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Abstract In the one-dimensional space, traveling wave solutions of parabolic differential equations have been

widely studied and well characterized. Recently, the mathematical study on higher-dimensional traveling fronts

has attracted a lot of attention and many new types of nonplanar traveling waves have been observed for scalar

reaction-diffusion equations with various nonlinearities. In this paper, by using the comparison argument and

constructing appropriate super- and subsolutions, we study the existence, uniqueness and stability of three-

dimensional traveling fronts of pyramidal shape for monotone bistable systems of reaction-diffusion equations

in R3. The pyramidal traveling fronts are characterized as either a combination of planar traveling fronts on the

lateral surfaces or a combination of two-dimensional V -form waves on the edges of the pyramid. In particular,

our results are applicable to some important models in biology, such as Lotka-Volterra competition-diffusion

systems with or without spatio-temporal delays, and reaction-diffusion systems of multiple obligate mutualists.
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1 Introduction

In the one-dimensional space, traveling wave solutions of parabolic differential equations have been widely

studied and well characterized, see for example, Conley and Gardner [7], Fife and McLeod [13, 14],

Gardner [16], Liang and Zhao [36], Mischaikow and Hutson [39], Tsai [51], and Volpert et al. [52]. In

high-dimensional spaces, however, because propagating wave fronts may change shape and evolve to

new nonplanar traveling waves, it is still interesting but extremely difficult and challenging to find and

characterize possible nonplanar traveling waves. From the dynamical point of view, the characterization

of nonplanar traveling waves is essential for a complete understanding of the structure of global attrac-

tors, which usually determine the long-time behavior of solutions of reaction-diffusion equations under

consideration.

Recently, the mathematical study of higher-dimensional traveling fronts has attracted a lot of attention

and many new types of nonplanar traveling waves have been observed for the following scalar reaction-

diffusion equation with various nonlinearities:

∂

∂t
u(x, t) = dΔu(x, t) + f(u(x, t)), x ∈ R

m, t > 0. (1.1)
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For the combustion nonlinearity, Bonnet and Hamel [2], Hamel et al. [23] and Wang and Bu [55] have

studied V -form curved fronts of (1.1) with m = 2. For the Fisher-KPP case, nonplanar traveling wave

solutions of (1.1) with m � 2 have been studied by Brazhnik and Tyson [3], Hamel and Roquejoffre [27]

and Huang [31]. For the unbalanced bistable case (specially for Allen-Cahn equation), V -form front

solutions of (1.1) with m = 2 have been studied by Hamel et al. [24,25], Ninomiya and Taniguchi [42,43]

and Gui [19], cylindrically symmetric traveling fronts of (1.1) with m � 3 have been studied by Hamel

et al. [24, 25], and traveling fronts with pyramidal shapes of (1.1) with m � 3 have been studied by

Taniguchi [47–50] and Kurokawa and Taniguchi [34]. Wang and Wu [57] and Sheng et al. [45] extended

the arguments of Ninomiya and Taniguchi [42,43] and Taniguchi [47,48] and established two-dimensional

V -shaped traveling fronts and pyramidal traveling wave fronts, respectively, for bistable reaction-diffusion

equations with time-periodic nonlinearity (see [8]); namely, (1.1) with a nonlinearity f(u, t) such that

f(·, ·) = f(·, · + T ) for some T > 0. In particular, Sheng et al. [46] have studied the multidimensional

stability of V -form traveling fronts in the Allen-Cahn equation. Multidimensional stability of planar

traveling waves in reaction-diffusion equations has been studied by Xin [58], Levermore and Xin [35],

Kapitula [33], and Zeng [59, 60].

Note that the nonplanar traveling waves obtained in the above mentioned studies are connected and

convex. It needs to be pointed out that the balanced bistable case (specially f(u) = u(1 − u2)), which

is more interesting and complex, has been studied by Chen et al. [6] and del Pino et al. [9, 10]. Chen

et al. [6] have studied the existence and qualitative properties of cylindrically symmetric traveling waves

with paraboloid like interfaces of (1.1), which are also connected and convex. In [9], del Pino et al.

have showed a new stationary wave when dimension m � 9, which is a counterexample to De Giorgi’s

conjecture. In [10], del Pino et al. have proved that there exist traveling wave solutions whose traveling

fronts are non-connected, multi-component surfaces, and that there are solutions whose fronts are non-

convex when m � 3. Other related studies can be found by Bu and Wang [4], Chapuisat [5], El Smaily

et al. [11], Fife [12], Hamel [22], Hamel and Nadirashvili [26], Hamel and Roquejoffre [27], Morita and

Ninomiya [40] and Wang [54].

