 × 0 matrices are regarded as

elements in indA , but will not be listed to simplify notation.

5 The reduction of the classification problem of F 4
n(2) (n ��� 5)

Let Mk
t be the Moore space M(Z/t, k), t, k ∈ N+ = {1, 2, . . .}.

Take m = n+ 2 and two full subcategories Ã and B̃ of F 4
n(2) as in Theorem 3.2(3). By the results of

the indecomposable homotopy types of A2
n (n � 3) in [4], we have

indÃ = {Sn+2, Sn+3,Mn+2
pr | prime p 
= 2, r ∈ N+},
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indB̃ =

{
Sn, Sn+1, Sn+2, Cη = Sn

⋃
η

en+2,Mn
ps ,Mn+1

ps

∣∣∣∣ prime p 
= 2, s ∈ N+

}
.

Lemma 5.1. • Hos(Mn+2
pr , B) = 0 for any B ∈ indB̃, where prime p 
= 2, 3; r ∈ N+.

• Hos(A,Mn
ps) = 0 for any A ∈ indÃ, where prime p 
= 2, 3; s ∈ N+.

• Hos(A,Mn+1
ps ) = 0 for any A ∈ indÃ, where prime p 
= 2; s ∈ N+.

Proof. It follows from the triviality of p-primary component of relevant homotopy groups of spheres

and the universal coefficients theorem for homotopy groups with coefficients.

For Cf ∈ Ã†B̃, where f : A→ B, A = ∨Ai, Ai ∈ indÃ, B = ∨Bj , Bj ∈ indB̃. If Ai = Mn+2
pr (p 
= 2, 3)

for some i, then Ai[1] splits out of Cf . Similarly if Bj = Mn
ps (p 
= 2, 3) or Mn+1

ps (p 
= 2) for some j, then

this Bj also splits out of Cf . So we get the following lemma.

Lemma 5.2. Let A and B be the full subcategories of Ã and B̃, respectively, such that

indA = {Sn+2, Sn+3,Mn+2
3r | r ∈ N+},

indB =

{
Sn, Sn+1, Sn+2, Cη = Sn

⋃
η

en+2,Mn
3s

∣∣∣∣ s ∈ N+

}
.

Then

ind(Ã†B̃) = ind(A†B) ∪ {Mn+3
pr ,Mn

pr ,Mn+1
qr | primes p 
= 2, 3, q 
= 2; r ∈ N+}.

By Theorem 3.2(3), we have the following corollary.

Corollary 5.3. indF 4
n(2) = {X ∈ ind(A†B) | X is 2-torsion free} ∪ {Mn+3

pr ,Mn
pr , Mn+1

qr | prime

p 
= 2, 3, prime q 
= 2 and r ∈ N+}.
In order to get indF 4

n(2), it suffices to compute {X ∈ ind(A†B) | X is 2-torsion free}.
Let Γ : Aop × B → Ab, Γ(A,B) = {g ∈ Hos(A,B) | Hn+2(g) = 0}, defined in Section 3, be a

sub-bimodule of A-B-bimodule H : Aop × B → Ab, H(A,B) = Hos(A,B).

Lemma 5.4.

{X ∈ ind(A†B) | X is 2-torsion free}
= {Mn+2

pr | prime p 
= 2, r ∈ N+} ∪ {C(f) is indecomposable | f ∈ El(Γ)}.

Proof. For integers k, l, t, u, v, w � 0, let

A(k, l) :=
∨
k

Sn+2 ∨
∨
l

Sn+3 ∈ A0,

B(t, u, v, w) :=
∨
t

Sn+2 ∨
∨
u

Cη ∨
∨
v

Sn ∨
∨
w

Sn+1 ∈ B0.

For any 2-torsion free polyhedra X = Cf ∈ A†B, f ∈ Hos(A,B), where A ∈ A, B ∈ B. Suppose that

A = A(k, l) ∨MA, B = B(t, u, v, w) ∨MB,

where MA (resp. MB) is a wedge of Moore spaces {Mn+2
3r | r ∈ N+} (resp. {Mn

3s | s ∈ N+}). Let

A(k, l) �
� jA �� A, B

pB �� �� B(t, u, v, w)

be the canonical inclusion and projection of the summands, respectively. For

h := pBfjA ∈ Hos(A(k, l), B(t, u, v, w)),



1150 Pan J Z et al. Sci China Math June 2016 Vol. 59 No. 6

by the proof of [9, Theorem 5.5], we have the commutable top square in the following diagram,

(
∨

k1
Sn+2)∨A(k′,l)

h1∨h′
�� (∨k1

Sn+2)∨B(t′,u,v,w)

A(k,l)
��

jA

��

α � �� A(k,l)
��

jA

��

h �� B(t,u,v,w)
β � �� B(t,u,v,w)

A
α∨1MA

�
�� A

f �� B

pB

����

β∨1MB
�

�� B

pB

����

(
∨

k1
Sn+2)∨(A(k′,l)∨MA)

h1∨f ′
�� (∨k1

Sn+2)∨(B(t′,u,v,w)∨MB),

where k1 + k′ = k, k1 + t′ = t, α and β are self-homotopy equivalences of A(k, l) and B(t, u, v, w),

respectively and the maps ∨
k1

Sn+2 h1−−→
∨
k1

Sn+2, A(k′, l) h′−−→ B(t′, u, v, w)

satisfy that

(i) the mapping cone Ch1 =
∨

iM
n+2
αi

, where αi ∈ N+ is odd for each i;

(ii) the composition of maps∨
k′

Sn+2 j−−→ A(k′, l) h′−−→ B(t′, u, v, w)
p−−→
∨
t′
Sn+2 ∨

∨
u

Cη

is zero, where j and p are canonical inclusion and projection of the summands, respectively. This is

equivalent to the statement that Hn+2(h
′) = 0.

