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Abstract Longitudinal data often occur in follow-up studies, and in many situations, there may exist infor-

mative observation times and a dependent terminal event such as death that stops the follow-up. We propose a

semiparametric mixed effect model with time-varying latent effects in the analysis of longitudinal data with in-

formative observation times and a dependent terminal event. Estimating equation approaches are developed for

parameter estimation, and asymptotic properties of the resulting estimators are established. The finite sample

behavior of the proposed estimators is evaluated through simulation studies, and an application to a bladder

cancer study is provided.
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1 Introduction

Longitudinal data frequently occur in clinical trials, epidemiological studies and observational investiga-

tions. Various methods have been developed for analyzing these data [2, 4, 6, 10, 26, 28]. For example,

Diggle et al. [3] gave a summary of commonly used methods including random effect model and esti-

mating equation approaches. Lin and Ying [13] and Welsh et al. [25] provided some semiparametric

and nonparametric regression analyses of longitudinal data. However, all these methods focus only on

the situation where the longitudinal response variable and the observation times are independent given

covariates.

In recent years, a number of authors have considered the situation where the longitudinal response

variable is correlated with the observation times, i.e., the observation times are informative about the

longitudinal responses [5, 12, 14, 19–22, 30, 31]. For example, Sun et al. [22] suggested a joint model for

the longitudinal process and the observation times through a shared latent variable. Liang et al. [12] and

Zhou et al. [31] considered joint modeling of longitudinal data via latent variables. All these methods

are designed for the analysis of longitudinal data with informative observation times in the absence of a

dependent terminal event.
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In practice, there may exist a terminal event such as death that stops the follow-up, and the terminal

event is usually strongly correlated with both the longitudinal responses and the observation times. For

example, patients in a severe disease stage often die in a shorter period, and the longitudinal medical

costs may be related to both hospital visits and death [15]. Liu et al. [16] and Liu et al. [17] indicated

that ignoring the dependent terminal event would lead to biased estimates for the analysis of longitudinal

medical costs. Thus, there is clearly a need to develop suitable models for longitudinal data, which

account for informative observation times and a dependent terminal event. Note that parametric models

are sensitive to the assumed distribution, and misspecifying the parametric models often leads to erroneous

inference. Nonparametric models are subject to curse of dimensionality, and it may be difficult to obtain

reliable estimates for moderate or small data sets. Thus, semiparametric models are good compromises

and retain nice features of both the parametric and nonparametric models. However, there exists some

limited research on the semiparametric regression analysis of these data. For example, Liu et al. [15]

studied a joint random effects model, where the distributions of the random effects are specified. He

et al. [8] proposed some shared frailty models, where one random effect is assumed to be normally

distributed. Sun et al. [23] suggested a joint modeling approach via two latent variables, where the

dependence structure between two latent variables are left unspecified. The aforementioned methods

assume that the effects of latent variables on the longitudinal responses are time-invariant.

In many applications, the effects of latent variables on the longitudinal responses may vary over time.

One motivating example is the bladder cancer study [1,12]. Cai et al. [1] showed that the latent variable

effect is truly time-dependent. In reality, it is important to know the temporal effects of latent variables,

and the semiparametric model with time-varying latent effects provides a nice graphical summary of time

dynamics of latent variables. For example, in the bladder cancer data, Cai et al. [1] showed that the

time-varying latent effect is negative for small t, but its magnitude diminishes and eventually it becomes

positive as t increases. Recently, Cai et al. [1] considered a semiparametric model with time-varying latent

effects in the analysis of longitudinal data with informative observation times, but it was not designed

to handle the presence of a terminal event. How to characterize the time-dependent behavior of latent

variables shared by the longitudinal responses, the informative observation times and the terminal event

is of main interest here. In this paper, we propose a semiparametric mixed effect model with time-varying

latent effects in the analysis of longitudinal data with informative observation times and a dependent

terminal event. The new model offers great flexibility in formulating the effects of latent variables on the

longitudinal response variable while adjusting its association with the observation times and the terminal

event. In addition, based on the estimates of the time-varying latent effects, the proposed model can

summarize and explain the time-varying latent effects more clearly, and further allow for inference about

the effects of latent variables.

The rest of the article is organized as follows. In Section 2, we introduce joint modeling of the longitu-

dinal response, the observation times and the terminal event. Section 3 presents estimation procedures

for regression parameters of interest, and the asymptotic properties of the proposed estimators are es-

tablished. Some simulation results to evaluate the proposed methods are reported in Section 4. An

application to a bladder tumor study is provided in Section 5. Some concluding remarks are given in

Section 6. Proof of Theorem 3.1 is given in Appendix.

2 Model specifications

Consider a longitudinal study with n independent subjects. For subject i, i = 1, . . . , n, let Yi(t) denote

the longitudinal response variable of interest at time t. Also let Xi(t) and Zi(t) be the p × 1 and q × 1

vector of possibly time-dependent covariates, respectively. In addition, let Di be the terminal event time

and Ci be the censoring time. Define Ti = Ci ∧ Di, δi = I(Di � Ci) and Δi(t) = I(Ti � t), where

a ∧ b = min(a, b), and I(·) is the indicator function. Let Ni(t) be the counting process denoting the

number of the observation times before or at time t. The longitudinal variable Yi(t) is observed only at

the time points where Ni(t) jumps for t � Ti.
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We consider the following semiparametric mixed-effect model for the longitudinal response variable:

Yi(t) = μ0(t) + β′
0Xi(t) + uiα0(t)

′ Zi(t) + εi(t), (2.1)

where μ0(t) is an unspecified functions of t, β0 is a p× 1 vector of unknown regression parameters, ui is

a subject-specific random effect, α0(t) is a q × 1 vector of time-varying regression coefficients, and εi(t)

is a zero mean measurement error process. Here uiα0(t) denotes the time-varying latent effects for Zi(t).

Let Wi be a vector of r-dimensional time-independent covariates, and νi be a gamma random variable

with mean 1 and variance σ2
0 . For the observation process, it will be assumed that conditional on Wi and

νi, Ni(t) is a nonstationary Poisson process with the intensity function

E{dNi(t) |Wi, νi} = νi exp{γ′0Wi}dΛ0(t), (2.2)

where γ0 is a vector of unknown regression parameters, and Λ0(t) is an unspecified baseline cumulative

intensity function.

Following Huang and Wang [9], we specify the proportional hazards frailty model for the terminal

event time Di as

dΛD(t |Wi, νi) = νi exp{η′0Wi}dΛD
0 (t), (2.3)

where η0 is a vector of unknown regression parameters, and ΛD
0 (t) is an unspecified baseline cumulative

hazard function.

Remark 1. Model (2.1) is different from Liang et al. [12] in that Zi(t) can be included in Xi(t)

or not, and the effects of latent variables are time-varying. For example, in the bladder cancer data

studied in Section 5, Xi(t) = (Xi1, Xi2)
′ and Zi(t) = Xi1, where Xi1 is the treatment variable, and

Xi2 is the logarithm of the number of initial tumors. In addition, when Zi(t) ≡ 1, Model (2.1) reduces

to the time-varying latent effect model studied by Cai et al. [1] in the absence of a terminal event. In

practice, in order to decide which covariates to have the time-varying latent effects, we can use the

focused information criterion to choose Zi(t) as discussed in [31]. Here we only consider a frailty model

with time-independent covariates in (2.2) and (2.3). However, the proposed estimation procedure can be

extended in a straightforward manner to deal with time-dependent covariates in (2.2) and (2.3) at the

cost of having more complicated formulas.

The following assumptions are required for making inference:

(i) Given the frailty νi and the covariates {Xi(·), Zi(·),Wi}, Yi(·), Ni(·) and Di are mutually indepen-

dent.

