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Abstract We propose a nonparametric change point estimator in the distributions of a sequence of independent

observations in terms of the test statistics given by Hušková and Meintanis (2006) that are based on weighted

empirical characteristic functions. The weight function ω(t; a) under consideration includes the two weight

functions from Hušková and Meintanis (2006) plus the weight function used by Matteson and James (2014),

where a is a tuning parameter. Under the local alternative hypothesis, we establish the consistency, convergence

rate, and asymptotic distribution of this change point estimator which is the maxima of a two-side Brownian

motion with a drift. Since the performance of the change point estimator depends on a in use, we thus propose

an algorithm for choosing an appropriate value of a, denoted by as which is also justified. Our simulation study

shows that the change point estimate obtained by using as has a satisfactory performance. We also apply our

method to a real dataset.
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1 Introduction

Change point problems are common in many research areas including medical and health sciences, finan-

cial econometrics and risk management (see [3, 5, 8]). If there exists a change point in a data sequence,

the results derived from the statistical analysis without taking it into account might be misleading. Many

methods have been proposed in the literature to test or estimate change points in mean, variance, regres-

sion parameters, etc. For example, a local comparison method based statistic has been proposed in [6] to

test whether there is a change point in mean of a data sequence. Note that these change point problems

are special cases of the problem of change point in distributions of a sequence of random variables that

will be considered in this paper.

Nonparametric methods play an important role in tackling the problem of a change point in distribu-

tions of a data sequence. Most of the nonparametric methods are based on either empirical distributions,
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U-statistics or quantile functions (see [4,8,14,22]). Another nonparametric tool is the empirical character-

istic function (ECF). The definition of the ECF was given in [21]. Kent [18] studied the weak convergence

theorem of the ECF. Since then, the ECF has been applied to solve various statistical problems such as

hypothesis testing for symmetry about the origin, dependence or normality (see [10, 11, 17, 19, 24]).

A class of test statistics based on the ECF has been proposed in [15] to test if there is a change point

in distributions of a sequence of independent random variables. They gave two choices of the weight

function for their proposed statistics. They studied the limiting behaviour of the test statistics under

both null and alternative hypotheses. Built upon their statistics, a change point estimator is given in

this paper for the same change point problem. The weight function ω(t; a) under consideration includes

the two weight functions from [15] plus the weight function used in [20], where a is a tuning parameter.

We will study the consistency, convergence rate, and asymptotic distribution of this estimator when the

difference between the distributions before and after the change point tends to zero as the sample size

goes to infinity.

Simulation results in [15] showed that the test statistics are robust with respect to the value of the

tuning parameter a in the weight function, which, however, is selected from 1 to 4 increased by 1 each

time in their simulation study. It is noted that the domain of a in their weight functions ranges from 0

to infinity. The real data example reveals that the change point estimate may be influenced significantly

by the value of the tuning parameter a (see Table 1 of Section 4). Thus, accuracy of the change point

estimate is in question. To tackle this problem, we propose an algorithm for selecting an appropriate

value of a, as, in order to obtain a change point estimate with a satisfactory accuracy.

The rest of the paper is organized as follows: In Section 2, we propose a nonparametric change point

estimator in the distributions of a sequence of independent observations in terms of the test statistics

given in [15] that are based on weighted empirical characteristic functions. In Section 3, we investigate

the asymptotic properties of this estimator assuming that there exists one change point in the data

sequence. We also give an example there. We present an algorithm for selecting as which is also justified

in Section 4. We carry out simulation study to evaluate the performance of the change point estimation

with the use of as in Section 5. A real data example is also given there. The proofs of all the theorems

are given in Appendix.

The following notation are used throughout the rest of this paper. IA(·) denotes the indicator function
of the set A. �a� represents the largest integer not greater than the real number a. “→P ” stands for the

convergence in probability. “⇒” means the weak convergence. Φ(·) denotes the cumulative distribution

function (cdf) of a standard normal distribution.

2 The change point estimator based on the ECF

Let Yn,1, Yn,2, . . . , Yn,n be a sequence of independent random variables, where Yn,j has a distribution

function Fn,j , j = 1, 2, . . . , n. Consider the testing problem

H0 : F1 = Fn,1 = Fn,2 = · · · = Fn,n,

against

H1 : F1 = Fn,1 = · · · = F
n,k

(n)
0

�= F
n,k

(n)
0 +1

= · · · = Fn,n = Fn, for k
(n)
0 < n, (2.1)

where k
(n)
0 , F1 and Fn are unknown. k

(n)
0 is called the change point. For the sake of convenience, the

subscript n in Yn,j and Fn,j and the superscript n in k
(n)
0 are all suppressed if there is no confusion.

The following class of test statistics has been developed in [15] based on the empirical characteristic

function and a non-negative weight function ω(·) with a non-negative tuning parameter a:

Tω,γ(k) =

(
k(n− k)

n2

)γ
k(n− k)

n

∫ ∞

−∞
|φk(t)− φ0

k(t)|2ω(t)dt, (2.2)
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where γ ∈ (0, 1], ω(·) satisfies that ω(t) > 0, t ∈ R and 0 <
∫
ω(t)dt < ∞, φk(t) and φ0

k(t) are ECFs

based on Y1, . . . , Yk and Yk+1, . . . , Yn, respectively, i.e.,

φk(t) =
1

k

k∑
j=1

exp{itYj}, φ0
k(t) =

1

n− k

n∑
j=k+1

exp{itYj}, j = 1, 2, . . . , n.

Under the alternative hypothesis, we propose the change point estimator for k0 as

k̂n = arg max
1�k<n

Tω,γ(k). (2.3)

Some choices of ω(·) are

ω1(t; a) =
1

2a
exp{−a|t|}, t ∈ R

1, a > 0, (2.4)

ω2(t; a) =

√
a√
π
exp{−at2}, t ∈ R

1, a > 0, (2.5)

or

ω3(t; a) =
a2aΓ(1+a

2 )

2
√
πΓ(1− a

2 )
|t|−a−1, t ∈ R

1, a ∈ (0, 2). (2.6)

We remark that ω1(t; a) and ω2(t; a) were given in [15] while ω3(t; a) was used as the weight function in [20]

for obtaining their nonparametric change point estimator in distributions of a sequence of multivariate

random variables.

We assume that k0 satisfies

k0 = �nτ0�, τ0 ∈ [κ1, κ2] for some 0 < κ1 � κ2 < 1. (2.7)

This is a conventional assumption made in change point detection problems [8]. The estimator for τ0 is

given by

τ̂n =
k̂n
n

=
1

n
arg max

1�k<n
Tω,γ(k). (2.8)

3 Consistency and asymptotic distribution of the change point estimator

Define

Δn =

∫ {(∫
cos(tx)d(F1(x)− Fn(x))

)2

+

(∫
sin(tx)d(F1(x)− Fn(x))

)2}
ω(t)dt

= E[h(Y1, Y2)]− 2E[h(Y1, Yk0+1)] + E[h(Yk0+1, Yk0+2)], (3.1)

and h(x, y) =
∫
cos(t(x − y))ω(t)dt. In this section, we will study consistency, convergence rate and

asymptotic distribution of the change point estimator τ̂n under the assumption that Δn → 0. Its con-

vergence rate not only describes how fast τ̂n converges to τ0 but also is necessary in order to derive its

asymptotic distribution that will enable us to calculate its mean square error (MSE). The following two

theorems are given in sequel, and their proofs are given in Appendix.

Theorem 3.1. Let Y1, Y2, . . . , Yn be a sequence of independent random variables, where Y1, . . . , Yk0

have a common distribution function F1, and Yk0+1, . . . , Yn have a common distribution function Fn.