In contrast to the scalar equations, the study on nonplanar traveling waves of systems of reaction-

diffusion equations mainly focuses on two-dimensional V -form curved fronts. Haragus and Scheel [28–30]

have studied almost planar waves (V -form waves) in reaction-diffusion systems by using bifurcation

theory. Here “almost planar” means that the interface region is close to the hyperplanes (the angle of the

interface is close to π). By developing the arguments of Ninomiya and Taniguchi [42, 43], Wang [53] has

established the existence and stability of two-dimensional V -form curved fronts for the following systems

with m = 2,

∂u

∂t
= DΔu+ F (u(x, t)), x ∈ R

m, t > 0, u(x, t) ∈ R
N , N > 1, (1.2)

under the following hypotheses:

(H1) D = diag(D1, D2, . . . , DN ) is a diagonal matrix of order N with Di > 0.

(H2) F has two stable equilibrium points E− � E+, i.e., F (E±) = 0, where 0 = {0, . . . , 0}, and all

eigenvalues of F ′(E±) have negative real parts.

(H3) There exist two vectors R± = (r±1 , . . . , r
±
N ) with r±i > 0 (i = 1, . . . , N) and two positive numbers

λ± such that F ′(E+)R+ � −λ+R+ and F ′(E−)R− � −λ−R−.
(H4) The reaction term F (u) = (F 1(u), . . . , FN (u)) is defined on an open domain Ω ⊂ R

N , is of class

C1 in u, and satisfies the following conditions:

∂F i

∂uj
(u) � 0 for all u ∈ [E−,E+] ⊂ Ω and for all 1 � i �= j � N.

Furthermore, there exist non-negative constants L−
ij and L+

ij such that

∂F i

∂uj
(u) + L−

ij{ui − E−
i }− + L+

ij{E+
i − ui}− � 0, i �= j,
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for u ∈ [Ê−, Ê+] ⊂ Ω, where Ê− � E− � E+ � Ê+ and for any a ∈ R,

{a}− =

{
0, if a � 0,

−a, if a < 0.

(H5) System (1.2) admits a planar traveling wave front

U(e · x+ ct) = (U1(e · x+ ct), . . . , UN(e · x+ ct))

satisfying the following ordinary differential equations:⎧⎪⎪⎨⎪⎪⎩
DiU

′′
i − cU ′

i + F i(U) = 0,

U(±∞) := lim
ξ→±∞

U(ξ) = E±,

U ′
i > 0 on R for i = 1, . . . , N,

where ξ = e · x+ ct with e ∈ R
m and |e| = 1, c > 0 is the wave speed.

Here the real vector-valued function u(x, t) = (u1(x, t), . . . , uN(x, t)) is unknown and F ′(E) denotes

the Jacobian matrix of F at E ∈ R
N . For two vectors c = (c1, . . . , cN) and d = (d1, . . . , dN ), the symbol

c � d means ci < di for each i ∈ {1, . . . , N} and c � d means ci � di for each i ∈ {1, . . . , N}. The
interval [c,d] denotes the set of q ∈ R

N with c � q � d. For some comments on the assumptions

(H1)–(H5) we refer to Wang [53]. In general, the assumptions (H1)–(H4) do not ensure that System (1.2)

admits a traveling planar wave front connecting the equilibria E− and E+. Therefore, the assumption

on the existence of planar traveling wave solutions in (H5) is standard. A further assumption is that the

wave speed c > 0. It should be pointed out that to determine the sign of the wave speed c for a given

reaction-diffusion system is a very difficult job. Nevertheless, some sufficient conditions can be given for

the positivity of the wave speed c for some particular cases (see Wang [53] and Alcahrani et al. [1] for

some examples).

It follows from Volpert et al. [52, Chapter 3] that there exist positive constants C1 and β1 such that

|Ui(±ξ)− E±
i |+ |U ′

i(±ξ)|+ |U ′′
i (±ξ)| � C1e

−β1|ξ| for ξ � 0 and i = 1, . . . , N. (1.3)

Contrasting to the results of Haragus and Scheel [28–30], which are valid only for sufficiently small s−c > 0

(namely, when the curved wave speed s is sufficiently close to the planar wave speed c), the results of

Wang [53] hold for any s > c > 0. In particular, the results are applicable to some important biological

models with m = 2 (see [53, Section 5] for details), such as Lotka-Volterra competition-diffusion systems

with or without spatio-temporal delays, and reaction-diffusion systems of multiple obligate mutualists.