Note that Hos(Sn+2,MB) = 0 and Hos(MA, S
n+2) = 0. Hence

(β ∨ 1MB )f(α ∨ 1MA) = h1 ∨ f ′

such that A(k′, l) ∨MA
f ′
−−→ B(t′, u, v, w) ∨MB satisfies Hn+2(f

′) = 0. It implies that

X = Cf � Ch1 ∨Cf ′ =
∨
i

Mn+2
αi
∨ Cf ′ , f ′ ∈ El(Γ).

Since for any f ∈ El(Γ), C(f) = Cf is 2-torsion free. By the above analysis, we complete the proof of

Lemma 5.4.

Take H0 = Γ in Corollary 3.3, then f1af2 = 0 whenever fi ∈ Hos(Bi, Ai) (i = 1, 2), a ∈ Γ(A2, B1),

Ai ∈ A and Bi ∈ B. Hence, by Corollary 3.3, we have

C : El(Γ)
P�rep−−−−→ El(Γ)/JΓ C �−−−→ A†n+2B/IΓ

P�rep←−−−− A†n+2B,
which implies the following result.

Corollary 5.5. In Lemma 5.4,

{C(f) is indecomposable | f ∈ El(Γ)} = ind(A†n+2B) ∼= indEl(Γ).

In the remainder of this section, we will find the matrix problem corresponding to El(Γ).

Compute Γ(A,B) for A ∈ indA, B ∈ indB; Hos(A,A′) for A,A′ ∈ indA and Hos(B,B′) for B,B′ ∈
indB as in [7]. For example,

• Γ(Sn+2, Sn+2) = Γ(Sn+2, Cη) = 0.

• Hos(Mn+2
3r ,Mn

3s) =

Mn+2
3r : n+ 2 n+ 3

Mn
3s : n 0 Z/3

n+ 1 0 0

.
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• Hos(Mn+2
3r , Cη) =

Mn+2
3r : n+ 2 n+ 3

Cη : n 0 Z/3

n+ 1 0 0

.

• Hos(Mn+2
3r ,Mn+2

3s ) =

Mn+2
3r : n+ 2 n+ 3

Mn+2
3s : n+ 2 Z/3s= 0

n+ 3 0 Z/3r=

,

where

Z/3s= 0

0 Z/3r=
=

{(
ā 0

0 b̄

) ∣∣∣∣∣ ā ∈ Z/3s, b̄ ∈ Z/3r and 3ra = 3sb in Z

}

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{(
ā 0

0 3r−sa

) ∣∣∣∣∣ ā ∈ Z/3s, 3r−sa ∈ Z/3r

}
, r > s,{(

3s−rb 0

0 b̄

) ∣∣∣∣∣ 3s−rb ∈ Z/3s, b̄ ∈ Z/3r

}
, r � s.

Now we get the matrix problem (Ã , G̃) corresponding to El(Γ) as follows. The objects of El(Γ) can

be represented by block matrices γ = (γij) with finite order in Table 4 which provides the matrix set

Ã , where block γij has entries from the (ij)-th cell of Table 4. Morphisms γ → γ′ are given by block

matrices α = (αij) and β = (βij) from Tables 5 and 6, respectively with proper order, which provide the

admissible transformations G̃.
It is well known that indÃ ∼= indEl(Γ).

We eliminate the zero stripes Mn+2
3r : n + 2 and Mn

3s : n+ 1 of matrices in Ã to simplify the matrix

problem (Ã , G̃) to the following equivalent matrix problem (A ′,G′), i.e., Tables 7–9.
In Tables 7–9, Mn+2

3r represents the Mn+2
3r : n + 3-vertical stripe and Mn

3s represents the Mn
3s : n-

horizontal stripe. Table 7 provides the matrix set A ′. Tables 8 and 9 provide the (non-trivial) admissible

transformations G′:
G′el: “elementary-row (column)” transformations of each horizontal (vertical) stripe.

G′co: (i) WSn+2

< WSn+3

.

(ii) WSn+3

< WMn+2
3r ; WMn+2

3r+1 < WMn+2
3r for any r ∈ N+.

G′ro: (i) WSn+2 < WSn+1 < WSn .

(ii) WSn < WCη:n < WMn
3s
; WMn

3s+1
< WMn

3s
; 2WCη:n < WSn for any s ∈ N+.

(iii) 6WSn+2 < WCη:n .

Table 4 Γ(A,B)

B
A

Sn+2 Sn+3 Mn+2
3 : n+ 2 n+ 3 Mn+2

32
: n+ 2 n+ 3 Mn+2

33
: n+ 2 n+ 3 · · ·

Sn Z/2 Z/24 0 Z/3 0 Z/3 0 Z/3 · · ·
Sn+1

Z/2 Z/2 0 0 0 0 0 0 · · ·
Sn+2 0 Z/2 0 0 0 0 0 0 · · ·
Cη : n 0 Z/12 0 Z/3 0 Z/3 0 Z/3 · · ·
n+ 2 0 0 0 0 0 0 0 0 · · ·
Mn

3 : n 0 Z/3 0 Z/3 0 Z/3 0 Z/3 · · ·
n+ 1 0 0 0 0 0 0 0 0 · · ·
Mn

32
: n 0 Z/3 0 Z/3 0 Z/3 0 Z/3 · · ·

n+ 1 0 0 0 0 0 0 0 0 · · ·
Mn

33
: n 0 Z/3 0 Z/3 0 Z/3 0 Z/3 · · ·

n+ 1 0 0 0 0 0 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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Table 5 Hos(A,A)

