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Abstract We consider a nonlinear integral eigenvalue problem, which is a reformulation of the transmission

eigenvalue problem arising in the inverse scattering theory. The boundary element method is employed for

discretization, which leads to a generalized matrix eigenvalue problem. We propose a novel method based on

the spectral projection. The method probes a given region on the complex plane using contour integrals and

decides whether the region contains eigenvalue(s) or not. It is particularly suitable to test whether zero is

an eigenvalue of the generalized eigenvalue problem, which in turn implies that the associated wavenumber

is a transmission eigenvalue. Effectiveness and efficiency of the new method are demonstrated by numerical

examples.
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1 Introduction

We consider a non-linear non-selfadjoint transmission eigenvalue problem, which arises in the inverse

scattering theory [4, 6]. Since 2010, the problem has attracted quite some attention of numerical math-

ematicians [1, 5, 7, 15, 17, 20, 22, 28, 29]. The first numerical treatment was studied by Colton et al. [7],

where three finite element methods were proposed. A mixed method was developed by Ji et al. [17]. An

and Shen [1] proposed an efficient spectral-element based numerical method for transmission eigenval-

ues of two-dimensional, radially-stratified media. The first method supported by a rigorous convergence

analysis was introduced by Sun [28]. Recently, Cakoni et al. [5] reformulated the problem and proved

convergence (based on Osborn’s compact operator theory [24]) of a mixed finite element method. Li

et al. [22] developed a finite element method based on a related quadratic eigenvalue problem. Other

methods [10, 16, 18, 31] have been proposed as well.

Despite significant effort to develop various numerical methods for the transmission eigenvalue problem,

computation of both real and complex eigenvalues remains difficult due to the fact that the numerical

discretization usually ends up with large sparse generalized non-Hermitian eigenvalue problems, which

are very challenging in numerical linear algebra. Traditional methods such as shift and invert Arnoldi

are handicapped by the lack of a priori spectrum information.
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In this paper, we adopt an integral formulation for the transmission eigenvalue problem. Using bound-

ary element method, the integral equations are discretized and a generalized eigenvalue problem of dense

matrices is obtained. The matrices are significantly smaller than those from finite element methods. It

is shown that if zero is a generalized eigenvalue, the corresponding wavenumber is a transmission eigen-

value [9]. We propose a probing method based on the spectral projection using contour integrals. The

closed contour is chosen to be a small circle centered at the origin and a numerical quadrature is used

to compute the spectral projection of a random vector. The norm of the projected vector is used as an

indicator of whether zero is an eigenvalue or not.

Integral based methods [3,11,25,26] for eigenvalue computation, having their roots in the classical spec-

tral perturbation theory (see [19]), become popular in many areas, e.g., electronic structure calculation.

These methods are based on eigenprojections using contour integrals of the resolvent [2]. Randomly cho-

sen functions are projected to the generalized eigenspace corresponding to the eigenvalues inside a closed

contour, which leads to a relative small finite dimension eigenvalue problem. For recently developments

along this line, we refer the readers to [21, 30, 32, 33]

For most existing integral based methods, estimation on the locations, number of eigenvalues and

dimensions of eigenspace are critical for their successes. In contrast, the proposed method is related to

the methods developed in [14, 20].

The rest of the paper is arranged as follows. In Section 2, we introduce the transmission eigenvalue

problem and rewrite it using integral operators. In Section 3, we present the probing method based on

contour integrals. We present numerical results in Section 4. Conclusions and future work are contained

in Section 5.

2 The transmission eigenvalue problem

Let D ⊂ R2 be an open bounded domain with C2 boundary Γ := ∂D. The transmission eigenvalue

problem is to find k ∈ C such that there exist non-trivial solutions w and v satisfying

Δw + k2nw = 0, in D, (2.1a)

Δv + k2v = 0, in D, (2.1b)

w − v = 0, on Γ, (2.1c)

∂w

∂ν
− ∂v

∂ν
= 0, on Γ, (2.1d)

where ν is the unit outward normal to Γ. The wavenumber k’s for which the transmission eigenvalue

problem has non-trivial solutions are called transmission eigenvalues. Here n is the index of refraction,

which is assumed to be a constant greater than 1 in this paper. Note that, for the integral formulation

to be used, the index of refraction needs to be constant (see [12]).