Assume that k0 satisfies (2.7) and γ ∈ (0, 1]. If Δn defined in (3.1) satisfies that Δn → 0 and

nΔ2
n → ∞, as n → ∞. (3.2)

Then, as n → ∞,

(1) τ̂n →P τ0;

(2) |τ̂n − τ0| = OP (
1

nΔ2
n
).
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Remark 3.2. If Δn is a constant not depending on n, from the proof of Theorem 3.1, we can make

the conclusion that ∀ ε > 0, limn→∞ P (n
1
2 l−1(n)|τ̂n − τ0| > ε) = 0, where l(n) is a slow varying function

satisfying limn→+∞ l(n) = +∞. Furthermore, similar to [23], we can obtain the stronger a.s. convergence

rate: |τ̂n − τ0| = O(M(n)
n ) a.s. for any M(n) satisfying that M(n) → ∞ as n → ∞.

We now consider the asymptotic distribution of τ̂n assuming that Δn → 0 as n → ∞.

Theorem 3.3. Under the same conditions as in Theorem 3.1, we have, as n → ∞,

(1 + γ − 2γτ0)
2

λ2
1

Δ2
n(k̂n − k0) ⇒ arg max−∞<s<+∞G(s),

where

G(s) =

⎧⎪⎨
⎪⎩

W1(−s) +
s

2
, s � 0,

λ2

λ1
W2(s)− s

2

(
1− γ + 2γτ0
1 + γ − 2γτ0

)
, s > 0,

(3.3)

W1(s) and W2(s) are mutually independent standard Brownian motion processes defined respectively on

[0,∞), and

λ1 = (E{[E[h(Yk0+1, Y1) | Y1]− Eh(Yk0+1, Y1)]

− [E[h(Y1, Y2) | Y1]− Eh(Y1, Y2)]}2) 1
2 , (3.4)

λ2 = (E{[E[h(Y1, Yk0+1) | Yk0+1]− Eh(Y1, Yk0+1)]

− [E[h(Yk0+1, Yk0+2) | Yk0+2]− Eh(Yk0+1, Yk0+2)]}2) 1
2 . (3.5)

Remark 3.4. As commented in [16, Remark 2.3], λ1 and λ2 can be estimated using the observations

Y1, Y2, . . . , Yn.

Remark 3.5. When Δn is a constant not depending on n, i.e., Fn does not vary with n, we can obtain

the asymptotic distribution of τ̂n similarly as in [12, 13], which is a two-way random walk depending on

the underlying distribution F1, Fn and Δn in a quite intricate way.

In the following, we evaluate the MSE of k̂n by applying the above theoretical results via an example.

Let F1 and Fn be respectively N(0, 1) and N(μ0, 1) with μ0 �= 0. For illustration purpose, ω2(t; a) is

chosen as the weight function. It is easy to derive that

Δn =
2
√
a√

2 + a

[
1− exp

{
− μ2

0

4(2 + a)2

}]
. (3.6)

To find the MSE of k̂n, we need first to calculate both λ1 and λ2 in order to use (3.3) which, by (3.4)

and (3.5), are equal and have the following expression,

λ2
1 = λ2

2

=
a√

a2 + 2a+ 2

[
1 + exp

{
− μ2

0

2(a2 + 2a+ 2)

}
− 2 exp

{
− (2a2 + 4a+ 3)μ2

0

8(1 + a)2(a2 + 2a+ 2)

}]

− 2a
√
1 + a√

2 + a
√
2a2 + 4a+ 3

[
1− exp

{
− μ2

0

4(2 + a)2

}][
1− exp

{
− μ2

0

2(2a2 + 4a+ 3)

}]

+
a

2 + a

[
1− exp

{
− μ2

0

4(2 + a)2

}]2
. (3.7)

By Theorem 3.3,

Ea(k̂n − k0)
2 ≈ 1

(1 + γ − 2γτ0)4
λ4
1

Δ4
n

E
[
arg max−∞<s<+∞G(s)

]
. (3.8)
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Note that in this example, G(s) does not depend on λ1. By (3.6) and (3.7),

λ2
1

Δ2
n

≈ 1

4
− (1 + a)

1
2 (2 + a)

5
2

(2a2 + 4a+ 3)
3
2

+
(2 + a)5

(a+ 1)2(a2 + 2a+ 2)
3
2μ2

0

,

which, jointly with (3.8), implies that Ea(k̂n−k0)
2 depends on μ0 and the tuning parameter a via λ2

1/Δ
2
n.

Thus for a given μ0, an appropriate value of a should be chosen in order to have a small MSE of k̂n,

which will be dealt with in the next section.

4 An algorithm for selecting an appropriate tuning parameter a

The example given in Section 3 shows that it is important to select an appropriate a. We now present a

real data example to further demonstrate how the change point estimate can be affected by the choice of

a. Consider the Nile data, a time series of the annual flow of the river Nile at Aswan from 1871 to 1970

(see [2,7,9]), which has a change in year 1898 corresponding to the 28th observation in the data sequence

detected in [25]. The data is depicted in Figure 1. For the purpose of illustration, we assume that the

observations are independent as in [7]. We use (2.3) with respective weight functions ω1(t; a), ω2(t; a),

and ω3(t; a) for different values of a to estimate the change point. The resulted change point estimates

are reported in Table 1.
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Figure 1 The Nile data

Table 1 The estimated change point k̂n using different weight function ω(t; a) with different values of a and a fixed

γ = 0.5

ω1(t; a)
a 1 2 3 4 5 6 7 · · · 100

k̂n 47 48 48 48 48 28 28 · · · 28

ω2(t; a)
a 1 2 3 · · · 22 23 24 · · · 100

k̂n 48 48 48 48 48 28 28 · · · 28

ω3(t; a)
a 0.001 0.002 · · · 0.009 0.01 0.02 0.03 · · · 2

k̂n 47 47 · · · 48 28 28 28 · · · 28
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It can be seen from Table 1 that the value of a has a large impact on the accuracy of the change point

estimate. An inappropriate a may result in a misleading estimate. In practice, we have no information

about the change point in a given data sequence. However, a needs to be prechosen in order to find the

change point estimate by (2.3). As shown above, different values of a might result in different change

point estimates. Thus it is important to select a value from a set of possible values of a such that the

resulted change point estimate has a satisfactory performance. Such an appropriate choice of a is denoted

as as in this paper, where the subscript “s” is taken from the first letter of “selection”. We propose the

following algorithm for finding as.

Step 1. Let Y1, Y2, . . . , Yk0 , Yk0+1, . . . , Yn be a given data sequence with the change point located at

k0 and

A = {a1, a2, . . . , a�}
be a set of possible values for a. For each ai from the set A, we obtain

k̂ai = argmax
k

Tγ,w(k).

Table 2 Number of the change point estimate k̂a fell into the interval (k0 − δ, k0 + δ) for δ = 5 (top entry), 10 (middle

entry) and 15 (bottom entry) by using the weight function ω1 (upper part), ω2 (middle part) and ω3 (lower part) when

F1 is N(0, 1) and Fn is N(1, 1)

a 1 2 3 4 5 6 7 8 9 10 11 as

k0 = 30 706 733 743 752 755 761 762 762 760 762 761 752

873 899 904 907 905 908 909 909 907 908 909 906

927 941 944 949 951 951 951 951 950 951 951 951

ω1 k0 = 50 725 749 763 771 772 770 770 772 772 772 773 773

895 915 928 931 934 931 930 930 930 930 930 935

964 970 970 971 972 973 973 973 973 973 973 972

k0 = 70 691 730 742 744 742 744 745 745 745 745 745 740

856 872 879 887 888 891 891 891 891 891 891 888

926 935 942 944 942 942 940 937 937 936 937 942

k0 = 30 734 745 753 754 762 761 762 762 762 760 760 760

899 906 906 905 909 908 909 909 909 908 907 909

940 948 949 950 952 951 951 951 951 950 950 952

ω2 k0 = 50 754 765 769 772 770 771 768 770 772 772 772 770

915 927 930 934 932 931 930 930 930 930 930 932

970 969 971 972 972 972 973 973 973 973 973 972

k0 = 70 725 741 741 742 743 744 745 746 745 745 745 744

868 880 885 887 890 891 891 892 891 890 890 891

933 944 942 942 941 940 939 937 937 937 937 942

a 0.2 0.4 0.5 0.7 0.9 1.1 1.3 1.5 1.6 1.8 2 as

k0 = 30 676 703 710 721 731 738 747 740 748 750 745 733

825 847 854 864 867 874 881 880 880 884 889 872

894 911 915 919 919 926 934 936 933 937 936 928

ω3 k0 = 50 773 775 786 792 796 797 802 803 805 807 809 799

931 934 938 946 950 953 952 950 950 951 952 954

976 974 974 976 977 980 981 980 981 981 980 981

k0 = 70 680 706 715 718 721 733 745 748 742 743 744 734

836 850 861 866 870 878 886 890 891 891 892 879

912 925 934 937 938 942 945 950 949 949 950 944
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Table 3 Number of the change point estimate k̂a fell into the interval (k0 − δ, k0 + δ) for δ = 5 (top entry), 10 (middle

entry) and 15 (bottom entry) by using the weight function ω1 (upper part), ω2 (middle part) and ω3 (lower part) when