A
A

Sn+2 Sn+3 Mn+2
3 : n+ 2 n+ 3 Mn+2

32
: n+ 2 n+ 3 · · · Mn+2

3r : n+ 2 n+ 3 · · ·

Sn+2
Z Z/2 0 0 0 0 · · · 0 0 · · ·

Sn+3 0 Z 0 Z/3 0 Z/32 · · · 0 Z/3r · · ·
Mn+2

3 : n+ 2 Z/3 0 Z/3= 0 Z/3= 0 · · · Z/3= 0 · · ·
n+ 3 0 0 0 Z/3= 0 Z/32= · · · 0 Z/3r= · · ·
Mn+2

32
: n+ 2 Z/32 0 Z/32= 0 Z/32= 0 · · · Z/32= 0 · · ·

n+ 3 0 0 0 Z/3= 0 Z/32= · · · 0 Z/3r= · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Mn+2

3r : n+ 2 Z/3r 0 Z/3r= 0 Z/3r= 0 · · · Z/3r= 0 · · ·
n+ 3 0 0 0 Z/3= 0 Z/32= · · · 0 Z/3r= · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table 6 Hos(B,B)

B
B

Sn Sn+1 Sn+2 Cη : n n+ 2 Mn
3 : n n+ 1 Mn

32
: n n+ 1 · · · Mn

3r : n n+ 1 · · ·

Sn
Z Z/2 Z/2 2Z 0 0 0 0 0 · · · 0 0 · · ·

Sn+1 0 Z Z/2 0 0 0 0 0 0 · · · 0 0 · · ·
Sn+2 0 0 Z 0 Z 0 0 0 0 · · · 0 0 · · ·
Cη : n Z 0 Z/2= Z= 0 0 0 0 0 · · · 0 0 · · ·
n+ 2 0 0 2Z= 0 Z

= 0 0 0 0 · · · 0 0 · · ·
Mn

3 : n Z/3 0 0 Z/3 0 Z/3= 0 Z/3= 0 · · · Z/3= 0 · · ·
n+ 1 0 0 0 0 0 0 Z/3= 0 Z/32= · · · 0 Z/3r= · · ·
Mn

32
: n Z/32 0 0 Z/32 0 Z/32= 0 Z/32= 0 · · · Z/32= 0 · · ·

n+ 1 0 0 0 0 0 0 Z/3= 0 Z/32= · · · 0 Z/3r= · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Mn

3r : n Z/3r 0 0 Z/3r 0 Z/3r= 0 Z/3r= 0 · · · Z/3r= 0 · · ·
n+ 1 0 0 0 0 0 0 Z/3= 0 Z/32= · · · 0 Z/3r= · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Remark 5.6. (1) Wx < Wy means that adding k times of a row of Wx to a row of Wy is admissible

and aWx < Wy (a ∈ N+) means adding ak times of a row of Wx to a row of Wy is admissible where k is

an any nonzero integer. W x < W y has the similar meaning for corresponding vertical stripes.

(2) Similarly, zero blocks in Table 7 should keep being zero after admissible transformations. Adding

1 ∈ Z/2 to an element a ∈ Z/24 gives a+ 12 in Z/24.

(3) Special rules of matrix product in Table 3 are also needed for matrix product in Table 9.

6 Computation of indA ′ for matrix problem (A ′,G′)

In this section we solve the matrix problem (A ′,G′) to get indA ′. Then we get the indF 4
n(2) by indA ′.

6.1 p-primary component of matrix problem (A ′,G′), p = 2, 3

Let Γ′(A,B)(2) be the 2-primary component of Γ′(A,B), which means we replace Z/24 by Z/8, Z/12

by Z/4 and Z/3 by 0 in Table 7 to get Table 10. Similarly, Γ′(A,B)(3) is the 3-primary component of

Γ′(A,B), which means we replace Z/24 by Z/3, Z/12 by Z/3 and Z/2 by 0 in Table 7 to get Table 11.
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Table 7 Γ′(A,B)

B
A

Sn+2 Sn+3 Mn+2
3 Mn+2

32
Mn+2

33
· · ·

Sn Z/2 Z/24 Z/3 Z/3 Z/3 · · ·
Sn+1

Z/2 Z/2 0 0 0 · · ·
Sn+2 0 Z/2 0 0 0 · · ·
Cη : n 0 Z/12 Z/3 Z/3 Z/3 · · ·
n+ 2 0 0 0 0 0 · · ·
Mn

3 0 Z/3 Z/3 Z/3 Z/3 · · ·
Mn

32
0 Z/3 Z/3 Z/3 Z/3 · · ·

Mn
33

0 Z/3 Z/3 Z/3 Z/3 · · ·
· · · · · · · · · · · · · · · · · · · · ·

Table 8 Hos′(A,A)

A
A

Sn+2 Sn+3 Mn+2
3 Mn+2

32
· · · Mn+2

3r · · ·

Sn+2 Z Z/2 0 0 · · · 0 · · ·
Sn+3 0 Z Z/3 Z/32 · · · Z/3r · · ·
Mn+2

3 0 0 Z/3 0 · · · 0 · · ·
Mn+2

32
0 0 Z/3 Z/32 · · · 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·
Mn+2

3r 0 0 Z/3 Z/32 · · · Z/3r · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

Table 9 Hos′(B,B)

B
B

Sn Sn+1 Sn+2 Cη : n n+ 2 Mn
3 Mn

32
··· Mn

3r · · ·

Sn
Z Z/2 Z/2 2Z 0 0 0 · · · 0 · · ·

Sn+1 0 Z Z/2 0 0 0 0 · · · 0 · · ·
Sn+2 0 0 Z 0 Z 0 0 · · · 0 · · ·
Cη : n Z 0 Z/2= Z

= 0 0 0 · · · 0 · · ·
n+ 2 0 0 2Z= 0 Z= 0 0 · · · 0 · · ·
Mn

3 Z/3 0 0 Z/3 0 Z/3 Z/3 · · · Z/3 · · ·
Mn

32
Z/32 0 0 Z/32 0 0 Z/32 · · · Z/32 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Mn

3r Z/3r 0 0 Z/3r 0 0 0 · · · Z/3r · · ·

Then we get the following two matrix problems (A ′
(2),G′) and (A ′

(3),G′) with admissible transformations

also provided by Tables 8 and 9.