In the following, we describe an integral formulation of the transmission eigenvalue problem following [9]

(see also [20]). Let Φk be the Green’s function given by

Φk(x, y) =
i

4
H

(1)
0 (k|x− y|),

where H
(1)
0 is the Hankel function of the first kind of order 0. The single and double layer potentials are

defined as

(Skφ)(x) =

∫
Γ

Φk(x, y)φ(x) ds(y), (2.2)

(Kkφ)(x) =

∫
Γ

∂Φk

∂ν(y)
(x, y)φ(x) ds(y), (2.3)

where φ is the density function.
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Let (v, w) ∈ H1(D)×H1(D) be a solution to (2.1). Denote k1 =
√
nk and set

α :=
∂v

∂ν

∣∣∣
Γ
=
∂w

∂ν

∣∣∣
Γ
∈ H−1/2(Γ),

β := v|Γ = w|Γ ∈ H1/2(Γ).

Then v and w has the following integral representation,

v = Skα−Kkβ, in D, (2.4a)

w = Sk1α−Kk1β, in D. (2.4b)

Let u := w − v. Then u|Γ = 0 and ∂u
∂ν |Γ = 0. The boundary conditions (2.1c) and (2.1d) imply that

the transmission eigenvalues are k’s such that

Z(k)

(
α

β

)
= 0, (2.5)

where

Z(k) =

(
Sk1 − Sk −Kk1 +Kk

−K ′
k1

+K ′
k Tk1 − Tk

)

and the potentials Sk,Kk,K
′
k and Tk are given by

(K ′
kφ)(x) =

∫
Γ

∂Φk

∂ν(x)
(x, y)φ(y)ds(y), (2.6a)

(Tkψ)(x) =
∂

∂ν(x)

∫
Γ

∂Φk

∂ν(y)
(x, y)φ(y)ds(y). (2.6b)

It is shown in [9] that

Z(k) := H−3/2(Γ)×H−1/2(Γ) → H3/2(Γ)×H1/2(Γ)

is of Fredholm type with index zero and analytic on C \ R−.
From (2.5), k is a transmission eigenvalue if zero is an eigenvalue of Z(k). Unfortunately, Z(k) is

compact. The eigenvalues of Z(k) accumulate at zero, which makes it impossible to distinguish zero and

other eigenvalues numerically. The workaround proposed in [8] is to consider a generalized eigenvalue

problem

Z(k)

(
α

β

)
= λB(k)

(
α

β

)
, (2.7)

where B(k) = Z(ik). Since there does not exist purely imaginary transmission eigenvalues [7], the

accumulation point is shifted to −1. Then 0 becomes isolated.

Now we describe a boundary element discretization of the potentials and refer the readers to [23, 27]

for more details. One discretizes the boundary Γ into element segments. Suppose the computational

boundary Γ is discretized into N segments Γ1,Γ2, . . . ,ΓN by nodes x1, x2, . . . , xN and Γ̃ =
⋃N

i=1 Γi. Let

{ψj}, j = 1, 2, . . . , N , be piecewise constant basis functions and {ϕj}, j = 1, 2, . . . , N, be piecewise linear

basis functions. We seek an approximate solution αh and βh in the form

αh =
N∑
j=1

αjψj , βh =
N∑
j=1

βjϕj .

We arrive at a linear system

(Vk,h − Vk1,h)
α + (−Kk,h +Kk1,h)

β = 0,

(K ′
k,h −K ′

k1,h)
α+ (Wk,h −Wk1,h)

β = 0,
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where 
α = (α1, . . . , αN )T, 
β = (β1, . . . , βN )T, and Vk,h,Kk,h,K
′
k,h and Wk,h are matrices with entries

Vk,h(i, j) =

∫
Γ̃

(Skψj)ψids, Kk,h(i, j) =

∫
Γ̃

(Kkϕj)ψids,

K ′
k,h(i, j) =

∫
Γ̃

(K ′
kψj)ϕids, Wk,h(i, j) =

∫
Γ̃

(Tkϕj)ϕids.