(ii) The censoring time Ci is noninformative in the sense that given the covariates {Xi(·), Zi(·),Wi},
Ci is independent of Yi(·), Ni(·) and Di.

(iii) The two random effects are assumed to satisfy E(ui | νi) = νi − 1.

Remark 2. There are two purposes for Condition (iii): one is to characterize the association among

the longitudinal response, the observation times and the terminal event via the two latent variables ui
and νi; and the other is for identifiability of (2.1). Note that α0(t) is unspecified. Thus, in order to

ensure identifiability of model parameters, it must be assumed that E(ui) or E(ui | νi) is fixed. As

in [12], we assume Condition (iii) for simplicity and computational convenience. In fact, the proposed

method can be extended to the case that E(ui | vi) = g(vi), where g(vi) is a q-dimensional vector with

each component being a specified function.

3 Estimation procedures

Note that given Wi and νi, the observation process is a nonhomogeneous Poisson process. Let mi denote

the total number of observations for subject i before Ti. It follows that given {νi,Wi, Ti}, mi has a

Poisson distribution with mean νiΛ0(Ti) exp{γ′0Wi}. In what follows, when there is no ambiguity, we will

suppress {Xi(t), Zi(t),Wi} in the conditional expectation. Similar to [12], we have

E{Δi(t)dNi(t) | νi,mi, Ti} = Δi(t)mi
dΛ0(t)

Λ0(Ti)
.
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Let A10(t) =
∫ t

0
μ0(s)dΛ0(s), A20(t) =

∫ t

0
α0(s)dΛ0(s), and Bi(t) = Zi(t)E{(νi − 1) | mi, Ti, δi}. Then

under Model (2.1) and Assumptions (i)–(iii), we have

E[{Yi(t)− β′
0Xi(t)}Δi(t)dNi(t) | mi, Ti, δi]

= E(E[{Yi(t)− β′
0Xi(t)}Δi(t)dNi(t) | νi,mi, Ti, δi] | mi, Ti, δi)

= E(E[{Yi(t)− β′
0Xi(t)} | νi]E[Δi(t)dNi(t) | νi,mi, Ti] | mi, Ti, δi)

= E

[
{μ0(t) + (νi − 1)α0(t)

′Zi(t)}Δi(t)mi
dΛ0(t)

Λ0(Ti)

∣∣∣∣mi, Ti, δi

]
= Δi(t)mi

dA10(s)

Λ0(Ti)
+ Δi(t)miBi(t)

′ dA20(t)

Λ0(Ti)
.

Define

Mi(t;β,A1,A2,Λ) =

∫ t

0

[
{Yi(s)− β′Xi(s)}Δi(s)dNi(s)−Δi(s)mi

dA1(s)

Λ(Ti)
−Δi(s)miBi(s)

′ dA2(s)

Λ(Ti)

]
.

Then it follows that E{Mi(t;β0,A10,A20,Λ0) | Ti,mi, δi} = 0, which implies that Mi(t;β0,A10,A20,Λ0)

are zero-mean stochastic processes. Thus, for given Λ and Bi, by applying the generalized estimating

equation approach [11], we can use the following estimating equations to estimate A10(t), A20(t) and β0:

n∑
i=1

(
1

Bi(t)

)
dMi(t;β,A1,A2,Λ) = 0, 0 � t � τ, (3.1)

n∑
i=1

∫ τ

0

Xi(t)dMi(t;β,A1,A2,Λ) = 0, (3.2)

where τ is a prespecified constant such that P (Ti � τ) > 0. Here we do not estimate μ0(t) and α0(t)

directly, we just consider the estimates of A10(t) and A20(t) without the kernel smoothing technique.

Define

R1(t; Λ, B) =

( ∑n
i=1 Δi(t)miΛ(Ti)

−1 ∑n
i=1 Δi(t)miΛ(Ti)

−1Bi(t)
′∑n

i=1 Δi(t)miBi(t)Λ(Ti)
−1 ∑n

i=1 Δi(t)miΛ(Ti)
−1
Bi(t)Bi(t)

′

)
and

R2(t; Λ, B) =

( n∑
i=1

Δi(t)miΛ(Ti)
−1
Xi(t),

n∑
i=1

Δi(t)miΛ(Ti)
−1
Xi(t)Bi(t)

′
)
,

where B = (B1, . . . , Bn)
′. Let Â1(t;β,Λ, B) and Â2(t;β,Λ, B) denote the solutions to the estimating

equation (3.1), which have the following closed forms:(
Â1(t;β,Λ, B)

Â2(t;β,Λ, B)

)
=

∫ t

0

R1(s; Λ, B)−1

( ∑n
i=1{Yi(s)− β′Xi(s)}Δi(s)dNi(s)∑n
i=1{Yi(s)− β′Xi(s)}Bi(s)Δi(s)dNi(s)

)
.

Plugging Â1(t;β,Λ, B) and Â2(t;β,Λ, B) into the estimating equation (3.2), we obtain

U∗(β; Λ, B) =

n∑
i=1

∫ τ

0

[
Xi(t)−R2(t; Λ, B)R1(t; Λ, B)−1

(
1

Bi(t)

)]
{Yi(t)− β′Xi(t)}Δi(t)dNi(t).

Note that for any function g(·),
1

n

n∑
i=1

∫ τ

0

[
Xi(t)−R2(t; Λ0, B)R1(t; Λ0, B)−1

(
1

Bi(t)

)]
g(t)Δi(t)dNi(t)

converges to zero in probability. Then the estimating function U∗(β; Λ, B) can be extended to the

following estimating function:

U∗
g (β; Λ, B) =

n∑
i=1

∫ τ

0

[
Xi(t)−R2(t; Λ, B)R1(t; Λ, B)−1

(
1

Bi(t)

)]
{Yi(t)− β′Xi(t)− g(t)}Δi(t)dNi(t).
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Following [13], in order to reduce the variance of U∗
g (β; Λ, B), g(t) can be chosen as Ȳ ∗(t; Λ)−β′X̄(t; Λ),

where

X̄(t; Λ) =

∑n
i=1 Δi(t)miΛ(Ti)

−1
Xi(t)∑n

i=1 Δi(t)miΛ(Ti)
−1 ,

Ȳ ∗(t; Λ) =
∑n

i=1 Δi(t)miΛ(Ti)
−1
Y ∗
i (t)∑n

i=1 Δi(t)miΛ(Ti)
−1

and Y ∗
i (t) is the measurement of Yi(·) at the time point nearest to t. Thus, for given Λ and Bi, we specify

the following estimating function for β0:

U(β; Λ, B) =

n∑
i=1

∫ τ

0

[
Xi(t)−R2(t; Λ, B)R1(t; Λ, B)−1

(
1

Bi(t)

)]
× {Yi(t)− Ȳ ∗(t; Λ)− β′{Xi(t)− X̄(t; Λ)}}Δi(t)dNi(t). (3.3)

In practice, however, Λ0 and Bi are unknown, and we cannot directly use the estimating function (3.3).

For this, consider (2.2) and (2.3), and it can be checked that

M̃D
i (t) = ND

i (t)−
∫ t

0

Δi(s)H1i(s;σ
2
0 , η0,Λ

D
0 ) exp(η′0Wi)dΛ

D
0 (s) (3.4)

and

M̃i(t) =

∫ t

0

Δi(s)dNi(s)−
∫ t

0

Δi(s)H2i(s;σ
2
0 , η0,Λ

D
0 ) exp(γ′0Wi)dΛ0(t) (3.5)

are zero-mean stochastic processes, whereH1i(t; η, σ
2,ΛD) = E{νi | Di � t} = {1+σ2 exp(η′Wi)Λ

D(t)}−1

andH2i(t; η, σ
2,ΛD) = E{νi | Ti, δi} = (1+σ2δi){1+σ2 exp(η′Wi)Λ

D(t)}−1. Thus, for givenH1i and H2i,

using the generalized estimating equation approach [11], we can estimate η0, γ0, Λ
D
0 (t) and Λ0(t). How-

ever, the weight functions H1i and H2i also include unknown parameter σ2, which must be estimated.