Recently, Ni and Taniguchi [41] have established the existence of pyramidal traveling wave solutions

for competition-diffusion systems in R
m (m � 3), which covers the classical Lotka-Volterra competition-

diffusion system with two components. Note that such pyramidal traveling wave solutions in R
3 are

indeed three-dimensional traveling wave solutions with pyramidal structures and are neither cylindrically

symmetric nor reducible to two-dimensional traveling wave solutions. Also notice that traveling wave

solutions with pyramidal shape for the Allen-Cahn equation (a single equation) are first constructed by

Taniguchi [47] in x ∈ R
3. His method is to use the super- and subsolutions technique and the comparison

principle, which is similar to that of Ninomiya and Taniguchi [42]. To construct a suitable supersolution,

a key technique is to construct an appropriate mollified pyramid above a pyramid in R
3. Kurokawa and

Taniguchi [34] have extended the argument of Taniguchi [47] and established pyramidal traveling fronts

for the Allen-Cahn equation in R
m (m � 4). Taniguchi [48] has studied the uniqueness and asymptotic

stability of pyramidal traveling fronts established in Taniguchi [47]. For a given admissible pyramid it

has been proved that a pyramidal traveling front is uniquely determined and that it is asymptotically

stable under the condition that given perturbations decay at infinity. Furthermore, the pyramidal trav-

eling front is characterized as a combination of planar traveling fronts on the lateral surfaces and as a

combination of two-dimensional V -form traveling fronts on the edges, respectively. Recently, Sheng et
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al. [45] have developed the arguments of Taniguchi [47,48] and studied periodic pyramidal traveling fronts

for bistable reaction-diffusion equations with time-periodic nonlinearity. More recently, Taniguchi [49,50]

has constructed generalized pyramidal traveling fronts with convex polyhedral shapes.

Though the existence of pyramidal traveling fronts for competition-diffusion systems has been estab-

lished by Ni and Taniguchi [41], the uniqueness and stability of pyramidal traveling fronts still remain

open. The purpose of this paper is to extend the arguments of Taniguchi [47, 48] for a scalar equation

to study the existence, uniqueness and stability of traveling waves of pyramidal shapes for the reaction-

diffusion system (1.2) in R
3 under the assumptions (H1)–(H5). The main method is also to use the

super- and subsolutions technique and the comparison principle. We would like to point out that even

though the main strategy of the current paper is similar to that in [47, 48], it needs new techniques

and many modifications to obtain the expected results due to the presence of nonlinear coupling in the

system which is a nontrivial work. First, because we are treating a coupled system of reaction-diffusion

equations (not a single equation), we have to use the planar traveling wave fronts of the system to modify

the super- and subsolutions of Taniguchi [47, 48] so that they can be applied to the system. To reach

this aim, we define two monotone vector-valued functions P (·) and Q(·) and incorporate them into the

resulting super- and subsolutions. Of course, the functions P (·) and Q(·) have been used by the first

author in [53]. Second, as seen in the following, the super- and subsolutions constructed later cannot

be bounded from above by E+ and from below by E−, which results in the comparison principle on

[E−,E+] (see the first part of the condition (H4)) being invalid for the supersolutions and subsolutions.

This is very different from the case for a single equation. Therefore, we construct an auxiliary system (2.1)

to help our analysis for the below (1.4), which is the traveling wave system corresponding to the original

reaction-diffusion system (1.2). The auxiliary system (2.1) with nonlinearity G(u), which has been con-

structed by Wang [53], admits the comparison principle on an interval [Ê−, Ê+] larger than [E−,E+].

In particular, G(u) ≡ F (u) for u ∈ [E−,E+], and a solution of System (2.1) with nonlinearity G(u)

bounded in [E−,E+] is also a solution of System (1.2) with nonlinearity F (u). Third, we prove the

asymptotic stability of the pyramidal traveling front established in Section 3 by considering two cases,

u0 � v− and u0 � v−, respectively. See below for the definitions of u0 and v−. Note that we prove for

the later case by using an argument similar to that in [43,53], which is different from that in [48], where

an estimate from below for the solutions of the initial value problem is required.

In the following we state our main result in this paper. Throughout this paper, we always assume that

the assumptions (H1)–(H5) hold and let m = 3 and c > 0. For any e1, e2, . . . , ek ∈ R
N , define

k∧
j=1

ej =
(

min
1�j�k

ej1, . . . , min
1�j�k

ejN

)
and

k∨
j=1

ej =
(

max
1�j�k

ej1, . . . , max
1�j�k

ejN

)
,

where k ∈ N. For c = (c1, . . . , cN), denote |c| =
√∑N

i=1 c
2
i . For any bounded u ∈ C(R3,RN ), define

‖u‖C(R3) = sup
x∈R3

|u(x)|.

