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Abstract We study the Cauchy problem of a two-species chemotactic model. Using the Fourier fre-
quency localization and the Bony paraproduct decomposition, we establish a unique local solution and

blow-up criterion of the solution, when the initial data (uo,vo,wo) belongs to homogeneous Besov spaces

Bpj+3/p (R3) x BT_’?+3/T(R3) X BS’/lq (R3) for p, q and r satisfying some technical assumptions. Furthermore, we
prove that if the initial data is sufficiently small, then the solution is global. Meanwhile, based on the so-called
Gevrey estimates, we particularly prove that the solution is analytic in the spatial variable. In addition, we
analyze the long time behavior of the solution and obtain some decay estimates for higher derivatives in Besov

and Lebesgue spaces.
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1 Introduction and main results

In this paper, we consider the following three-component generalization of the Keller-Segel system of the
form:

u = Au—x1V - (uVw) in (0,T) x 9,
vy = Av — x2V - (vVw) in (0,7) xQ, (1.1)
wy =Aw —yw+au+av  in (0,T) x Q,

where u and v denote the unknown densities of two interacting populations and w describes the unknown
concentration of the common chemical attractant. The parameter v > 0 in (1.1) is the rate of consump-
tion. Also, in (1.1) the chemotactic sensitivities y; and x2 and the rates of production «; and ao are all
real numbers, T € (0, 00| and  is a spatial domain.
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In particular, if v = 0, then (1.1) becomes the problems related to the following classical parabolic-
parabolic Keller-Segel system:

{utmxlv«uvm in - (0.7) x (1.2)

wy = Aw — yw + aqu in (0,T) x €,

where u is the density of cells and w is the concentration of the chemo-attractant. System (1.2) is a
mathematical model of chemotaxis, which was formulated by Keller and Segel [37] in 1970, while it is
also connected with astrophysical models of the gravitational self-interaction of massive particles in a
cloud or a nebula (see [10]). Nagai [47] proved that if the initial data (ug,wp) satisfies ug € L>(R?)
and [Jugl| 1 (r2), [|Vwol| L1 (r2) and |[[Vwo|| o (r2) are suitably small, then the Cauchy problem of (1.2) has
globally bounded solutions on R2. The asymptotic behavior of global solutions was investigated in [20,48].

When Q = R", Corrias and Perthame [20] treated the case n > 3 and constructed a global weak
solution for small initial data. The papers [16,20-22] dealt with the problem with the density function
in the Lebesgue space L™/?(R") for n > 2. Recently, Kozono and Sugiyama [39] obtained the global
and the decay estimates of solutions in homogeneous potential spaces H*~2"(R™) x H%7"(R") for
v 2 0 and n > 2. Bae [3] proved that (1.2) is globally well-posed for small initial data in B;?%(R:S)
X Bp% 1(R3) for 1 < p < 3. For generalized drift-diffusion equations about analyticity rate estimates
(see [62,63]). Zhai [59] established the global existence and uniqueness of solutions with initial data
(ug,wp) € B;?Jr?’/p(R?’) X Bﬁ/ﬁ’(ﬂ@) for 2 < p < ooand 1 < r < oco. For more results related to this
topic, we refer the reader to [8,11, 26, 38,40,43,51,55].

Furthermore, if d;w is ignored in (1.2), then the induced system becomes the classical drift-diffusion
equation with the parabolic-elliptic form

{ut =Au—x1V-(uVw) in (0,7)xQ, (1.3)

0=Aw—~yw+aju in (0,7) x Q.

In virtue of iterative derivative estimates, Masakazu et al. [45] obtained the analyticity of mild solutions
of (1.3) with initial data in weighted-Sobolev spaces and Yamamoto [56] considered the regularizing
rates and the analyticity for (1.3) for the initial data in L™/?(R") for n > 2 and extended the results to
Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces (see [24,57,58] for properties of related function
spaces). We can also refer the reader to [31,46,50] about the analyticity using iterative derivative estimates
for Navier-Stokes equations [1].

Using the Gevrey estimates, Foias and Temam [30] established the analyticity and provided explicit
estimates of the analyticity radius of solutions to the Navier-Stokes equations, which avoids some cum-
bersome recursive estimates of higher order derivatives and intricate combinatorial arguments. Since
then, Gevrey class technique has become a standard tool for studying analytic properties of solutions to
nonlinear partial differential equations. For involving equations about Gevrey class regularity estimates,
we can also refer the reader to [4-7,12,13,15,36]. One goal in this paper is to show the space analyticity
of mild solutions of (1.1) and to provide explicit estimates for the analyticity radius as a function of time.
There are many applications about the space analyticity (see [6,32,41,49]).

Recently, the two-species chemotaxis model (1.1) has been considered by many authors (see [2,9,19,
25,34]). In the radial symmetric situation, Arenas et al. [2] proved that there is simultaneous blow up
for both chemotactic species in the disk of R?. Conca et al. [19] studied the blow up and the global
existence for (1.1) with v = 0 in the whole space R?. Recently, Zhang and Li [60] showed the global
existence and the asymptotic properties of the solution to (1.1) when initial data |luo|| z1 (&), [[vollL1(®2)
and ||Vwo||£2(r2) are small on R2. In higher dimensions, the blow up of the parabolic-elliptic counterpart
of (1.1) has been studied in [9]. More general forms of the two-species chemotaxis model were considered
in [54,61].

Before going further, we first recall the definitions of some function spaces which are needed in this
paper, especially, we need to use the Besov spaces (for more details, see [33]). Let .#(R?) be the Schwartz
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class of rapidly decreasing functions, .#/(R3) be the space of tempered distributions. Let F and F~!
denote the Fourier and the inverse Fourier transforms of any L*(R?) function f, which are, respectively,
defined by setting, for any ¢ € R3,

Ff©) = f(§) = (2m) "% /}R e f(w)dr and FTU(E) = F(€) = f(=9).

More generally, the Fourier transform of any f € .#/(R3) is given by (Ff,g) := (f,Fg) for any
g € Z(R®). Let C be the annulus {£ € R : 2 < [¢] < §} and D(Q) be a space of smooth compactly
supported functions on the domain Q. There exist radial functions x and ¢, valued in the interval [0, 1],
belonging, respectively, to D(B(0, 3)) and D(C), such that

O+ @7 =1, VEeR®, Y o(27¢ =1, VEeR\{0},
720 JEZ
15— 5’| > 2 = suppp(2 /) Nsuppp(2~7") =0,
5 > 1 = suppx(-) Nsuppp(2~7") = 0.