F1 is N(0, 1) and Fn is N(1, 2)

a 1 2 3 4 5 6 7 8 9 10 11 as

k0 = 30 636 643 630 613 599 580 566 549 542 533 528 600

819 824 809 794 784 771 753 735 729 719 711 777

890 895 878 863 850 841 825 812 805 797 790 848

ω1 k0 = 50 727 735 717 706 688 667 653 648 638 625 615 686

895 904 890 881 867 853 846 835 828 814 806 879

953 956 955 948 938 932 925 919 915 909 901 942

k0 = 70 730 762 767 755 742 724 714 703 681 675 673 743

901 921 915 902 887 873 867 856 848 842 840 896

950 962 963 952 945 942 936 929 921 917 917 947

k0 = 30 647 638 624 610 596 580 578 568 560 550 546 596

827 817 803 791 778 771 766 754 745 737 735 781

897 887 868 858 846 841 836 825 821 813 811 848

ω2 k0 = 50 740 718 712 701 683 680 661 651 651 644 644 682

907 894 885 875 865 862 851 845 843 835 832 865

958 959 950 943 938 936 930 926 925 920 919 939

k0 = 70 767 769 763 752 737 727 721 712 706 698 691 738

925 920 908 899 886 876 874 866 859 856 853 890

964 965 958 950 946 944 942 936 934 929 926 947

a 0.2 0.4 0.5 0.7 0.9 1.1 1.3 1.5 1.6 1.8 2.0 as

k0 = 30 617 636 629 617 609 588 564 551 525 502 470 580

789 799 789 779 775 755 733 716 689 666 633 753

867 868 857 849 844 831 811 796 772 745 716 831

ω3 k0 = 50 749 743 739 725 708 701 687 670 642 605 567 698

910 905 903 885 877 871 856 849 822 786 752 869

966 960 958 946 939 934 921 915 896 870 843 936

k0 = 70 743 757 762 762 760 748 728 717 686 665 636 753

884 900 903 906 905 900 891 881 859 841 810 902

938 948 949 954 957 954 954 949 928 916 898 956

Step 2. Compute the mean of k̂ai , i = 1, 2, . . . , 
 as

¯̂
k =

1




�∑
i=1

k̂ai .

Then

as = argmin
ai

|k̂ai − ¯̂
k|.

From the proposed algorithm, it can be seen that as is dependent on the data sequence and hence

random. as might not give us the best change point estimate but it will provide an improved performance

over a fixed one, which is not only justified in Proposition 4.1, but also confirmed by the simulation study

in the next section.

Proposition 4.1. Given a data sequence Y1, Y2, . . . , Yk0 , Yk0+1, . . . , Yn with the change point located at

k0 and A = {a1, a2, . . . , a�} be a set of possible values for a. Then there exists at least one point a∗ �= as
in A such that |k̂as − k0| � |k̂a∗ − k0|.

The proof is given in Appendix.
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Table 4 Number of the change point estimate k̂a fell into the interval (k0 − δ, k0 + δ) for δ = 5 (top entry), 10 (middle

entry) and 15 (bottom entry) by using the weight function ω1 (upper part), ω2 (middle part) and ω3 (lower part) when

F1 is L(0, 1) and Fn is L(1, 1), the distribution of Y + 1 with Y ∼ L(0, 1)

a 1 2 3 4 5 6 7 8 9 10 11 as

k0 = 30 676 680 667 652 646 639 630 622 616 614 613 640

830 841 834 830 823 819 812 805 801 798 798 823

896 906 900 900 897 893 889 882 880 877 876 900

ω1 k0 = 50 702 718 702 689 682 674 673 667 664 663 659 687

885 890 880 868 862 855 853 851 847 846 844 870

952 947 938 935 934 930 933 930 925 925 923 942

k0 = 70 658 670 666 670 662 653 653 649 643 639 634 661

829 835 827 822 818 814 813 811 804 801 801 820

904 903 896 895 895 889 887 885 881 878 879 899

k0 = 30 674 665 646 645 642 638 635 629 623 621 618 639

835 836 824 823 819 815 813 808 804 803 801 819

902 901 898 900 895 891 890 887 883 881 879 896

ω2 k0 = 50 708 697 696 687 678 677 674 668 670 666 666 681

882 880 868 865 859 856 855 853 852 848 848 862

941 938 930 932 932 931 931 931 932 927 924 935

k0 = 70 658 663 665 664 660 653 650 651 648 646 647 655

824 825 821 815 816 812 810 810 807 806 806 814

898 895 891 893 893 888 887 884 883 883 883 893

a 0.2 0.4 0.5 0.7 0.9 1.1 1.3 1.5 1.6 1.8 2.0 as

k0 = 30 657 673 670 664 670 667 659 647 634 615 586 661

813 829 826 824 829 825 820 811 801 786 763 824

885 903 899 894 900 892 888 881 875 857 841 892

ω3 k0 = 50 719 717 711 700 685 679 663 650 639 630 610 682

907 895 886 879 866 859 847 834 822 814 795 864

960 950 949 946 937 938 934 924 918 911 896 940

k0 = 70 656 676 683 679 671 666 651 639 626 605 585 664

829 841 842 841 842 839 840 831 819 802 789 839

897 902 911 913 912 910 910 900 890 878 867 909

5 Simulation studies

In this section, we carry out a simulation study to investigate the performance of k̂n obtained via (2.3)

when using different values of a including as in terms of accuracy of the change point estimate. In

addition, we apply (2.3) with a = as to the Nile data.

5.1 Simulation study

We perform a simulation study to compare the change point estimate obtained via (2.3) using a set of

fixed values of a and as. The following is the details of the simulation study.

(1) Generate data Y1, Y2, . . . , Yk0 from the distribution F1 and Yk0+1, . . . , Yn from the distribution Fn

with one change point located at k0 = 30, 50, or 70, where n = 100. Three cases of F1 are considered:

Case 1. The normal distribution N(0, 1).

Case 2. The laplace distribution L(0, 1).
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Table 5 Number of the change point estimate k̂a fell into the interval (k0 − δ, k0 + δ) for δ = 5 (top entry), 10 (middle

entry) and 15 (bottom entry) by using the weight function ω1 (upper part), ω2 (middle part) and ω3 (lower part) when