In the above matrices, we can use the series expansion of the first kind Hankel function as

H
(1)
0 (x) =

∞∑
m=0

(−1)m

(m!)2

(
x

2

)2m

+
2i

π

∞∑
m=0

(−1)m

(m!)2

(
x

2

)2m(
ln
x

2
+ ce

)

− 2i

π

∞∑
m=0

(−1)m

(m!)2

(
x

2

)2m(
1 +

1

2
+

1

m

)
,

where ce is the Euler constant. Thus,

H
(1)
0 (k|x− y|) =

∞∑
m=0

(
C5(m) + C6(m) ln

k

2

)
k2m|x− y|2m + C6(m) ln |x− y|k2m|x− y|2m,

where

C5(m) =
(−1)m

22m(m!)2

[
1 +

2cei

π
− 2i

π

(
1 +

1

2
+

1

m

)]
, C6(m) =

(−1)mi

22m−1(m!)2π
.

We also need the following integrals which can be computed exactly,

Int7(m) =

∫ 1

−1

∫ 1

−1

(ξ1 − ξ2)
2mdξ2dξ1 =

22m+2

(2m+ 1)(m+ 1)
,

Int8(m) =

∫ 1

−1

∫ 1

−1

(ξ1 − ξ2)
2m ln |ξ1 − ξ2|dξ2dξ1

=
22m+2 ln 2

(2m+ 1)(m+ 1)
− (4m+ 3)22m+3

(2m+ 1)2(2m+ 2)2
,

Int9(m) =

∫ 1

−1

∫ 1

−1

(ξ1 − ξ2)
2mξ1ξ2dξ2dξ1

=

2m∑
l=0

(−1)lCl
2m

(l + 2)(2m+ 2− l)
[1− (−1)l]2,

and

Int10(m) =

∫ 1

−1

∫ 1

−1

(ξ1 − ξ2)
2mξ1ξ2 ln |ξ1 − ξ2|dξ2dξ1

=
−m22m+2 ln 2

(2m+ 1)(m+ 1)(m+ 2)
+

1

(2m+ 1)(m+ 1)

[
22m+3

2m+ 3
− 22m+2

(m+ 2)2
− 22m+1

m+ 1

]

+
1

2(m+ 1)2(2m+ 1)2

2m+1∑
l=0

Cl
2m+1

[
(2m+ 1)2

l + 2
(1− (−1)l)− 4m+ 3

l + 3
(1− (−1)l+1)

]
.

Now we consider

Vk,h(i, j) =

∫
Γ̃

(Vkψj)ψids =

∫
Γ̃

∫
Γ̃

Φk(x, y)ψj(y)ψi(x)dsydsx

=

∫
Γi

∫
Γj

Φk(x, y)ψj(y)ψi(x)dsydsx.
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The integral over Γi × Γj can be calculated as∫
Γi

∫
Γj

Φk(x, y)ψj(y)ψi(x)dsydsx =
i

4

∫
Γi

∫
Γj

H
(1)
0 (k|x− y|)ψj(y)ψi(x)dsydsx

=
iLiLj

16

∫ 1

−1

∫ 1

−1

H
(1)
0 (k|x(ξ1)− y(ξ2)|)dξ2dξ1,

where

x(ξ1) = xi +
1+ ξ1

2
(xi+1 − xi),

y(ξ2) = xj +
1 + ξ2

2
(xj+1 − xj).

When i �= j, it can be calculated by Gaussian quadrature rule. When i = j, we have

iL2
i

16

∫ 1

−1

∫ 1

−1

H
(1)
0 (k|x(ξ1)− y(ξ2)|)dξ2dξ1

=
iL2

i

16

∞∑
m=0

k2mL2m
i

22m

(
C5(m) + C6(m) ln

kLi

4

)∫ 1

−1

∫ 1

−1

(ξ1 − ξ2)
2mdξ2dξ1

+
iL2

i

16

∞∑
m=0

k2mL2m
i

22m
C6(m)

∫ 1

−1

∫ 1

−1

(ξ1 − ξ2)
2m ln |ξ1 − ξ2|dξ2dξ1

=
∞∑

m=0

ik2mL2m+2
i

22m+4

[(
C5(m) + C6(m) ln

kLi

4

)
Int7(m) + C6(m)Int8(m)

]
.

The following regularization formulation is needed to discretize the hyper-singular boundary integral

operator

Wkβ(x) = − d

dsx
Vk

(
dβ

ds

)
(x)− k2νx · Vk(βν)(x). (2.8)

We refer the readers to [13] for details of the discretization.

The above boundary element method leads to the following generalized eigenvalue problem

Ax = λBx, (2.9)

where A,B ∈ C
n×n, λ ∈ C is a scalar, and x ∈ Cn.