Define the set C := B(0, 2) +C. Then we have |j — j/| > 5 = 2i'C N 27C = ). Furthermore, we have

1 1
VEERY, S <M+ P27 <1 VEERN0} 5 <Y @279 <

720 JEL

From now on, we write h := F ' and h= F~'x. The homogeneous dyadic blocks Aj and S"j for all
j € Z are defined by

Aju = cp(2*jD)u = 2% / h(?jy)u(ﬂf —y)dy,
RS

Sju:=x(277D)u := 23j/ (2 y)u(z — y)dy.
R3

Here, D := (Dy, D2, D3) and D; :=1i"'9,,(i* = —1). The set {A;,S;}jez is called the Littlewood-Paley
decomposition (see, for example, [53]). Formadly7 A = S S’] 1 is a frequency projection to the annulus
{€eR3: 271 <|¢| <27}, and S; = 3. i< A is a frequency projection to the ball {€ € R? : |¢] < 27}.
We denote by .7/ (R?) the space of tempered distributions f such that lim;_, ij = 0in.7"(R?). Recall
that for any s € R and (p,r) € [1,00] X [1, 0], the homogeneous Besov spaces B;’T(R?’) are defined by

B; .(R%):={f € /1 (R®) : |||

B, (R2) < OO},

where

-

[Z{?kﬂAkaLp(Rs)}T , when 1<p<oo, 1<r<oo, seR,
Bs .(R3) "= kez )
sup[2° || Ap f]| o ()] when 1<p<oo, r=0c0, scR.
keZ

/]

It is well known that if either s < 3/p or s = 3/p and r = 1, then Bs ~(R?) is a Banach space.

Let —00 < 892 < 81 <00, $1 —3/p1 =82 —3/p2 and 1 < r < 0. Then
1 3 s 3
B;1 T(R ) c Bp; ’I‘(R ) (14)
Let us now recall the definition of the Chemin-Lerner space £°(0, T B;,T(]RS)) with0 < T < o0, s € R
and 1 < p,7,p < oo (with the usual convention if r = oo or p = o00). The Chemin-Lerner space is
defined by

20(0,T: By (B%)) = {f € #"((0.T), A @) : | fllowo sy moy) < 0.
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where

3=

1 o035 msy) = Il ez 35 may) = {Z[szHAkf”L” (Lr®3)))" } :

keEZ

with the usual modification made when r = 0o or p = co. We equip the space

LP(0.T: By, (B%) = {f € #"((0.T). ZLE) ¢ | fll oo 15y iy < 20}

with the following norm:

T 2 1/p
1wy = 1 s o :={ / [2{2“||Akf||m<w>}ﬂ dt} ,

keZ

where

T g
1 fll e (oo (msy) == {/O f”iP(Rf')dT]

and the usual modifications are needed when r = 0o or p = co. From Minkowski’s inequality, it is easy
to deduce that
1Nl ero,7; Bs (R3)) S < fllpeo,r, B3, (R%) when p <,

Hf”LP(O,T;B;’T(]R?’)) X HfHQp(O’T;B;YT(RB)y when 7 < p.

If s; and so are real numbers such that s; < so and 6 € (0, 1), then we have, for any (p,r, p, p1, p2) €
11, 00]" and any 1/p = 6/p1 + (1 - 6)/pa,

11 gossra-0r gy < CILANG:

||f||Lp(O T; BQSIJF(1 92 (Ray) = CHf”Lpl 0,T;BL, (R3))Hf||Lp2 0,T;B22.(R3))’
||f||£p(0 T, BQSIJF(1 0)s2 (R3)) CHngpl (0,T; B (R3)) ||f| Lp2(0 T;B32.(R3))’

where C' is a positive constant independent of f.
The homogeneous paraproduct of v and w is defined by

Tuv = Z Sj_luAjv.
JEZ
The homogeneous remainder of v and u is defined by
R(u,v) := Z AkuAjv = Z ApulAw and Ay = Ap_q1+ Ap + Ak+1-
|k—3j|<1 kez
We have the following Bony decomposition:

wv = Tyv + R(u,v) + Tyu. (1.5)

For any operator T : B;T(R?’) — BI‘;T(R?’), we let [[ullpp. (rsy = [ITullp: (gs)- Let A be the Fourier

multiplier whose symbol is given by |£|; = Z?zl |&], where € := (&1,6,&3) € R3. Let ¢?VA be the
Fourier multiplier whose symbol is given by eOVilEl
Let 6 € {0,1} and
Ey =B, PR3 x BT TT(R?) x BYI(RY). (1.6)

We introduce a vector space O := X X Yp X Z7 equipped with the usual product norm
1w, v, w)llog = llullxy + [vllvr + wlzy,
Xp o= {u:ue £0,T; VA B (R?) N £%(0, T; "V B, TP (R?))),
Yy = {v:v e 240, T; VB (R?) N £%(0, T VA B, T/ (R%)),
Zy = {w:w e £(0,T; VA BT UR?)) 0 £%(0, T; VA B (R?))}
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and
lullxz = ||u||£oo(O,T;eeﬁAng+3/1’(R3)) + Hu”Sl(O,T;egﬂABz{IP(RS))’
[vllvy == ||v||200(07T;99\HAB;f+3/’"(R3)) + HU||21(07T;e9ﬁAB§/1T(R3))7
||wHZT e Hw||£°°(O,T;eeﬂABzflq(R3)) + ||w||£1(O,T;e9ﬂAB§ﬁ3/q(R3))'

Meanwhile, for any T' € (0, o], let
0% == C([0,7]: B, T"*P(R*)) ne(lo, 71 B (R) n (o, 7); B (R?)),

where C([0,T]; X) for any Banach space denotes the set of all continuous functions on [0, 7] with value
in X. For the notational simplification, when T" = oo, we let X« ==X, Yoo := Y, Zy :=7Z, Oy := 06
and ©F := 6°.

This article focuses on the Cauchy problem of the following two-species chemotactic model:

up = Au— x1V - (uVw) in (0,7) x R3,
vy =Av—x1 V- (vVw) in (0,7) x R3, (17)
wy = Aw — yw + aru + v in (0,7) x R3, '

(U/,'U,w) |t:0: (U;O,’UO,U}O) in R37

where T € (0, 00]. We recall that (1.7) enjoys nice scaling properties for v = 0. If (u,v,w) solves (1.7),
so does
(u?, v, w) = (AN2u(\t, Ax), 2o (A%t Ax), w(A%t, \x))
with initial data
(u(0,z),v*(0, ), w*(0,2)) = (Nug(Az), N2vo(Az), wo(Ax)).

We say that (A,B,C) is a critical space for (1.7) (v = 0) if the norm of (ug,vg,wp) in A x B x C is
invariant for all A > 0.

We say that the solution (u,v,w) is self-similar for (1.7) (y = 0) if (u*,v*, w?) = (u,v,w) for each
A > 0.

Thus, we observe that B;erg/p(R?’) X BEEJFS/T(R:S) X Bg”/lq(]R?’) are critical spaces associated with (1.7)
when v = 0. Notice that when v # 0, (1.7) has not a scaling property. Despite this, the case v # 0 is
intrinsic scaling that is inherited from the case v = 0.