F1 is L(0, 1) and Fn is L(1,
√
2), the distribution of

√
2Y + 1 with Y ∼ L(0, 1)

a 1 2 3 4 5 6 7 8 9 10 11 as

k0 = 30 587 594 575 568 560 548 533 528 517 506 501 552

773 775 763 754 739 733 715 710 704 699 689 740

859 860 846 837 827 820 808 801 796 786 776 831

ω1 k0 = 50 676 677 667 653 647 642 624 620 605 602 591 655

872 860 854 847 839 832 819 809 800 797 788 844

945 937 928 921 915 912 907 897 889 882 876 921

k0 = 70 633 642 637 636 633 618 610 609 601 596 594 632

814 818 815 811 808 793 780 775 772 770 768 810

896 896 896 895 889 876 865 863 861 863 858 891

k0 = 30 590 582 569 563 556 556 544 534 533 529 524 557

766 765 755 744 736 734 728 716 717 713 710 737

854 849 834 830 824 822 818 811 809 806 801 828

ω2 k0 = 50 666 671 662 648 646 639 628 626 621 617 614 653

860 857 848 840 837 831 821 818 814 809 803 840

937 931 921 913 912 911 907 907 903 898 893 919

k0 = 70 623 626 632 633 625 622 617 613 609 608 607 627

812 809 806 808 798 793 789 782 781 777 776 805

893 891 891 891 880 878 875 869 865 864 865 887

a 0.2 0.4 0.5 0.7 0.9 1.1 1.3 1.5 1.6 1.8 2.0 as

k0 = 30 597 611 606 597 587 571 547 529 508 489 466 562

759 768 765 751 748 735 713 693 678 660 638 728

840 844 847 840 839 822 801 782 764 746 731 816

ω3 k0 = 50 692 690 667 656 639 618 603 583 559 526 504 620

879 876 853 842 823 804 783 768 742 709 686 808

952 945 933 923 915 906 895 885 864 836 816 910

k0 = 70 627 649 649 657 650 639 623 611 581 552 526 637

805 818 817 825 822 817 810 800 772 755 725 816

888 900 903 905 902 900 894 885 868 850 823 902

Case 3. The gamma distribution G(1, 1). Correspondingly, we consider Fn(x) = F1((x − b)/d) for

b = 1, and d = 1 or
√
2.

(2) For a chosen weight function ω(t; a) and a given set of possible values of a, say A, first execute the

Step 1 of the algorithm given in Section 4 and obtain {k̂a, a ∈ A}, and then execute the Step 2 of this

algorithm to obtain as. Compute the change point estimate k̂as .

(3) Repeat (1)–(2) for 1,000 times and then compute the number of times that the change point

estimate falls into the interval [k0 − δ, k0 + δ] for δ = 5, 10, 15.

In this simulation study, γ is set as 0.5, and A is chosen as {1, 2, 3, . . . , 15} for both ω1 and ω2 but

{0.2, 0.4, . . . , 2} for ω3. The simulation results are reported in Tables 2–7, which show that the value of

a has a large impact on the accuracy of the change point estimate for all three weight functions. From

these tables, it can been seen that the change point estimate obtained by using as always outperforms the

change point estimates obtained by using some values of a, and has the best performance in some cases.

It can also be observed that the weight function ω3 performed better than both ω1 and ω2 in terms of

the accuracy of change point estimation overall.
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Table 6 Number of the change point estimate k̂a fell into the interval (k0 − δ, k0 + δ) for δ = 5 (top entry), 10 (middle

entry) and 15 (bottom entry) by using the weight function ω1 (upper part), ω2 (middle part) and ω3 (lower part) when

F1 is G(1, 1) and Fn is G(4, 1
2
), the distribution of Y + 1 with Y ∼ G(1, 1)

a 1 2 3 4 5 6 7 8 9 10 11 as

k0 = 30 957 925 898 873 857 841 824 815 809 808 802 864

993 985 973 958 949 940 934 930 926 924 920 949

999 994 990 986 981 974 969 967 964 963 960 979

ω1 k0 = 50 929 903 889 870 853 838 826 821 816 817 815 862

981 975 974 969 965 960 953 950 944 944 943 970

997 994 991 991 990 987 983 980 977 977 976 991

k0 = 70 845 840 835 825 809 804 794 786 784 778 775 816

939 938 936 931 919 914 905 900 898 896 892 919

973 973 973 970 962 957 952 946 946 942 939 964

k0 = 30 920 887 873 857 845 833 822 817 814 809 808 844

981 967 959 949 942 937 932 931 928 926 925 941

993 988 985 981 976 972 967 967 965 964 963 976

ω2 k0 = 50 895 880 860 847 839 832 825 821 822 815 815 839

973 970 967 966 960 956 953 950 951 944 944 964

990 991 990 990 987 985 984 982 981 977 977 990

k0 = 70 835 830 821 809 805 800 794 788 785 783 784 808

937 939 930 920 914 911 905 900 898 898 900 915

970 974 969 963 957 956 953 947 945 944 946 958

a 0.2 0.4 0.5 0.7 0.9 1.1 1.3 1.5 1.6 1.8 2.0 as

k0 = 30 956 953 946 930 922 907 874 849 803 767 724 906

995 995 992 988 985 979 965 955 937 919 894 979

998 998 996 996 995 994 991 989 977 965 945 994

ω3 k0 = 50 917 918 915 913 908 899 881 864 844 826 795 898

982 981 979 978 975 973 971 965 956 948 939 974

998 996 996 994 992 992 989 987 984 983 979 993

k0 = 70 831 841 841 835 829 829 818 815 797 786 777 832

929 937 937 933 925 920 916 907 895 891 879 923

972 977 977 976 971 969 965 958 950 948 934 969

The selection of A for ω1, ω2, and ω3 is important for the performance of the change point estimation.

The selection of A for the weight function ω3 can simply be chosen as the equally spaced points between

0 to 2 which is the domain of a in ω3(t; a). By [15], the role of the tuning parameter a is to control the

rate of decay of the weight function ω1 and ω2. Thus in our simulation studies, we have only presented

the simulation results for using a � 11. As a matter of fact, the accuracy of the change point estimate

using a > 11 is almost the same as the one using a = 11 for the weight function being ω1 or ω2, and

the change point estimates using either ω1 or ω2 perform similarly when a goes to infinity. From this

experience and the effect of a on the weight function in theory, we recommend to increase the value of

a from 1 by 1 each time to estimate the change point until the change point estimate remains the same.

Then A can be chosen as a collection of all the values of a that has been tried.

We also conduct a simulation study to compare the empirical distribution of the change point esti-

mator τ̂n defined in (2.8) with its asymptotic distribution. In light of Appendix B in [1] or [16], the

cumulative distribution function H(s) of

argmax
s

G(s)

has the following expression:
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Table 7 Number of the change point estimate k̂a fell into the interval (k0 − δ, k0 + δ) for δ = 5 (top entry), 10 (middle

entry) and 15 (bottom entry) by using the weight function ω1 (upper part), ω2 (middle part) and ω3 (lower part) when

F1 is G(1, 1) and Fn is G( 3+2
√

2
2

, 2
√
2− 2), the distribution of

√
2Y + 1 with Y ∼ G(1, 1)

a 1 2 3 4 5 6 7 8 9 10 11 as

k0 = 30 952 941 909 890 872 857 842 834 827 823 819 875

991 987 974 965 955 948 941 935 931 929 929 953

997 994 990 985 979 975 971 968 965 963 962 979

ω1 k0 = 50 937 931 912 902 894 885 877 873 868 866 866 904

983 985 982 981 979 976 974 972 971 969 969 985

996 996 996 996 995 993 993 992 990 989 989 996

k0 = 70 863 870 875 876 872 871 867 864 864 866 866 882

950 957 958 962 957 958 956 956 957 957 956 961

981 983 984 987 986 989 986 987 987 988 988 990

k0 = 30 931 906 888 873 865 856 846 840 836 833 831 863

986 972 965 956 952 947 943 938 935 935 933 951

993 990 986 980 978 974 972 970 968 968 967 978

ω2 k0 = 50 918 906 896 892 887 885 878 874 874 870 868 890

982 981 978 979 978 975 972 972 972 971 971 980

994 995 995 995 993 992 992 992 992 991 991 993

k0 = 70 861 876 876 871 868 868 866 866 864 865 865 869

954 960 962 958 956 956 954 957 956 956 956 958

981 986 987 987 986 987 984 987 987 987 986 986

a 0.2 0.4 0.5 0.7 0.9 1.1 1.3 1.5 1.6 1.8 2.0 as

k0 = 30 947 944 934 920 916 893 868 833 806 783 748 898

993 990 987 987 983 973 963 945 932 923 898 975

996 996 995 995 994 992 990 981 973 968 946 993

ω3 k0 = 50 936 940 939 936 932 920 917 912 894 882 860 928

988 989 992 990 988 987 988 984 978 975 970 989

999 999 999 998 998 997 996 997 997 996 995 998

k0 = 70 861 870 879 879 885 886 884 881 874 872 871 887

951 954 956 952 957 955 953 955 953 950 950 957

987 987 987 985 985 982 981 981 978 978 981 983

Table 8 The quantiles of the empirical (ED) and asymptotic (AD) distributions of τ̂n