Fix s > c. We assume that solutions travel towards the −x3 direction without loss of generality. Take

u(x, t) = v(x′, x3 + st, t), x′ = (x1, x2), x = (x′, x3).

Then we have

∂v

∂t
= DΔv − s

∂v

∂x3
+ F (v), x ∈ R

3, t > 0, (1.4)

v(x, 0) = v0(x), x ∈ R
3. (1.5)

We seek for V (x) with

L[V ] := −DΔV + s
∂V

∂x3
− F (V ) = 0, x ∈ R

3. (1.6)
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Let n � 3 be a given integer and m∗ =
√
s2−c2
c . Let {Aj = (Aj , Bj)}nj=1 be a set of unit vectors in R

2

such that

AjBj+1 −Aj+1Bj > 0, j = 1, 2, . . . , n− 1, AnB1 −A1Bn > 0.

Now (m∗Aj , 1) ∈ R
3 is the normal vector of {x ∈ R

3 | −x3 = m∗(Aj ,x
′)}. Set

hj(x
′) = m∗(Aj ,x

′) and h(x′) = max
1�j�n

hj(x
′) = m∗ max

1�j�n
(Aj ,x

′)

for x′ ∈ R
2. We can obtain that h(x′) � 0 for x′ ∈ R

2 and limR→∞ inf |x′|�R h(x′) = ∞. We call

{x = (x′, x3) ∈ R
3 | −x3 = h(x′)} a three-dimensional pyramid in R

3. Letting

Ωj = {x′ ∈ R
2 | h(x′) = hj(x

′)}

for j = 1, . . . , n, we have R
2 =

⋃n
j=1 Ωj . Denote the boundary of Ωj by ∂Ωj . Let

E =

n⋃
j=1

∂Ωj .

Now we set

Sj = {x ∈ R
3| − x3 = hj(x

′) for x′ ∈ Ωj}
for j = 1, . . . , n, and call

⋃n
j=1 Sj ⊂ R

3 the lateral surface of a pyramid. Denote

Γj = Sj ∩ Sj+1, Γn = Sn ∩ S1, j = 1, . . . , n− 1.

Then Γ :=
⋃n
j=1 Γj represents the set of all edges of a pyramid. Define

v−(x) = U

(
c

s
(x3 + h(x′))

)
= max

1�j�n
U

(
c

s
(x3 + hj(x

′))
)

and

D(γ) =

{
x ∈ R

3 | dist
(
x,

n⋃
j=1

Γj

)
> γ

}
for γ > 0. We note that the above setting on a pyramid comes from [47]. The following theorem is the

main result of this paper.

Theorem 1.1. Assume that (H1)–(H5) hold. Then for each s > c > 0, there exists a solution

u(x, t) = V (x′, x3 + st) of (1.2) satisfying (1.6), V (x) > v−(x) and

lim
γ→∞ sup

x∈D(γ)

|V (x)− v−(x)| = 0. (1.7)

Furthermore, for any u0 ∈ C(R3,RN ) with u0(x) ∈ [E−,E+] for x ∈ R
3 and

lim
γ→∞ sup

x∈D(γ)

|u0(x)− V (x)| = 0, (1.8)

the solution u(x, t;u0) of (1.2) with the initial value u0 satisfies

lim
t→∞ ‖u(·, ·, t;u0)− V (·, ·+ st)‖C(R3) = 0. (1.9)

Following Theorem 1.1, we can see that the function V satisfying (1.6) and (1.7) is unique. Following

(1.7), we know that the nonplanar traveling wave V has pyramidal structures and is characterized as a

combination of planar traveling fronts on the lateral surface. In the following, we call V (x′, x3 + st) a

pyramidal traveling front of (1.2). In the end of Section 4 (see Corollary 4.18), we further characterize

the pyramidal traveling fronts as a combination of two-dimensional V -form waves on the edges of the



1874 Wang Z C et al. Sci China Math October 2016 Vol. 59 No. 10

pyramid. Note that when N = 1, namely, when System (1.2) reduces to a scalar equation, the result of

Theorem 1.1 has been obtained by Taniguchi [47, 48].