The first novelty of this paper is that we resort the Fourier localization technique and the Bony
paraproduct theory to address existence issues of (1.7) (see Theorems 1.1 and 1.2 in the case § = 0)
in homogeneous Besov spaces. Secondly, following the Gevrey class approach pioneered by Foias and
Temam [30] and Foias [29] which is also used in [4,6,12,15,36], we are able to establish the analyticity
of (1.7) by obtaining Gevrey estimates in homogeneous Besov spaces (see Theorems 1.1 and 1.2 in the
case § = 1). More precisely, we show that mild solutions of (1.7) are in the Gevrey class (in this case
6 = 1) and they satisfy the estimate

VEA VEA VA
il;}g ||(e Uu, e v, e ’LU)||B;?+3/p(R3)XB;f+3/T(R3)XB;/lq(Rs) < Q.
Finally, the global Gevrey regular results in Theorem 1.2 in turn enable us to establish decay results for
higher derivatives, which are given in Corollary 1.4 below.

Let us now show the local existence (§ = 0) and the Gevrey regularity (analytic regularity) (6 = 1)

of (1.7) with large initial data.

fgg%q}grl<oo,1/r1+1/r2:1,1<p<q<oo, +

1

q
>%,%—%<%71<T<q<oo,%+%>%, %—%< % and 6 € {0,1}. Then there exists a T € (0, 0]
such that (1.7) has a unique solution (u,v,w) € 6% with

Theorem 1.1.  Let max{ 2pq+2§g,3qa Irq

u € L (efVING STAPTRITYR3)) (g2 (oOVIA B TTIPE (R3)) 1 g (e0VIA B TP (RY)),
v S (VNG TR RSY) g2 (VI B, TR (R3)) 1 gge (FVIA B, TTT(RY)),  (1.8)
= ngl (eex/fAB(?;’/lqu?/Tl (R?’)) A 277’;2 (ee\/EABS/lq+2/T2 (R?’)) N ey (eex/EABS’/lfI (R?’)).
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Furthermore, let the maxzimal time T* be finite. Then

o1 (O’T*;egﬂAB;‘?#’B/p#»?/rl (IR'J))OST? (O’T*;eeﬂAB;21’+3/P+2/T2 (]R3)) = o0,

[

€1 (0,T*360VEN B2 T2/ (Ra)) e (0,700 VEA B 24/ T2/ 72 () T OO (1.9)

] = oo

£71(0,T*3e0VIA B IT2/ T (R3)) 22 (0,7 5e0VIA B/ 1H2/72 (R3))

In particular, the above results also hold true when 6 =0, p=1 and r = 1.

In the following, we obtain the global existence (6 = 0) and the Gevrey regularity (analytic regularity)
(0 =1) of (1.7) with small initial data.

Theorem 1.2. Let1<p<q<oo,%+%>%,%—%g%,1<r<q<oo + %%_%g%and
0= {O,].} Let (Uo,Uo,wo) S EQ with
[ (w0, vo, wo)ll g, < €0 (1.10)

for some sufficiently small €y, where Eqy is as in (1.6). Then (1.7) admits a global-in-time solution such
that (u,v,w) € ©NOC. In particular, the above results also hold true when § =0, p=1 and r = 1.

Remark 1.3. (i) We can also have a version of Theorems 1.1 and 1.2 in any space dimension after
making some slight modifications of their proofs. Just for a clear presentation, we choose to work in three
space dimension case here.

(ii) For any ¢ € (0,7*) in Theorem 1.1 and ¢ > 0 in Theorem 1.2, we obtain the solution (u,v,w) €
C>®(R?) x C>®(R3) x C>=(R3).

(iii) In particular, when v = 0, (1.7) becomes the classical semi-linear Keller-Segel system of the double
parabolic type (1.2). In [59], Zhai established the global existence and uniqueness of solutions with initial
data (ug,wq) € B;erB/p(RB) X Bg’,/f(R?’) for 3 <p < ooand 1< r < oo In [3], Bae established the
global existence and uniqueness of solutions with initial data (ug,wo) € B, 2+3/p(R:)’) X B3/p(R3) for
1 < p < 3. However, the indices of the Besov spaces in Theorems 1.1 and 1 2 cannot be obtained by
the method used in the above works. Thus, we note that even for the classical semi-linear Keller-Segel
system of double parabolic type, our existence (# = 0) results in Theorems 1.1 and 1.2 are also new.

(iv) The main reason that we need to impose the restrictive conditions % — é < % and % — % < %
mentioned in Theorem 1.1 in place of < — % < 2 Z and < — % < % in Theorem 1.2 lies in the facts that (5.1)
below needs

2pq 2rq
m < rp < oo.
2pq + 3p — 3q’ 2rq + 3r — 3¢

Moreover, by Lemmas 2.6 and 3.1, we only can choose r; = 0o 1f = s a3
(v) Let all assumptions in Theorem 1.2 hold true. When v = O in (1.7), suppose furthermore that

12

ug, vg and wy are, respectively, homogeneous of degree —2, —2 and 0, namely, they satisfy the relations
up(x) = Nug(Ar), vo(x) = Nwvo(Axr) and wo(xr) = wo(Az) for all z € R® and A > 0. The global
solution (u,v,w) of (1.7) given by Theorem 1.2 satisfies u(t, z) = N2u(\t, \z), v(t,z) = A2v(A\%t, A\x) and
w(t,z) = w(A\t, \z).

As a consequence of working with Gevrey norms, we obtain the decay of higher-order derivatives of
the corresponding solutions in Besov and Lebesgue spaces. The global solution (u, v, w) in Theorem 1.2
in turn enables us to establish the following time-decay estimate on the high-order derivatives of (u, v, w)
of Besov and Lebesgue spaces.

Corollary 1.4. Let k > 0 and D* be the Fourier multiplier whose symbol is given by |£|?*, where
€ = (&1,&,83) € R3. There exist positive constants Cy, Cy, C3 and C' such that
(i) If m > 0, then

m

||(Dmu,DmU,Dm )||B—2+$/D(R3)XB—2+3/7‘(R3)><B$/(](R3) C™m™t™ 2.
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(ii)) If k1 > =2+ 3/p and 1 <p < %, then

||Dk1u(t)||LP(]R3) 5 Cfl+2—3/p(k1 +9— 3/p)k1+273/:0t, k1+2273/p
i) If kg > =24 3/r and 1 <7 < 3, then
2
IDM0(t) | qms) S O824 2 = 3y 23 5
(iv) If k3 > 3/q and 1 < g < 2, then
DR (8[| oy < CFF 3 U (kg — 3/q)ks—3/0p= 25"
(R3) 3

Notation.  Throughout the paper, ¢ and C stand for harmless positive constants, and we sometimes
use the notation a < b as an equivalent of @ < Cb. For a Banach space X and an interval I of R, we
denote by C(I;X) the set of all continuous functions on I with value in X. The symbol (d;);cz is a
generic element of /! (Z) so that d; > 0 and djezdi =1

2 Preliminaries

The proofs of Theorem 1.1 in Section 3 and, likewise, Theorem 1.2 in Section 4, require a lot of elementary
inequalities which are summarized in the following.