Sample size Quantiles 5% 10% 50% 90% 95%

300 ED 0.473 0.483 0.500 0.520 0.533

AD 0.490 0.494 0.500 0.506 0.510

500 ED 0.486 0.490 0.500 0.510 0.514

AD 0.494 0.496 0.500 0.504 0.506

H(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− 1√
2π

|s| 12 exp
{
− |s|

8

}
− c1 exp{a1|s|}Φ(−b1|s| 12 ) +

(
d1 − 2 +

1

2
|s|

)
Φ

(
− 1

2
|s| 12

)
, s < 0,

1 +
θ0
λ0

1√
2π

s
1
2 exp

{
− θ20

8λ0
s

}
+ c2 exp{a2s}Φ(−b2s

1
2 )

−
(
d2 − 2 +

θ20
2λ0

s

)
Φ

(
− θ0

2λ0
s

1
2

)
, s � 0,
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Table 9 The true values and estimates of the parameters

True value Mean of estimates

Sample size τ0 Δn λ2
1 = λ2

2 τ̂n ̂Δn
̂λ2
1 = ̂λ2

2

300 0.5 0.032 0.020 0.501 0.031 0.029

500 0.5 0.032 0.020 0.500 0.030 0.029

0.40 0.45 0.50 0.55 0.60

τn̂

0

0.2

0.4

0.6

0.8

1.0
H
(τ

 ) n̂
n=300
n=500

Figure 2 The empirical cumulative distributions of the change point estimator τ̂n with n = 300, n = 500, and the

asymptotic cumulative distribution H(·)

where λ0 = λ2

λ1
, θ0 = 1−γ+2γτ0

1+γ−2γτ0
, α = θ0

λ2
0
, β = θ0

λ0
, a1 = θ0

2λ2
0
(1 + θ0

λ2
0
), b1 = 1

2 + θ0
λ2
0
, c1 =

λ2
0(λ

2
0+2θ0)

θ0(λ2
0+θ0)

,

d1 =
(λ2

0+2θ0)
2

θ0(λ2
0+θ0)

, a2 =
λ2
0+θ0
2 , b2 =

2λ2
0+θ0
2λ0

, c2 =
θ0(2λ

2
0+θ0)

λ2
0(λ

2
0+θ0)

, and d2 =
(2λ2

0+θ0)
2

λ2
0(λ

2
0+θ0)

. Here, λ1 and λ2 are

defined in (3.4) and (3.5), respectively.

For the purpose of demonstration, we consider the case that F1 and Fn are respectively N(0, 1) and

N(μ0, 1) with μ0 = 1. For simple presentation, we only consider the weight function ω2(t; a). Let the

tuning parameter a be 1, and γ be 0.5. The sample size n is set as 300 and 500, respectively, and τ0
is chosen as 0.5, which implies that the true change point is located at k0 = 150 for n = 300 and at

k0 = 250 for n = 500. The true values of Δn, λ
2
1 and λ2

2 are calculated using (3.6) and (3.7) respectively

and are shown in Table 9.

We generate 500 samples for each parameter setting and each sample size. For each sample generated,

we find the change point estimate τ̂n. Then we compute the quantiles of the empirical distribution of

τ̂n that are shown in Table 8. The means of the estimates for Δn, λ1 and λ2 based on 500 samples are

given in Table 9, which shows that they are very close to their true values. Similar to [16], we obtain

the quantiles of the asymptotic distribution of τ̂n that are displayed in Table 8. The quantiles of both

empirical and asymptotic distributions of τ̂n are very close to each other. For graphical comparison, we

display the empirical cumulative distribution of τ̂n with n = 300, or n = 500 and its asymptotic cumu-

lative distribution in Figure 2. It further confirms the good approximation of the empirical cumulative

distribution of τ̂n to its asymptotic distribution.

5.2 A real data example

In this subsection, we revisit the Nile data discussed in Section 4. We employ all three weight functions

with as chosen from {1, 2, . . . , 100} for both ω1 and ω2 but {0.2, 0.4, . . . , 2} for ω3. We set γ to be either

0, 0.5, or 1. They have all detected that the change point is located at the 28th observation, corresponding

to the year 1898, which is the same as that detected in [25].
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Appendix

The proofs of the theorems in this paper are technically involved, so in order to give the idea, we focus

on the main steps of the proofs only. Denote

h̃(Yr, Ys) = h(Yr, Ys)− E[h(Yr, Ys) | Yr]− E[h(Yr, Ys) | Ys] + E[h(Yr , Ys)],

h(Yr, Z1) = E[h(Yr, Z1) | Yr]− E[h(Yr, Z1)],

h(Yr, Z2) = E[h(Yr, Z2) | Yr]− E[h(Yr, Z2)], (A.1)
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where Z1 and Z2 are independent of Y1, Y2, . . . , Yn and follow the distributions F1 and Fn, respectively.

The following Hájiek-Rényi-Chow inequality is needed in the proofs of theorems.

Lemma A.1 (Hájek-Rényi-Chow inequality). Suppose that {Xn, n � m}, 1 � m � n, is a martingale

difference sequence. Let σ2
n = EX2

n and c1 � c2 � · · · � cn > 0. Define

Sn =
n∑

j=1

Xj.

Then for any x > 0, we have

P
(

max
m�j�n

cj |Sj | � x
)
� 1

x2

[
mc2mσ2

m +

n∑
j=m+1

c2jσ
2
j

]
.

A.1 Proof of Theorem 3.1

To simplify the notation, Tω,γ(k) is abbreviated by T (k). Without loss of generality, we assume that

k = �nτ�. Since
T (k) � |T (k)− ET (k)|+ ET (k),

and

ET (k0) � |ET (k0)− T (k0)|+ T (k0),

by the triangle inequality, it is easy to show that

ET (k0)− ET (k) � 2 max
1�k<n

|T (k)− ET (k)|+ T (k0)− T (k). (A.2)

Let

ck,n(γ) =

(
k(n− k)

n2

)γ
k(n− k)

n
, k = 1, 2, . . . , n− 1.

Then T (k) = ck,n(γ)Qk, where

Qk =
1

k2

k∑
r,s=1

h(Yr, Ys) +
1

(n− k)2

n∑
r,s=k+1

h(Yr , Ys)− 2

k(n− k)

k∑
r=1

n∑
s=k+1

h(Yr, Ys). (A.3)

For k � k0, Qk can be decomposed as follows:

Qk =
1

k2

k∑
r=1

h(Yr, Yr) +
1

(n− k)2

n∑
r=k+1

h(Yr, Yr) +
1

k2

k∑
r=1

k∑
s=1,s�=r

h(Yr, Ys)

+
1

(n− k)2

[ k0∑
r=k+1

k0∑
s=k+1,s�=r

+

n∑
r=k0+1

n∑
s=k0+1,s�=r

+2

k0∑
r=k+1

n∑
s=k0+1

]
h(Yr, Ys)

− 2

k(n− k)

k∑
r=1

[ k0∑
s=k+1

+

n∑
s=k0+1

]
h(Yr, Ys).

So

EQk =
n

k(n− k)

∫
ω(t)dt+

(n− k0)
2

(n− k)2
[E[h(Y1, Y2)]− 2E[h(Y1, Yk0+1)] + E[h(Yk0+1, Yk0+2)]]

+

[
k − k0
(n− k)2

− 1

k

]
E[h(Y1, Y2)]− n− k0

(n− k)2
E[h(Yk0+1, Yk0+2)], (A.4)

where

E[h(Y1, Y2)] =

∫ {(∫
cos(tx)dF1(x)

)2

+

(∫
sin(tx)dF1(x)

)2}
ω(t)dt,
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and

E[h(Yk0+1, Yk0+2)] =

∫ {(∫
cos(tx)dFn(x)

)2

+

(∫
sin(tx)dFn(x)

)2}
ω(t)dt.