To compute transmission eigenvalues, the following method is proposed in [8]. A searching interval for

wavenumbers is discretized. For each k, the boundary integral operators Z(k) and Z(ik) are discretized

to obtain (2.9). Then all eigenvalues λi(k) of (2.9) are computed and arranged such that

0 � |λ1(k)| � |λ2(k)| � · · · .

If k is a transmission eigenvalue, |λ1| is very close to 0 numerically. If one plots the inverse of |λ1(k)|
against k, the transmission eigenvalues are located at spikes.

3 The probing method

The method in [8] only uses the smallest eigenvalue. Hence it is not necessary to compute all eigenvalues

of (2.9). In fact, there is no need to know the exact value of λ1. The only thing we need to verify is that,

for a given wavenumber k, whether the generalized eigenvalue problem (2.9) has an isolated eigenvalue 0.

This motivates us to propose a probing method to test whether 0 is a generalized eigenvalue of (2.9). The

method does not compute the actual eigenvalue and only solves a couple of linear systems. The workload

is reduced significantly in two-dimensional case and even more in three-dimensional case.
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We start to recall some basic results from spectral theory of compact operators [19]. Let T : X → X
be a compact operator on a complex Hilbert space X . The resolvent set of T is defined as

ρ(T ) = {z ∈ C : (z − T )−1 exists as a bounded operator on X}. (3.1)

For any z ∈ ρ(T ), the resolvent operator of T is defined as

Rz(T ) = (z − T )−1. (3.2)

The spectrum of T is σ(T ) = C \ ρ(T ). We denote the null space of an operator A by N(A). Let α be

such that

N((λ− T )α) = N((λ− T )α+1).

Then m = dimN((λ−T )α) is called the algebraic multiplicity of λ. The vectors in N((λ−T )α) are called
generalized eigenvectors of T corresponding to λ. Geometric multiplicity of λ is defined as dimN(λ−T ).

Let γ be a simple closed curve on the complex plane C lying in ρ(T ), which contains m eigenvalues,

counting multiplicity, of T : λi, i = 1, . . . ,m. We set

P =
1

2πi

∫
γ

Rz(T )dz.

It is well known that P is a projection from X onto the space of generalized eigenfunctions ui, i = 1, . . . ,m

associated with λi, i = 1, . . . ,m (see [19]).

Let f ∈ X be randomly chosen. If there are no eigenvalues inside γ, we have that Pf = 0. Therefore,

Pf can be used to decide whether a region contains eigenvalues of T or not.

For the generalized matrix eigenvalue problem (2.9), the resolvent is

Rz(A,B) = (zB −A)−1 (3.3)

for z in the resolvent set of the matrix pencil (A,B). The projection onto the generalized eigenspace

corresponding to eigenvalues enclosed by γ is given by

Pk(A,B) =
1

2πi

∫
γ

(zB −A)−1dz. (3.4)

We write Pk to emphasize that the projection depends on the wavenumber k.

The approximation of Pkf is computed by quadrature rules

Pkf =
1

2πi

∫
γ

Rz(A,B)fdz ≈ 1

2πi

W∑
j=1

ωjRzj (A,B)f =
1

2πi

W∑
j=1

ωjxj , (3.5)

where wj are weights and zj are quadrature points. Here xj’s are the solutions of the following linear

systems,

(zjB −A)xj = f , j = 1, . . . ,W. (3.6)

Similar to the continuous case, if there are no eigenvalues inside γ, then Pk = 0 and thus Pkf = 0 for all

f ∈ Cn. For robustness [14], we project the random vector twice, i.e., we compute P 2
kf .

For a fixed wavenumber k, the algorithm of the probing method is as follows:

Input: a small circle γ center at the origin with radius r � 1 and a random f

Output: 0− k is not a transmission eigenvalue; 1− k is a transmission eigenvalue

1. Compute P 2
kf by (3.5);

2. decide whether γ contains an eigenvalue:

– No, output 0.
– Yes, output 1.
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4 Numerical examples

We start with an interval (a, b) of wavenumbers and uniformly divide it into K subintervals. At each

wavenumber

kj = a+ jh, j = 0, 1, . . . ,K, h =
b− a

K
,

we employ the boundary element method to discretize the potentials. We choose N = 32 and end up

with a generalized eigenvalue problem (2.9) with 64 × 64 matrices A and B. To test whether 0 is a

generalized eigenvalue of (2.9), we choose γ to be a circle of radius 1/100. Then we use 16 uniformly

distributed quadrature points on γ and evaluate the eigenprojection (3.5). If at a wavenumber kj , the

projection is approximately 1, then kj is a transmission eigenvalue. For the actual computation, we use a

threshold value σ = 1/2 to decide whether kj is a transmission eigenvalue or not, i.e., kj is a transmission

eigenvalue if ‖P 2
kj
f‖/‖Pkjf‖ � σ and not otherwise.