In order to estimate σ2, we can use the observed likelihood, which is given by Ye et al. [27],

L(σ2; η0, γ0,Λ
D
0 ,Λ0) ∝

n∏
i=1

Γ(mi + δi + 1/σ2)

Γ(1/σ2)(σ2)1/σ2(di + 1/σ2)(mi+δi+1/σ2)
, (3.6)

where di =
∫∞
0

Δi(s)[exp(η
′
0W )dΛD

0 (s)+ exp(γ′0Wi)dΛ0(s)]. Differentiating the logarithm of L(σ2; η0, γ0,

ΛD
0 ,Λ0) with respect to σ2 gives the estimating equation for σ2.

Let θ = (η′, γ′, σ2,ΛD
0 ,Λ0)

′. For k = 0 and 1, define

S
(k)
1 (t; η, σ2,ΛD) =

1

n

n∑
i=1

Δi(t)H1i(t; η, σ
2,ΛD)W⊗k

i exp(η′Wi),

S
(k)
2 (t; η, γ, σ2,ΛD) =

1

n

n∑
i=1

Δi(t)H2i(t; η, σ
2,ΛD)W⊗k

i exp(γ′Wi),

where a⊗0 = 1 and a⊗1 = a for any vector a. In view of (3.4)–(3.6), we propose to estimate θ using the

solutions to the equations Ũ(θ) = (Ũ ′
1, Ũ

′
2, Ũ3, Ũ4, Ũ5)

′ = 0, where

Ũ1 =

n∑
i=1

∫ τ

0

{
Wi − S

(1)
1 (t; η, σ2,ΛD)

S
(0)
1 (t; η, σ2,ΛD)

}
dND

i (t),

Ũ2 =

n∑
i=1

∫ τ

0

{
Wi − S

(1)
2 (t; η, γ, σ2,ΛD)

S
(0)
2 (t; η, γ, σ2,ΛD)

}
Δi(t)dNi(t),

Ũ3 =
∂ logL(σ2; η, γ,ΛD,Λ)

∂σ2
,
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Ũ4 =
n∑

i=1

[dND
i (t)−Δi(t)H1i(t;σ

2, η,ΛD) exp(η′Wi)dΛ
D(t)],

Ũ5 =

n∑
i=1

[Δi(t)dNi(t)−Δi(t)H2i(t;σ
2, η,ΛD) exp(γ′Wi)dΛ(t)].

Let η̂, γ̂, σ̂2, Λ̂D
0 (t) and Λ̂0(t) denote the solutions to Ũ(θ) = 0, where the estimates Λ̂D

0 (t) and Λ̂0(t) will

be a piecewise constant function with jumps only at the observation times (across all subjects) and the

observed terminal event times, respectively.

To estimate Bi(t), we need to calculate the conditional expectation νi − 1 given (mi, Ti, δi). Note

that given (mi, Ti, δi), the conditional density of νi is p(νi | mi, Ti, δi) ∝ p(νi;σ
2)νmi+δi

i exp{−νi[Λ0(Ti)

exp(γ′0Wi) + exp(η′0Wi)Λ
D
0 (Ti)]}, where p(νi;σ2) is the probability density of νi. Then Bi(t) can be

written as

Bi(t) =

{
σ2
0(mi + δi) + 1

σ2
0 [exp(γ

′
0Wi)Λ0(Ti) + exp(η′0Wi)ΛD

0 (Ti)] + 1
− 1

}
Zi(t).

Thus, Bi(t) can be estimated by

B̂i(t) =

{
σ̂2(mi + δi) + 1

σ̂2[exp(γ̂′Wi)Λ̂0(Ti) + exp(η̂′Wi)Λ̂D
0 (Ti)] + 1

− 1

}
Zi(t).

By replacing Λ and Bi with Λ̂0 and B̂i in the estimating function (3.3), and we propose to estimate β0
using the solution to the equation U(β; Λ̂0, B̂) = 0, where B̂ = (B̂1, . . . , B̂n)

′. Denote this estimator by β̂,

which can be expressed as

β̂ =

[ n∑
i=1

∫ τ

0

{
Xi(t)− R2(t; Λ̂0, B̂)R1(t; Λ̂0, B̂)−1

(
1

B̂i(t)

)
{Xi(t)− X̄(t)}

}′
Δi(t)dNi(t)

]−1

×
n∑

i=1

∫ τ

0

{
Xi(t)−R2(t; Λ̂0, B̂)R1(t; Λ̂0, B̂)−1

(
1

B̂i(t)

)}
{Yi(t)− Ȳ ∗(t)}Δi(t)dNi(t),

where X̄(t) = X̄(t; Λ̂0), Ȳ
∗(t) = Ȳ ∗(t; Λ̂0). The corresponding estimators of A10(t) and A20(t) are given

by Â1(t) ≡ Â1(t; β̂, Λ̂0, B̂) and Â2(t) ≡ Â2(t; β̂, Λ̂0, B̂).

As discussed in [27], η̂, γ̂, σ̂2, Λ̂D
0 (t) and Λ̂0(t) are consistent. Then using the uniform strong law of large

numbers, one can show that β̂ is consistent, and Â1(t) and Â2(t) are uniformly consistent for t ∈ [0, τ ].

The asymptotic distributions of β̂, Â1(t) and Â2(t) are given in the following theorem with the proof

given in Appendix.

Theorem 3.1. Under the regularity conditions (C1)–(C4) stated in Appendix, n1/2(β̂ − β0) is asymp-

totically normal with mean zero and covariance matrix D−1Σ(D′)−1, where D and Σ are defined in the

Appendix. Furthermore, n1/2{Â1(t) − A10(t)} and n1/2{Â2(t) − A20(t)} jointly converge weakly to a

zero-mean Gaussian vector process for t ∈ [0, τ ].

The asymptotic covariance matrix can be consistently estimated by D̂−1Σ̂(D̂′)−1, where D̂ and Σ̂ are

obtained by the usual plug-in method. Note that Σ̂ is complicated and has no explicit form. Here,

we propose to use the bootstrap method to estimate the covariance matrix of β̂. The accuracy of the

bootstrap method depends on the sample size and the number of bootstrap samples. A large number of

bootstrap samples yield a high accuracy. In the following simulation studies with the sample size n = 200,

we used 500 bootstrap samples and found the variance estimation to be fairly accurate. Of course, if the

sample size and the number of bootstrap samples are too large, the computation will be time-consuming.

In addition, since estimation of each parameter depends on a subset of the other parameters in Ũ(θ),

the solutions can be obtained through an iterative procedure. Here, we propose the following iterative

algorithm to solve Ũ(θ) = 0, which is robust and effective in the simulation studies in Section 4.

Step 0. Choose initial estimates σ2(0), η(0) and Λ
D(0)
0 (t).
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Step 1. Let H
(0)
1i (t) = 1

1+Λ
D(0)
0 (t) exp(W ′

iη
(0))σ2(0)

, and H
(0)
2i (t) = 1+σ2(0)δi

1+Λ
D(0)
0 (t) exp(W ′

iη
(0))σ2(0)

. Put H
(0)
1i (t)

and H
(0)
2i (t) into Ũ1 = 0, Ũ2 = 0, Ũ4 = 0 and Ũ5 = 0, and solve the resulting equations for updated

estimates η(1), γ(1), Λ
D(1)
0 (t) and Λ

(1)
0 (t).