Then we have, as k � k0,

ET (k)− ET (k0) =

[(
k(n− k)

n2

)γ

−
(
k0(n− k0)

n2

)γ] ∫
ω(t)dt

+

[(
k(n− k)

n2

)γ
k(n− k0)

n− k
−
(
k0(n− k0)

n2

)γ

k0

]
(n− k0)

n
Δn

+

[(
k(n− k)

n2

)γ(
k(k − k0)

n(n− k)
− n− k

n

)
+

(
k0(n− k0)

n2

)γ
n− k0

n

]
E[h(Y1, Y2)]

−
[(

k(n− k)

n2

)γ
k(n− k0)

n(n− k)
−
(
k0(n− k0)

n2

)γ
k0
n

]
E[h(Yk0+1, Yk0+2)]. (A.5)

It is easy to conclude that from (3.2) the second term is the dominating one in (A.5). Using the mean

value theorem, we obtain that

ET (k)− ET (k0) = g′1(ξ1)(τ − τ0)nΔn + op(nΔn), (A.6)

where g′1(·) is the first order derivative of g1(·) with

g1(x) = (1 − τ0)
2xγ+1(1− x)γ−1,

and τ � ξ1 � τ0. Similar arguments yield that, as k > k0

ET (k)− ET (k0) = g′2(ξ2)(τ − τ0)nΔn + op(nΔ), (A.7)

where g′2(·) is the first order derivative of g2(·) with

g2(x) = τ20x
γ−1(1− x)γ+1,

and τ0 � ξ2 � τ . Combining (A.2) and (A.5)–(A.7), we obtain that

nΔn|τ − τ0|δ + op(nΔn) � ET (k0)− ET (k)

� 2 max
1�k<n

|T (k)− ET (k)|+ T (k0)− T (k), (A.8)

where δ = min{g′1(ξ1), g′2(ξ2)}. Since τ̂n = k̂n/n, T (k̂n) � T (k0), and T is nonnegative, by replacing τ

by τ̂n in (A.8), we have

nΔn|τ̂n − τ0|δ + op(nΔn) � 2 max
1�k<n

|T (k)− ET (k)|. (A.9)

In order to show the consistency of change point estimator τ̂n, we consider the probability P (|τ̂n−τ0| > ε),

∀ ε > 0. It is easily to see from (A.9) that

P (|τ̂n − τ0| > ε) � P

(
max

1�k<k0

|T (k)− ET (k)| > nεδΔn

2

)

+ P

(
max

k0<k<n
|T (k)− ET (k)| > nεδΔn

2

)
. (A.10)

Because of the symmetry, we only show

P

(
max

1�k�k0

|T (k)− ET (k)| > nεδΔn

2

)
→ 0

as n → ∞. The remaining part is analogous and thus is omitted.
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We start with that

P

(
max

1�k�k0

|T (k)− ET (k)| > nεδΔn

2

)
.

If k � k0, by (A.3),

T (k)− ET (k) = A1 +A2 + · · ·+A12, (A.11)

with

A1 =

(
k(n− k)

n2

)γ
1

k

k∑
r=1

k∑
s=1,s�=r

h̃(Yr , Ys), A2 =

(
k(n− k)

n2

)γ
1

n− k

n∑
r=k+1

n∑
s=k+1,s�=r

h̃(Yr , Ys),

A3 =

(
k(n− k)

n2

)γ
1

n

n∑
r=1

n∑
s=1,s�=r

h̃(Yr , Ys), A4 =

(
k(n− k)

n2

)γ
2(n− k0)

n

k∑
r=1

h(Yr, Z1),

A5 = −
(
k(n− k)

n2

)γ
2(n− k)

nk

k∑
r=1

h(Yr, Z1), A6 = −
(
k(n− k)

n2

)γ
2k(n− k0)

n(n− k)

k0∑
r=k+1

h(Yr , Z1),

A7 = −
(
k(n− k)

n2

)γ
2k

n(n− k)

k0∑
r=k+1

h(Yr , Z1), A8 =

(
k(n− k)

n2

)γ
2k(n− k0)

n(n− k)

n∑
r=k0+1

h(Yr, Z2),

A9 = −
(
k(n− k)

n2

)γ
2k

n(n− k)

n∑
r=k0+1

h(Yr , Z2), A10 =

(
k(n− k)

n2

)γ
2k(n− k0)

n(n− k)

k0∑
r=k+1

h(Yr, Z2),

A11 = −
(
k(n− k)

n2

)γ
2k(n− k0)

n(n− k)

n∑
r=k0+1

h(Yr, Z1), A12 = −
(
k(n− k)

n2

)γ
2(n− k0)

n

k∑
r=1

h(Yr, Z2),

where Z1 and Z2 have the distribution functions F1 and Fn, respectively, and are independent of

Y1, Y2, . . . , Yn.

Next we investigate each term in (A.11). Towards this end, we consider the following statistics

Sk(h̃) =
∑

1�i<j�k

h̃(Yi, Yj), k = 1, 2, . . . , n,

where h̃ is defined in (A.1). Since E[Sk+1(h̃) | Y1, Y2, . . . , Yk] = Sk(h̃) for k = 1, 2, . . . , n− 1, {Sk, σ(Y1,

. . . , Yk); k = 1, 2, . . . , n} is a martingale, where σ(Y1, . . . , Yk) denotes the σ-field generated by Y1, . . . , Yk.

Then by the Hájek-Rényi-Chow inequality

P

(
max

1�k�k0

|A1| > nεδΔn

2

)
� P

(
max

1�k�k0

|Sk(h̃)|
k1−γ

>
n1+γεδΔn

4

)

� c

n2ε2δ2Δ2
n

{
1 + I{γ=1/2} logn

nmin(2γ,1)

}
� c

n2ε2δ2Δ2
n

.

Similar arguments yield that

P

(
max

1�k�k0

|A2| > nεδΔn

2

)
� c

n2ε2δ2Δ2
n

,

and

P

(
max

1�k�k0

|A3| > nεδΔn

2

)
� c

n2ε2δ2Δ2
n

.

Since each of {E(h(Yr, Z1) | Yr) − Eh(Yr, Z1), r = 1, 2, . . . , k0}, {E(h(Yr, Z1) | Yr) − Eh(Yr , Z1), r =

k0+1, . . . , n}, {E(h(Yr, Z2) | Yr)−Eh(Yr, Z2), r = 1, 2, . . . , k0}, and {E(h(Yr, Z2) | Yr)−Eh(Yr, Z2), r =

k0+1, . . . , n} is an identically distributed and independent sequence of random variables with zero mean

and finite variance, the application of the Hájiek-Rényi-Chow inequality leads to

P

(
max

1�k�k0

|A4| > nεδΔn

2

)
� c

nε2δ2Δ2
n

,
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P

(
max

1�k�k0

|A5| > nεδΔn

2

)
� c

n2+2γε2δ2Δ2
n

m∑
k=1

1

k2−2γ
� c

n2ε2δ2Δ2
n

.

Similarly, we can obtain that

P

(
max

1�k�k0

|A6| > nεδΔn

2

)
� c

nε2δ2Δ2
n

, P

(
max

1�k�k0

|A7| > nεδΔn

2

)
� c

n2ε2δ2Δ2
n

,

P

(
max

1�k�k0

|A8| > nεδΔn

2

)
� c

nε2δ2Δ2
n

, P

(
max

1�k�k0

|A9| > nεδΔn

2

)
� c

n2ε2δ2Δ2
n

,

P

(
max

1�k�k0

|A10| > nεδΔn

2

)
� c

nε2δ2Δ2
n

, P

(
max

1�k�k0

|A11| > nεδΔn

2

)
� c

nε2δ2Δ2
n

,

P

(
max

1�k�k0

|A12| > nεδΔn

2

)
� c

nε2δ2Δ2
n

.

Thus, we have

P

(
max

1�k�k0

|T (k)− ET (k)| > nεδΔn

2

)
� c0

ε2δ2nΔ2
n

. (A.12)

By (3.2), (A.10) and (A.12), it follows that

lim
n→∞P (|τ̂n − τ0| > ε) = 0,

i.e., τ̂n →P τ0.

