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Abstract We propose a nonparametric change point estimator in the distributions of a sequence of independent
observations in terms of the test statistics given by Huskova and Meintanis (2006) that are based on weighted
empirical characteristic functions. The weight function w(¢;a) under consideration includes the two weight
functions from Huskovd and Meintanis (2006) plus the weight function used by Matteson and James (2014),
where a is a tuning parameter. Under the local alternative hypothesis, we establish the consistency, convergence
rate, and asymptotic distribution of this change point estimator which is the maxima of a two-side Brownian
motion with a drift. Since the performance of the change point estimator depends on a in use, we thus propose
an algorithm for choosing an appropriate value of a, denoted by as which is also justified. Our simulation study
shows that the change point estimate obtained by using as has a satisfactory performance. We also apply our
method to a real dataset.
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1 Introduction

Change point problems are common in many research areas including medical and health sciences, finan-
cial econometrics and risk management (see [3,5,8]). If there exists a change point in a data sequence,
the results derived from the statistical analysis without taking it into account might be misleading. Many
methods have been proposed in the literature to test or estimate change points in mean, variance, regres-
sion parameters, etc. For example, a local comparison method based statistic has been proposed in [6] to
test whether there is a change point in mean of a data sequence. Note that these change point problems
are special cases of the problem of change point in distributions of a sequence of random variables that
will be considered in this paper.

Nonparametric methods play an important role in tackling the problem of a change point in distribu-
tions of a data sequence. Most of the nonparametric methods are based on either empirical distributions,
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U-statistics or quantile functions (see [4,8,14,22]). Another nonparametric tool is the empirical character-
istic function (ECF). The definition of the ECF was given in [21]. Kent [18] studied the weak convergence
theorem of the ECF. Since then, the ECF has been applied to solve various statistical problems such as
hypothesis testing for symmetry about the origin, dependence or normality (see [10,11,17,19,24]).

A class of test statistics based on the ECF has been proposed in [15] to test if there is a change point
in distributions of a sequence of independent random variables. They gave two choices of the weight
function for their proposed statistics. They studied the limiting behaviour of the test statistics under
both null and alternative hypotheses. Built upon their statistics, a change point estimator is given in
this paper for the same change point problem. The weight function w(¢;a) under consideration includes
the two weight functions from [15] plus the weight function used in [20], where a is a tuning parameter.
We will study the consistency, convergence rate, and asymptotic distribution of this estimator when the
difference between the distributions before and after the change point tends to zero as the sample size
goes to infinity.

Simulation results in [15] showed that the test statistics are robust with respect to the value of the
tuning parameter a in the weight function, which, however, is selected from 1 to 4 increased by 1 each
time in their simulation study. It is noted that the domain of a in their weight functions ranges from 0
to infinity. The real data example reveals that the change point estimate may be influenced significantly
by the value of the tuning parameter a (see Table 1 of Section 4). Thus, accuracy of the change point
estimate is in question. To tackle this problem, we propose an algorithm for selecting an appropriate
value of a, ag, in order to obtain a change point estimate with a satisfactory accuracy.

The rest of the paper is organized as follows: In Section 2, we propose a nonparametric change point
estimator in the distributions of a sequence of independent observations in terms of the test statistics
given in [15] that are based on weighted empirical characteristic functions. In Section 3, we investigate
the asymptotic properties of this estimator assuming that there exists one change point in the data
sequence. We also give an example there. We present an algorithm for selecting a5 which is also justified
in Section 4. We carry out simulation study to evaluate the performance of the change point estimation
with the use of ag in Section 5. A real data example is also given there. The proofs of all the theorems
are given in Appendix.

The following notation are used throughout the rest of this paper. I4(-) denotes the indicator function
of the set A. |a| represents the largest integer not greater than the real number a. “—p” stands for the
convergence in probability. “=” means the weak convergence. ®(-) denotes the cumulative distribution
function (cdf) of a standard normal distribution.

2 The change point estimator based on the ECF

Let Y, 1,Yn2,..., Y be a sequence of independent random variables, where Y,, ; has a distribution
function £, j, j = 1,2,...,n. Consider the testing problem

HO:FIZFn,l :Fn,2:"':Fn,n7
against
Hy:FPi=Fo=-=F o0 #F, o0 = =Fun=F,, for k" <n, (2.1)

(()") is called the change point. For the sake of convenience, the

where k'(()"), Fi and F,, are unknown. k
subscript n in Y, ; and F}, ; and the superscript n in k(()n) are all suppressed if there is no confusion.
The following class of test statistics has been developed in [15] based on the empirical characteristic

function and a non-negative weight function w(-) with a non-negative tuning parameter a:

Ta) = (") O o) - dhiopecoar (22)

n2
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where v € (0,1], w(-) satisfies that w(t) > 0,t € R and 0 < [w(t)dt < oo, ¢x(t) and ¢)(t) are ECFs
based on Yi,...,Y; and Yi41,...,Y,, respectively, i.e.,

n

> exp{ity;}, j=12,....n

j=k+1

1< 0 1
= E exp{itY;}, () =
i=1

Under the alternative hypothesis, we propose the change point estimator for kg as

k, = arg max. T (k). (2.3)
Some choices of w(-) are
wi(t;a) = o0 exp{ alt]ly, teR', a>0, (2.4)
wa(t;a) = \\; exp{—at®}, teR' a>0, (2.5)
or
ws(t;a) = a2T(%3%) [t|=*t, teRY a€(0,2). (2.6)

2/aT(1 - 9)

We remark that wy (t; a) and we(t; a) were given in [15] while w3 (; a) was used as the weight function in [20]
for obtaining their nonparametric change point estimator in distributions of a sequence of multivariate
random variables.

We assume that kg satisfies

ko = |n7o|, 70 € [K1,K2] for some 0 <k < ko < 1. (2.7)

This is a conventional assumption made in change point detection problems [8]. The estimator for 7 is
given by

. n 1
n = = T (k). 2.
Fu= = org max Ta(k) (28)

3 Consistency and asymptotic distribution of the change point estimator

Define
2 2
A, = / {( / cos(tz)d(Fi (z) —Fn(a:))> + ( / sin(tz)d(F} (z) —Fn(a:))> }w(t)dt
= E[h(Y1,Y2)] = 2E[h(Y1, Yio41)] + E[h(Yio 11, Yeot2)]; (3.1)
and h(z,y) = [cos(t(z — y))w(t)dt. In this section, we will study consistency, convergence rate and

asymptotic distribution of the change point estimator 7,, under the assumption that A, — 0. Its con-
vergence rate not only describes how fast 7,, converges to 79 but also is necessary in order to derive its
asymptotic distribution that will enable us to calculate its mean square error (MSE). The following two
theorems are given in sequel, and their proofs are given in Appendix.