The list of non-trivial admissible transformations on Γ′(A,B)(2) is:
el: “elementary-row (column)” transformations of each horizontal (vertical) stripe.

co: WSn+2

< WSn+3

.

ro: WSn < WCη:n; 2WCη:n < WSn ; 2WSn+2 < WCη:n.

The list of non-trivial admissible transformations on Γ′(A,B)(3) is:
el: “elementary-row (column)” transformations of each horizontal (vertical) stripe.

co: WSn+3

< WMn+2
3r ; WMn+2

3r+1 < WMn+2
3r for any r ∈ N+.
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Table 10 Γ′(A,B)(2)

B
A

Sn+2 Sn+3 Mn+2
3 Mn+2

32
· · ·

Sn Z/2 Z/8 0 0 · · ·
Sn+1

Z/2 Z/2 0 0 · · ·
Sn+2 0 Z/2 0 0 · · ·
Cη : n 0 Z/4 0 0 · · ·
n+ 2 0 0 0 0 · · ·
Mn

3 0 0 0 0 · · ·
Mn

32
0 0 0 0 · · ·

· · · · · · · · · · · · · · · · · ·

Table 11 Γ′(A,B)(3)

B
A

Sn+2 Sn+3 Mn+2
3 Mn+2

32
Mn+2

33
· · ·

Sn 0 Z/3 Z/3 Z/3 Z/3 · · ·
Sn+1 0 0 0 0 0 · · ·
Sn+2 0 0 0 0 0 · · ·
Cη :n 0 Z/3 Z/3 Z/3 Z/3 · · ·
n+ 2 0 0 0 0 0 · · ·
Mn

3 0 Z/3 Z/3 Z/3 Z/3 · · ·
Mn

32
0 Z/3 Z/3 Z/3 Z/3 · · ·

Mn
33

0 Z/3 Z/3 Z/3 Z/3 · · ·
· · · · · · · · · · · · · · · · · · · · ·

ro: WSn < WCη:n < WMn
3s
; WMn

3s+1
< WMn

3s
; 2WCη:n < WSn for any s ∈ N+.

Let Δ(2)(3) be the subset of Γ′(A,B)(2) × Γ′(A,B)(3) which consists of (M2,M3) such that for every

x ∈ indA, y ∈ indB, the two blocks W y
x , respectively in matrices M2 and M3 have the same order. Define

the map Γ′(A,B) L=(L2,L3)−−−−−−−→ Δ(2)(3) ⊂ Γ′(A,B)(2) × Γ′(A,B)(3).
L is given by the following ring isomorphisms

Z/24
L24−−→ Z/8× Z/3, 1 �→ (1, 1),

Z/12
L12−−→ Z/4× Z/3, 1 �→ (1, 1).

The inverse map T of L Δ(2)(3)
T−−→ Γ′(A,B) is given by the following two ring isomorphisms

Z/8× Z/3
T8−−→ Z/24, (a, b) �→ 9a+ 16b,

Z/4× Z/3
T4−−→ Z/12, (a, b) �→ 9a+ 4b,

which are the inverse of L24 and L12, respectively.

It is easy to know that ifM ∼= N in matrix problem (A ′,G′) then L2(M) ∼= L2(N) and L3(M) ∼= L3(N)

in matrix problem (A ′
(2),G′) and (A ′

(3),G′), respectively. We do not know whether the inverse is true.

However, in the following we will show that the inverse will be true if we take some restrictions to the

admissible transformations on A ′
(2) and A ′

(3).

We give some notation as follows:

(1) Let Hos′(A,A)(y1, y2, . . . , yn) (resp. Hos′(B,B)(x1, x2, . . . , xm)) be the set of all square matrices

in the Hos′(A,A) (resp. Hos′(B,B)) with only y1, y2, . . . , yn-stripes (resp. x1, x2, . . . , xm-stripes).
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Especially, we denote V = Hos′(B,B)(Sn, Sn+1, Sn+2, Cη : n) (note that there is no Cη : n+ 2-stripe).

We call the sub-matrix which contains entries in Sn, Sn+1, Sn+2, Cη : n-stripes of M ∈ Hos′(B,B)
“V-part of M”.

(2) Let I be the identity matrix and Eij be the matrix whose unique nonzero entry has index (i, j)

and equals 1. Then (i+ aj)-type of elementary row (column) transformations corresponds to left (right)

multiplication by an elementary matrix I + aEij (I + aEji), and (−1i)-type of elementary row (column)

transformations corresponds to left (right) multiplication by an elementary matrix I − 2Eii. Note that

(i, j)-type of transformations can be obtained by composition of (i+aj)-type and (−1i)-type of elementary

transformations.

Let A+ be the subset consisting of invertible matrices α =
U1 U2

0 U4

in Hos′(A,A), where U1 ∈
Hos′(A,A)(Sn+2, Sn+3) is a product of elementary matrices I + aEij , i 
= j.

Let B+ be the subset consisting of invertible matrices β =
V1 0

V3 V4

in Hos′(B,B), where

V1 =

V11 V12 V13 2V14 0

0 V22 V23 0 0

0 0 V33 0 0

V41 0 V43 V44 0

0 0 0 0 V55

,

which is an element in

Hos′(B,B)(Sn, Sn+1, Sn+2, Cη : n,Cη : n+ 2) =

Z Z/2 Z/2 2Z 0

0 Z Z/2 0 0

0 0 Z 0 Z

Z 0 Z/2= Z
= 0

0 0 2Z= 0 Z=

such that the V-part

W1 =

V11 V12 V13 2V14

0 V22 V23 0

0 0 V33 0

V41 0 V43 V44

of V1 is a product of elementary matrices I + aEij , i 
= j.