Step 2. For given η(1), γ(1), Λ
D(1)
0 (t) and Λ

(1)
0 (t), obtain σ2(1) by solving Ũ3 = 0.

Step 3. Return to Step 1 with updated estimates until convergence.

Note that many choices can be used for the initial estimates σ2(0), η(0) and Λ
D(0)
0 (t). Typically, we

can take σ2(0) = 1, η(0) = 0, and set Λ
D(0)
0 (t) to be the Nelson-Aalen type estimate of the cumulative

baseline hazard function. For the convergence, also several criteria can be applied, and in the simulation

studies below, we used the absolute differences � 10−3 between the iterative estimates of the parameters.

4 Simulation study

Simulation studies were conducted to examine the finite sample properties of the proposed estimators with

the focus on estimating β0, A10(t) and A20(t), respectively. In the study, let Xi = (Xi1, Xi2)
′, where Xi1

follows a Bernoulli distribution with success probability 0.5, and Xi2 follows a uniform distribution on

(0, 1). Set Zi = Xi2 in (2.1), and Wi = Xi in (2.2) and (2.3). The terminal event time Di was generated

from (2.3) with ΛD
0 (t) = t2/8, η0 = (0.5, 0.5)′, and σ2

0 = 0.5 or 1. The censoring time Ci was taken as

min(C∗
i , τ), where C

∗
i follows a uniform distribution on (1, 6) and τ = 5, yielding about 36% censoring for

the terminal event. The observation times were generated from (2.2) with Λ0(t) = 2.1t and γ0 = (0.2, 0.5)′,
which correspond to 6 observations per subject on average. Given νi, let ui = νi − 1+ ei, where ei is the

standard normal random variable. The longitudinal response variable Yi(t) was generated from (2.1) with

μ0(t) = t1/2, and β0 = (β1, β2)
′ = (1, 1)′, where εi is the standard normal random variable. For α0(t),

we considered four functions: α0(t) = 0, 1, t/4 or 1/(1 + t). The results presented below are based on

500 replications with sample size n = 200. The asymptotic variance was estimated using the bootstrap

method with 500 bootstrap samples, which were found to be adequate.

Table 1 presents the simulation results for estimation of β0 = (β1, β2)
′. In the table, Bias is the sample

mean of the estimate minus the true value, SE is the sampling standard error of the estimate, SEE is

Table 1 Simulation results for estimation of β1 and β2

β1 β2

σ2 α0(t) Method Bias SE SEE CP Bias SE SEE CP

0.5 0 Ours −0.0039 0.0649 0.0671 0.952 0.0047 0.1149 0.1235 0.958

CLZ −0.0055 0.0698 0.1334 0.982 0.0054 0.1357 0.2623 0.986

1 Ours 0.0171 0.2097 0.2002 0.944 0.0247 0.3503 0.3380 0.932

CLZ 0.0099 0.2798 0.3272 0.980 0.8618 0.4825 0.5698 0.656

1/(1 + t) Our 0.0004 0.1403 0.1283 0.932 0.0110 0.2200 0.2181 0.960

CLZ −0.0013 0.1836 0.2592 0.966 0.5097 0.3166 0.4522 0.770

t/4 Ours 0.0047 0.0800 0.0829 0.960 0.0200 0.1604 0.1500 0.916

CLZ −0.0035 0.1057 0.1725 0.976 0.2222 0.2353 0.3032 0.900

1.0 0 Ours 0.0009 0.0627 0.0657 0.964 −0.0058 0.1149 0.1189 0.940

CLZ 0.0003 0.0694 0.1798 0.996 −0.0069 0.1337 0.3125 0.982

1 Ours 0.0047 0.1713 0.1571 0.928 0.0293 0.2852 0.2780 0.940

CLZ −0.0121 0.2029 0.3000 0.976 0.4580 0.3617 0.4987 0.850

1/(1 + t) Ours −0.0004 0.1097 0.1040 0.942 −0.0123 0.1823 0.1829 0.936

CLZ −0.0062 0.1395 0.2082 0.972 0.2318 0.2424 0.3733 0.932

t/4 Ours 0.0062 0.0796 0.0761 0.938 0.0293 0.1448 0.1393 0.922

CLZ 0.0010 0.0940 0.1893 0.996 0.1343 0.1692 0.3587 0.954
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the sample mean of the standard error estimate, and CP is the 95% empirical coverage probability for β1
and β2 based on the normal approximation. It can be seen from the table that our proposed method

performed well for the situations considered here. Specifically, the proposed estimators were virtually

unbiased, and the standard error estimators were very accurate based on the bootstrap method. The 95%

empirical coverage probabilities were reasonable.

For comparison, we also considered the method of Cai et al. [1] (denoted by CLZ), who studied (2.1)

and (2.2) without the terminal event and assumed that Zi(t) ≡ 1. Under the same setup as above, the

simulation results for β1 and β2 are also reported in Table 1. The results indicate that the CLZ’ method

may lead to biases, especially for estimation of β2. In addition, the CLZ’ method tended to cause an

inflated SEE, and yielded improper coverage probabilities.
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In the same simulation studies as reported in Table 1 with σ2
0 = 1, we investigated the performance of

the estimates of A10(t) and A20(t). We computed pointwise biases and pointwise coverage probabilities

of the 95% confidence intervals on (0, 4] with 40 grid points 0.1k, k = 1, . . . , 40. The pointwise biases and

pointwise coverage probabilities are depicted in Figures 1 and 2 with

α0(t) =
t

4
and α0(t) =

1

(1 + t)
,

respectively. These results show that the proposed estimators performed quite well and essentially pro-

vided unbiased estimates of A10(t) and A20(t). The asymptotic standard errors presented a reasonable

description of the variability for the estimates of A10(t) and A20(t), and the proposed estimation pro-

cedures are reliable. We also considered other setups and the results were similar to those given above.

5 An application

For the illustration purpose, we applied the proposed methods to the longitudinal bladder cancer data

(see [21,22]). In this study, the patients were randomly assigned to placebo and thiotepa treatment groups.

During the study, many patients had multiple recurrences of the bladder tumors and all recurrent tumors

between visits were recorded and removed at clinical visits. There are 85 bladder cancer patients, 47 in

the placebo group and 38 in the thiotepa treatment group. For each patient, the observed information

includes the clinical visit times in month and the number of bladder tumors that occurred between clinical

visits. The frequency of visits ranges from 1 to 38, and the average visiting numbers are 13.5 for the

treatment group and 8.7 for the control group. About 25.9% of patients died during follow-up, and the

total follow-up is 53 months. In addition, two baseline covariates were measured: the number of initial

tumors before entering the study and the size of the largest initial tumor. These data have been analyzed

by Sun et al. [21], Sun et al. [22], Liang et al. [12] and Zhou et al. [31], among others. In particular,

without modeling the terminal event, Liang et al. [12] used a mixed random effect model to analyze

the data. Cai et al. [1] showed that the latent variable effect is truly time-dependent, and proposed

a time-varying latent effect model to analyze the data. Here we analyze the data using the proposed

time-varying latent effect model, and the main goal is to investigate the time-varying latent effects shared

by the longitudinal responses, the observation times and the terminal event. Since the size of the largest

initial tumor had been shown to have no effect on the tumor recurrence rate (see [22, 30]), we focus on

the effects of thiotepa treatment and number of initial tumors on the tumor recurrence process with

informative observation and terminal event times.