Theorem 3.1.  Let Y1,Y5,...,Y, be a sequence of independent random variables, where Y1,..., Yg,

have a common distribution function Fy, and Yi,41,...,Y, have a common distribution function F,.
Assume that ko satisfies (2.7) and v € (0,1]. If A, defined in (3.1) satisfies that A, — 0 and

nA% — oo, as n— oo. (3.2)

Then, as n — oo,
(1) 7 —p 70
(2) |2 — 70l = Op(,1a).
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Remark 3.2. If A, is a constant not depending on n, from the proof of Theorem 3.1, we can make
the conclusion that Ve > 0, lim,, oo P(n2l"1(n)|#, — 70| > &) = 0, where I(n) is a slow varying function
satisfying lim,, ;4 [(n) = +00. Furthermore, similar to [23], we can obtain the stronger a.s. convergence
rate: |7, — 70| = O(Mr(l")) a.s. for any M(n) satisfying that M(n) — oo as n — oo.

We now consider the asymptotic distribution of 7,, assuming that A, — 0 as n — oc.

Theorem 3.3.  Under the same conditions as in Theorem 3.1, we have, as n — oo,

(L4 —2v10)% 53
v Anlkn — ko) = arg max  G(s),
where
S
Wi(—s)+ ., 5 <0,
G(S) = Ao

1—v+2v7 (3.3)
Wa(s) — 0
) 2(1+7—2wo>’ s

Wi (s) and Wa(s) are mutually independent standard Brownian motion processes defined respectively on
[0,00), and

A= (B{[E[h(Yeo+1, Y1) | V1] = ER(Yro11, Y1)]

— [E[h(¥1,Y2) | Yi] — ER(Y1, Y2)]}?)2, (3.4)
A2 = (E{[E[h(Y1, Yiot1) | Yiog+1] — ER(Y1, Yig41)]
— [E[A(Yegr1, Yios2) | Yeora] — BR(Yigs1, Yig2)]}2) 2. (3.5)

Remark 3.4. As commented in [16, Remark 2.3], A; and A2 can be estimated using the observations
Y1,Ys,...,Y,.

Remark 3.5. When A,, is a constant not depending on n, i.e., F;, does not vary with n, we can obtain
the asymptotic distribution of 7,, similarly as in [12,13], which is a two-way random walk depending on
the underlying distribution Fy, F,, and A, in a quite intricate way.

In the following, we evaluate the MSE of ky, by applying the above theoretical results via an example.
Let Fy and F, be respectively N(0,1) and N(pg,1) with o # 0. For illustration purpose, wa(t;a) is
chosen as the weight function. It is easy to derive that

AnzxZﬁL{L—wp{—4@faP}} (3.6)

To find the MSE of k,, we need first to calculate both A; and Ay in order to use (3.3) which, by (3.4)
and (3.5), are equal and have the following expression,

22—\

a 15 (2a® + 4a + 3)uj
= l+expq — —2expl —
Va2 + 2a+ 2 2(a? +2a+2) 8(1+ a)?(a? + 2a + 2)

201 +a T It

- 1—expq — 5 1—expq — 5
V24 av2a? +4a+3 4(2 + a) 2(2a2% + 4a + 3)
2 2
a Ho

1-— — . .

+2+a[ eXp{ 4(2+a)2H (8.7)
By Theorem 3.3,

N ]_ )\4
E, (k, —k 2~ g . '
( O (L gy —2ym)t AL [a‘"g _max  G(s) (3.8)
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Note that in this example, G(s) does not depend on A;. By (3.6) and (3.7),

A1 (1+a):(2+a)

A2 74 (202 +4a+3)3

5
2

(2+a)®
(a+1)2(a? +2a +2)2 2’

2467

which, jointly with (3.8), implies that Ea(l%n —ko)? depends on pg and the tuning parameter a via A2 /A2,
Thus for a given pg, an appropriate value of a should be chosen in order to have a small MSE of k&,

which will be dealt with in the next section.

4 An algorithm for selecting an appropriate tuning parameter a

The example given in Section 3 shows that it is important to select an appropriate a. We now present a
real data example to further demonstrate how the change point estimate can be affected by the choice of
a. Consider the Nile data, a time series of the annual flow of the river Nile at Aswan from 1871 to 1970
(see [2,7,9]), which has a change in year 1898 corresponding to the 28th observation in the data sequence
detected in [25]. The data is depicted in Figure 1. For the purpose of illustration, we assume that the

observations are independent as in [7]. We use (2.3) with respective weight functions wi (¢; a), wa(t;a),
and ws(t;a) for different values of a to estimate the change point. The resulted change point estimates

are reported in Table 1.

1400

1200

1000

800

Annual flow of the river Nile

600

1871 1890 1910

T T
1930 1950
Year

Figure 1 The Nile data

1970

Table 1 The estimated change point k&, using different weight function w(t; a) with different values of a and a fixed

v =0.5
a 1 2 3
wi(t;a) .
kn 47 48 48
a 1 2 3
wa(t; a) .
kn 48 48 48
0.001 0.002
w3 (t; a) .

kn 47 47

4 5 6
48 48 28
22 23
48 48 28
0.009 0.01 0.02
48 28 28

28
24
28
0.03
28

100
28
100
28

28
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It can be seen from Table 1 that the value of a has a large impact on the accuracy of the change point
estimate. An inappropriate a may result in a misleading estimate. In practice, we have no information
about the change point in a given data sequence. However, a needs to be prechosen in order to find the
change point estimate by (2.3). As shown above, different values of ¢ might result in different change
point estimates. Thus it is important to select a value from a set of possible values of a such that the
resulted change point estimate has a satisfactory performance. Such an appropriate choice of a is denoted
as ag in this paper, where the subscript “s” is taken from the first letter of “selection”. We propose the
following algorithm for finding as.

Step 1. Let Y1,Ya,..., Y%, Yeo+1,---, Yn be a given data sequence with the change point located at
ko and
A={ar,az2,...,as}

be a set of possible values for a. For each a; from the set A, we obtain

kq, = arg max Ty w(k).