Denoting by G′+ the admissible transformations provided byA+ andB+ on Γ′(A,B)(2) and Γ′(A,B)(3),
we get two new matrix problems (A ′

(2),G′+) and (A ′
(3),G′+).

The differences between (A ′
(2),G′+) and (A ′

(2),G′). The list of non-trivial admissible transforma-

tions of matrix problem (A ′
(2),G′+) is the same as that of matrix problem (A ′

(2),G′) except that (−1i)-type
of elementary transformations is not allowed, and (i, j)-type should be replaced by (i,−j)-type or (−i, j)-
type, which means when we transport two rows (columns) of a stripe, one row (column) α of them is

replaced by −α.
The differences between (A ′

(3),G′+) and (A ′
(3),G′). The list of non-trivial admissible trans-

formations of matrix problem (A ′
(3),G′+) is the same as that of matrix problem (A ′

(3),G′) except that

(−1i)-type of elementary transformations on the WSn+3

, WSn and WCη :n is not allowed; (i, j)-type ele-

mentary transformations on WSn+3

, WSn and WCη :n should be replaced by (i,−j)-type or (−i, j)-type.
Theorem 6.1. If M(2)

∼= N(2) in matrix problem (A ′
(2),G′+) and M(3)

∼= N(3) in matrix problem

(A ′
(3),G′+) , then T (M(2),M(3)) ∼= T (N(2), N(3)) in matrix problem (A ′,G′).

Proof. By the condition of this Theorem, we get that β2M(2)α2 = N(2), β3M(3)α3 = N(3), where

α2, α3 ∈ A+ and β2, β3 ∈ B+. Let

α2 =
U1 U2

0 U4

, α3 =
U ′
1 U ′

2

0 U ′
4

,
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where U1, U
′
1 ∈ Hos′(A,A)(Sn+2, Sn+3).

β2 =
V1 0

V3 V4

, β3 =
V ′
1 0

V ′
3 V ′

4

,

where V1, V
′
1 ∈ Hos′(B,B)(Sn, Sn+1, Sn+2, Cη : n,Cη : n+ 2). V-parts of V1 and V ′

1 are denoted by W1

and W ′
1, respectively.

Lemma 6.2. For any

U1, U
′
1 ∈ Hos′(A,A)(Sn+2, Sn+3) =

Z Z/2

0 Z

and

W1,W
′
1 ∈ V =

Z Z/2 Z/2 2Z

0 Z Z/2 0

0 0 Z 0

Z 0 Z/2 Z

,

where U1, U
′
1, W1 and W ′

1 are products of elementary matrices I+aEij (i 
= j, a ∈ Z) and orders of U1, U
′
1

(respectively orders of W1, W
′
1) are the same, there exist invertible matrices U ∈ Hos′(A,A)(Sn+2, Sn+3),

W ∈ V such that {
U ≡ U1 (mod 8),

U ≡ U ′
1 (mod 3),

and

{
W ≡W1 (mod 8),

W ≡W ′
1 (mod 3).

Note that for any abelian group A, a, b ∈ A, and positive integer k, a ≡ b (mod k) means that the images

of a and b are equal under the quotient homomorphism A→ A/kA.

We give some remarks before the proof of this lemma.

By W and U given in Lemma 6.2, let

V =

Cη : n+ 2

W 0

Cη : n+ 2 0 V55

,

where V55 is an invertible matrix that makes V be an element in Hos′(B,B)(Sn, Sn+1, Sn+2, Cη : n,Cη :

n+ 2). Let

α =
U U ′

2

0 U ′
4

and β =
V 0

V ′
3 V ′

4

.

Then α and β are invertible and βM(2)α = β2M(2)α2 = N(2), βM(3)α = β3M(3)α3 = N(3). Since

βT (M(2),M(3))α = T (βM(2)α, βM(3)α) = T (N(2), N(3)), T (M(2),M(3)) ∼= T (N(2), N(3)) in matrix prob-

lem (A ′,G′).
Proof of Lemma 6.2. Statement (1): For any A,B ∈ SLn(Z), there is a C ∈ SLn(Z), such that

C ≡ A (mod 8) and C ≡ B (mod 3).

Statement (1) follows from the following two conclusions in [10]:

SLn(Z)
q−−→ SLn(Z/24) is surjective, SLn(Z/24)

(q1,q2)−−−−→ SLn(Z/8)× SLn(Z/3) is isomorphic,

where q, q1, q2 are quotient maps.

Statement (2): Suppose that

A = I + aEij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

aij
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B = I + bEst =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

bst
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(

i 
= j, a ∈ Z

s 
= t, b ∈ Z

)
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are any two elementary matrices in V (resp. Hos′(A,A)(Sn+2, Sn+3)) of the same order, then there is an

invertible block matrix C in V (resp. Hos′(A,A)(Sn+2, Sn+3)) such that C ≡ A (mod 8), C ≡ B (mod 3).

Proof of Statement (2). We only prove the case for A,B ∈ V since the remaining case is much easier.

Note if aij (resp. bst) is from Z or 2Z block, then aij = a (resp. bst = b); if aij (resp. bst) is from Z/2

block, then aij (resp. bst) is the image of a (resp. b) under the quotient map Z→ Z/2.

• If bst is from Z/2 block, then bst ≡ 0 (mod 3). For aij from Z/2 block, take C = A. For aij from Z

or 2Z block, there is a c ∈ Z, such that c ≡ a (mod 8) and c ≡ 0 (mod 3). Take C = I + cEij .

• If bst is from Z or 2Z block,

(i) i 
= t or j 
= s. There is a d ∈ Z such that d ≡ 0 (mod 8) and d ≡ b (mod 3).