Following Liang et al. [12], for subject i (i = 1, . . . , 85), let Yi(t) stand for the natural logarithm of

the number of observed tumors at time t plus 1 to avoid 0. For covariates, let Xi1 = 1 if the patient

was from the thiotepa group, and 0 if the patient was from the placebo group, and Xi2 be the logarithm

of the number of initial tumors. We first estimated the regression parameters in (2.2) for the visiting

process, and the results are summarized in Table 2. These results suggest that the thiotepa treatment has

a significant effect on the visiting process, but the number of initial tumors seems to have no significant

effect on the visiting process.

Based on the above analysis, we chose Zi = Xi1 in (2.1) because the thiotepa treatment is significantly

related to the visiting process, which was also verified by Zhou et al. [31] using the focused information

criterion. The asymptotic variance was estimated using bootstrap method with 500 bootstrap samples.

The estimates of β0 = (β1, β2)
′ and their estimated standard errors are presented in Table 2. We can

observe that both the thiotepa treatment and the number of initial tumors have significant effects on the

tumor recurrence process. In particular, the thiotepa treatment significantly reduce the tumor recurrence

rate, the number of initial tumor has the detrimental effect, i.e., the patients with the higher number of

initial tumors tend to have a higher tumor occurrence rate. In addition, for the estimates of γ1, γ2 and β1,

the estimated standard errors from our proposed method are smaller than those from the methods of

Liang et al. [12] and Cai et al. [1]; while for the estimate of β2, the three methods provide comparable

estimated standard errors. Thus, our proposed method is more efficient than the methods of Liang et

al. [12] and Cai et al. [1].
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Table 2 Joint analysis of the bladder cancer data

Est SE p-value

γ1 0.455 0.129 4.396× 10−4

γ2 −0.139 0.151 0.358

β1 −0.160 0.002 6.103× 10−5

β2 0.194 0.067 3.600× 10−3

Note. Est is the estimate of the parameter, and SE is the standard error estimate.

6 Concluding remarks

In this paper, we proposed a semiparametric mixed effect model with time-varying latent effects in the

analysis of longitudinal data with informative observation times and a dependent terminal event. The

proposed model provided a flexible way of modeling the effects of latent variables on the longitudinal

response variable while adjusting its association with the observation times and the terminal event. An

estimation procedure was proposed to obtain consistent and asymptotically normal estimators. The

simulation results demonstrated that the proposed method performed well, and an illustrative example

was provided.

We used the proportional hazards frailty model for the terminal event. Other competing models, such

as the additive hazards frailty model, the proportional odds frailty model, and the linear transformation

model with frailties (see [29]), could be used as well. In addition, (2.3) can be generalized to

dΛD(t |Wi, νi) = νbi exp{η′0Wi}dΛD
0 (t),

where b is an unknown parameter. It seems not to be straightforward to generalize the proposed approach

to this situation, and further research is needed to address this issue.

For (2.1), if one is interested in μ0(t) and α0(t) directly, the estimates of A10(t) and A20(t) may be used

as base for estimation. Specifically, let μ∗
0(t) = dA10(t)/dt, α

∗
0(t) = dA20(t)/dt and λ0(t) = dΛ0(t)/dt.

Using the kernel smoothing technique, we can obtain the estimates μ̂∗
0(t), α̂

∗
0(t) and λ̂0(t) of μ∗

0(t),

α∗
0(t) and λ0(t) based on Â1(t), Â2(t) and Λ̂0(t), respectively. Then μ0(t) and α0(t) can be estimated

by μ̂∗
0(t)/λ̂0(t) and α̂∗

0(t)/λ̂0(t), respectively. It would be worthwhile to study the properties of these

estimators in future research.
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Appendix A: Proof of Theorem 3.1

In order to study the asymptotic properties of the proposed estimators, we need the following regularity

conditions:

(C1) {Yi(·), Ni(·), Ti, δi, Xi(·), Zi(·),Wi}, i = 1, . . . , n, are independent and identically distributed.

(C2) E{Ni(τ)} <∞, and P (Ti � τ) > 0.

(C3) Xi(t) and Zi(t) are of bounded variation on [0, τ ], and Wi is bounded.

(C4) μ0(t) and α0(t) are right continuous with left-hand limits, and have bounded total variation

on [0, τ ].
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(C5) D is nonsingular, where

D = E

[∫ τ

0

{
Xi(t)−R2(t; Λ0, B){R1(t; Λ0, B)}−1

(
1

Bi(t)

)}
{Xi(t)− x̄(t)}

]
,

and x̄(t) is the limit of X̄(t; Λ0).

Conditions (C1)–(C3) are standard for regression methods in analyzing longitudinal data [23], in which

Condition (C2) implies that there is a positive probability for the longitudinal responses to be observed

in [0, τ ]. Condition (C4) is a technical assumption for the existence of A10(t) and A20(t). Note that

D is the limit of −∂U(β0; Λ̂0, B̂)/∂β. Condition (C6) is needed for the existence and uniqueness of the

estimator β̂.

A.1 Asymptotic results for η̂, γ̂, σ̂2, Λ̂D
0 (t) and Λ̂0(t)

Define

Λ̂D
0 (t; η, σ

2,ΛD) =
1

n

n∑
i=1

∫ t

0

dND
i (u)

S
(0)
1 (u; η, σ2,ΛD)

and

Λ̂0(t; η, γ, σ
2,ΛD) =

1

n

n∑
i=1

∫ t

0

Δi(u)dNi(u)

S
(0)
2 (u; η, γ, σ2,ΛD)

.

Let Λ̃D
0 (t) = Λ̂D

0 (t; η0, σ
2
0 ,Λ

D
0 ), Λ̃0(t) = Λ̂0(t; η0, γ0, σ

2
0 ,Λ

D
0 ), S̃

(k)
1 (t; ΛD) = S

(k)
1 (t; η0, σ

2
0 ,Λ

D), S̃
(k)
2 (t; ΛD)

= S
(k)
2 (t; η0, γ0, σ

2
0 ,Λ

D) (k = 0, 1), H̃1i(t; Λ
D) = H1i(t; η0, σ

2
0 ,Λ

D), H̃2i(t; Λ
D) = H2i(t; η0, σ

2
0 ,Λ

D),

W̄1(t; Λ
D) = S̃

(1)
1 (t; ΛD)/S̃

(0)
1 (t; ΛD), W̄2(t; Λ

D) = S̃
(1)
2 (t; ΛD)/S̃

(0)
2 (t; ΛD), N̄D(t) = n−1

∑n
i=1N

D
i (t)

and N̄(t) = n−1
∑n

i=1

∫ t

0
Δi(u)Ni(u). Also let s

(0)
1 (t), s

(0)
2 (t), w̄1(t) and w̄2(t) be the limits of S̃

(0)
1 (t; ΛD

0 ),

S̃
(0)
2 (t; ΛD

0 ), W̄1(t; Λ
D
0 ) and W̄2(t; Λ

D
0 ), respectively. Set

G̃1(t) =
1

n

n∑
i=1

∫ t

0

σ2
0Δi(u)H̃1i(u; Λ

D
0 )H̃1i(u; Λ̃

D
0 ) exp(2η′0Wi)

dΛD
0 (u)

S̃
(0)
1 (u; Λ̃D

0 )
.