Lemma 2.1 (See [33]). Let C be an annulus and B be a ball in R3. Then there exists a positive
constant C' such that for any non-negative integer k, any couple (p,q) € [1,00]? with ¢ > p > 1, and any
function u of LP(R?),
(i) ¢f supp @ C AB, then
1_1
ID*ul| paes) = sup [[0%ul|Larsy < CHFNFE 7D u]| o sy
k

lal<
(ii) if supp @ C XC, then
C_k_l)\k”U“LP(]RS) < HDkUHLP(R?») < CHI)\k”UHLP(RS)'

Lemma 2.2 (See [33]). Let C be an annulus in R3. Then there exist two positive constants ¢ and C
such that for any p € [1,00] and any couple (t,\) of positive numbers, if suppf C AC, then

€72 fllLo(ray < Ce™ N fll Lo re)-

Here, e'® is the heat operator with kernel G(x,t) = (4t)~3/2 exp(—|x|?/4t) for all x € R® and t € (0,00).

Lemma 2.3. Let A be the Fourier multiplier whose symbol is given by |£|, = 23:1 |&;|, where & =
(&1,62,63) € R3. Consider the operator E := ¢~ WI=stVs=ViA 15,0 < s < t. Then E is cither the
identity operator or an operator having L'(R3) kernel whose L'(R®) norm has a bound independent of s
and t.

Proof.  For the proof of this lemma, we refer the reader to [6,42]. O

Lemma 2.4. Let A be the Fourier multiplier whose symbol is given by |£|1 = Zle |&;|, where £ =
(€1,&,63) € R3. Then the operator E = ez ATVl o o Fourier multiplier which is bounded on LP(R3)
with p € (1,00), and its operator norm is uniformly bounded with respect to a = 0.

Proof.  For the proof of this lemma, we refer the reader to [6,52]. O

Lemma 2.5. Let A be the Fourier multiplier whose symbol is given by |£|, = Z§:1 |&;|, where £ =
(£1,€9,63) €R3. Lets € R, 0 € {0,1},1 < p, p, 7 < oo, T € (0,00] and ps = (1+1/py —1/p)~ 1. Assume
that uo € B 1 (R?), f € £°(0,T; ee‘/EAB;;Q+2/p(R3)) and u solves

{utAuf in R3x (0,7), 1)

U |g—o= ug in R3.
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Then there exist two positive constants ¢ and C such that for all py € [p, 0],

Hu||£m 0,T; eefABS+2/Pl (R3))

1 — T22jp1 =
. . —e ¢ P1
<O Al (S —)

JEZ
. _ A—CT2% pgy r
(s—2+2) | A oOVEA l—e Z.
# O A A gy e () (2:2)
j

in particular, there holds true that
H“”Eﬁl(o,T;e"ﬂABZf/“(R%) [”“0”3 (@) T ”fHEP(OTe"fABg 2+2/”(R3>>]
Moreover, u € C([0,T7; ';,1(]1@3)). If f=0and 1< p1 <oo, then

Tllr%l+ ||'U/||£;J OTCQ\[ABrF?/pl(Rg)) 0. (23)

Here and hereafter, T — 07 means T > 0 and T — 0.

Proof.  When 6 = 0, this lemma can be deduced from [23] immediately, the details being omitted here.
We only prove Lemma 2.5 in the case # = 1 by making some minor modifications. Thanks to Duhamel’s
principle, we can reformulate (2.1) into the following integral equation:

t
u(t, z) = ePug + / WA f (7 2)dr. (2.4)
0
Applying Aje‘/i/\ to (2.4), we conclude that

t
Aje‘/gAu(t,x) = Aje‘/ZAetAuo +/ e(t_T)AAje‘/ZAf(T, x)dr
0

Therefore, by Lemmas 2.1-2.4, we have the following inequality:

1A eV u(t, )| Lo o)
t

<A eV e ug | Lo s +/ [e®=DAA eV f (7, 2)|| Lo sy dr
0

< eV HEAA o3 Mg | Lo as)

t
+/ ||e(\/2*f*\/t7T)Ae\/t77—A+ QTAAjeTTAeﬁAf(T,(E)HLP(RS)dT
0

t
< ||Aje%Au0||Lp(R3) —‘r/ ||AjetTTAeﬁAf(T’x)HLp(Rs)dT
0
t
J —c(t—7)2%7 || A T
g —ct2? ||A uO"LP(R3)+/ e (t )2 ||AjefAf(T’x)||Lp(R3)dT. (25)
0

Taking L norm on the both sides of (2.5), and using Young’s inequality, for p; < p < oo, we conclude

that
1— e cTrig2

1/p1
o ,
450 el < () IAualzrcey

(1 — e~ TP222

1/p2 A JiA
cpa2% ) I8¢ CE PATIES

with 1/pa =1+1/p1 — 1/p.

Multiplying by 27(*+2/1) and summing up over j, we then obtain (2.2).

Finally, applying the Lebesgue dominated convergence theorem and (2.2), we immediately obtain (2.3),
which completes the proof of Lemma 2.5. O
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Lemma 2.6. Let A be the Fourier multiplier whose symbol is given by |§| = Z?:l |&:|, where £ =
(£1,62,63) €R3. Let 1/r1 +1/ra = 1,1 < p < q < o0, %—i—% > %, % — l <2 2,71 = max{2,2qu§%}

and 6 € {0,1}. If T € (0,00], ¢ € £1(0, T;®VIABZTP/1(R?)) N £(0, T eWAB;”(f(R?’)) and
f e 210,75V BYP(R) N £%(0,T; ™A B, TP (RY)),
then it holds true that
||fV¢H21 (ee\ﬁAB*&+3/P(R3))

C”f”i:oo(cg\[ABfZ#»S/p Rg ||f||£1 C@fABS/p Rg ||¢H2°°(09‘[ABS/(I Rg ||¢|| QWABgtS/q(R?’))

+ I,

200 ngB*2+3/P(]R3))Hf||£1 (eg\[ABS/p R?’ ||¢||£oo g\[ABB/q)Hd)”Sl ( ngB2+3/Q(R3))
where C' is a positive constant independent of f and ¢. For r1 = oo, it holds true that
17V 0l ey @ovins, 112 oy
< C”fll,c,}r(cg\/?/\]é;/f)H(ZS”S%C(CWAB;/I"(RS)) + Cllf”g%o(ceﬂAB;?rS/P(RS))|‘¢||£1T(CeﬂAB§ﬁ3/Q(R3))a

where C' is a positive constant independent of f and ¢. In particular, the above results when 6 = 0 and
p =1 also hold true.

Proof.  Let (F,®) := (e‘g‘/EA /s ee\/ZA¢). It follows from the Bony paraproduct decomposition (1.5) that
VNN (FV) = PVIANAGT, ouin p Ve OVIAD + R(e VI E, Ve OVIND) + Ty o yiage *VINR),

which ensures that

[V AUV arsy < Y 1AV (Sy e VINPA Ve VAR 1y (10 o)
l7—3'1<4
+ Z ||Ajee‘/ZA(Sjr,1e_9‘/ZAV(I>Aj/e_\/ZAF)HLlT(Lp(Rs))
l7—3"1<4
+ Z ||Ajee\/zA(Aj/e_e\/zAFAj/Ve_e\/ZA@)||L%“(Lp(R3)), (26)
j'2j—No

where Ny is some fixed positive integer.
Now we introduce the bilinear operators BY(f, g) of the form

B (.g) = VeI ViNg) = [ ] et eI~ dnds. (2.)

