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Abstract We consider the mean-square stability of the so-called improved split-step theta method for stochas-

tic differential equations. First, we study the mean-square stability of the method for linear test equations with

real parameters. When θ � 3/2, the improved split-step theta methods can reproduce the mean-square stability

of the linear test equations for any step sizes h > 0. Then, under a coupled condition on the drift and dif-

fusion coefficients, we consider exponential mean-square stability of the method for nonlinear non-autonomous

stochastic differential equations. Finally, the obtained results are supported by numerical experiments.
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1 Introduction

We consider the numerical solution of non-autonomous stochastic differential equations (SDEs) in the

Itô’s sense {
dx(t) = f(t, x(t))dt+ g(t, x(t))dW (t), t � 0,

x(0) = x0,
(1.1)

where x0 ∈ R
d, f : R×R

d → R
d, g : R×R

d → R
d×m and W (t) is m-dimensional Brownian motion defined

on the complete probability space {Ω,F ,P}. {Ft}t�0 is increasing and satisfies the usual condition.

Many real-world phenomena can be modeled by these SDEs in many fields such as economic biology [19],

medicine, finance [13] and engineering [20]. However, many SDEs arising in these applications cannot be

solved analytically, hence one needs to develop effective numerical methods to solve them. In the recent

twenty years, many numerical methods have been constructed (see [7,12,21]). Stability analysis of these

numerical methods for SDEs has recently received a great deal of attention. For example, mean-square

stability [2,4,10,18] and asymptotic stability [3], and almost sure stability [3,12] have been investigated.

Especially, the exponential stability, which is an important topic in the stability analysis of SDEs, has

been researched in [8,10,14]. It not only can guarantee that errors introduced in one time step will decay

exponentially in future time steps, but also implies asymptotic stability. Furthermore, it was shown, by

the Chebyshev inequality and the Borel-Cantelli lemma, that exponential mean-square stability implies
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almost sure stability. There are many results about Milstein type methods such as [9,11,15,16,22,23], but

the results of exponential mean-square stability of the Milstein type methods are very few. In this paper,

we study exponential mean-square stability of the improved split-step theta methods (ISST) mentioned

by Yue [24],⎧⎪⎪⎨
⎪⎪⎩

Yn = yn + θhf(tn + θh, Yn),

yn+1 = yn + hf(tn + θh, Yn) + g(tn + θh, Yn)ΔWn +

m∑
j1,j2=1

Lj1gj2(tn + θh, Yn)I
tn,tn+1

j1,j2
,

(1.2)

where

Lj1 =

d∑
k=1

gk,j1
∂

∂xk
, g = (g1, g2, . . . , gm), I

tn,tn+1

j1,j2
=

∫ tn+1

tn

∫ s2

tn

dW j1
s1 dW

j2
s2

and j1, j2 = 1, 2, . . . ,m. If the diffusion matrix g fulfills the so-called commutativity condition (see [12]

for more details)

Lj1gk,j2 = Lj2gk,j1 , j1, j2 = 1, . . . ,m, k = 1, . . . , d (1.3)

by using

I
tn,tn+1

j1,j2
+ I

tn,tn+1

j2,j1
= ΔW j1

n ΔW j2
n

for j1 �= j2, we obtain the simple improved split-step theta methods

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yn = yn + θhf(tn + θh, Yn),

yn+1 = yn + hf(tn + θh, Yn) + g(tn + θh, Yn)ΔWn

+
1

2

m∑
j1,j2=1

Lj1gj2(tn + θh, Yn)(ΔW j1
n ΔW j2

n − δj1,j2h),

(1.4)

where if j1 = j2 then δj1,j2 = 1, or else δj1,j2 = 0.

The rest of this paper is organized as follows. In Section 2, we consider the mean-square stability of

the liner SDEs. In Section 3, we investigate the exponential mean-square stability of the nonlinear non-

autonomous SDEs. In Section 4, we give some numerical results to support our theorems. In Section 5,

we present the conclusion of this paper.

2 Linear mean-square stability

Throughout this paper, unless otherwise specified, we use the notation

‖x‖ := (|x1|2 + · · ·+ |xd|2), 〈x, y〉 := x1y1 + · · ·+ xdyd

and denote the expected x by E[x] for all x, y ∈ R
d. In this section, we study the stability properties of

the method (1.2) for the linear stochastic equations. First, we introduce the linear test SDEs{
dx(t) = αx(t)dt + μx(t)dW (t), t � 0,

x(0) = x0,
(2.1)

where α, μ ∈ R, and α and μ are constants. From [1, 14], the zero solution x(t) to (2.1) is said to be

mean-square stable if

lim
t→∞E[‖x(t)‖2] = 0.