It can be shown that

Λ̃D
0 (t)− ΛD

0 (t) =

∫ t

0

{Λ̃D
0 (u)− ΛD

0 (u)}dG1(u) +
1

n

n∑
i=1

∫ t

0

dM̃D
i (u)

S̃
(0)
1 (u; Λ̃D

0 )
,

which is a linear Volterra integral equation, and the solution is

Λ̃D
0 (t)− ΛD

0 (t) =
1

n

n∑
i=1

∫ t

0

Q̃(u−)

Q̃(t)

dM̃D
i (u)

S̃
(0)
1 (u; Λ̃D

0 )
,

where Q̃(t) =
∏

s�t{1 − dG̃1(s)} is the product-integral of G̃1(s) over [0, t] (see [7]). Thus, using the

asymptotic properties of the product-integral [7], the uniform strong law of large numbers [18], and [13,

Lemma A.1], we obtain that uniformly in t ∈ [0, τ ],

Λ̃D
0 (t)− ΛD

0 (t) =
1

n

n∑
i=1

ψ1i(t) + op(n
−1/2), (A.1)

where

ψ1i(t) =

∫ t

0

Q(u−)

Q(t)

dM̃D
i (u)

s
(0)
1 (u)

,

and Q(t) is the limit of Q̃(t). Let

G̃2(t) =
1

n

n∑
i=1

∫ t

0

σ2
0Δi(u)H̃1i(u; Λ

D
0 )H2i(u; Λ̃

D
0 ) exp{(η0 + γ0)

′Wi} dΛ0(u)

S̃
(0)
2 (u; Λ̃0)

,
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and G2(t) be the limit of G̃2(t). It then follows from (A.1) that

Λ̃0(t)− Λ0(t) =

∫ t

0

{Λ̃D
0 (u)− ΛD

0 (u)}dG̃2(u) +
1

n

n∑
i=1

∫ t

0

dM̃i(u)

S̃
(0)
2 (u; Λ̃D

0 )

=
1

n

n∑
i=1

ψ2i(t) + op(n
−1/2), (A.2)

where

ψ2i(t) =

∫ t

0

ψ1i(u)dG2(u) +

∫ t

0

dM̃i(u)

s
(0)
2 (u)

.

Define

Ũ1(η;σ
2) =

n∑
i=1

∫ τ

0

{
Wi − S

(1)
1 (t; η, σ2, Λ̂D

0 )

S
(0)
1 (t; η, σ2, Λ̂D

0 )

}
dND

i (t)

and

Ũ2(γ; η, σ
2) =

n∑
i=1

∫ τ

0

{
Wi − S

(2)
2 (t; η, γ, σ2, Λ̂D

0 )

S
(0)
2 (t; η, γ, σ2, Λ̂D

0 )

}
Δi(t)dNi(t).

Note that

Ũ1(η0;σ
2
0) =

n∑
i=1

∫ τ

0

{Wi − W̄1(t; Λ
D
0 )}dM̃D

i (t) +

n∑
i=1

∫ τ

0

{W̄1(t; Λ
D
0 )− W̄1(t; Λ̃

D
0 )}dND

i (t).

Similar to (A.2), we have

Ũ1(η0;σ
2
0) =

n∑
i=1

ζ1i + op(n
1/2), (A.3)

where

ζ1i =

∫ τ

0

{Wi − w̄1(t)}dM̃D
i (t) +

∫ τ

0

ψ1i(t)dG3(t),

and G3(t) is the limit of G̃3(t) with

G̃3(t) =
1

n

n∑
i=1

∫ t

0

σ2
0Δi(u)H̃1i(u; Λ

D
0 )H̃1i(u; Λ̃

D
0 ) exp(2η

′
0Wi){Wi − W̄1(u; Λ

D
0 )}

dN̄D(u)

S̃
(0)
1 (u; Λ̃D

0 )
.

In a similar manner, we obtain

Ũ2(γ0; η0, σ
2
0) =

n∑
i=1

ζ2i + op(n
1/2), (A.4)

where

ζ2i =

∫ τ

0

{Wi − w̄2(t)}dM̃i(t) +

∫ τ

0

ψ1i(t)dG4(t),

and G4(t) is the limit of G̃4(t) with

G̃4(t) =
1

n

n∑
i=1

∫ t

0

σ2
0Δi(u)H̃1i(u; Λ

D
0 )H̃2i(u; Λ̃

D
0 ) exp{(η0 + γ0)

′Wi}{Wi − W̄2(u; Λ
D
0 )} dN̄(u)

S̃
(0)
2 (u; Λ̃D

0 )
.

Define

Ũ3(σ
2; η, γ) =

n∑
i=1

[
hi(σ

2) +
mi + δi + 1/σ2

σ4(d̃i(η, γ) + 1/σ2)
+

1

σ4
log{d̃i(η, γ) + 1/σ2}

]
,

where

hi(σ
2) =

1

σ4

{
− Γ(1)(mi + δi + 1/σ2)

Γ(mi + δi + 1/σ2)
+

Γ(1)(1/σ2)

Γ(1/σ2)
+ log(σ2)− 1

}
,
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d̃i(η, γ) =

∫ ∞

0

Δi(u)[exp(η
′W )dΛ̂D

0 (u; η, σ2,ΛD) + exp(γ′Wi)dΛ̂0(u; η, σ
2,ΛD)]

and Γ(1)(x) = ∂Γ(x)/∂x. From an argument similar to that in the proof of (A.3), we get

Ũ3(σ
2
0 ; γ0, η0) =

n∑
i=1

ζ3i + op(n
1/2), (A.5)

where

ζ3i =

[
hi(σ

2
0) +

mi + δi + 1/σ2
0

σ4
0(di + 1/σ2

0)
+

1

σ4
0

log{di + 1/σ2
0}
]
+
di +mi + δi + 1/σ2

0

σ4
0(di + 2/σ2

0)
2

×
∫ ∞

0

Δi(u){exp(η′0W )dψ1i(u) + exp(γ′0Wi)dψ2i(u)}.

Let α = (η′, γ′, σ2)′, α0 = (η′0, γ′0, σ2
0)

′, α̂ = (η̂′, γ̂′, σ̂2)′), and

Ũα(α) = (Ũ1(η;σ
2)′, Ũ1(γ; η, σ

2)′, Ũ3(σ
2; η, γ)′).

Note that Ũα(α̂) = 0. Then it follows from (A.3)–(A.5) and the Taylor expansion that

α̂− α0 =
1

n

n∑
i=1

Ω−1ζi + op(n
−1/2),

where Ω is the limit of −n−1∂Ũα(α0)/∂α, and ζi = (ζ′1i, ζ
′
2i, ζ3i)

′. For notational convenience, denote

(ξ′1i, ξ
′
2i, ξ3i)

′ = Γ−1ζi. Thus,

η̂ − η0 =
1

n

n∑
i=1

ξ1i + op(n
−1/2), (A.6)

γ̂ − γ0 =
1

n

n∑
i=1

ξ2i + op(n
−1/2) (A.7)

and

σ̂2 − σ2
0 =

1

n

n∑
i=1

ξ3i + op(n
−1/2). (A.8)

Let

G̃5(t) =
1

n

n∑
i=1

∫ t

0

σ2
0Δi(u)H̃

2
1i(u; Λ

D
0 ) exp(2η

′
0Wi)Wi

dΛD
0 (u)

S̃
(0)
1 (u; ΛD

0 )
−
∫ t

0

W̄1(u; Λ
D
0 )dΛ

D
0 (u),

G̃6(t) =
1

n

n∑
i=1

∫ t

0

σ2
0Λ

D
0 (u)Δi(u)H̃1i(u; Λ

D
0 )H̃2i(u; Λ

D
0 ) exp{(η0 + γ0)

′Wi}Wi
dΛ0(u)

S
(0)
2 (u; ΛD

0 )
,

G̃7(t) =
1

n

n∑
i=1

∫ t

0

Δi(u)H̃1i(u; Λ
D
0 )
[
H̃2i(u; Λ

D
0 ) exp(η′0Wi)Λ

D
0 (u)− δi

]
exp(γ′0Wi)

dΛ0(u)

S
(0)
2 (u; ΛD

0 )

and G5(t), G6(t) and G7(t) be the limits of G̃5(t), G̃6(t) and G̃7(t), respectively. Note that Λ̂D
0 (t) ≡

Λ̂D
0 (t; η̂, σ̂2, Λ̂D

0 ), and Λ̂0(t) ≡ Λ̂0(t; η̂, γ̂, σ
2, Λ̂D

0 ). Following similar arguments to that in (A.3), together

with (A.6)–(A.8), we have

Λ̂D
0 (t)− ΛD

0 (t) =
1

n

n∑
i=1

ψ3i(t) + op(n
−1/2), (A.9)

where

ψ3i(t) = ψ1i(t) + ξ′1i

∫ t

0

Q(u−)

Q(t)
dG5(u) + ξ3iσ

−2
0

∫ t

0

Q(u−)

Q(t)
dG1(u).
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Likewise,

Λ̂0(t)− Λ0(t) =
1

n

n∑
i=1

ψ4i(t) + op(n
−1/2), (A.10)

where

ψ4i(t) =

∫ t

0

dM̃i(u)

s
(0)
2 (u)

+

∫ t

0

ψ3i(u)dG2(u) + ξ′1iG6(t)− ξ′2i

∫ t

0

w̄2(u)dΛ0(u) + ξ3iG7(t).