Table 2 Number of the change point estimate kq fell into the interval (ko — 8, ko +8) for § = 5 (top entry), 10 (middle
entry) and 15 (bottom entry) by using the weight function wj (upper part), w2 (middle part) and w3 (lower part) when
Fy is N(0,1) and F, is N(1,1)

ko =30 706 733 743 752 755 761 762 762 760 762 761 752

873 899 904 907 905 908 909 909 907 908 909 906

927 941 944 949 951 951 951 951 950 951 951 951

w1 ko = 50 725 749 763 771 772 770 770 772 772 772 773 773
895 915 928 931 934 931 930 930 930 930 930 935

964 970 970 971 972 973 973 973 973 973 973 972

ko =70 691 730 742 744 742 744 745 745 745 745 745 740

856 872 879 887 888 891 891 891 891 891 891 888

926 935 942 944 942 942 940 937 937 936 937 942

ko =30 734 745 753 754 762 761 762 762 762 760 760 760

899 906 906 905 909 908 909 909 909 908 907 909

940 948 949 950 952 951 951 951 951 950 950 952

w2 ko =50 754 765 769 772 770 771 768 770 772 772 772 770
915 927 930 934 932 931 930 930 930 930 930 932

970 969 971 972 972 972 973 973 973 973 973 972

ko =170 725 741 741 742 743 744 745 746 745 745 745 744

868 880 885 887 890 891 891 892 891 890 890 891

933 944 942 942 941 940 939 937 937 937 937 942

ko =30 676 703 710 721 731 738 47 740 748 750 745 733

825 847 854 864 867 874 881 880 880 884 889 872

894 911 915 919 919 926 934 936 933 937 936 928

w3 ko = 50 773 775 786 792 796 797 802 803 805 807 809 799
931 934 938 946 950 953 952 950 950 951 952 954

976 974 974 976 977 980 981 980 981 981 980 981

ko =70 680 706 715 718 721 733 745 748 742 743 744 734

836 850 861 866 870 878 886 890 891 891 892 879

912 925 934 937 938 942 945 950 949 949 950 944
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Table 3 Number of the change point estimate kg fell into the interval (ko — 8, ko + 8) for § = 5 (top entry), 10 (middle
entry) and 15 (bottom entry) by using the weight function wi (upper part), wa (middle part) and w3 (lower part) when
Fy is N(0,1) and F, is N(1,2)

ko

w1 ko

ko

ko

w2 ko

ko

ko

w3 ko

ko

Step 2.

Then

=30

=50

=70

=30

=50

=70

=30

=50

=70

636
819
890
727
895
953
730
901
950
647
827
897
740
907
958
767
925
964

0.2
617
789
867
749
910
966
743
884
938

643
824
895
735
904
956
762
921
962
638
817
887
718
894
959
769
920
965

0.4
636
799
868
743
905
960
757
900
948

Compute the mean

3 4
630 613
809 794
878 863
7 706
890 881
955 948
767 755
915 902
963 952
624 610
803 791
868 858
712 701
885 875
950 943
763 752
908 899
958 950
0.5 0.7
629 617
789 779
857 849
739 725
903 885
958 946
762 762
903 906
949 954

of ke,,i=1,2,

599
784
850
688
867
938
742
887
945
596
778
846
683
865
938
737
886
946

0.9
609
775
844
708
877
939
760
905
957

580
771
841
667
853
932
724
873
942
580
771
841
680
862
936
727
876
944

1.1
588
755
831
701
871
934
748
900
954

566
753
825
653
846
925
714
867
936
578
766
836
661
851
930
721
874
942

1.3
564
733
811
687
856
921
728
891
954

as = argmin |k,, — l:c|
a;

549
735
812
648
835
919
703
856
929
568
754
825
651
845
926
712
866
936

1.5
551
716
796
670
849
915
717
881
949

542
729
805
638
828
915
681
848
921
560
745
821
651
843
925
706
859
934

1.6
525
689
772
642
822
896
686
859
928

10
533
719
797
625
814
909
675
842
917
550
737
813
644
835
920
698
856
929

1.8
502
666
745
605
786
870
665
841
916

11
528
711
790
615
806
901
673
840
917
546
735
811
644
832
919
691
853
926

2.0
470
633
716
567
752
843
636
810
898

as
600
T
848
686
879
942
743
896
947
596
781
848
682
865
939
738
890
947
as
580
753
831
698
869
936
753
902
956

From the proposed algorithm, it can be seen that ag is dependent on the data sequence and hence
random. as might not give us the best change point estimate but it will provide an improved performance
over a fixed one, which is not only justified in Proposition 4.1, but also confirmed by the simulation study

in the next section.
Proposition 4.1.

ko and A = {a,az, ..
in A such that |kq, — ko| < |kqx — kol

Given a data sequence Y1,Ys, ..

The proof is given in Appendix.

'aYk(NYko-‘rla' .

., Y, with the change point located at
.,ae} be a set of possible values for a. Then there exists at least one point a* # as
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Table 4 Number of the change point estimate kq fell into the interval (ko — 8, ko + 8) for § = 5 (top entry), 10 (middle
entry) and 15 (bottom entry) by using the weight function wi (upper part), wa (middle part) and w3 (lower part) when
Fy is L(0,1) and F, is L(1, 1), the distribution of ¥ + 1 with ¥ ~ L(0,1)

ko =30 676 680 667 652 646 639 630 622 616 614 613 640

830 841 834 830 823 819 812 805 801 798 798 823

896 906 900 900 897 893 889 882 880 877 876 900

w1 ko =50 702 718 702 689 682 674 673 667 664 663 659 687
885 890 880 868 862 855 853 851 847 846 844 870

952 947 938 935 934 930 933 930 925 925 923 942

ko =70 658 670 666 670 662 653 653 649 643 639 634 661

829 835 827 822 818 814 813 811 804 801 801 820

904 903 896 895 895 889 887 885 881 878 879 899

ko =30 674 665 646 645 642 638 635 629 623 621 618 639

835 836 824 823 819 815 813 808 804 803 801 819

902 901 898 900 895 891 890 887 883 881 879 896

w2 ko =50 708 697 696 687 678 677 674 668 670 666 666 681
882 880 868 865 859 856 855 853 852 848 848 862

941 938 930 932 932 931 931 931 932 927 924 935

ko =70 658 663 665 664 660 653 650 651 648 646 647 655

824 825 821 815 816 812 810 810 807 806 806 814

898 895 891 893 893 888 887 884 883 883 883 893

0.2 0.4 0.5 0.7 0.9 1.1 1.3 1.5 1.6 1.8 2.0 as

ko =30 657 673 670 664 670 667 659 647 634 615 586 661

813 829 826 824 829 825 820 811 801 786 763 824

885 903 899 894 900 892 888 881 875 857 841 892

w3 ko =50 719 717 711 700 685 679 663 650 639 630 610 682
907 895 886 879 866 859 847 834 822 814 795 864

960 950 949 946 937 938 934 924 918 911 896 940

ko =70 656 676 683 679 671 666 651 639 626 605 585 664

829 841 842 841 842 839 840 831 819 802 789 839

897 902 911 913 912 910 910 900 890 878 867 909

5 Simulation studies

In this section, we carry out a simulation study to investigate the performance of k,, obtained via (2.3)
when using different values of a including as in terms of accuracy of the change point estimate. In
addition, we apply (2.3) with a = a4 to the Nile data.

5.1 Simulation study

We perform a simulation study to compare the change point estimate obtained via (2.3) using a set of
fixed values of a and as. The following is the details of the simulation study.