If aij is from Z/2 block, take integer c such that c ≡ a (mod 2).

If aij is from Z or 2Z block, take integer c such that c ≡ a (mod 8) and c ≡ 0 (mod 3). Then take

C = I + cEij + dEst = (I + cEij)(I + dEst) which is invertible in V .
(ii) i = t and j = s. In this case aij must come from Z or 2Z block. Suppose i > j. By Statement (1),

there is a matrix

X =

(
x11 x12

x21 x22

)
∈ SL2(Z)

such that

X ≡
(

1 0

a 1

)
(mod 8) and X ≡

(
1 b

0 1

)
(mod 3).

Take C = I − (1 − x11)Ejj − (1 − x22)Eii + x12Eji + x21Eij . Note that x12 ∈ 2Z and if a ∈ 2Z then

x21 ∈ 2Z, so C is an element in V . It is easy to check that C is invertible in V and C ≡ A (mod 8),

C ≡ B (mod 3). The proof of the case i < j is similar.

Now the proof of Lemma 6.2 is easily obtained by Statement (2).

6.2 The indecomposable isomorphic classes of (A ′
(2),G′+) and (A ′

(3),G′+)

Note that the matrix problem (A ′
(2),G′) is essentially the same as the 2-primary component of the matrix

problem (A 0,G0). Thus we can get the list (denoted by List(∗∗)) of the indecomposable isomorphic classes

of (A ′
(2),G′) from List(∗) by taking v to its image of the quotient map Z/24 → Z/8 or Z/12 → Z/4. It

means List(∗∗) is just the same as List(∗) except that the ranges of v are different, i.e.,

• v ∈ {1} ⊂ Z/4 for case (I);

• v ∈ {1, 2} ⊂ Z/8 for cases (1), (2), (4), (5), (7) of (II);

• v ∈ {1, 2} ⊂ Z/4 for cases (3), (6) of (II);

• v ∈ {1, 2, 3, 4} ⊂ Z/8 for case (III).

From the differences between (A ′
(2),G′+) and (A ′

(2),G′), we know that M ∈ Γ′(A,B)(2) is indecom-

posable in (A ′
(2),G′+) if and only if it is indecomposable in (A ′

(2),G′). But non-isomorphic matrices of

(A ′
(2),G′+) may be isomorphic in (A ′

(2),G′).

For example,
Sn+3

Sn 1
and

Sn+3

Sn −1
(where 1,−1 ∈ Z/8), which are isomorphic under G′,

are not isomorphic under G′+.
Here is the list of the indecomposable isomorphic classes of (A ′

(2),G′+):

List (1) (I)

Sn+3

Sn+2 1

Cη : n 1

n+ 2 0

.

(II) (1)

Sn+2 Sn+3

Sn 1 v

Sn+1 0 1

; (2)

Sn+2 Sn+3

Sn 1 v

Sn+2 0 1

; (4)
Sn+2 Sn+3

Sn 1 v
;
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(5)

Sn+3

Sn v

Sn+1 1

; (7)

Sn+3

Sn v

Sn+2 1

; (3)

Sn+3

Sn+2 1

Cη : n v

n+ 2 0

; (6)

Sn+3

Cη : n v

n+ 2 0

;

where v ∈ {1, 2, 3} ⊂ Z/8 for the cases (1), (2), (4), (5), (7) and where v ∈ {1, 2, 3} ⊂ Z/4 for the cases

(3) and (6).

(III)
Sn+3

Sn v
, where v ∈ {1, 2, . . . , 7} ⊂ Z/8.

(IV) (1)
Sn+2

Sn+1 1
; (2)

Sn+3

Sn+2 1
; (3)

Sn+2

Sn 1
; (4)

Sn+3

Sn+1 1
.

For the matrix problem (A ′
(3),G′+), the indecomposable isomorphic classes are given by

List (2)
Sn+3

Sn 1
;

Sn+3

Sn −1
;

Sn+3

Cη : n 1

n+ 2 0

;

Sn+3

Cη : n −1

n+ 2 0

;

Sn+3

Mn
3s 1

;
Mn+2

3r

Mn
3s 1

;
Mn+2

3r

Sn 1
;

Mn+2
3r

Cη : n 1

n+ 2 0

;

where 1, −1∈Z/3 and s, n∈N+.

6.3 The indecomposable isomorphic classes of (A ′,G′) and F 4
n(2)(n ��� 5)

By Theorem 6.1, for any M ∈ Γ′(A,B), we have M ∼= T (N2, N3) in matrix problem (A ′,G′) for some

N2 ∈ Γ′(A,B)(2) and N3 ∈ Γ′(A,B)(3), where

N2 =
⊕
i

N i
2

⊕
O2, N i

2 is an indecomposable matrix listed in List (1) for every i,

N3 =
⊕
j

N j
3

⊕
O3, N j

3 is an indecomposable matrix listed in List (2) for every j.

O2 and O3 are direct products of some zero matrices.

Since N3 is a matrix of which every row and every column have at most one nonzero entry, it enables us

to select from T (N2, N3) a set of indecomposable matrices as follows which covers all the indecomposable

isomorphic classes of matrix problem (A ′,G′).

(I)

Sn+3

Sn+2 1

Cη : n T4(a, b)

n+ 2 0

,

Sn+3 Mn+2
3r

Sn+2 1 0

Cη : n T4(1, 0) 1

n+ 2 0 0

,

Sn+3

Sn+2 1

Cη : n T4(1, 0)

n+ 2 0

Mn
3s 1

,

Sn+3 Mn+2
3r

Sn+2 1 0

Cη :n T4(1, 0) 1

n+ 2 0 0

Mn
3s 1 0

;

where (a, b) ∈ Z/4× Z/3 such that a ∈ {0, 1} and (a, b) 
= (0, 0) and s, r ∈ N+.