The rest of this paper is organized as follows. In Section 2, we give some preliminaries which are needed

in the following sections. Theorem 1.1 will be proved in Sections 3 and 4. More specifically, we show the

existence of a pyramidal traveling front V of (1.2) in Section 3 and prove the asymptotic stability of the

front V in Section 4. In Section 5, we apply Theorem 1.1 to three important models in biology, namely,

a two-species Lotka-Volterra reaction-diffusion competition system, a two-species competition system

with spatio-temporal delays, and a reaction-diffusion systems of multiple obligate mutualists. Finally in

Section 6, we present some discussions of this work.

2 Preliminaries

Associated with System (1.4)–(1.5), consider the following initial value problem:

∂u

∂t
= DΔu− s

∂u

∂x3
+G(u(x, t)), x ∈ R

3, t > 0, (2.1)

u(0) = u0 ∈ C(R3,RN ) ∩ L∞(R3,RN ), (2.2)

where G(u) = (G1(u), . . . , GN (u)) with Gi(u) = F i(u) +Hi
−(u) +Hi

+(u) and

Hi
−(u) =

∑
1�j�N,j �=i

L−
ij{ui − E−

i }−(uj − E−
j ),

H i
+(u) =

∑
1�j�N,j �=i

L+
ij{E+

i − ui}−(uj − E+
j )

for i = 1, . . . , N . It is obvious that G(u) = F (u) for u ∈ [E−,E+].

In this section, we establish a comparison theorem for the auxiliary system (2.1) and give the relation-

ship between solutions of (1.4)–(1.5) and solutions of (2.1)–(2.2). Then we obtain a mollified pyramid

which was constructed by Taniguchi [47].

Definition 2.1. A continuous vector-valued function u is called a supersolution (subsolution) of (2.1)

on R
3 × R+ if ui(·, t) ∈ C2(R3) for t ∈ (0,∞), ui(x, ·) ∈ C1(0,+∞) for x ∈ R

3, and u satisfies that

N [u] :=
∂u

∂t
−DΔu+ s

∂u

∂x3
−G(u) � 0 (� 0)

for all x ∈ R
3 and t ∈ (0,∞).

Following Wang [53], we have the following theorem and corollaries.

Theorem 2.2. Assume that (H1)–(H4) hold. Suppose that u+ and u− are supersolution and subsolu-

tion of (2.1) on R
3 ×R+, respectively, and satisfy u±(x, t) ∈ [Ê−, Ê+] and u−(x, 0) � u+(x, 0) for any

x ∈ R
3 and t � 0. Then one has u−(x, t) � u+(x, t) for any x ∈ R

3 and t > 0.

Corollary 2.3. Assume that (H1)–(H4) hold. Suppose that u+ and u− are supersolution and subso-

lution of (2.1) on R
3 × R+, respectively, and satisfy u+(x, t) ∈ [E−, Ê+], u−(x, t) ∈ [Ê−,E+] and

u−(x, 0) � u+(x, 0) for any x ∈ R
3 and t � 0. Then for any v0 ∈ X with v0(x) ∈ [E−,E+]

and u−(x, 0) � v0(x) � u+(x, 0) for any x ∈ R
3, the solution v(x, t;v0) of (1.4)–(1.5) satisfies

u−(x, t) � v(x, t;v0) � u+(x, t) and E− � v(x, t;v0) � E+ for any x ∈ R
3 and t > 0.

Corollary 2.4. Assume that (H1)–(H4) hold. If v1 and v2 are a pair of supersolution and subsolution

of (1.4) on R
3 × R+ with E+ � v1(·, 0) � v2(·, 0) � E− on R

3, then v1(x, t) � v2(x, t) on R
3 × R

+.

The following lemma can be proved as in [53, Theorem 2.2] via using the results of Martin and

Smith [38].

Lemma 2.5. Assume that u± ∈ C(R3 × [0,∞),RN ) solve the following linear system:

∂

∂t
u± = DΔu± − s

∂

∂x3
u± +H±(x, t)u±(x, t),
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u±(0) = u±,0 ∈ C(R3,RN) ∩ L∞(R3,RN ),

where H±(x, t) = (h±ij(x, t))N×N , in which h±ij(x, t) ∈ C(R3 × R+,R) ∩ L∞(R3 × R+,R) are matrix-

valued functions and satisfy h±ij(x, t) � 0 on R
3 × R+ for i �= j. If H+(x, t) � H−(x, t) and u+,0(x)

� u−,0(x) � 0 for any x ∈ R
3 and t � 0, then u+(x, t) � u−(x, t) for x ∈ R

3 and t � 0.