Claim that

IBY (5, 0) e rey S IIfllzes eoyllgllre when 1/p1+1/pa=1/p, 1<pi,pa<oo, 1<p<oo. (28)

When 6 = 0, it is obvious to obtain

IBY (5, 0) |l v 2y S IfllLes woyllgll Lr2 sy when  1/py+1/py =1/p, 1<p <oo.

Next, we only prove the case § = 1, here we borrow some ideas from [36]. For A = (A1, A2, A3), p =
(1, 2, u3) and v = (v1,ve,v3) with A, pi, v; € {1,—1} for i € {1,2,3}, let

Dy:={n:A\m =20,i=1,2,3},

DH = {5—77/11(51—771) >07i:1a273}7
Dy = {fl/lfl 20,211,2,3}
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We denote by xp the characteristic function on domain D. Then we can rewrite (2.7) (0§ =1) as

/Ra / €xp, (E)eVilEh=lemnl=tnly ) (e —n)f(e — n)xp, (G(n)dndé.

>\,,W7uke{ 1,1}
Obverse that for n € Dy, { —n € D, and £ € D,, Vi€ =l&i=nil=In;D) must belong to the following set:
oM = {1’6*2\/1?'5”76*2\/{‘51'*77”’6*2\/“77”} when i€ {1,2,3}.

Let 1 < p < oo and p € .7/ (R®). If there exists a positive constant C' such that, for all f € .7(R?),

|F oF fllLowsy < C|lfllLere)s

then ¢ is called a multiplier on LP(R?). The set of all multipliers on LP(R?) is denoted by M,(R3) (for
more details, see [35]).

When 1 < p < 00, xp, € Mp(R?), m € M,(R?) for any m € O, it follows from the algebra property
of M,(R3) that

1B (F, 0) o 2y S IfllLes wo)llgl ez rey  when  1/py+1/py = 1/p.

Choosing 1 < 71, 72 < o0 such that é + % = 1, noticing that r; > 2, thanks to (2.8), applying
Lemmas 2.1 and 2.2, we obtain
18" (T -ovinge™ " )1y (1o ms))
S Z ||Ajee\[A(Sj’—le_gﬂAv‘I’AJ’e_eﬁAF)HLlT(Lp(R3))
li—5"1<4

S Y A Fllez ooy 151V L oo may)
li—i'l<4

3 A .
Z Z 2k(1+q)||Akq)”L;1(LLI(]R3))||AJ'FHL;?(LP(]R3))

l7—3"1<4 k<G =2

A k177 r
S > A Fllzemsy Y, 2MTORGIID AP oy

li—j'|<4 k<) —2
< E 9J "(2—3/p— 2/7‘2)d, E 2(1 2/T1)k||(b| L 3/q+2/r1 ||F|| r2( 72+2/r2+3/p(R3))
li—3'1<4 k<j'—2

S 2](1 S/P)dj H(I)ngl (B3/1q+2/7‘1 (R3))||FH27‘2(BP—?+3/;)+2/7‘2 (R3))

— 1
1

1-3
< 23( /P)d HF||£OC(B—2+3/p(R3))” ”21 B3/p(R3))||¢||25’§(B§{1Q(R3))” H}:,}F(BQH/‘?(]RE‘))

where

; 93" (=2+3/p+2/r2) ||A FHL”?(LP(JRS))
3=

||FH o (B—2+2/r2+3/p(R3))

Ifl<p<q<oo,thenthereexistsl<)\<oosuchthat%:a+xand—<2—§>0(as
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r> mbﬁ) It follows, from Lemmas 2.1, 2.2 and (2.8), that

HAjeioﬁA(Te*9\ﬂAFve70\/ZA(I))”LlT(LP(RS))
< Z HAjeGﬁA(Sj/_lefﬂAFAj/VefaﬁAq))||L1T(LP(R3))

~

li—7"l<4
S Y 1AVl e pagepllSy 1 Fll Lo oa@ey)
li—5"1<4
. 1_1 A
N Z 2 ||Aj'¢)|L;2(L"(R3)) Z 2% A)”AkF|L;I(an(]Ra))
l=3'1<4 K<i'—2
< Z 94’ (1-3/q~ 2/r2)d ||‘I)H r2 (B/aR/ T2 ()
l7—3'1<4
3 OIS 8y
K<y’ —2

< 2j(173/p)dj ||@H27‘2(33/q+2/r2 (®9)) HFH):TT1 (B 2+ /72T (gay)

1

=3 _72

1-3
S YOI  rvs n IFI 5 o 190 o 1R 5 g

To estimate the remaining term R(e ?VIAF, Ve 9ViA®), we consider two cases: Sy >1land 3 <
1,1

ptgsl

Casel. - —|— > 1. We find 1 < p/ < oo such that 1 5+ i = 1. Applying (2.8) and Lemmas 2.1 and 2.2
again, for bome ﬁxed integer Ny, we have

||Ajeg\/£AR(e_9\/zAF, Ve_e\/zA(I)) ||L,}(LP(R3))
< Z ||Ajee\/%A(Aj/eieﬁAFAj/veieﬁAq))||L%(LP(R3))

~

J'23—No
<2 N AN A, e VIAEA Ve AD)|[ 11 11y
J'23—No
5233'(1—1/;;) Z 2/ HAJ"(I"L;I(Lp’(RS))||Aj’F||L;2(Lp(JR3))
3'25—No
<23J(1 1/p) Z 97~ 2+3/p+2/r2)d ||F|| r2( —2+s/p+2/r2(R3))
3'27—No

x /O3 2r GID A ] ey

< 237(1=1/p) Z dj’272] ||FH2;2(B*§+3/P+2/T2 (RS))2j'(3/q+2/r1) ||Aj’q)||L;1(Lq(R3))
3'2i—No "
f, 2J(173/P)dj ||FH27‘2(B—§+3/p+2/7‘2(R3)) ||<I>|| o1 (qui/lq+2/7‘1 (R?))

lr1

< j(1-3/p)
DO o I 7 120 g 1212 0
Case 2. % < % + % < 1. In this case, by (2.8), Lemmas 2.1 and 2.2, we find that

|A;e?VIAR(e VN, ve_eﬁA(I))”LlT(LP(R?’))
S 23j/q Z ||Ajee\/zA(Aj/e_e\/ZAFAjIVe_G\/ZA(I))||L%(L(pq)/(p+q) (RS))

Jj'23—No
S 2%/ Z 2/ 1A Fll Lz (o @y 1A5 @l Lot (o (rsy)
Jj'23—No

S 3 H TR0y |l g gy assimrarra oy 2 I Rl o
§"2i—No "
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< 23‘(1—3/17)d.HFHSQ(E}f?e,/pm/r2 (RS))HCI)||2;1(B;/{1+2/T1 (®9))

1

< 2j(1 3/p)d HFH |F||£1 (BB/Q(]Rg))||¢||2%01132/1)(R3))||®‘|;;(B2+3/P(R3))

1

SOO(B72+3/(I R3)) |
1-3 - y
< 29(=3/p) g, HFHQOO(B*QJrS/P(RB I “gl (B2 ( R3))”(I)H£°°(133/‘1 R?)) 1 H B2 9(R3))

Inserting the above estimates into (2.6), we obtain the desired results, which completes the proof of
Lemma 2.6. O

3 Proof of Theorem 1.1: Local existence and analyticity with large initial
data

The goal of this section is to show Theorem 1.1. To prove the existence and the analyticity part of
Theorem 1.1, thanks to Lemma 2.6, we obtain the following proposition, the details being omitted.