(II) (1)

Sn+2 Sn+3

Sn 1 T8(a, b)

Sn+1 0 1

,

Sn+2 Sn+3 Mn+2
3r

Sn 1 T8(a, 0) 1

Sn+1 0 1 0

,

Sn+2 Sn+3

Sn 1 T8(a, 0)

Sn+1 0 1

Mn
3s 0 1

,

Sn+2 Sn+3 Mn+2
3r

Sn 1 T8(a, 0) 1

Sn+1 0 1 0

Mn
3s 0 1 0

;
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(2)

Sn+2 Sn+3

Sn 1 T8(a, b)

Sn+2 0 1

,

Sn+2 Sn+3 Mn+2
3r

Sn 1 T8(a, 0) 1

Sn+2 0 1 0

,

Sn+2 Sn+3

Sn 1 T8(a, 0)

Sn+2 0 1

Mn
3s 0 1

,

Sn+2 Sn+3 Mn+2
3r

Sn 1 T8(a, 0) 1

Sn+2 0 1 0

Mn
3s 0 1 0

;

(3)

Sn+3

Sn+1 1

Cη : n T4(a, b)

n+ 2 0

,

Sn+3 Mn+2
3r

Sn+1 1 0

Cη : n T4(a, 0) 1

n+ 2 0 0

,

Sn+3

Sn+2 1

Cη : n T4(a, 0)

n+ 2 0

Mn
3s 1

,

Sn+3 Mn+2
3r

Sn+2 1 0

Cη : n T4(a, 0) 1

n+ 2 0 0

Mn
3s 1 0

;

(4)
Sn+2 Sn+3

Sn 1 T8(a, b)
,

Sn+2 Sn+3 Mn+2
3r

Sn 1 T8(a, 0) 1
,

Sn+2 Sn+3

Sn 1 T8(a, 0)

Mn
3s 0 1

,

Sn+2 Sn+3 Mn+2
3r

Sn 1 T8(a, 0) 1

Mn
3s 0 1 0

;

(5)

Sn+3

Sn T8(a, b)

Sn+1 1

,

Sn+3 Mn+2
3r

Sn T8(a, 0) 1

Sn+1 1 0

,

Sn+3

Sn T8(a, b)

Sn+1 1

Mn
3s 1

,

Sn+3 Mn+2
3r

Sn T8(a, 0) 1

Sn+1 1 0

Mn
3s 1 0

;

(6)

Sn+3

Cη : n T4(a, b)

n+ 2 0

,

Sn+3 Mn+2
3r

Cη : n T4(a, 0) 1

n+ 2 0 0

,

Sn+3

Cη : n T4(a, 0)

n+ 2 0

Mn
3s 1

,

Sn+3 Mn+2
3r

Cη : n T4(a, 0) 1

n+ 2 0 0

Mn
3s 1 0

;

(7)

Sn+3

Sn T8(a, b)

Sn+2 1

,

Sn+3 Mn+2
3r

Sn T8(a, 0) 1

Sn+2 1 0

,

Sn+3

Sn T8(a, 0)

Sn+2 1

Mn
3s 1

,

Sn+3 Mn+2
3r

Sn T8(a, 0) 1

Sn+2 1 0

Mn
3s 1 0

;

where (a, b) ∈ Z/8 × Z/3 such that a ∈ {0, 1, 2, 3} ⊂ Z/8 and (a, b) 
= (0, 0) for T8, (a, b) ∈ Z/4 × Z/3

such that a ∈ {0, 1, 2, 3} ⊂ Z/4 and (a, b) 
= (0, 0) for T4, and s, r ∈ N+.

(III)
Sn+3

Sn T8(a, b)
,

Sn+3 Mn+2
3r

Sn T8(a, 0) 1
,

Sn+3

Sn T8(a, 0)

Mn
3s 1

,

Sn+3 Mn+2
3r

Sn T8(a, 0) 1

Mn
3s 1 0

;

where (a, b) ∈ Z/8× Z/3 such that (a, b) 
= (0, 0) and s, r ∈ N+.

(IV) (1)
Sn+2

Sn+1 1
;

(2)
Sn+3

Sn+2 1
,

Sn+3

Sn+2 1

Mn
3s 1

;

(3)
Sn+2

Sn 1
,

Sn+2 Mn+2
3r

Sn 1 1
;

(4)
Sn+3

Sn+1 1
,

Sn+3

Sn+1 1

Mn
3s 1

;

where r, s ∈ N+.

Through a detailed check by admissible transformations of matrix problem (A ′,G′), we get the following
results.
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Theorem 6.3. All indecomposable isomorphic classes of (A ′,G′) are given by the following list:

(I)

Sn+3

Sn+2 1

Cη : n v

n+ 2 0

X(ηvη)

,

Sn+3 Mn+2
3r

Sn+2 1 0

Cη : n 3 1

n+ 2 0 0

X(η3η)r

,

Sn+3

Sn+2 1

Cη : n 3

n+ 2 0

Mn
3s 1

X(η3η)s

,

Sn+3 Mn+2
3r

Sn+2 1 0

Cη : n 3 1

n+ 2 0 0

Mn
3s 1 0

X(η3η)rs

;

where v ∈ {1, 2, 3} ⊂ Z/12.