Let ρ̃(r) ∈ C∞[0,∞) be a function with the following properties:

ρ̃(r) > 0, ρ̃r(r) � 0 for r � 0,

ρ̃(r) = 1, if r > 0 is small enough,

ρ̃(r) = e−r, if r > 0 is large enough, say r > R0,∫
R2

ρ̃(|x′|)dx′ = 1.

Assume R0 > 1 without loss of generality. We have
∫
R2 ρ̃(|x′|)dx′ = 2π

∫∞
0 rρ̃(r)dr.

Put ρ(x′) = ρ̃(|x′|). Then ρ : R2 → R belongs to C∞(R2) and satisfies
∫
R2 ρ(x

′)dx′ = 1 and (ρ ∗
hj)(x

′) = hj(x
′) for x′ ∈ R

2 and j = 1, . . . , n. Here the convolution ρ ∗ hj of ρ and hj is defined by

(ρ ∗ hj)(x′) =
∫
R2

ρ(y′)hj(x′ − y′)dy′.

For all non-negative integers j1 and j2 with 0 � j1 + j2 � 3, we have

|Dj1
x1
Dj2
x2
ρ(x′)| �M1ρ(x

′) for all x′ ∈ R
2,

where Dji
xi

= ∂ji

∂x
ji
i

, M1 > 0 is a constant.

Define ϕ = ρ ∗ h, namely,

ϕ(x′) =
∫
R2

ρ(x′ − y′)h(y′)dy′ =
∫
R2

ρ(y′)h(x′ − y′)dy′ (2.3)

for x′ ∈ R
2. We call −x3 = ϕ(x′) a mollified pyramid for a pyramid −x3 = h(x′). Set

S(x′) =
s√

1 + |∇ϕ(x′)|2 − c, (2.4)

where ∇ϕ(x′) = ( ∂ϕ∂x1
, ∂ϕ∂x2

). The following lemmas come from [47,48].

Lemma 2.6. Let ϕ and S be given by (2.3) and (2.4), respectively. For any pair of fixed integers

j1 � 0 and j2 � 0, one has supx′∈R2 |Dj1
x1
Dj2
x2
ϕ(x′)| <∞. In addition, one has

h(x′) < ϕ(x′) � h(x′) + 2πm∗
∫ ∞

0

r2ρ̃(r)dr,

|∇ϕ(x′)| < m∗, 0 < S(x′) � s− c, ∀x′ ∈ R
2

and

lim
λ→∞

sup{S(x′) | x′ ∈ R
2, dist(x′, E) � λ} = 0,

lim
λ→∞

sup{ϕ(x′)− h(x′) | x′ ∈ R
2, dist(x′, E) � λ} = 0.

Lemma 2.7. There exist positive constants ν1 and ν2 such that

0 < ν1 = inf
x′∈R2

ϕ(x′)− h(x′)
S(x′)

� sup
x′∈R2

ϕ(x′)− h(x′)
S(x′)

= ν2 <∞.

In addition, for every pair of integers j1 � 0 and j2 � 0 with 2 � j1 + j2 � 3, one has

sup
x′∈R2

Dj1
x1
Dj2
x2
ϕ(x′)

S(x′)
<∞.
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3 Existence of pyramidal traveling fronts

In this section, we establish the existence of pyramidal traveling fronts for System (1.2) in R
3. The main

method is to construct a suitable supersolution v+ of (2.1) with v+ > v− and then take a limit for the

solution v(x, t;v−) of (1.4)–(1.5) with v0 = v− as t→ +∞. The limit function is just the desired front V .

By Corollary 2.3, we have v−(x) � V (x) � v+(x) on R
3. The construction of the supersolution v+ is

a combination of the arguments in [47, 53]. In addition, we construct a subsolution v̂(x) of (2.1), which

will be used to establish the stability of the pyramidal traveling front V in the next section.

For α ∈ (0, 1), set 1
αh(αx

′) = h(x′). Define z3 = αx3, z
′ = αx′, z = αx, and

μ(x) :=
x3 +

1
αϕ(αx

′)√
1 + |∇ϕ(αx′)|2 =

1

α

z3 + ϕ(z′)√
1 + |∇ϕ(z′)|2 . (3.1)

Then we have μx3 = 1√
1+|∇ϕ(z′)|2 , μx3x3 = 0, and

μxi := (
√

1 + |∇ϕ(z′)|2)−1ϕzi − αμXi(z
′), μxixi = αYi(z

′)− α2μZi(z
′),

where

Xi(z
′) =

√
1 + |∇ϕ(z′)|2 ∂

∂zi
(
√

1 + |∇ϕ(z′)|2)−1,

Yi(z
′) =

∂

∂zi
((
√

1 + |∇ϕ(z′)|2)−1ϕzi)−
Xi(z

′)√
1 + |∇ϕ(z′)|2ϕzi ,

Zi(z
′) =

∂Xi

∂zi
−X2

i (z
′),

and i = 1, 2. Set

σ(x′) = εS(αx′),

where ε and α are positive constants, which will be determined later. Then we have

σxj (x
′) = αεSzj (z

′) and σxjxj (x
′) = α2εSzjzj (z

′), j = 1, 2.