It is known in [5, 17] that mean-square stability for (2.1) is equivalent to

α+
1

2
μ2 < 0. (2.2)
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Applying the method (1.2) to the SDEs (2.1), we have the following discrete schemes:⎧⎨
⎩

Yn = yn + θhαYn,

yn+1 = yn + hαYn + μYnΔWn +
1

2
μ2Yn(ΔW 2

n − h).
(2.3)

For simplicity, (2.3) can also be written in the form⎧⎨
⎩

Yn = yn + θhαYn,

yn+1 = yn + hαYn + μ
√
hYnξn +

1

2
μ2Ynh(ξ

2
n − 1),

(2.4)

where each ξn is an independent normal (0, 1) random variable. By gathering (2.4), we obtain that

yn+1 = (p+ qξn + rξ2n)yn, (2.5)

where

p =
(1 − θhα+ hα− 1

2μ
2h)

(1 − αθh)
, q =

μ
√
h

(1− αθh)
, r =

1
2μ

2h

(1− αθh)

and 1− αθh �= 0.

Now, with these ready, we state the first theorem.

Theorem 2.1. Applying (1.2) to (2.1) and defining

h∗ := 2

∣∣∣∣ α+ 1
2μ

2

(1 − 2θ)α2 + 1
2μ

4

∣∣∣∣, (2.6)

then we have the following statements.

(i) Under the condition that 0 � θ � 1/2, if the test SDEs are not mean-square stable, then the ISST

method (1.2) is not mean-square stable for any step sizes h > 0; if the test SDEs are mean-square stable,

then the ISST method (1.2) is mean-square stable for all step sizes 0 < h < h∗.
(ii) Under the condition that θ > 1/2 and

α2 <
μ4

2(2θ − 1)
,

if the test SDEs are not mean-square stable, then the ISST method (1.2) is not mean-square stable for

any step sizes h > 0; if the test SDEs are mean-square stable, then the ISST method (1.2) is mean-square

stable for all step sizes 0 < h < h∗.
(iii) Under the condition that θ > 1/2 and

α2 � μ4

2(2θ − 1)
,

if the test SDEs are not mean-square stable, then the ISST method (1.2) is not mean-square stable for all

step sizes 0 < h < h∗; if the test SDEs are mean-square stable, then the ISST method (1.2) is mean-square

stable for all step sizes h > 0.

Proof. (i) By (2.5), we have that

E[|yn+1|2] = E[(p+ qξn + rξ2n)
2]E[|yn|2].

From [12], we know that E[ξn] = 0, E[ξ2n] = 1, E[ξ3n] = 0, and E[ξ4n] = 3. Then we obtain that

E[|yn+1|2] = ((p+ r)2 + q2 + 2r2)E[|yn|2]. (2.7)

Applying that the test SDEs are not mean-square stable, we obtain

α+
1

2
μ2 � 0.
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Using (2.7) leads us to

(p+ r)2 + q2 + 2r2

=

(
1− hαθ + hα

1− hαθ

)2

+

(
μh

1
2

1− hαθ

)2

+ 2

( 1
2μ

2h

1− hαθ

)2

=
(1− hαθ)2 + 2h(α+ μ2

2 ) + h2((1 − 2θ)α2 + μ4

2 )

(1 − hαθ)2

� 1, (2.8)

i.e., the ISST method (1.2) is not mean-square stable. If the test SDEs are mean-square stable, namely,

α + 1
2μ

2 < 0, then we deduce that, under the condition that 0 � θ � 1/2 and h < h∗, the ISST

method (1.2) is mean-square stable if and only if

(p+ r)2 + q2 + 2r2 < 1.

(ii) Under the condition that θ > 1/2 and α2 < μ4

2(2θ−1) , in a similar way as proving (i), we can obtain

the corresponding conclusion.

(iii) Under the condition that θ > 1/2 and α2 � μ4

2(2θ−1) , if the test SDEs are not mean-square stable,

by using (2.8), then we deduce that

(p+ r)2 + q2 + 2r2 � 1

for any step sizes h < h∗. Obviously, we obtain that the ISST method (1.2) is not mean-square stable.