Proposition 3.1.  Let max{qufgg 3 2rquz 3q}<r1 <00, 1/ri4+1/ra=1,1<p<q< o0, l-i-l
>%7%—%<71<r q < o0, + >77—7<7and06{01} IfTG(Ooo]andfeAT,ge]BT

3’ r
and ¢ € Cp, then it holds true that

||fV(;5||L1 eH\/AB_1+3/”(R3)) C||¢||2T1 eofAB3/q+2/T1 (R3)) ”f” 1T2(e(9\fAB_2+3/1”+2/T2(]RS))

+Cll¢l

e eovingylarms o | e eoving 2vmarm ooy,
and
||9V¢||21T(esﬂAB;ﬁsn(Rg)) < C||¢||2;1 (cOVTA /a2 71y Hf”g;? (cOVEA BT 2H3/ 72/ 72 (g3
+ C”éi’”g;'z (eeﬂA32(1q+2/r2 (R3)) ||f||)3TT1 (esﬁAB;fH/TH/n (R3))

where C' is a positive constant independent of f and ¢. In particular, the above results also hold true with
p=1andr =1 when 6§ =0.

Let

Ap = 29} (eex/ZAB;f+3/p+2/T1 (R?’)) n ErTz (QQJZABP*E+3/:D+2/T2 (RB)),
o= 2/9«2 (ee\/EAB;12+3/T+2/7‘2 (R3)> N 2;}1 (B;12+3/r+2/r1 (RS))

and

Crp = S (PVIA BT/ (R)) N g (PVIN BT (R?)).

In order to prove the local existence, when r; < oo, applying Lemma 2.5, we have

. tA _ . tA _ - —yt tA _
%1_>rn0 lle"“uollay =0, %1_)m0 lle*“vollB, =0 and TI}LHOHe e wollcy = 0. (3.1)
Thus, for § > 0, we can define
tA 0
F1:=sup<s Ty >0:e UOHAT\E
tA g
Ty :=sup 11 > 0: e vo|lp, < 0 (3.2)

=] S

T3 1= sup {Tl >0: [le " e wollc, < }
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Choose T := min{%1, T2, T3} and take T' < ¥ and § € (0, 00) small enough. Now let us consider the map
I(u,v) := (T'1(u,v), T2 (u,v)) with

t
[y (u,v) := e®ug — Xl/ =AY (uVw) (-, s)ds,
0

¢
Do(u,v) == e® vy — )(2/ =AY (vVw) (-, s)ds,
0

t
w = e ety + / e V=)= (o u(-, 5) + agv(-, s))ds
0

in the metric space
D :={(u,v) : |ullar + [lvlle; <0} and  df(ur,v1), (ug,v2)] = [Jur — u2lag + [lv1 — v2]|B,-

By (1.4), we have

2+3 5—2+43/r 2+3
B, 7PPRY), B TR < BTV RY)

when p < ¢ and r < g; accordingly, from Lemma 2.5, it follows that

”ef'ytetA

lwller S Wo ||£;2 (EGWAB;}G‘H’Q/’"Q (R3))ngrt (BZ./1Q+2/T1 (R3)) + | (u, v) H‘g;} (eeﬂAB;?+3/q+2/Tz (R3))

+ [ (w, v)| e (BT (o))

—yt tA
S ”e ¢ w()” T2 (o0VIA g—213/a+2/72 (3 ATl '3/’”'% 3
L7 (VAR | R3NLL (B, 4 (R3))

+ H (u7 U)' 3;2(09\HAB;?+3/P+2/7'2 (R3))ﬂ£;2 (CG\/ZAB;erf’/"Jr?/"'z (R3))
+ H (ua 'U) ||£;1 (B;§+3/IJ+2/7‘1 (R3))ﬂ£TTl (B;f+3/7‘+2/7‘1 (RS‘))
< lle™ e woller + 1 (w, 0) [z xBrs (3.3)
which, together with Lemma 2.5 and Proposition 3.1, implies that
||F(u7v)HAT><]BT
= T1(u, v)l[ar + [T2(u, v)|ey

5 H(etAuoae ’UO)”ATXIBT + ||V(UVUJ)HL1 eefAB*2+3/p(]Rs)) + ||V(va)||Ll efAB*2+3/T(R3))

A A
S H(et Uo, e Vo) |larxBr + ||(U7U)HAT><]BT[HM| eri (B 3/lq+721( R?)) + ”w‘ 2;?(ee\/zAB;/erz/w(Rg))]
q,
S (e uo, € 200) |azxBr + 1(w, 0) g sz [le ™ P woller + [[(u, 0)|ar&y]
)

S ) + ”(uvv)”ATXIBT 4 + ||(u’v)||AT><]BT

2
< é + g
~ 2 4
<4, (3.4)

For any (u1,v1) € ® and (ug,vs) € D, for simplicity, we write (u*,v*, w*) := (ug — u1, v — v1, w2 — w1).
Repeating the argument used in (3.4), taking § € (0, c0) sufficiently small, we then conclude that

D(F(U1,U1),P(UQ,U2))
= [|T1 (ug, v2) = T1(ur,v1)|lag + [[T2(u2, v2) — Ta(ur, v1)||s,

S, ||u*Vw2 + ulvw*||g%(esx/?AB;i+3/p(R3)) + H’U*V’LUQ + Ulvw*”2%(69\/?/\3;14—3”(]1%3))

Sl llar + Jlw™l apz | 1

( 0fABq1 (R3)) ’"2( efAB (Ra))]

X [lluallag + llwl e (MAB%% &) + [l £r2 (e SfAB%+%(R3))
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*
- 342 + ||lw| . 342
L (OVIABE, T (R?)) LR (OVIAB T, T2 (R?))

+ v e + [lw”|

X llorllar + [lwz]| spz o flwell si2

S (VB T (RS)) SR (VB TE (RP))

S llutllar + lle” e wy

2;2 (CG\/ZAB;?+3/CI+2/"'2 (R3))ﬁ£;} (Bgflq+2/7'1 (R3)) + || (u27 /UQ) HAT X]BT]

Xl lar + 1w o) arxBr] + 10" By + 1w 0")[[ar<B]
X [||lv1]lBy + He_’YtetAwOH}:;z (cOVTA B2/ 142/72 (Ra)) 071 (B9+2/ 71 (3)) + || (u2, v2)llar xB]
< Z2 0"
< 10 0" (35)
Combining (3.4) and (3.5), we find that I" is a contraction mapping on ©. So, there is a (u,v) € D

satisfying I'(u,v) = (u,v). Since (u,v) € © and wy € Bs,/lq(R?’), from (5.4), it follows that
ry (OVEA 1T (3 vy OVIA F 0 T (3
we L7 (VB (RY)N LR (e B, ™ (RY)).