(1) Generate data Y7,Ys, ..., Y, from the distribution F; and Yj,41,...,Y, from the distribution F,
with one change point located at kg = 30,50, or 70, where n = 100. Three cases of F} are considered:

Case 1.  The normal distribution N(0, 1).
Case 2.  The laplace distribution L(0, 1).
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Table 5 Number of the change point estimate kg fell into the interval (ko — 8, ko + 8) for § = 5 (top entry), 10 (middle
entry) and 15 (bottom entry) by using the weight function wi (upper part), wa (middle part) and w3 (lower part) when
Fy is L(0,1) and F,, is L(1,/2), the distribution of v/2Y + 1 with Y ~ L(0,1)

ko =30 587 594 575 568 560 548 533 528 517 506 501 552

773 775 763 754 739 733 715 710 704 699 689 740

859 860 846 837 827 820 808 801 796 786 776 831

w1 ko =50 676 677 667 653 647 642 624 620 605 602 591 655
872 860 854 847 839 832 819 809 800 797 788 844

945 937 928 921 915 912 907 897 889 882 876 921

ko =70 633 642 637 636 633 618 610 609 601 596 594 632

814 818 815 811 808 793 780 775 772 770 768 810

896 896 896 895 889 876 865 863 861 863 858 891

ko =30 590 582 569 563 556 556 544 534 533 529 524 557

766 765 755 744 736 734 728 716 717 713 710 737

854 849 834 830 824 822 818 811 809 806 801 828

w2 ko =50 666 671 662 648 646 639 628 626 621 617 614 653
860 857 848 840 837 831 821 818 814 809 803 840

937 931 921 913 912 911 907 907 903 898 893 919

ko =70 623 626 632 633 625 622 617 613 609 608 607 627

812 809 806 808 798 793 789 782 781 T 776 805

893 891 891 891 880 878 875 869 865 864 865 887

0.2 0.4 0.5 0.7 0.9 1.1 1.3 1.5 1.6 1.8 2.0 as

ko =30 597 611 606 597 587 571 547 529 508 489 466 562

759 768 765 751 748 735 713 693 678 660 638 728

840 844 847 840 839 822 801 782 764 746 731 816

w3 ko =50 692 690 667 656 639 618 603 583 559 526 504 620
879 876 853 842 823 804 783 768 742 709 686 808

952 945 933 923 915 906 895 885 864 836 816 910

ko =70 627 649 649 657 650 639 623 611 581 552 526 637

805 818 817 825 822 817 810 800 772 755 725 816

888 900 903 905 902 900 894 885 868 850 823 902

Case 3.  The gamma distribution G(1,1). Correspondingly, we consider F,(z) = Fi((x — b)/d) for
b=1,and d =1 or v/2.

(2) For a chosen weight function w(¢; a) and a given set of possible values of a, say A, first execute the
Step 1 of the algorithm given in Section 4 and obtain {k,, a € A}, and then execute the Step 2 of this
algorithm to obtain as. Compute the change point estimate k,_.

(3) Repeat (1)—(2) for 1,000 times and then compute the number of times that the change point
estimate falls into the interval [kg — d, ko + ¢] for § = 5,10, 15.

In this simulation study, v is set as 0.5, and A is chosen as {1,2,3,...,15} for both w; and ws but
{0.2,0.4,..., 2} for ws. The simulation results are reported in Tables 2-7, which show that the value of
a has a large impact on the accuracy of the change point estimate for all three weight functions. From
these tables, it can been seen that the change point estimate obtained by using as always outperforms the
change point estimates obtained by using some values of a, and has the best performance in some cases.
It can also be observed that the weight function ws performed better than both w; and ws in terms of
the accuracy of change point estimation overall.
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Table 6 Number of the change point estimate kq fell into the interval (ko — 8, ko +8) for § = 5 (top entry), 10 (middle
entry) and 15 (bottom entry) by using the weight function wi (upper part), wa (middle part) and w3 (lower part) when
Fy is G(1,1) and F, is G(4, 1), the distribution of Y + 1 with ¥ ~ G(1,1)

ko =30 957 925 898 873 857 841 824 815 809 808 802 864

993 985 973 958 949 940 934 930 926 924 920 949

999 994 990 986 981 974 969 967 964 963 960 979

w1 ko =50 929 903 889 870 853 838 826 821 816 817 815 862
981 975 974 969 965 960 953 950 944 944 943 970

997 994 991 991 990 987 983 980 977 977 976 991

ko =70 845 840 835 825 809 804 794 786 784 778 775 816

939 938 936 931 919 914 905 900 898 896 892 919

973 973 973 970 962 957 952 946 946 942 939 964

ko =30 920 887 873 857 845 833 822 817 814 809 808 844

981 967 959 949 942 937 932 931 928 926 925 941

993 988 985 981 976 972 967 967 965 964 963 976

w2 ko =50 895 880 860 847 839 832 825 821 822 815 815 839
973 970 967 966 960 956 953 950 951 944 944 964

990 991 990 990 987 985 984 982 981 977 977 990

ko =70 835 830 821 809 805 800 794 788 785 783 784 808

937 939 930 920 914 911 905 900 898 898 900 915

970 974 969 963 957 956 953 947 945 944 946 958

0.2 0.4 0.5 0.7 0.9 1.1 1.3 1.5 1.6 1.8 2.0 as

ko =30 956 953 946 930 922 907 874 849 803 767 724 906

995 995 992 988 985 979 965 955 937 919 894 979

998 998 996 996 995 994 991 989 977 965 945 994

w3 ko =50 917 918 915 913 908 899 881 864 844 826 795 898
982 981 979 978 975 973 971 965 956 948 939 974

998 996 996 994 992 992 989 987 984 983 979 993

ko =70 831 841 841 835 829 829 818 815 797 786 s 832

929 937 937 933 925 920 916 907 895 891 879 923

972 977 977 976 971 969 965 958 950 948 934 969

The selection of A for wy, ws, and w3 is important for the performance of the change point estimation.
The selection of A for the weight function ws can simply be chosen as the equally spaced points between
0 to 2 which is the domain of a in ws(¢;a). By [15], the role of the tuning parameter a is to control the
rate of decay of the weight function w; and we. Thus in our simulation studies, we have only presented
the simulation results for using a < 11. As a matter of fact, the accuracy of the change point estimate
using a > 11 is almost the same as the one using a = 11 for the weight function being w; or we, and
the change point estimates using either w; or ws perform similarly when a goes to infinity. From this
experience and the effect of a on the weight function in theory, we recommend to increase the value of
a from 1 by 1 each time to estimate the change point until the change point estimate remains the same.
Then A can be chosen as a collection of all the values of a that has been tried.