Similarly, under the condition that θ > 1/2 and α2 � μ4

2(2θ−1) , if the test SDEs are stable, by using (2.8),

then we deduce that

(p+ r)2 + q2 + 2r2 < 1

for any step sizes h > 0, i.e., the ISST method (1.2) is mean-square stable.

Remark 2.2. From Theorem 2.1 and the inequality (2.2), under the condition

θ � μ4

4α2
+

1

2
,

if the test problem (2.1) is mean-square stable, then the method (2.2) is mean-square stable for any step

sizes h > 0. Furthermore, by the inequality (2.2), when θ � 3/2, the improved split-step theta methods

can reproduce the mean-square stability of the linear test equations for any step sizes h > 0.

3 Exponential mean-square stability

In this section, we will consider exponential mean-square stability of the method (1.2) for the nonlinear

stochastic differential equations. Next, we first state the following lemma.

Lemma 3.1. If there exist a negative constant β and a positive constant ĥ such that for all (t, x)

∈ R+ × R
d,

〈x, f(t, x)〉 + 1

2
‖g(t, x)‖2 + ĥ

4

m∑
j1,j2=1

‖Lj1gj2(t, x)‖2 � β‖x‖2, (3.1)

then the solution x(t) to SDEs (1.1) satisfies

E[‖x(t)‖2] � exp(2βt)E[‖x0‖2]. (3.2)

Proof. From (3.1), we obtain that

〈x, f(t, x)〉 + 1

2
‖g(t, x)‖2 � β‖x‖2.

From [14, Theorem 4.4.4], it is easy to obtain the conclusion.
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Remark 3.2. The coupled condition (3.1) can admit highly nonlinear diffusion coefficients such as

dx(t) = (−x(t)− x3(t)− x5(t))dt+ x2(t)dW (t).

By Lemma 3.1, (3.1) is a sufficient condition for exponential mean-square stability of the exact solution.

Subsequently, we will prove that it is also a sufficient condition for exponential mean-square stability of

the method (1.2) under certain conditions.

Theorem 3.3. Assume that SDEs (1.1) satisfy (3.1). Then we have the following statements:

(i) If θ � 1/2 and β < 0, then the ISST method (1.2) is mean-square contractive for all 0 < h � ĥ,

i.e.,

E[‖yn+1‖2] � E[‖yn‖2].
(ii) If θ > 1/2 and β < 0, then the ISST method (1.2) is exponentially mean-square stable for all

0 < h � ĥ, i.e.,

E[‖yn+1‖2] � exp

(
2βh(2θ − 1)

2θ − 1− 2βhθ2

)
E[‖yn‖2].

(iii) If 0 � θ � 1/2, β < 0 and there exists a constant γ such that

‖f(t, x)‖2 � γ‖x‖2, (3.3)

then there exists a constant h0 such that the ISST method (1.2) is exponentially mean-square stable for

h ∈ (0, h0), i.e.,

E[‖yn+1‖2] � exp

(
h((1− 2θ)hγ + 2β)

(1 + θh
√
γ)2

)
E[‖yn‖2].

Proof. (i) From (1.2), we derive that

〈yn, f(tn + θh, Yn)〉 = 〈Yn, f(tn + θh, Yn)〉 − θh〈f(tn + θh, Yn), f(tn + θh, Yn)〉 (3.4)

and

‖yn+1‖2 = ‖yn‖2 + h2‖f(tn + θh, Yn)‖2 + ‖g(tn + θh, Yn)ΔWn‖2

+

∥∥∥∥
m∑

j1,j2=1

Lj1gj2(tn + θh, Yn)I
tn,tn+1

j1,j2

∥∥∥∥
2

+ 2〈yn, hf(tn + θh, Yn)〉

+ 2〈yn, g(tn + θh, Yn)ΔWn〉+ 2

〈
yn,

m∑
j1,j2=1

Lj1gj2(tn + θh, Yn)I
tn,tn+1

j1,j2

〉

+ 2〈hf(tn + θh, Yn), g(tn + θh, Yn)ΔWn〉

+ 2

〈
hf(tn + θh, Yn),

m∑
j1,j2=1

Lj1gj2(tn + θh, Yn)I
tn,tn+1

j1,j2

〉

+ 2

〈
g(tn + θh, Yn)ΔWn,

m∑
j1,j2=1

Lj1gj2(tn + θh, Yn)I
tn,tn+1

j1,j2

〉
. (3.5)