Applying the continuous embedding (1.4), we know that B;f+3/p(R3), B;12+3/T(R3) — B;f+3/q(R3)
when p < ¢ and r < g. Thus, using Lemma 2.5 and Proposition 3.1, we conclude that

1w, 0)l

s (eeﬂAB;iJr% (Rs))xg%o(eeﬂAB;f*% (R3))
§ ||(’LL0, vo) HB;iJrz/p(Rg)XB;ers/r(RS) + ||V(UVU))||£1T(e9\/;ABp—i+3/p(R3)) + HV(“VU)||21T(e9ﬁAB;f+3/"(R3))

S ”(an UO)HB;?+3/P(R3)XB;’;’+3/T(R3) + ||(u7v)||AT><]BTH|w|| - 33/q+% + H’LU||£;2 (eoﬂABﬁgfqur?/Tz(Rs))]

7 (Bga (R3))

S ||(’LL0, UO)HB;§+3/P(R3)X3;3+3/7'(R3) + ||(u7U)HATXBTHle_wetA'lUOHCT + ||(U,'U)||AT><IBT]

S ”(U‘Oa ”0)HB;?‘”/P(RS»)XB:?+3/T(R3) + H(uvv)”ATX]BTH|w0||32/1’1(R3) + ||(u7v)||AT><]BT]
and

- A
”wHSC’O(B% (B3)) S ”e et wO”BSﬁQ(ﬂ@) + ||(u,11)‘|£;1 (eeﬂABS/lq—2++2/T1 (R3))
T (P ’

fs ”wO ||]'32{1q(]1g3) + ||u||£TTl (eeﬂAB;f+3/q+2/T1 (R3)) + HUHQQ} (eeﬂAB;f+3/q+2/T1 (R3))

S ||w0 ||BZ(1Q(R3) + ||’U,||£;1 (eS\/ZAB;j*WP*WTl (R3)) + ||U||2;1 (eS\/?AB;j*WTJrZ/Tl (R3))"
This finishes the proof of (1.8). Finally, using (1.8), as in the proof of Lemma 2.6, we find that

iV - (uVw) € &40,T; B, TP/P(R?), X2V - (vVw) € €40, T; B, ;77 (R?)),

aiu € A and  asv € Br,
which, as the third index r = 1 < oo, using Lemma 2.5, yields

(u,v,w) € C(I; B, T T2/P(R?)) x C(L; B, /" (R?)) x C(I; B (R?)),

where I = [0, T]. From above, we deduce that (u,v,w) € 6.
If T* < 0o and

||”U,||’er (O7T*;egﬂAB;i+3/p+2/r1 (R3))Ner2 (07T*;eg\/gABp—?+3/p+2/r2 (R3)) < 00,

[[ll < o0, (3.6)

243/r4

— 2
£71(0,T* ;eeﬂAB’:f+3/T+2/7‘1 (R3))NLr2 (0,7 569\/?/\3”1 &) (R3))

||U)||£,_1 (O,T*;eeﬁABj/lq+2/T1 (R3))NEr2 (O,T*;es\/{ABg/f‘FZ/T‘Q (R3)) < 00,
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we claim that the solution can be extended beyond T™. Indeed, let us consider the integral equation, for
any t € (0,7T),

t
u(t) =M%y — x4 / =AY (yVw)(-, 5)ds,
T

t
o(t) = et DAy — xg/ =AY (vVw) (-, 5)ds, (3.7)
T

t

w(t) = e VDDA 4 / e 1= 6(t=)2 (o (-, 5) + ago(-, ))ds,
T

which, for T < T* and T being sufficiently close to T*, together with (3.6), (3.7), Lemma 2.5 and
Proposition 3.1, implies that

(t—T)A . .
||e uo || £r1 (T, T* ;eeﬂAB;?+3/P+2/T1 (R3))NE 2 (T, T* ;eg\/ZAB;?+3/P+2/r2 (R3))

< . . .
~ ||u||£r1 (T,T*;ee\ﬁAB;§+3/p+2/”1 (R3))NLr2 (T,T*;ee\/ZAB;?+3/p+2/r2 (R3))

+ Hu”E'r‘l (T,T*;ea\/{AB;f+3/P+2/T1 (R3))NEr2 (T,T*;eeﬂAB;§+3/1)+2/T2 (R3))

)

x (HU’HE;1 (T,T*;BzQﬁ%(RS)) + HWHQ?(T,T*;eeﬁABgflq+2/T2 (Rs))) < 1 (3.8)
where
ST By, (RY) = {f € S (DT, SLED) ¢ [ Fllasgr sy oy < o)
and

T* 2 1/p
Hf”):p(T,T*;B;,T(R:")) = {/T [Z{QkSHAkﬂM(RS)}T} dt} .

kezZ

Similarly, when T' < T* and T is sufficiently close to T, we also have

et ,

VIl g (7, e seoven 248/ 742/ () g (1,100 BN B34/ 2172 ) < (3.9)
" " 3.9

A >

ey (t— _ 4]
He ~(t T)e(t T)AWOHQH (T,T*;ceﬁABg’/qurw” (R3))ﬂ£’”2(T,T*;cgﬁABg’fqurz/"Z (R3)) Z
Obverse that (3.8) and (3.9) are analogous to (3.1), which further implies that the solution of (1.7) exists
on [T,T*]. This contradicts to the fact that 7* is maximal. Therefore, the desired estimate (1.9) now

follows, which completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2: Global existence and analyticity with small initial
data

This section is devoted to the proof of the global existence and analyticity. First, we prove the global
existence and analyticity of solutions of (1.7) by applying the contraction mapping in Gevrey spaces.
System (1.7) can be written into the following integral equations. Let T' € (0,00], t € (0,T) and (u,v) :=
(@, 0) :== (4 (a,v), s (4, 0)) with

t
I, (@, D) := e"®ug — Xl/ =AY (aVD) (-, s)ds,
0

t
Iy (40, 0) := etPuy — Xz/ =IAY(5V @) (-, s)ds, (4.1)
0

¢
W= e etPuwy —|—/ e V=)= (o1 (-, 5) 4+ agd(-, s))ds.
0
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Let (@, 0) € Xy x Y and (ug, v, wo) € Ep. Applying (1.4), together with Bf’/lr(R?’) — Bs’/lq(R?’) and
BZ”/IP(Rg’) — BS’/{I(RB) for p < ¢ and r < ¢ and Lemmas 2.5 and 2.6, we conclude that, for (4.1),