We also conduct a simulation study to compare the empirical distribution of the change point esti-
mator 7, defined in (2.8) with its asymptotic distribution. In light of Appendix B in [1] or [16], the
cumulative distribution function H(s) of

arg max G(s)

has the following expression:
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Table 7 Number of the change point estimate kg fell into the interval (ko — 8, ko + 8) for § = 5 (top entry), 10 (middle
entry) and 15 (bottom entry) by using the weight function wi (upper part), wa (middle part) and w3 (lower part) when
Fy is G(1,1) and F, is G(3+§\/2 ,2v/2 — 2), the distribution of v2Y + 1 with Y ~ G(1,1)

w1

w2

w3

ko =30
ko =50
ko =70
ko =30
ko =50
ko =70
ko =30
ko =50
ko =70

Table 8 The quantiles of the empirical (ED) and asymptotic (AD) distributions of 7,

1 1 1 1
~ e { = e omtalshacos + (6 -2+ ) o( -

1 1 {
sz ex
2 P

2

0
— ) 0
(dg +2)\05

0o
1
+ Ao

952
991
997
937
983
996
863
950
981
931
986
993
918
982
994
861
954
981

0.2
947
993
996
936
988
999
861
951
987

Sample size

300

500

941
987
994
931
985
996
870
957
983
906
972
990
906
981
995
876
960
986

0.4
944
990
996
940
989
999
870
954
987

909
974
990
912
982
996
875
958
984
888
965
986
896
978
995
876
962
987

0.5
934
987
995
939
992
999
879
956
987

Quantiles

ED
AD
ED
AD

02

o 0
8o

)+ (-

890
965
985
902
981
996
876
962
987
873
956
980
892
979
995
871
958
987

0.7
920
987
995
936
990
998
879
952
985

2o

872
955
979
894
979
995
872
957
986
865
952
978
887
978
993
868
956
986

0.9
916
983
994
932
988
998
885
957
985

5%
0.473
0.490
0.486
0.494

857
948
975
885
976
993
871
958
989
856
947
974
885
975
992
868
956
987

1.1
893
973
992
920
987
997
886
955
982

10%
0.483
0.494
0.490
0.496

842
941
971
877
974
993
867
956
986
846
943
972
878
972
992
866
954
984

1.3
868
963
990
917
988
996
884
953
981

50%
0.500
0.500
0.500
0.500

} + co exp{ags}@(—bgsé)

834
935
968
873
972
992
864
956
987
840
938
970
874
972
992
866
957
987

1.5
833
945
981
912
984
997
881
955
981

827
931
965
868
971
990
864
957
987
836
935
968
874
972
992
864
956
987

1.6
806
932
973
894
978
997
874
953
978

90%
0.520
0.506
0.510
0.504

10
823
929
963
866
969
989
866
957
988
833
935
968
870
971
991
865
956
987

1.8
783
923
968
882
975
996
872
950
978

95%
0.533
0.510
0.514
0.506

11
819
929
962
866
969
989
866
956
988
831
933
967
868
971
991
865
956
986

2.0
748
898
946
860
970
995
871
950
981

as
875
953
979
904
985
996
882
961
990
863
951
978
890
980
993
869
958
986
as
898
975
993
928
989
998
887
957
983
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Table 9 The true values and estimates of the parameters

True value Mean of estimates
Sample size 19 Ap )\% = )\g Tn ﬁn /):% = /):g
300 0.5 0.032 0.020 0.501  0.031 0.029
500 0.5 0.032 0.020 0.500  0.030 0.029

104 - e
——- Empirical Dist.,n=300 7"
-—-— Empirical Dist.,n=500 gl

0.8 —— Asymptotic dist. .J-'

H(T»)

T
0.40 0.45 0.50 0.55 0.60

:7\_71,

Figure 2 The empirical cumulative distributions of the change point estimator 7, with n = 300, n = 500, and the

asymptotic cumulative distribution H ()

_ X2 _ l—y+2v70 _ b _ 6o _ 6o 0o _ 1 0o _ A5(A3+260)

where )\O — A 00 = 14y —2y70° a = )\S’ /8 — X’ a1 = 2)\3 (1 + )\g)7b1 - 9 + )\g; Cc1 = GO(AS+00) ’
_ (AR+200) A2+ 202 +6 _ 00(222+60) _(222460)?

dy = Bo(N2+00) = 700", by = o 7 C2 T X2(AR40) and dy = N (A2 460)" Here, A\; and Ay are

defined in (3.4) and (3.5), respectively.

For the purpose of demonstration, we consider the case that F; and F,, are respectively N(0,1) and
N(uo, 1) with pup = 1. For simple presentation, we only consider the weight function ws(¢;a). Let the
tuning parameter a be 1, and « be 0.5. The sample size n is set as 300 and 500, respectively, and 7
is chosen as 0.5, which implies that the true change point is located at ky = 150 for n = 300 and at
ko = 250 for n = 500. The true values of A,, A7 and A3 are calculated using (3.6) and (3.7) respectively
and are shown in Table 9.

We generate 500 samples for each parameter setting and each sample size. For each sample generated,
we find the change point estimate 7,,. Then we compute the quantiles of the empirical distribution of
7, that are shown in Table 8. The means of the estimates for A,,, A1 and A2 based on 500 samples are
given in Table 9, which shows that they are very close to their true values. Similar to [16], we obtain
the quantiles of the asymptotic distribution of 7,, that are displayed in Table 8. The quantiles of both
empirical and asymptotic distributions of 7,, are very close to each other. For graphical comparison, we
display the empirical cumulative distribution of 7,, with n = 300, or n = 500 and its asymptotic cumu-
lative distribution in Figure 2. It further confirms the good approximation of the empirical cumulative
distribution of 7,, to its asymptotic distribution.

5.2 A real data example

In this subsection, we revisit the Nile data discussed in Section 4. We employ all three weight functions
with ag chosen from {1,2,...,100} for both w; and we but {0.2,0.4,...,2} for ws. We set vy to be either
0,0.5, or 1. They have all detected that the change point is located at the 28th observation, corresponding
to the year 1898, which is the same as that detected in [25].
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Appendix

The proofs of the theorems in this paper are technically involved, so in order to give the idea, we focus
on the main steps of the proofs only. Denote

Yy, Ys) = h(Y,,Ya) = E[A(Y;,Ya) | V2] = E[h(Y;, Ya) | Ya] + E[A(Y,., Y4)],
h(Yy, Z1) = E[MY;, Z1) | Y;] — E[M(Y,, Z1)],
h(Yy, Z2) = E[MY:, Z2) | Yy| — E[h(Y;, Z2)], (A.1)
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where Z; and Z5 are independent of Y7,Y5,...,Y,, and follow the distributions F; and F),, respectively.
The following Héjiek-Rényi-Chow inequality is needed in the proofs of theorems.