Substituting (3.4) into (3.5), we obtain

‖yn+1‖2 � ‖yn‖2 + (1− 2θ)h2‖f(tn + θh, Yn)‖2 + ‖g(tn + θh, Yn)ΔWn‖2

+

∥∥∥∥
m∑

j1,j2=1

Lj1gj2(tn + θh, Yn)I
tn,tn+1

j1,j2

∥∥∥∥
2

+ 2h〈Yn, f(tn + θh, Yn)〉+ 2〈yn, g(tn + θh, Yn)ΔWn〉

+ 2

〈
yn,

m∑
j1,j2=1

Lj1gj2(tn + θh, Yn)I
tn,tn+1

j1,j2

〉
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+ 2〈hf(tn + θh, Yn), g(tn + θh, Yn)ΔWn〉

+ 2

〈
hf(tn + θh, Yn),

m∑
j1,j2=1

Lj1gj2(tn + θh, Yn)I
tn,tn+1

j1,j2

〉

+ 2

〈
g(tn + θh, Yn)ΔWn,

m∑
j1,j2=1

Lj1gj2(tn + θh, Yn)I
tn,tn+1

j1,j2

〉
. (3.6)

From [12], we know that

E

[∥∥∥∥
m∑

j1,j2=1

Lj1gj2(tn + θh, Yn)I
tn,tn+1

j1,j2

∥∥∥∥
2]

=
h2

2

m∑
j1,j2=1

E[‖Lj1gj2(tn + θh, Yn)‖2],

E[ΔWn] = 0, E[ΔWnI
tn,tn+1

j1,j2
] = 0, E[I

tn,tn+1

j1,j2
] = 0.

Taking expectations on both sides of (3.6) and using (3.1), we obtain

E[‖yn+1‖2] � E[‖yn‖2] + hE[‖g(tn + θh, Yn)‖2] + h2

2

m∑
j1,j2=1

E[‖Lj1gj2(tn + θh, Yn)‖2]

+ 2hE〈Yn, f(tn + θh, Yn)〉+ (1− 2θ)h2
E[‖f(tn + θh, Yn)‖2]

� E[‖yn‖2] + 2βhE[‖Yn‖2] + (1 − 2θ)h2
E[‖f(tn + θh, Yn)‖2]. (3.7)

Furthermore, using θ � 1/2 and β < 0 leads us to

E[‖yn+1‖2] � E[‖yn‖2].

(ii) Solving the ISST method (1.2) yields

hf
(
tn + θh, Yn

)
=

Yn − yn
θ

. (3.8)

Substituting (3.8) into (3.7), we have

E[‖yn+1‖2] � (1 − θ)2

θ2
E[‖yn‖2] +

(
(1− 2θ)

θ2
+ 2βh

)
E[‖Yn‖2]

+

(
2θ − 1

θ2

)
E[〈2Yn, yn〉]. (3.9)

Applying the inequality

〈2Yn, yn〉 �
(
2θ − 1− 2βθ2h

2θ − 1

)
‖Yn‖2 +

(
2θ − 1

2θ − 1− 2βθ2h

)
‖yn‖2, (3.10)

θ > 1/2 and β < 0, we obtain

E[‖yn+1‖2] �
(
1 +

2βh(2θ − 1)

2θ − 1− 2βθ2h

)
E[‖yn‖2]

� exp

(
2βh(2θ − 1)

2θ − 1− 2βhθ2

)
E[‖yn‖2]. (3.11)

Hence, we obtain that the ISST method is exponentially mean-square stable for all 0 < h � ĥ.

(iii) Using (1.2) and (3.3), under 0 � θ � 1/2, we have that

E[‖yn+1‖2] � E[‖yn‖2] + 2βhE[‖Yn‖2] + (1 − 2θ)h2
E[‖f(tn + θh, Yn)‖2]

� E[‖yn‖2] + h((1 − 2θ)γh+ 2β)E[‖Yn‖2]. (3.12)
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Defining

h0 =

⎧⎪⎪⎨
⎪⎪⎩
� ĥ, θ =

1

2
,

min

{
ĥ,

−2β

(1− 2θ)γ

}
, θ ∈

[
0,

1

2

)
,

and combining (1.2) and (3.3) gives

‖yn‖ � ‖Yn‖+ θh‖f(tn + θh, Yn)‖
� (1 + θh

√
γ)‖Yn‖,

and

‖Yn‖2 �
(

1

1 + θh
√
γ

)2

‖yn‖2. (3.13)

Next, using (3.13) and h ∈ (0, h0) leads us to

E[‖yn+1‖2] �
(
1 +

h((1− 2θ)hγ + 2β)

(1 + θh
√
γ)2

)
E[‖yn‖2]

� exp

(
h((1− 2θ)hγ + 2β)

(1 + θh
√
γ)2

)
E[‖yn‖2],

i.e., the method is exponentially mean-square stable.