A.2 Asymptotic result for U(β0; Λ̂0, B̂)

Define K10(t) = Λ0(t), K20(t) = 0, and

M∗
i (t;K1,K2,Λ, Bi) =

∫ t

0

Δi(u)Ni(u)−Δi(t)
mi

Λ0(Ti)
dK1(t)−Δi(t)

mi

Λ0(Ti)
Bi(t)

′K2(t).

Then

E{M∗
i (t;K10,K20,Λ0, Bi) | mi, Ti, δi} = 0.

Thus, we can use the following estimating equations to estimate K10(t) and K20(t):

n∑
i=1

(
1

B̂i(t)

)
dM∗

i (t;K1,K2, Λ̂0, B̂i) = 0.

The solutions to the above equations are given by(
K̂1(t)

K̂2(t)

)
=

∫ t

0

R1(u; Λ̂0, B̂)−1

(
1

B̂i(u)

)
Δi(u)dNi(u).

Let Mi(t) = Mi(t;β0,A10,A20,Λ0), M
∗
i (t) = M∗

i (t;K10,K20,Λ0, Bi), Ȳ
∗(t) = Ȳ ∗(t; Λ̂0) and X̄(t) =

X̄(t; Λ̂0). It can be checked that

U(β0; Λ̂0, B̂) =

n∑
i=1

∫ τ

0

Xi(t)dMi(t)−
n∑

i=1

∫ τ

0

Xi(t){Ȳ ∗(t)− β′
0X̄(t)}dM∗

i (t)

−
∫ τ

0

Δi(t)Xi(t)

[
mi

Λ̂0(Ti)
dÂ1(t;β0, Λ̂0, B̂)− mi

Λ0(Ti)
dA10(t)

]
−

n∑
i=1

∫ τ

0

Δi(t)Xi(t)

[
miB̂i(t)

′

Λ̂0(Ti)
dÂ2(t;β0, Λ̂0, B̂)− miBi(t)

′

Λ0(Ti)
dA20(t)

]

+

n∑
i=1

∫ τ

0

Δi(t){Ȳ ∗(t)− β′
0X̄(t)}Xi(t)

[
mi

Λ̂0(Ti)
dK̂1(t)− mi

Λ0(Ti)
dK10(t)

]

+

n∑
i=1

∫ τ

0

Δi(t){Ȳ ∗(t)− β′
0X̄(t)}Xi(t)

[
miB̂i(t)

′

Λ̂0(Ti)
dK̂2(t)− miBi(t)

′

Λ0(Ti)
dK20(t)

]
. (A.11)

Let Ψ1i(t), Ψ2i(t), Ψ3i(t), Ψ4i(t) and Ψ5i(t) be the derivatives and the Hadamard derivatives of Bi(t)

with respect to η, γ, σ2, ΛD and Λ, respectively. Note that

1

n

n∑
i=1

Mi(t;β0, Â1(·;β0, Λ̂0, B̂), Â2(·;β0, Λ̂0, B̂), Λ̂) = 0.

Then it follows from the functional delta method and (A.6)–(A.10) that

1

n

n∑
i=1

Mi(t) =
1

n

n∑
i=1

[ ∫ t

0

Δi(s)mi

Λ̂0(Ti)
dÂ1(s;β0, Λ̂0, B̂)−

∫ t

0

Δi(s)mi

Λ0(Ti)
dA10(s)

]



2408 Pei Y B et al. Sci China Math December 2016 Vol. 59 No. 12

+
1

n

n∑
i=1

[∫ t

0

Δi(s)mi

Λ̂0(Ti)
B̂i(s)

′dA2(s;β0, Λ̂0, B̂)−
∫ t

0

Δi(s)miBi(s)
′

Λ0(Ti)
dA20(s)

]

=
1

n

n∑
i=1

L1i(t) +

∫ t

0

κ1(s)d{A1(s;β0, Λ̂0, B̂)−A10(s)}

+

∫ t

0

κ2(s)
′d{A2(s;β0, Λ̂0, B̂)−A20(s)}+ op(n

− 1
2 ), (A.12)

where

L1i(t) = J1(t)
′ξ1i + J2(t)

′ξ2i + J3(t)ξ3i +

∫ τ

0

J4(t, s) dψ3i(s) +

∫ τ

0

J5(t, s)dψ4i(s)

with

J1(t) = lim
n→∞

1

n

n∑
i=1

∫ t

0

Δi(u)
mi

Λ0(Ti)
Ψ1i(u)

′dA20(u),

J2(t) = lim
n→∞

1

n

n∑
i=1

∫ t

0

Δi(u)
mi

Λ0(Ti)
Ψ2i(u)

′dA20(u),

J3(t) = lim
n→∞

1

n

n∑
i=1

∫ t

0

Δi(u)
mi

Λ0(Ti)
Ψ3i(u)

′dA20(u),

J4(t, s) = lim
n→∞

1

n

n∑
i=1

∫ t

0

Δi(s)Δi(u)
mi

Λ0(s)
Ψ4i(u)

′dA20(u),

J5(t, s) = lim
n→∞

1

n

n∑
i=1

∫ t

0

Δi(s)Δi(u)mi

[
− dA10(u)

Λ2
0(s)

+

{
Ψ5i(u)− Bi(u)

Λ0(s)

}′
dA20(u)

Λ0(s)

]
,

κ1(s) = lim
n→∞

1

n

n∑
i=1

Δi(s)
mi

Λ0(Ti)
,

κ2(s) = lim
n→∞

1

n

n∑
i=1

Δi(s)
mi

Λ0(Ti)
Bi(s).

Similarly,

1

n

n∑
i=1

∫ t

0

Bi(s)dMi(s) =
1

n

n∑
i=1

L2i(t) +

∫ t

0

κ2(s)d{A1(s;β0, Λ̂0, B̂)−A10(s)}

+

∫ t

0

κ3(s)d{A2(s;β0, Λ̂0, B̂)−A20(s)}+ op(n
− 1

2 ), (A.13)

where

L2i(t) = J∗
1 (t)ξ1i + J∗

2 (t)ξ2i + J∗
3 (t)ξ3i +

∫ τ

0

J∗
4 (t, s) dψ3i(s) +

∫ τ

0

J∗
5 (t, s)dψ4i(s)

with

J∗
1 (t) = lim

n→∞
1

n

n∑
i=1

∫ t

0

Δi(u)
mi

Λ0(Ti)
Bi(u){Ψ1i(u)

′dA20(u)}′,

J∗
2 (t) = lim

n→∞
1

n

n∑
i=1

∫ t

0

Δi(u)
mi

Λ0(Ti)
Bi(u){Ψ2i(u)

′dA20(u)}′,

J∗
3 (t) = lim

n→∞
1

n

n∑
i=1

∫ t

0

Δi(u)
mi

Λ0(Ti)
Bi(u)Ψ3i(u)

′dA20(u),

J∗
4 (t, s) = lim

n→∞
1

n

n∑
i=1

∫ t

0

Δi(s)Δi(u)
mi

Λ0(t)
Bi(u)Ψ4i(u)

′dA20(u),
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J∗
5 (t, s) = lim

n→∞
1

n

n∑
i=1

∫ t

0

Δi(s)Δi(u)miBi(u)

[
− dA10(u)

Λ2
0(s)

+

{
Ψ5i(u)− Bi(u)

Λ0(s)

}′
dA20(u)

Λ0(s)

]
,

κ3(s) = lim
n→∞

1

n

n∑
i=1

Δi(s)
mi

Λ0(Ti)
Bi(s)Bi(s)

′.