Lemma A.1 (Hijek-Rényi-Chow inequality). Suppose that {Xpn,n = m},1 < m < n, is a martingale
difference sequence. Let U,QZ = EXZ and cy = co = -+ = ¢y > 0. Define

n
=>_X;.
j=1
Then for any x > 0, we have

1
P( max CJ|S| )< |: Cm m+ Z C?U]

m<j<n
YA ] m-1

A.1 Proof of Theorem 3.1

To simplify the notation, T, (k) is abbreviated by T'(k). Without loss of generality, we assume that
k = |nT]. Since
T(k) < |T(k) — ET(k)| + ET (),

and
ET (ko) < |ET (ko) — T'(ko)| + T'(ko),

by the triangle inequality, it is easy to show that

ET (ko) — ET(k) <2 1r<nkax |T (k) — ET (k)| + T(ko) — T(E). (A.2)
<n
het k )\ k k
Ck,n(’y)_( (ng )> (n_ )7 ]{)21,2,...,77,—1
n n
Then T'(k) = cxn(7)Qk, where
1k
Q= > (YY) + Z h(Y,,Ys) Z Z h(Y,,Ys). (A.3)
r,s=1 r,s=k+1 r=1s=k+1
For k < ko, Qi can be decomposed as follows:
1 F 1 n L k
= Y., Y, Y., Y, Y,,Y.
Qk k2 rz:; h( ) + ( _ k)Q T:zk—:‘rl h( ) + ]f2 ; g:;;érh( )

+2Z Z} (>, Ye)

1,s#r r=k+1s=ko+1

S
I =
o~
~—
[ V)
—
=
o
=
(=]
_|_
[
[

3
I
e
+
=
[
I
End
+
-
)
S
3
3
I
o

<]
+
=
»
™
<)
+

So
EQy = k(nn— k) /w(t)dt + ((Z—_/Z)))Q [E[h(Y1,Ys)] — 2E[h(Y1, Yiy+1)] + E[R(Yeg 11, Yio12)]]
* [(: - 2())2 - H Elh(%, ¥2)] - (Z B :?zE[h(Ykoﬂ,sz)], (A4)
where

Elh(Y,Y))] = / {( / cos(ta:)dFl(x)>2+ ( / sin(tx)dFl(x)>2}w(t)dt,
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Eh(Yigs1, Yig12)] = / {( / cos(tx)an(:E)>2+ < / sin(tm)an(x)>2}w(t)dt.

Then we have, as k < ko,
) =Y e
n :<k’(nn k’))”k(;z—ll;o) B (ko (n — ko) ) ko}
+ _<k(nn2k)>v(1;((l;—_k]j) n— ) (kon—k0> n;ko}E[h(YhYz)]
)

_ (k:(n — k))”l;(gb—_ljf)) _ (ko n — ko) } s Vs )

and

ET(k) — ET (ko) = [(k(”HQ

TL

k)
2 _

n2

It is easy to conclude that from (3.2) the second term is the dominating one in (A.5). Using the mean
value theorem, we obtain that

ET(k) — ET (ko) = 91(&1)(7 — 10)nln + 0p(ndy), (A.6)

where ¢/ (+) is the first order derivative of g;(-) with
gi(z) = (1 —710)%27 T (1 — ),

and 7 < & < 79. Similar arguments yield that, as k > kg

ET(k) — ET (ko) = 95(&2)(T — 10)nd,, + op(nA), (A.7)
where g5(+) is the first order derivative of go(-) with

g2(z) = 7271 — 2)

and 79 < & < 7. Combining (A.2) and (A.5)—(A.7), we obtain that

nAn|T = 70]0 + 0,(nAy) < ET (ko) — ET (k)
2

max |T'(k) — ET (k)| + T'(ko) — T'(k), (A.8)

1<k<n

<
<

where § = min{g} (&), ¢5(&2)}. Since 7, = ky/n, T(kyn) = T(ko), and T is nonnegative, by replacing 7
by 7, in (A.8), we have

nAp|7 — 70[0 + 0p(nAy,) < 2 max |T(k) — ET (k)| (A.9)

1<k<n

In order to show the consistency of change point estimator 7,,, we consider the probability P(|7,—7o| > €),
Ve > 0. It is easily to see from (A.9) that

ned\,
T — <
P(|7n — 10l > ¢) < P(12}§?i0 |T(k) — ET (k)| > 9 )
nedl\,,
+P(korr<1%><<n|T( ) — ET (k)| > 9 > (A.10)

Because of the symmetry, we only show

ned,
P<1£r]1€zz>io |T'(k) — ET (k)| > 5 ) =0

as n — o0o. The remaining part is analogous and thus is omitted.
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We start with that

ned,,
P(lg}&);oﬂ’() ET(k)| > 5 )

If k < ko, by (A.3),

T(k)— ET(k) = A1 + Aa + - -+ + Aia, (A.11)

En—k)\71 <~ <~ - kn—k)\" 1 & L
(n2 )) Lo D h(Yo), A2=( (n2 )> D DR DN At
r=k+1 s=k+1,s#r

(
Az = (k(n;k))vi - S h(Y,Ys), As= (k(n_k)yzm;ko}zk:h(Yr,Zl)a

n2

r=ls=ls#r r=1
As__</f("n2 k))m(nn; k) gwﬁzﬂ, AG__<k<nn2 k))” :EZ:;;) ,ﬁ;h Y, Z1),
A7 = _(k:(nng k))”n(nQﬁ Y Tg;rlh(yﬁzl)’ Ay — (kﬁ(nng k))‘Y (n— k;O T %;Hh Yo 7).
Ay = _<k<nn2 k))vn(nzﬁ Y S WV ), A = </€(nn2 k)) QSEZ - ];:()) $ vz

r=k+1
k(n — k) 2kn—k0 " k(n—k)\"2(n — ko) <
A11_—( 2 > D Y2y, An=—("0 LD Y ),
r=ko+1 r=1
where Z; and Z, have the distribution functions F; and F),, respectively, and are independent of
Yi7 Yé) st 7YTL'
Next we investigate each term in (A.11). Towards this end, we consider the following statistics
Z B(Y;)Yj)) k:172)"')n7
1<i<i<k
where £ is defined in (A.1). Since E[S;H_l(ﬁ) | Y1,Y5,...,Y%] = Sk(iz) for k=1,2,....,n—1, {Sk,o(¥1,

Yi);k=1,2,...,n} is a martingale, where o(Y7,...,Y%) denotes the o-field generated by Y1,..., Y.
Then by the Hajek-Rényi-Chow inequality

A h LH7e6 A
P( max |Aq] > neo n) gP( max |Si(R) > " <0 ")
1<k<ko

1<k<ko 2 ki 4
- c 1+ I{,y=1/2} logn c
= n2e262A2 pmin(2y,1) = n2e262A2"