4 Numerical results

In this section, some numerical experiments are presented to support conclusions obtained in the previous

sections. We simulate the numerical solution in the idea of [6], and the mean-square numerical solution

is estimated by averaging 1,000 sample paths throughout this section. More precisely, it is obtained by

1

1000

1000∑
i=1

‖yin‖2,

where yin denotes the i-th numerical solution at t = nh.

Example 4.1. We consider the linear test equation (see [15]){
dx(t) = −x(t)dt+ x(t)dW (t),

x(0) = 1, t � 0,
(4.1)

with an exact solution

x(t) = exp

(
− 3

2
t+W (t)

)
.

At the same time, noting the fact that the coefficients of (4.1) satisfy (2.2), we get that (4.1) is mean-

square stable. By Remark 2.2, when θ � 3/4, the ISST method is mean-square stable for any step sizes

h > 0. To show the influence of parameter θ and step size h on mean-square stability of the ISST method,

we choose the fixed parameter θ = 0.75 in Figure 1 and vary different step sizes h = 1, h = 0.5 and

h = 0.25 on the interval [0, 15]. Meanwhile, we fix the step size h = 0.1 for different values of θ = 1,

θ = 0.85 and θ = 0.75. The mean-square of numerical solutions are plotted in Figure 1.

Example 4.2. We consider the following two-dimensional SDEs (see [3]):{
dx1(t) = (−5x1(t)− 2x3

1(t))dt+ (1.5x1(t) + 0.5x2(t))dW (t),

dx2(t) = (2x1(t)− 5x2(t)− x3
2(t))dt+ (−0.5x1(t)− 1.5x2(t))dW (t),

(4.2)

with x1(0) = 3, x2(0) = 4 and t � 0.
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Figure 1 Mean square of numerical solution with different values of θ (a) and step sizes h (b) for Example 4.1
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Figure 2 Mean square of numerical solution with different values of θ (a) and step sizes h (b) for Example 4.2

Let

x = (x1(t), x2(t))
T, f(x) = (−5x1(t)− 2x3

1(t), 2x1(t)− 5x2(t)− x3
2(t))

T

and

g(x) = (1.5x1(t) + 0.5x2(t),−0.5x1(t)− 1.5x2(t))
T.

We may obtain that

〈x, f(x)〉 + 1

2
‖g(x)‖2 = −15

4
x2
1 − 2x4

1 +
7

2
x1x2 − 15

4
x2
2 − x4

2

� −2x2
1 − 2x4

1 − 2x2
2 − x4

2

� −2(x2
1 + x2

2),

‖L1g1(t, x)‖2 = 4(x2
1 + x2

2),

and the coefficients of Equation (4.2) satisfy Condition (3.1). From Inequality (3.1), it is also easy to

compute the maximum ĥ = 2 and

β = h− 2, h < ĥ = 2.

By Lemma 3.1 and [14, Theorem 4.4.4], the exact solutions to (4.2) are exponential mean-square stable.

Choosing the fixed step size h = 0.1 with different values of θ = 1, θ = 0.8 and θ = 0.6, and the fixed

value θ = 0.6 for different step sizes h = 1.5, h = 0.3, h = 0.1 on the interval [0, 15], we apply the
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ISST method (1.2) and generate 103 numerical sample paths. The mean-square of numerical solutions

are shown in Figure 2.

The mean-square of numerical solution of Example 4.1 tends to zero as illustrated in Figure 1. Further-

more, we can see that, by Figure 2, the mean-square of numerical solutions of Example 4.2 exponentially

tends to zero. By the two examples, the results obtained coincide with the theoretical results.

5 Conclusion

In this work, we carried out the mean-square stability analysis on the improved split-step theta method

for SDEs under a local Lipschitz condition and a coupled condition on the drift and diffusion coefficients.

Different from most of the existing exponential mean-square stability results for SDEs, our results can be

applied to equations of which the diffusion coefficient is highly nonlinear. Both theoretical analysis and

numerical tests show that the improved split-step theta method is efficient for the numerical solution of

SDEs. In the future, we will further extend these results to SDEs driven by fractional Brownian motion.
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