It follows from (A.12) and (A.13) that

A1(t;β0, Λ̂0, B̂)−A10(t) =
1

n

n∑
i=1

Γ1i(t) + op(n
− 1

2 ), (A.14)

A2(t;β0, Λ̂0, B̂)−A20(t) =
1

n

n∑
i=1

Γ2i(t) + op(n
− 1

2 ), (A.15)

where

Γ1i(t) =

∫ t

0

{κ1(s)− κ2(s)
′κ4(s)−1κ3(s)}−1[{1− κ2(s)κ4(s)

−1Bi(s)}dMi(s)

− dL1i(s) + κ2(s)
′κ4(s)−1dL2i(s)],

Γ2i(t) =

∫ t

0

{κ4(s)− κ3(s)κ1(s)
−1κ2(s)

′}−1[{Bi(s)− κ3(s)κ1(s)
−1}dMi(s)

+ {κ3(s)κ1(s)−1dL1i(s)} − dL2i(s)].

In a similar manner, we have

K̂1(t)−K10(t) =
1

n

n∑
i=1

Γ3i(t) + op(n
− 1

2 ), (A.16)

K̂2(t)−K20(t) =
1

n

n∑
i=1

Γ4i(t) + op(n
− 1

2 ), (A.17)

where Γ3i(t) and Γ4i(t) are obtained by replacing Mi(t), A10 and A20 in Γ1i(t) and Γ2i(t) with M∗
i (t),

K10 and K20, respectively. Let ȳ∗(t) and x̄(t) be the limits of Ȳ ∗(t) and X̄(t), respectively. Thus, it

follows from (A.11) and (A.14)–(A.17) that

U(β0; Λ̂0, B̂) =

n∑
i=1

φi + op(n
1/2), (A.18)

where

φi =

∫ τ

0

Xi(t) dMi(t)−
∫ τ

0

{ȳ∗(t)− β′
0x̄(t)}Xi(t)dM

∗
i (t) + P1ξi1 + P2ξi2 + P3ξi3

+

∫ τ

0

P4(t)dψi3(t) +

∫ τ

0

P5(t)dψi4(t) +

∫ τ

0

Φ1(t)dΓ1i(t) +

∫ τ

0

Φ2(t)dΓ2i(t)

−
∫ τ

0

{ȳ∗(t)− β′
0x̄(t)}[Φ1(t)dΓ3i(t) + Φ2(t)dΓ4i(t)],

with

P1 = lim
n→∞

1

n

n∑
i=1

∫ τ

0

Δi(s)
miXi(s)

Λ0(Ti)
[{ȳ∗(s)− β′

0x̄(s)}Ψ1i(s)
′dK20(s)−Ψ1i(s)

′dA20(s)]
′,

P2 = lim
n→∞

1

n

n∑
i=1

∫ τ

0

Δi(s)
miXi(s)

Λ0(Ti)
[{ȳ∗(s)− β′

0x̄(s)}′Ψ2i(s)
′dK20(s)−Ψ2i(s)

′dA20(s)]
′,

P3 = lim
n→∞

1

n

n∑
i=1

∫ τ

0

Δi(s)
miXi(s)

Λ0(Ti)
[{ȳ∗(s)− β′

0x̄(s)}Ψ3i(s)
′dK20(s)−Ψ3i(s)

′dA20(s)],
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P4(t) = lim
n→∞

1

n

n∑
i=1

∫ τ

0

Δi(t)Δi(s)
miXi(s)

Λ0(t)
[{ȳ∗(s)− β′

0x̄(s)}Ψ4i(s)
′dK20(s)−Ψ4i(s)

′dA20(s)],

P5(t) = lim
n→∞

1

n

n∑
i=1

∫ τ

0

Δi(t)Δi(s)
miXi(s)

Λ0(t)
[{ȳ∗(s)− β′

0x̄(s)}Ψ5i(s)
′dK20(s)−Ψ5i(s)

′dA20(s)]

+ lim
n→∞

1

n

n∑
i=1

∫ τ

0

Δi(t)Δi(s)
miXi(s)

Λ2
0(t)

[dA1(s) +Bi(s)
′dA2(s)− {ȳ∗(s)− β′

0x̄(s)}

× [dK1(s) +Bi(s)
′dK2(s)]],

Φ1(t) = lim
n→∞

1

n

n∑
i=1

Δi(t)
mi

Λ0(Ti)
Xi(t),

Φ2(t) = lim
n→∞

1

n

n∑
i=1

Δi(t)
mi

Λ0(Ti)
Xi(t)Bi(t)

′.

By the multivariate central limit theorem, n−1/2U(β0; Λ̂0, B̂) is asymptotically normal with mean zero

and covariance matrix Σ = E
{
φiφ

′
i}. Note that −∂U(β; Λ̂0, B̂)/∂β|β=β0 converges in probability to D.

Thus, the Taylor expansion of U(β; Λ̂0, B̂) yields that n1/2
(
β̂ − β0) is asymptotically zero-mean normal

with covariance matrix D−1Σ(D′)−1.

To show the weak convergence of n1/2{Â1(t)−A10(t)} and n1/2{Â2(t)−A20(t)}, first note that R1(t; B̂)

converges in probability to R∗
1(t) uniformly in t ∈ [0, τ ], where

R∗
1(t) =

(
κ1(t) κ2(t)

′

κ2(t) κ3(t)

)
.

It can be checked that the derivative of (Â1(t), Â2(t)
′)′ with respect to β evaluated at β0 converge in

probability to Υ(t) uniformly in t ∈ [0, τ ], where

Υ(t) =

∫ t

0

R∗
1(s)

(
Φ1(s)

′

Φ2(s)′

)
dΛ0(s).

It follows from the Taylor expansion, (A.14), (A.15) and (A.18) that

n1/2

( Â1(t)−A10(t)

Â2(t)−A20(t)

)
= n1/2

( Â1(t;β0, Λ̂, B̂)−A10(t)

Â2(t;β0, Λ̂, B̂)−A20(t)

)
+Υ(t)n1/2

(
β̂ − β0)

= n−1/2
n∑

i=1

Θi(t) + op(1),

where

Θi(t) =

(
Γ1i(t)

Γ2i(t)

)
+Υ(t)D−1φi.

Because Θi(t) (i = 1, . . . , n) are independent zero-mean random variables for each t, the multivariate

central limit theorem implies that n1/2{Â1(t)−A10(t)} and n1/2{Â2(t)−A20(t)} jointly converge in finite-

dimensional distributions to a zero-mean Gaussian process. Since Θi(t) can be written as sums or products

of monotone functions of t and are thus tight [24]. Thus, n1/2{Â1(t)−A10(t)} and n1/2{Â2(t)−A20(t)}
are tight and jointly converge weakly to a zero-mean Gaussian vector process whose covariance function

at (s, t) is given by E{Θi(s)Θi(t)
′}.