Take η± > 0 small enough so that η−R− � R+ and η+R+ � R−. Let P− := η−R−, P+ := R+,

Q− := R− and Q+ := η+R+. The assumptions (H2) and (H3) imply that there exist constant matrixes

A± = (μ±
ij) such that ∂F i

∂uj
(E±) < μ±

ij for all i, j = 1, . . . , N , A+P+ � − 1
2λ

+P+, A+Q+ � − 1
2λ

+Q+,

A−P− � − 1
2λ

−P−, A−Q− � − 1
2λ

−Q−. Define

ω(ζ) :=
1

2

(
1 + tanh

ζ

2

)
, ζ ∈ R.

Let P± = (p±1 , . . . , p
±
N ) and Q± = (q±1 , . . . , q

±
N ). Define positive vector-valued functions

P (ζ) := (P1(ζ), . . . , PN (ζ)) and Q(ζ) := (Q1(ζ), . . . , QN(ζ))

by Pi(ζ) = ω(ζ)p+i + (1− ω(ζ))p−i and Qi(ζ) = ω(ζ)q+i + (1− ω(ζ))q−i , where i = 1, . . . , N . It is easy to

see that P(ζ) and Q(ζ) satisfy the following:

p−i � Pi(·) � p+i and P ′
i (·) > 0 on R, p0 := max

1�i�N
p+i > 0, p0 := min

1�i�N
p−i > 0,

|P (±ζ)− P±|+ |P ′(±ζ)|+ |P ′′(±ζ)| � K1e
−ζ for ζ � 0 and some K1 > 0,

and

q+i � Qi(·) � q−i and Q′
i(·) < 0 on R, q0 := max

1�i�N
q−i > 0, q0 := min

1�i�N
q+i > 0,

|Q(±ζ)−Q±|+ |Q′(±ζ)|+ |Q′′(±ζ)| � K2e
−ζ for ζ � 0 and some K2 > 0.

Recall that v−(x) is a subsolution of (1.4). In particular, ∂
∂x3

v−i (x) > 0 for any x ∈ R
3, i = 1, . . . , N .
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Lemma 3.1. Assume that (H1)–(H5) hold. There exist a positive constant ε+ < 1 and a positive

function α+(ε) such that for 0 < ε < ε+ and 0 < α < α+(ε),

v+(x; ε, α) := U(μ(x)) + P (μ(x))σ(x′)

is a supersolution of (1.6). Furthermore,

lim
γ→∞ sup

x∈D(γ)

|v+(x; ε, α)− v−(x)| � p0ε, (3.2)

v−(x) < v+(x; ε, α) for x ∈ R
3, (3.3)

∂

∂x3
v+i (x; ε, α) > 0 for x ∈ R

3, i = 1, 2, . . . , N. (3.4)

Proof. Firstly, we show that v+ is a supersolution of (1.6). Note that v+(x′; ε, α) := U(μ(x))

+ P (μ(x))σ(x′) > E− and {v+i − E−
i }− ≡ 0. Therefore, Hi−(v+) ≡ 0. Consequently, we have

Ni[v
+] = −DiΔv

+
i + s

∂

∂x3
v+i − F i(v+)−Hi

+(v
+)

= −Di

2∑
j=1

[(U ′
i(μ)μxj )xj + (p′i(μ)μxjσ(x

′) + pi(μ)σxj (x
′))xj ]

− Di(U
′′
i (μ) + p′′i (μ)σ(x

′))
1 + |∇ϕ(αx′)|2 +

s(U ′
i(μ) + p′i(μ)σ(x

′))√
1 + |ϕ(αx′)|2

− F i(U(μ) + P (μ)σ(x′))−Hi
+(U(μ) + P (μ)σ(x′))

= Di

(
1−

2∑
j=1

μ2
xj

− 1

1 + |∇ϕ(αx′)|2
)
(U ′′

i (μ) + p′′i (μ)σ(x
′))

−Di

2∑
j=1

μxjxj (U
′
i(μ) + p′i(μ)σ(x

′))− 2Di

2∑
j=1

p′i(μ)μxjσxj (x
′)

−Di

2∑
j=1

pi(μ)σxjxj (x
′)−Dip

′′
i (μ)σ(x

′)

+

(
s√

1 + |ϕ(αx′)|2 − c

)
U ′
i(μ) +

s√
1 + |ϕ(αx′)|2 p

′
i(μ)σ(x

′)

+ F i(U(μ)) − F i(U(μ) + P (μ)σ(x′))−Hi
+(U(μ) + P (μ)σ(x′)).