Let D be a disk with radius 1/2. The index of refraction is n = 16. In this case, the exact transmission

eigenvalues are known [7]. They are k’s such that

J1(k/2)J0(2k)− 4J0(k/2)J1(2k) = 0 (4.1)

and

Jm−1(k/2)Jm(2k)− 4Jm(k/2)Jm−1(2k) = 0 (4.2)

for m = 1, 2, . . . The actual values are given in Table 1.

We choose the interval to be (1.5, 3.5) and uniformly divide it into 2000 subintervals. At each kj we

compute the projection (3.5) twice. The probing method finds three eigenvalues in (1.5, 3.5),

k1 = 1.988, k2 = 2.614, k3 = 3.228,

which approximate the exact eigenvalues (the first column of Table 1) accurately. Note that the continuous

finite element method in [7] computes

k1 = 2.0301, k2 = 2.6937, k3 = 3.3744,

on a triangular mesh with mesh size≈ 0.1. The method proposed in this paper is more accurate. However,

we would like to remark that the methodology of the finite element method in [7] is different.

We also plot the log of |P 2f | against the wavenumber k in Figure 1. The method is robust since the

eigenvalues can be easily identified.

We repeat the experiment by choosing n = 9 and (a, b) = (3, 5). The rest parameters keep the same.

The following eigenvalues are obtained k1 = 3.554, k2 = 4.360. The log of |P 2f | against the wavenumber k

is shown in Figure 2.

Finally, we compare the proposed method with the method in [8]. We take n = 16 and compute for

2,000 wavenumbers. The CPU time in second is shown in Table 2. Note that all the computation is done

using Matlab R2014a on a MacBook Pro with a 3 GHz Intel Core i7 and 16 GB memory. We can see

that the proposed method saves more time if the size of the generalized eigenvalue problem is larger. We

expect that it has a greater advantage for three-dimensional problems since the size of the matrices are

much larger than two-dimensional cases.

We also show the log plot of 1/|λmin| by the method of [8] in Figure 3. Comparing Figures 1 and 2

with Figure 3, it is clear that the probing method has much narrower span.

Table 1 Transmission eigenalues of a disk with radius r = 1/2 and index of refraction n = 16

m = 0 1.9880 3.7594 6.5810

m = 1 2.6129 4.2954 5.9875

m = 2 3.2240 4.9462 6.6083
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Figure 1 The plot of log |P 2f | against the wavenumber k for n = 16
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Figure 2 The plot of log |P 2f | against the wavenumber for n = 9

Table 2 Comparison. The first column is the size of the matrix problem. The second column is the time used by the

proposed method in second. The second column is the time used by the method given in [8]. The fourth column is the

ratio

Size Probing method Method in [8] Ratio

64 × 64 1.741340 5.742839 3.30

128 × 128 5.653961 31.152448 5.51

256 × 256 25.524530 224.435704 8.79

512 × 512 130.099433 1822.545973 14.01

5 Conclusions and future work

In this paper, we proposed a probing method based on contour integrals for the transmission eigenvalue

problem. The method only tests whether a given region contains an eigenvalue or not. Comparing with the
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Figure 3 Log plot of 1/|λmin|. (a) n = 16. (b) n = 9

existing methods, it needs little a prior spectrum information and is more efficient. The method can be

viewed as an eigensolver without computing eigenvalues. One advantage of the contour integral method

is that it is suitable for parallel computing. Therefore, even the desired eigenvalues are dispersed, one

can use a parallel scheme to capture them simultaneously.

Note that one needs to construct two matrices for each wavenumber. It is time consuming if one

wants to divide the searching interval into more subintervals to improve accuracy. The work load is much

more in three dimension. Currently, we are developing a parallel version of the method using graphics

processing units (GPUs).
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