Similar arguments yield that

Ag| > nedl\, - c
max
1<k<ko 2 2 T n2e252A27

and

nedl\, c
A < .
(1?113)%0' 3l > 2 ) n?e2§2A2

Since each of {E(h(Y;, Z1) | Yy) — ER(Y,, Z1),r = 1,2,... ko}, {E(h(Yr, Z1) | Yy) — ER(Y,, Z1), 17 =
ko+1,....n}, {Eh(Y,, Z2) | Y,)— Eh(Y,, Zs),r = 1,2,...,ko}, and {E(h(Y,, Z2) | Y.) — ER(Y,, Zs),r =
ko+1,...,n} is an identically distributed and independent sequence of random variables with zero mean
and finite variance, the application of the Hajiek-Rényi-Chow inequality leads to

nedl\, c
P A <
(1?/5?%0 [Ad] > 2 ) ne2d2A2’
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n 1
P< max |As| > nedA > < ¢ Z < ¢

1<k<ko 2 n2+27e262A2 — k2-27 T n2e2§2A2°

Similarly, we can obtain that

P<1£]§£§co |4o] > ns(;A”> S nEQ(SCQA%’ P(é@io |A7] > na;A"> s HQEQEQA%’
P(lglfgo |As| > ns(;An> < neQ;A%’ P(lg}%}io |[Ag| > nE(ZAn) S n252§2A%’
P o= ") < g P 0> ") <
P, 1> ) < ey

Thus, we have

ned A\, Co
— < . .
P(lg}%)io |T (k) — ET (k)| > ) ) S 25202 (A.12)
By (3.2), (A.10) and (A.12), it follows that
nl;rréo P(|7n, — 10| >¢) =0,
i.e., Tn —PpP T0-
We now prove that
. 1
Tn —’7’0| _OP(TLA%)
It follows from (A.4) that
202 A2 |1 — 10]0
< (BT (ko))* — (ET(k))*
_ 2R nl & - )P = ) (1 = 2960) +o(nPAT), k< ko, (A.13)
202 A0 |1 — 70637 (1 = &) T (1 — v + 296) + o(n?A7), k> ko, .

where 7 < & < 19 for the case that k < kg, and 79 < & < 7 for the case that k > kg, and
0 =min{&" (1= )PP (1—10) (147 = 296,677 (1= &) (1 — 7 + 276)}
Thus the convergence rate of 7, may be found via the limiting behaviour of (ET(ko))? — (ET(k))?. We
decompose it as follows:
(ET(ko))* = (ET(k))* = [(T(k) — ET (k) — (T (ko) — ET (ko))]”
+ 2(T (ko) = ET (ko))(T (k) — ET (k) — (T'(ko) — ET (ko))
+2(T(k) — ET(k))(ET (k) — ET (ko))
+ 2ET (ko)(T (k) — ET (k) — (T (ko) — ET (ko)))
+(T(ko))* — (T'(k))*. (A.14)
By the definition of T'(k), it can be decomposed as
T(k)— ET(k)=B1+ Ba+ -+ Be,

where
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p= (M) ] S e ey

n—k rts kil
B Kk‘(an k-)>vn(nk_ k)} ;:: [h(Y;,Ys) — Eh(Y,, Y,)),
r#s,ko+1
- ~ ko ko
By = —[(’“( , ’”) z] 3o 3 (v V) = EAY )
Bs=— [(k(”n; k))vfb] Tkl S:;H[hm,m — Eh(Y,,Y,)],

Bg = Kk-(an k—)>vn(nzli k)} f: zn: [h(Yy,Ys) — ER(Y,, Ys)].

We first deal with By, and we have

1 k

Bi = gs(r) Y [h(Ys,Ys) = Eh(Y;, Y)]
r#s,1
k
:néga( )\/k(n2 Z Y},Y Eh(Yr,Ys)]
= n%gg<7>0<1>op<1)
= O0p(n?),

where g3(z) = 277 1(1 — 2)7*!. The third equality is implied by the asymptotic normality of U-statistic.
Similarly, we obtain By = Op(n2|r — 19|2), and Bs = Op(n2). The fourth term B, can be decomposed

further as
By =By + Byo+ Bas,
where
2 ktn—k)\"] <= <X -
=2 (") T X e
L 4 r=1s=k+1
21/ k(n—E)\"]
Byy = — (( ) )) Z Z h(Y,,Ys) | Y] — ER(Y,,Ys)],
nl " dr=1s=k+1
2[(k(n—k)\"] <
B4'3:_n< 2 ) ZZ h(Yr, Ys) | Ys] = BA(Y:, Y)].
- - r=1s=k+1

The application of the central limit theory yields that By1 = Op(1), Bao = Op(né ), and Byg = Op(né ).
Thus we obtain Bs = O,(n2). Similar arguments yield also By = O,(n?), and Bs = O,(n2). Combining
the above results, we immediately obtain

T(k) — ET(k) = Op(n?). (A.15)
Similar arguments yield that
T (ko) — ET (ko) = Op(n2). (A.16)
Thus,
(T(k) = ET(k)) = (T (ko) = ET (ko)) = Op(n* |r — | 2). (A.17)

Denote A = [(T(k) — ET(k)) — (T (ko) — ET (ko))]* + 2(T (ko) — ET (ko))[(T'(k) — ET(k)) — (T (ko)
— ET(ko))] + 2(T(k) — ET(k))(ET (k) — ET (ko)) + 2ET (ko)[(T'(k) — ET(k)) — (T'(ko) — ET (ko))]. Tt
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can be easily derived from the proof of Theorem 3.1 that ET'(k) — ET (ko) = O(nA,|T — 79|) and
ET (ko) = O(nA,). Thus by (3.2), and (A.15)-(A.17), we obtain that

A =O0p(n|r —10]) + Op(n|T — 70|"2) + Op(n? An|T — 70|) + Op(n2? An|r — 10| 2)
= 0p(n® Aulr —10]2), (A.18)

for k < kg. Similar arguments yield that for k& > ko,
A=0p(n2A,|r—70]2). (A.19)

Since T?(ky) > T?(ko), by combining (A.14) and (A.13), and replacing 7 by 7, in (A.13), (A.18) and
(A.19), we obtain that

~ < 3 ~ 1
202 A%|7, — 100 < Op(nzA,|f, —7ol2).
Hence, we have that

2n2A217, — 198 A
( \ ”|A” 0|1>M0)<P( . 1>M0)<5,
n2Ap|Tn — 0|2 nz A, |7, — 702

for every small number € > 0, and every large number My > 0, i.e.,
P(vV/nAp|in — 10]2 > My) = P(nA2|7, — 70| > M) < ¢,

which yields that |7, — 70| = O,(n A 2). The proof is complete.