l@llzr S lle™" e S wollzg + ill gy (ooven g2/ gy + 190l ey (eovin p2racasyy

S ||w0||32{14(R3) + ”ﬂHE%(eeﬂABgG”(R%) + ”ﬁHS;(eeﬂABfﬁT(R:’))
5 ||w0||32/1<1(R3) + ”’LNLHXT + ”ﬁHYTﬂ (4'2)
which implies that
A e~
”u”XT < ”et UOHXT + ”le . (uvw)||£;(esﬂAB;f+3/P(R3))
A o ~
< Het UOHXT + ”Xl ’ (uvw)HQIT(CeﬂAB;iJﬁ/P(RS))
A ~ ~
S ”et uollx, + ”qu%ﬂ(eeﬂAgg‘/{’(Rs))||w||gqo9(eeﬁA32(10(R3))
+ Hang%o(eeﬂ/\[g;?H/P(RS))||w||21T(eeﬁAB§ﬁ3/4(R3))
A ~ ~
S lleuollxy + llallx, 1@z,
< ol s/ gy + e (ol ooy + Il + o) (43)
Similarly, we have

oller S eoll 52007 gy + 8l (ol go7a sy + e + ) (4.4)

As a consequence, we conclude that (u,v) € X x Y.

Next, we prove the global existence for small initial data. For this purpose we choose T = co. Our
proof is divided into two steps. Firstly, we show that for ¢; > 0 small enough, II is a map from X x Y<o
to itself. We say u € X if u € X and ||u|
of u, and similar notation for v € Y and w € Z*°.

xeo = |Jullx < Cep, where C'is a positive constant independent

Proposition 4.1.  For a given constant ¢y > 0 small enough, the initial data class (ug, vy, wo) satisfing
(1.10) and (@,v) € X x Y¢, System (4.1) satisfies (u,v) € X x Y€,
Proof. By Lemma 2.5, we know that there exists a positive constant C' such that

([ (" ug, e g, e e wp) ||lo < C| (o, vo, wo)|| 5, < Ceo,

which, along with (4.2)—(4.4), implies that

xe0 + Co||7]

1(u, 0)llzxy < Ceo + Cll(@, B)|[xc0 xcveo [Cllwoll g/p sy + Colll veo|

< 2060(1 + CEQ) g 060.

This further implies that (u,v) € X% x Y€, which completes the proof of Proposition 4.1. O
Secondly, we show that for ¢y > 0 small enough, the map II is a contractive map.

Proposition 4.2.  For ¢y > 0 small enough, letting (4,0) € X x Y and (u,v) € X x Y with

(U, 0,0) |t=0 = (@, D, W) |t=0 := (ug, vo,wo), then the map I defined in (4.1) is a contractive map.

Proof.  For simplicity, we write (u*,v*, w*) := (& — 4,0 — v,w — w) and we define, for ¢ € (0, 0],
t
= e etPwy + / e V=)= (o (-, 5) 4 agd(-, s))ds,
0

t
W= e MetPuwy +/ e =)= (01 4(+, 5) + (-, s))ds.
0

Then we have

t
1Ly (@, ) — 11, (@, 9)| = |xa / Vel =2 (aVw* + u*Va)dr|.
0
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Similarly,

t
Ly (@, 0) — Iy (@, D)| = Xg/ Vell=DA(5Vw* + v*V)dr|.
0

Repeating the proof of Proposition 4.1, we have
Ty (@, 0) = I (4, 0)||x S [laf|xeo [[lu” [[xeo + (|07

S [llallxeo + |ollyeo + |4l
< Coeol|lu™||xeo + [lv*]

|

veol + [|u]

|

x<o + |7

|

xeo [[| ] yeo

xeo + [[v

xeo ] [[|u yeol

Y€0]7

where C is a positive constant independent of u* and v*.
The same process also ensures

[Mz(@, 0) — (4, )|y < Coeo [[[u”]

|

Xe€o + HU Yﬁo] .

Taking € small enough such that (Co + Cp)eg < %, we then complete the proof of Proposition 4.2. O

From Propositions 4.1, we deduce the global existence (u,v) € X x Y. It follows, from (4.2),
wy € Bg’{f(R% and (u,v) € X x Y, that

xeo T Co HU|

||w||Z <C ”wO”Bg/lq(RS) + Co ||u| Yeo o (4.5)

where Cy and C are positive constants independent of u, wy and v.
Combining (u,v) € X x Y and (4.5), we then complete the proof of Theorem 1.2.

5 Proof of Corollary 1.4: Decay of Besov and Lebesgue norms

Theorem 1.2 tells us that if the initial data are sufficiently small, the solution of (1.7) is globally in the
Gevrey class, i.e., the energy bound ||(u,v,w)|le < oo for § = 1. Specifically, we can show that a solution
(u,v,w) satisfies

sup || (e‘/EAu7 eVihy, e\/’EAw)

. ; - " : < 00.
t>0 ”Bp,ziﬁ/p(Ra)XBT,fH/r(W)XBg,/lq(Rg) (5.1)

From (5.1), together with an argument used in [14] for m > 0, it follows that there exists a positive

constant C such that
(D™, D™, D) ot gy e 00/ oy 53 29)

_ m, —vVtA A m, —vVtA VA m, —vtA VEA

= ||(D™e eViy, D™e eV, D™e e w)||B;?s/p(W)XB;fM/T(RS)XBZ,(lq(Ra)

< C™m™t™ % sup ||(e‘/EAu, eVihy, e\/EAw)

> —243 S>—243/7r 53
=0 ”Bpj /PRI < B 7T (RS x BY/ T (R?)

< Cmpm% (5.2)
Using the relation between homogeneous Besov spaces and homogeneous Triebel-Lizorkin spaces E ;’p(R?’)

(see [17,18,27,28,44,57] for properties of related function spaces), noting that ¢7 < ¢2 for p < 2 and
F3,(R3) := WoP(R3) := (—A)7*/2LP(R3), we conclude that

By (R?) = B (R?) = F5 (R?) < F3,(R?) = WP (R). (5.3)

Applying (5.3) and (5.1), together with an argument used in (5.2), we find that for k& > —2 4 3/p and
1<p< %, there exists a positive constant Cy such that

||Dk1u||LP(]R3) — ||Dk1+2—3/pe—\/fAD—2+3/Pe\/EAuHLp(R3)

< CPPTIP (g, 49— 3 p)kit2 /ey | D2 VA | oy



1854 Yang M H et al. Sci China Math  October 2017 Vol. 60 No. 10

R _3/p, k1t2=8/p
S OPPRT3P (g 2 = 3 p)lat23/ T IIQ\/ZA“”F;EH/P(RS)

ky+2-3/p
2 .

< Cf1+2—3/p(k1 +9— 3/p)k1+273/pt— (5.4)

Similar to (5.4), we find that there exist positive constants Cy and Cj such that for ks > -2+ 3/r, 1 <
ré%,k3>3/qand1<q<2,

ko+2-3/r
2

D% 0]l sy S C> 727 (kg +2 = 3/r) 4273

a— _ —3/a
| D% pages) S O3>/ (ks = 3/q)" 755

This finishes the proof of Corollary 1.4.
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