(II) (1)

Sn+2 Sn+3

Sn 1 v

Sn+1 0 1

X(ηηvηη)

,

Sn+2 Sn+3 Mn+2
3r

Sn 1 v1 1

Sn+1 0 1 0

X(ηηv1ηη)r

,

Sn+2 Sn+3

Sn 1 v1

Sn+1 0 1

Mn
3s 0 1

X(ηηv1ηη)s

,

Sn+2 Sn+3 Mn+2
3r

Sn 1 v1 1

Sn+1 0 1 0

Mn
3s 0 1 0

X(ηηv1ηη)rs

;

(2)

Sn+2 Sn+3

Sn 1 v

Sn+2 0 1

X(ηηvη)

,

Sn+2 Sn+3 Mn+2
3r

Sn 1 v1 1

Sn+2 0 1 0

X(ηηv1η)r

,

Sn+2 Sn+3

Sn 1 v1

Sn+2 0 1

Mn
3s 0 1

X(ηηv1η)s

,

Sn+2 Sn+3 Mn+2
3r

Sn 1 v1 1

Sn+2 0 1 0

Mn
3s 0 1 0

X(ηηv1η)rs

;

(3)

Sn+3

Sn+1 1

Cη : n v

n+ 2 0

X(ηvηη)

,

Sn+3 Mn+2
3r

Sn+1 1 0

Cη : n v1 1

n+ 2 0 0

X(ηv1ηη)r

,

Sn+3

Sn+2 1

Cη : n v1

n+ 2 0

Mn
3s 1

X(ηv1ηη)s

,

Sn+3 Mn+2
3r

Sn+2 1 0

Cη : n v1 1

n+ 2 0 0

Mn
3s 1 0

X(ηv1ηη)rs

;

(4)

Sn+2 Sn+3

Sn 1 v

X(ηηv)

,

Sn+2 Sn+3 Mn+2
3r

Sn 1 v1 1

X(ηηv1)r

,

Sn+2 Sn+3

Sn 1 v1

Mn
3s 0 1

X(ηηv1)s

,

Sn+2 Sn+3 Mn+2
3r

Sn 1 v1 1

Mn
3s 0 1 0

X(ηηv1)rs

;
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(5)

Sn+3

Sn v

Sn+1 1

X(vηη)

,

Sn+3 Mn+2
3r

Sn v1 1

Sn+1 1 0

X(v1ηη)r

,

Sn+3

Sn v

Sn+1 1

Mn
3s 1

X(v1ηη)s

,

Sn+3 Mn+2
3r

Sn v1 1

Sn+1 1 0

Mn
3s 1 0

X(v1ηη)rs

;

(6)

Sn+3

Cη : n v

n+ 2 0

X(ηv)

,

Sn+3 Mn+2
3r

Cη : n v1 1

n+ 2 0 0

X(ηv1)r

,

Sn+3

Cη : n v1

n+ 2 0

Mn
3s 1

X(ηv1)s

,

Sn+3 Mn+2
3r

Cη : n v1 1

n+ 2 0 0

Mn
3s 1 0

X(ηv1)rs

;

(7)

Sn+3

Sn v

Sn+2 1

X(vη)

,

Sn+3 Mn+2
3r

Sn v1 1

Sn+2 1 0

X(v1η)r

,

Sn+3

Sn v1

Sn+2 1

Mn
3s 1

X(v1η)s

,

Sn+3 Mn+2
3r

Sn v1 1

Sn+2 1 0

Mn
3s 1 0

X(v1η)rs

;

where v ∈ {1, 2, 3, 4, 5, 6} ⊂ Z/24 or Z/12 , v1 ∈ {3, 6} ⊂ Z/24 or Z/12 and r, s ∈ N+.

(III)

Sn+3

Sn v

X(v)

,

Sn+3 Mn+2
3r

Sn v1 1

X(v1)r

,

Sn+3

Sn v1

Mn
3s 1

X(v1)s

,

Sn+3 Mn+2
3r

Sn v1 1

Mn
3s 1 0

X(v1)rs

;

where v ∈ {1, 2, . . . , 12} ⊂ Z/24, v1 ∈ {3, 6, 9} ⊂ Z/24 and r, s ∈ N+.

(IV) (1)

Sn+2

Sn+1 1

X(η1)

;

(2)

Sn+3

Sn+2 1

X(η2)

,

Sn+3

Sn+2 1

Mn
3s 1

X(η2)s

;

(3)

Sn+2

Sn 1

X(ηη)0

,

Sn+2 Mn+2
3r

Sn 1 1

X(ηη)r0

;

(4)

Sn+3

Sn+1 1

X(ηη)1

,

Sn+3

Sn+1 1

Mn
3s 1

X(ηη)1s

;

where r, s ∈ N+.
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It is easy to recover the polyhedra from the matrices listed in Theorem 6.3. For example,

Sn+3 Mn+2
3r

Sn+2 1 0

Cη : n 3 1

n+ 2 0 0

Mn
3s 1 0

X(η3η)rs

represents the cone of the map Sn+3 ∨Mn+2
3r → Sn+2 ∨ Cη ∨Mn

3s corresponding to the matrix. Since

Sn+2 ∨ Cη ∨Mn
3s = (Sn+2 ∨ Sn ∨ Sn)

⋃
i2η

en+2
⋃

i33s
en+1, we get that the polyhedron corresponding

to this matrix is (Sn+2 ∨ Sn ∨ Sn ∨ Sn+3)
⋃

i2η
en+2

⋃
i33r

en+1
⋃

i1ηη+i23+i31
en+4

⋃
i31+i43r

en+4, where

it : Xt ↪→
∨

j Xj is the canonical inclusion of the summand.

Finally, from Lemma 5.4, Corollaries 5.3 and 5.5, we obtain all the 2-torsion free indecomposable

homotopy types of A†B, which completes the proof of Theorem 2.5 (Main theorem).

7 Concluding remarks

In this paper, using the well-known results about homotopy classes of maps between Moore spaces and

suspended complex projective space and their compositions, we succeed in classifying indecomposable

F 4
n(2) polyhedra. However, the corresponding classification problems for the cases F 5

n(2) and F 6
n(2) are

still open. We hope to return to this issue in the future publication. On the other hand, from the previous

remark, it is crucial to understand globally a collection of spaces as a subcategory of homotopy category

of spaces. We will focus on this point in the future works.
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