A.2 Proof of Theorem 3.3

To show that

1 -2 2 .
( +V}\% 770) Ai(kn—ko)éargmng(u),
where
Wl(_u)+gv u <0,
G(u) = AQW(U)_1 L=y+29m)
A2 2\1+~—2y7) ’

and Wy (-) and Wa(+) are two mutually independent standard Brownian motion processes on [0, 00), it is
equivalent to prove that

A2 (ky — ko) = arg max V(s), (A.20)
where
)
V(s) = raWWa(s) - 1— 7;277057 550
since \2
arg max V(s) = (14~ _1 2yro) arg max G(u)

by a change in variable
(14— 2y70)?
A2 °
1

In the following, we show that (A.20) holds true.
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By Theorem 3.1, k, = ko+Op(A,,

for any given M > 0. Define

n(s) = T?(k) — T*(k
Val(s (1 70)2“/“( (k) (Ko)),
where k = ko + [sA,,2]. Since
fn = g g, TR,
we can easily derive that
argmax V,,(s) = A2 (k, — ko).

If we can show that V;,(s) = V(s), by the continuous mapping theorem, we have
A2 (k, — ko) = argmax V (s).
S

To achieve V,,(s) = V(s), we decompose V,,(s) into five terms as follows:

Sci China Math December 2016 Vol. 59 No. 12

2). Hence, to derive the asymptotic distribution of the change point
estimator kn, we only need to con51der the behaviour of k satisfying k = ko + |sA,,2

| and s € [-M, M],

Va(s) = D1+ D2 + D3 + Dy + Ds, (A.21)
where
Dy = [dnrg " (1 = 7o) M THIET ()| — | ET (ko) ),
Dy = [dn7y (1 = 70)* M TH(T (k) — ET (k) — (T (ko) — ET(ko))IQ],
Ds = [n7g" (1 — 7o) P TH2(T (ko) — ET (ko))(T (k) — ET(k) — (T(ko) — ET (ko)))],
Dy = [n7g" (1 = 7o) TH2A(T (k) — ET(K))(ET (k) — ET (ko))),
Ds = [dn7g " (1 — 70)* P T 2ET (ko) (T (k) — ET(k) — (T(ko) — ET (ko))))-

We first consider the case that s <
value theorem, we obtain that

Dy = [4ny (1 = 7)Y ET (k) — ET (ko)[ET (k) + ET (ko))
= [An7g (1 — 7))
k‘(n—k) ’Yk(n—ko)_ k‘o(n—ko) ’y]fo (n—ko)
Q| () o - (M)
kn—k)\ " k(n —k ko(n —ko)\ ko] (n—k
Qo | (7 7) T () R
= IO N (O~ o) + 0p (A3~ o)

In view of the proof of Theorem 3.1, we obtain that, as n — oo,

b (1)
max =o0 ,
lk—ko|<M/AZ A2 |k — ko P
D3
=op(1

/82 A2k — ko) P
D

Y =op(1).

max
lk—ko|<M/A2 A2k — ko

0, or equivalently k < ko. Since k = ko + [sA,?

|, by using the mean

+ oP(nAn)}
+ OP(nAn)}

(A.22)

Consequently, it suffices to investigate only the limiting behaviours of Dy and D5, as n — co. Since each

of {E(MY,,Z1)|Y,) — Eh(Y,,Z1),r=1,2,....ko}, {E(h(Y,,Z1) | Y})

—BWY,,Z1), r=ko+1,...

)1},
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{E(WY,,Z2) | Y,)— Eh(Y,, Zs),r =1,2,...,ko}, and {E(h(Y;, Z2) | Y;.) — ER(Y,, Z3), r = ko+ 1, ...,

2483

n}

is an independently and identically distributed sequence with zero mean and finite variance, where Z;
and Zy are independent of Y1, Y5, ..., Y,, and follow the distributions F} and F, respectively, by the weak

convergence of partial sums, we can prove that

Ds = [An2" T (1 = 70)2 Y 7 nAnr) (1= 70)7(1 = 70)70 4 0p(nA,))]
k ko

X{_2[(k(n;k')>7+(ko(nngko)) n—ko}z S (BLY) | Y, - EW(Y,Y,)

n n

=1 r=k+1

PR B ()] B, K -

I=ko+1r=k+1
+ [4AnrZ 1 = 7)Y AL (1= 70) (1 = 10)70 + 0p(nA,)]op(n2 |7 — 70| 2)

= [m'gwrl(l - 7'0)2A’+1]71[nAn76’(1 —70)(1 = 70)70 + 0p(RA,)|75 (1 — 70)”

ko
x { — > [E[M(Yy, Z1) | Y] — ER(Y1,Y2)]

r=k+1
o By ¥ ER(Y:, Yigin)] + or (07 = )
r=k+1
= A ST (BN Yo) | Vi~ ROV Yige)] — (EIR(Y,, 20) | Y] — ER(YV, Vo))
r=k+1

+op(n2|7 — 70| An)
= M Wi(-s),
where Wi (+) is a standard Brownian motion process on [0, co) and
M = (B{[E[h(Z2, Y;) | Yi] = Eh(Yi, Vi) — [E[R(Ys, Z1) | Vi) — ER(V:, V2) 1)’
= (E{[E[h(Yip41, Y1) | Y1] = BR(Y1, Yio1)] = [E[R(Y1, Y2) | Yi] = ER(Y1, Y2)]}?)2.

Therefore, by (A.21)-(A.23), we obtain that, for s <0,

1 —2
Vn(S) = )\1W1(—S)+ +72 IYTOS.
For the case that s > 0, similar arguments yield that
1-— 2
Vio(s) = AaWa(s) — 7; L

where Wa(+) is another standard Brownian motion process on [0, 00) independent of Wi(-) , and

A2 = (E{[E[h(Y1, Ykot1) | Yrot1] — ER(Y1, Yigy1)]
— [Bl(Yig+1, Yig+2) | Yior1] — ER(Yigs1, Yig2)]}2) 2.

In summary,

= T2 A_Q _ T2
Vale Ant (1 - 7—0)27+1( (ko + [s4,7]) (ko)) = V(s),
where
1 -2
MWi(=s) + +72 s s <o,
V(s) =
1- 2
AaWa(s) — 'y;— 7Tos, s> 0.

The proof is completed.

(A.23)
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A.3 Proof of Proposition 4.1
Suppose that kg > l:f,
Vo, = hiol = Vka, =k + = kol < [ka, =kl + |k = ko| < lfa, = k| + It — kol

The last inequality holds true for any a; € A by the definition of as. There always exists at least one
point a* # as in A such that kg« < min(k,,, k). Therefore,

ko, — kol < lkar — & + |k — ko| < & — kar + ko — k& = |ka~ — kol- (A.24)

Similarly, we can show (A.24) for the case that ko < k. The proof is completed.