We now prove that

|τ̂n − τ0| = OP

(
1

nΔ2
n

)
.

It follows from (A.4) that

2n2Δ2
n|τ − τ0|δ̃

� (ET (k0))
2 − (ET (k))2

=

{
2n2Δ2

n|τ − τ0|ξ2γ+1
1 (1 − ξ1)

2γ−3(1− τ0)
4(1 + γ − 2γξ1) + o(n2Δ2

n), k � k0,

2n2Δ2
n|τ − τ0|ξ2γ−3

2 (1 − ξ2)
2γ+1τ40 (1− γ + 2γξ2) + o(n2Δ2

n), k > k0,
(A.13)

where τ < ξ1 < τ0 for the case that k < k0, and τ0 < ξ2 < τ for the case that k > k0, and

δ̃ = min{ξ2γ+1
1 (1− ξ1)

2γ−3(1 − τ0)
4(1 + γ − 2γξ1), ξ

2γ−3
2 (1− ξ2)

2γ+1τ40 (1− γ + 2γξ2)}.
Thus the convergence rate of τ̂n may be found via the limiting behaviour of (ET (k0))

2 − (ET (k))2. We

decompose it as follows:

(ET (k0))
2 − (ET (k))2 = [(T (k)− ET (k))− (T (k0)− ET (k0))]

2

+ 2(T (k0)− ET (k0))(T (k)− ET (k)− (T (k0)− ET (k0)))

+ 2(T (k)− ET (k))(ET (k)− ET (k0))

+ 2ET (k0)(T (k)− ET (k)− (T (k0)− ET (k0)))

+ (T (k0))
2 − (T (k))2. (A.14)

By the definition of T (k), it can be decomposed as

T (k)− ET (k) = B1 + B2 + · · ·+B6,

where

B1 =

[(
k(n− k)

n2

)γ
(n− k)

nk

] k∑
r �=s,1

[h(Yr, Ys)− Eh(Yr, Ys)],



2480 Tan C C et al. Sci China Math December 2016 Vol. 59 No. 12

B2 =

[(
k(n− k)

n2

)γ
k

n(n− k)

] k0∑
r �=s,k+1

[h(Yr, Ys)− Eh(Yr, Ys)],

B3 =

[(
k(n− k)

n2

)γ
k

n(n− k)

] n∑
r �=s,k0+1

[h(Yr, Ys)− Eh(Yr, Ys)],

B4 = −
[(

k(n− k)

n2

)γ
2

n

] k∑
r=1

k0∑
s=k+1

[h(Yr, Ys)− Eh(Yr, Ys)],

B5 = −
[(

k(n− k)

n2

)γ
2

n

] k∑
r=1

n∑
s=k0+1

[h(Yr, Ys)− Eh(Yr, Ys)],

B6 =

[(
k(n− k)

n2

)γ
2k

n(n− k)

] k0∑
r=k+1

n∑
s=k0+1

[h(Yr, Ys)− Eh(Yr, Ys)].

We first deal with B1, and we have

B1 =
1

n
g3(τ)

k∑
r �=s,1

[h(Yr, Ys)− Eh(Yr, Ys)]

= n
1
2 g3(τ)

√
k(k − 1)

n
3
2

√
k

k(k − 1)

k∑
r �=s,1

[h(Yr, Ys)− Eh(Yr, Ys)]

= n
1
2 g3(τ)O(1)Op(1)

= OP (n
1
2 ),

where g3(x) = xγ−1(1− x)γ+1. The third equality is implied by the asymptotic normality of U-statistic.

Similarly, we obtain B2 = OP (n
1
2 |τ − τ0| 32 ), and B3 = OP (n

1
2 ). The fourth term B4 can be decomposed

further as

B4 = B4.1 +B4.2 +B4.3,

where

B4.1 = − 2

n

[(
k(n− k)

n2

)γ] k∑
r=1

k0∑
s=k+1

h̃(Yr , Ys),

B4.2 = − 2

n

[(
k(n− k)

n2

)γ] k∑
r=1

k0∑
s=k+1

[E[h(Yr, Ys) | Yr]− Eh(Yr, Ys)],

B4.3 = − 2

n

[(
k(n− k)

n2

)γ] k∑
r=1

k0∑
s=k+1

[E[h(Yr, Ys) | Ys]− Eh(Yr, Ys)].

The application of the central limit theory yields that B4.1 = Op(1), B4.2 = Op(n
1
2 ), and B4.3 = Op(n

1
2 ).

Thus we obtain B5 = Op(n
1
2 ). Similar arguments yield also B4 = Op(n

1
2 ), and B6 = Op(n

1
2 ). Combining

the above results, we immediately obtain

T (k)− ET (k) = OP (n
1
2 ). (A.15)

Similar arguments yield that

T (k0)− ET (k0) = OP (n
1
2 ). (A.16)

Thus,

(T (k)− ET (k))− (T (k0)− ET (k0)) = OP (n
1
2 |τ − τ0| 12 ). (A.17)

Denote A = [(T (k) − ET (k)) − (T (k0) − ET (k0))]
2 + 2(T (k0) − ET (k0))[(T (k) − ET (k)) − (T (k0)

− ET (k0))] + 2(T (k) − ET (k))(ET (k) − ET (k0)) + 2ET (k0)[(T (k) − ET (k)) − (T (k0) − ET (k0))]. It
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can be easily derived from the proof of Theorem 3.1 that ET (k) − ET (k0) = O(nΔn|τ − τ0|) and

ET (k0) = O(nΔn). Thus by (3.2), and (A.15)–(A.17), we obtain that

A = OP (n|τ − τ0|) +OP (n|τ − τ0|1/2) +OP (n
3
2Δn|τ − τ0|) +OP (n

3
2Δn|τ − τ0| 12 )

= OP (n
3
2Δn|τ − τ0| 12 ), (A.18)

for k � k0. Similar arguments yield that for k > k0,

A = OP (n
3
2Δn|τ − τ0| 12 ). (A.19)

Since T 2(k̂n) � T 2(k0), by combining (A.14) and (A.13), and replacing τ by τ̂n in (A.13), (A.18) and

(A.19), we obtain that

2n2Δ2
n|τ̂n − τ0|δ̃ � OP (n

3
2Δn|τ̂n − τ0| 12 ).

Hence, we have that

P

(
2n2Δ2

n|τ̂n − τ0|δ
n

3
2Δn|τ̂n − τ0| 12

> M0

)
� P

(
A

n
3
2Δn|τ̂n − τ0| 12

> M0

)
< ε,

for every small number ε > 0, and every large number M0 > 0, i.e.,

P (
√
nΔn|τ̂n − τ0| 12 > M0) = P (nΔ2

n|τ̂n − τ0| > M) < ε,

which yields that |τ̂n − τ0| = Op(n
−1Δ−2

n ). The proof is complete.

A.2 Proof of Theorem 3.3

To show that

(1 + γ − 2γτ0)
2

λ2
1

Δ2
n(k̂n − k0) ⇒ argmax

u
G(u),

where

G(u) =

⎧⎪⎨
⎪⎩

W1(−u) +
u

2
, u � 0,

λ2

λ1
W2(u)− 1

2

(
1− γ + 2γτ0
1 + γ − 2γτ0

)
u, u > 0,

and W1(·) and W2(·) are two mutually independent standard Brownian motion processes on [0,∞), it is

equivalent to prove that

Δ2
n(k̂n − k0) ⇒ argmax

s
V (s), (A.20)

where

V (s) =

⎧⎪⎨
⎪⎩

λ1W1(−s) +
1 + γ − 2γτ0

2
s, s � 0,

λ2W2(s)− 1− γ + 2γτ0
2

s, s > 0,

since

argmax
s

V (s) =
λ2
1

(1 + γ − 2γτ0)
argmax

u
G(u)

by a change in variable

u =
(1 + γ − 2γτ0)

2

λ2
1

s.

In the following, we show that (A.20) holds true.
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By Theorem 3.1, k̂n = k0+OP (Δ
−2
n ). Hence, to derive the asymptotic distribution of the change point

estimator k̂n, we only need to consider the behaviour of k satisfying k = k0 + �sΔ−2
n � and s ∈ [−M,M ],

for any given M > 0. Define

Vn(s) =
1

4nτ2γ+1
0 (1− τ0)2γ+1

(T 2(k)− T 2(k0)),

where k = k0 + �sΔ−2
n �. Since

k̂n = arg max
1�k<n

T (k),

we can easily derive that

argmax
s

Vn(s) = Δ2
n(k̂n − k0).

If we can show that Vn(s) ⇒ V (s), by the continuous mapping theorem, we have

Δ2
n(k̂n − k0) ⇒ argmax

s
V (s).

To achieve Vn(s) ⇒ V (s), we decompose Vn(s) into five terms as follows:

Vn(s) ≡ D1 +D2 +D3 +D4 +D5, (A.21)

where

D1 = [4nτ2γ+1
0 (1− τ0)

2γ+1]−1[|ET (k)|2 − |ET (k0)|2],
D2 = [4nτ2γ+1

0 (1− τ0)
2γ+1]−1[|(T (k)− ET (k))− (T (k0)− ET (k0))|2],

D3 = [4nτ2γ+1
0 (1− τ0)

2γ+1]−1[2(T (k0)− ET (k0))(T (k)− ET (k)− (T (k0)− ET (k0)))],

D4 = [4nτ2γ+1
0 (1− τ0)

2γ+1]−1[2(T (k)− ET (k))(ET (k)− ET (k0))],

D5 = [4nτ2γ+1
0 (1− τ0)

2γ+1]−1[2ET (k0)(T (k)− ET (k)− (T (k0)− ET (k0)))].

We first consider the case that s � 0, or equivalently k � k0. Since k = k0 + �sΔ−2
n �, by using the mean

value theorem, we obtain that

D1 = [4nτ2γ+1
0 (1− τ0)

2γ+1]−1[ET (k)− ET (k0)][ET (k) + ET (k0)]

= [4nτ2γ+1
0 (1− τ0)

2γ+1]−1

×
{
nΔn

[(
k(n− k)

n2

)γ
k(n− k0)

(n− k)n
−
(
k0(n− k0)

n2

)γ
k0
n

]
(n− k0)

n
+ oP (nΔn)

}

×
{
nΔn

[(
k(n− k)

n2

)γ
k(n− k0)

(n− k)n
+

(
k0(n− k0)

n2

)γ
k0
n

]
(n− k0)

n
+ oP (nΔn)

}

=
1 + γ − 2γτ0

2
Δ2

n(k − k0) + oP (Δ
2
n(k − k0))

→ 1 + γ − 2γτ0
2

s. (A.22)

In view of the proof of Theorem 3.1, we obtain that, as n → ∞,

max
|k−k0|�M/Δ2

n

D2

Δ2
n|k − k0| = oP (1),

max
|k−k0|�M/Δ2

n

D3

Δ2
n|k − k0| = oP (1),

max
|k−k0|�M/Δ2

n

D4

Δ2
n|k − k0| = oP (1).

Consequently, it suffices to investigate only the limiting behaviours of D1 and D5, as n → ∞. Since each

of {E(h(Yr, Z1) | Yr)−Eh(Yr, Z1), r = 1, 2, . . . , k0}, {E(h(Yr, Z1) | Yr)−Eh(Yr, Z1), r = k0 + 1, . . . , n},
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{E(h(Yr, Z2) | Yr)−Eh(Yr, Z2), r = 1, 2, . . . , k0}, and {E(h(Yr, Z2) | Yr)−Eh(Yr, Z2), r = k0+1, . . . , n}
is an independently and identically distributed sequence with zero mean and finite variance, where Z1

and Z2 are independent of Y1, Y2, . . . , Yn and follow the distributions F1 and Fn respectively, by the weak

convergence of partial sums, we can prove that

D5 = [4nτ2γ+1
0 (1− τ0)

2γ+1]−1[nΔnτ
γ
0 (1− τ0)

γ(1− τ0)τ0 + oP (nΔn)]

×
{
− 2

n

[(
k(n− k)

n2

)γ

+

(
k0(n− k0)

n2

)γ
(n− k0)

k0

] k∑
l=1

k0∑
r=k+1

[E[h(Yl, Yr) | Yr]− Eh(Yl, Yr)]

+
2

n

[(
k(n− k)

n2

)γ
k

n− k
+

(
k0(n− k0)

n2

)γ] n∑
l=k0+1

k0∑
r=k+1

[E[h(Yl, Yr) | Yr]− Eh(Yl, Yr)]

}

+ [4nτ2γ+1
0 (1 − τ0)

2γ+1]−1[nΔnτ
γ
0 (1− τ0)

γ(1− τ0)τ0 + oP (nΔn)]oP (n
1
2 |τ − τ0| 12 )

= [nτ2γ+1
0 (1 − τ0)

2γ+1]−1[nΔnτ
γ
0 (1− τ0)

γ(1− τ0)τ0 + oP (nΔn)]τ
γ
0 (1− τ0)

γ

×
{
−

k0∑
r=k+1

[E[h(Yr, Z1) | Yr]− Eh(Y1, Y2)]

+

k0∑
r=k+1

[E[h(Z2, Yr) | Yr]− Eh(Y1, Yk0+1)] + oP (n
1
2 |τ − τ0| 12 )

}

= Δn

k0∑
r=k+1

{[E[h(Z2, Yr) | Yr]− Eh(Y1, Yk0+1)]− [E[h(Yr, Z1) | Yr]− Eh(Y1, Y2)]}

+ oP (n
1
2 |τ − τ0| 12Δn)

⇒ λ1W1(−s), (A.23)

where W1(·) is a standard Brownian motion process on [0,∞) and

λ1 = (E{[E[h(Z2, Yr) | Yr]− Eh(Y1, Yk0+1)]− [E[h(Yr, Z1) | Yr]− Eh(Y1, Y2)]}2) 1
2

= (E{[E[h(Yk0+1, Y1) | Y1]− Eh(Y1, Yk0+1)]− [E[h(Y1, Y2) | Y1]− Eh(Y1, Y2)]}2) 1
2 .

Therefore, by (A.21)–(A.23), we obtain that, for s � 0,

Vn(s) ⇒ λ1W1(−s) +
1 + γ − 2γτ0

2
s.

For the case that s > 0, similar arguments yield that

Vn(s) ⇒ λ2W2(s)− 1− γ + 2γτ0
2

s,

where W2(·) is another standard Brownian motion process on [0,∞) independent of W1(·) , and
λ2 = (E{[E[h(Y1, Yk0+1) | Yk0+1]− Eh(Y1, Yk0+1)]

− [E[h(Yk0+1, Yk0+2) | Yk0+1]− Eh(Yk0+1, Yk0+2)]}2) 1
2 .

In summary,

Vn(s) =
1

4nτ2γ+1
0 (1− τ0)2γ+1

(T 2(k0 + �sΔ−2
n �)− T 2(k0)) ⇒ V (s),

where

V (s) =

⎧⎪⎨
⎪⎩

λ1W1(−s) +
1 + γ − 2γτ0

2
s, s � 0,

λ2W2(s)− 1− γ + 2γτ0
2

s, s > 0.

The proof is completed.



2484 Tan C C et al. Sci China Math December 2016 Vol. 59 No. 12

A.3 Proof of Proposition 4.1

Suppose that k0 � ¯̂
k,

|k̂as − k0| = |k̂as − ¯̂
k +

¯̂
k − k0| � |k̂as − ¯̂

k|+ |¯̂k − k0| � |k̂ai − ¯̂
k|+ |¯̂k − k0|.

The last inequality holds true for any ai ∈ A by the definition of as. There always exists at least one

point a∗ �= as in A such that k̂a∗ � min(k̂as ,
¯̂
k). Therefore,

|k̂as − k0| � |k̂a∗ − ¯̂
k|+ |¯̂k − k0| � ¯̂

k − k̂a∗ + k0 − ¯̂
k = |k̂a∗ − k0|. (A.24)

Similarly, we can show (A.24) for the case that k0 <
¯̂
k. The proof is completed.