Let

Ii1 = Di

(
1− μ2

x1
− μ2

x2
− 1

1 + |∇ϕ(αx′)|2
)
(U ′′

i (μ) + p′′i (μ)σ(x
′))

=

[
2αDiμ(X1ϕz1 +X2ϕz2)√

1 + |∇ϕ(αx′)|2 − α2μ2(X2
1 +X2

2 )

]
(U ′′

i (μ) + p′′i (μ)σ(x
′)),

Ii2 = −Di(U
′
i(μ) + p′i(μ)σ(x

′))
2∑
j=1

μxjxj − 2Dip
′
i(μ)

2∑
j=1

μxjσxj (x
′)

= −αDi(U
′
i(μ) + p′i(μ)σ(x

′))
[ 2∑
j=1

Yj(z
′)− αμ

2∑
j=1

Zj(z
′)
]

− 2αεDip
′
i(μ)

2∑
j=1

(
ϕzj√

1 + |∇ϕ(z′)|2 − αμXj(z
′)
)
Szj ,

Ii3 = −Dip
′′
i (μ)σ(x

′) +
sp′i(μ)σ(x

′)√
1 + |∇ϕ(αx′)|2 = −εDip

′′
i (μ)S(z

′) +
εsp′i(μ)S(z

′)√
1 + |∇ϕ(z′)|2 ,
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Ii4 = −Di

2∑
j=1

pi(μ)σxjxj (x
′) = −α2εDipi(μ)

2∑
j=1

Szjzj ,

Ii5 =

(
s√

1 + |ϕ(αx′)|2 − c

)
U ′
i(μ) = S(z′)U ′

i(μ),

Ii6 = F i(U(μ)) − F i(U(μ) + P (μ)σ(x′)),

and

Ii7 = Hi
+(U(μ) + P (μ)σ(x′)).

By Lemmas 2.5 and 2.6 and direct calculations, we have

sup
x′∈R2

∣∣∣∣ Ii1(x′)
S(αx′)

∣∣∣∣ � Ci1α, sup
x′∈R2

∣∣∣∣ Ii2(x′)
S(αx′)

∣∣∣∣ � Ci2α and sup
x′∈R2

∣∣∣∣ Ii4(x′)
S(αx′)

∣∣∣∣ � Ci4α
2

for 0 < α < 1 and 0 < ε < 1, where Ci1, Ci2 and Ci4 are positive constants independent of α and ε,

i = 1, . . . , N .

For v ∈ R
N and r > 0, we define Br(v) := {u ∈ R

N : |u− v| < r}. Now by the definition of μ±
ij , there

exist a sufficiently small positive constant

ε0 < min

{
p0
4
,
q0
4
,
1

4
min

1�i�N
(E+

i − E−
i )

}
and a positive constant κ such that

∂F i

∂uj
(u) � μ±

ij for all u ∈ B4ε0(E
±) ⊂ [Ê−, Ê+] and for all i, j = 1, . . . , N,

N∑
j=1

μ±
ijrj � −κri for r = (r1, . . . , rN ) ∈ R

N
+ ∩B2ε0(P

±)

or r = (r1, . . . , rN ) ∈ R
N
+ ∩B2ε0(Q

±).

(3.5)

Take D = max1�i�N Di, L
− = max1�i,j�N L−

ij and L+ = max1�i,j�N L+
ij . Using the fact that

U(x) → E± as x → ±∞ and the properties of P (x) and Q(x), there exists a sufficiently large constant

M > 0 such that

|U(x) −E+| < ε0 and |U(x) −E+| < κ(p0 − ε0)

8p0N(L+ + 1)
for x > M,

|U(x) −E−| < ε0 and |U(x) −E−| < κ(q0 − ε0)

8q0N(L− + 1)
for x < −M,

|P (x) − P+| � ε0 and |P (x) − P+| � κ(p0 − ε0)

8p0N(L+ + 1)
for x > M,

|P (x) − P−| � ε0 for x � −M, |Q(x) −Q+| � ε0 for x > M,

|Q(x) −Q−| � κ(q0 − ε0)

8q0N(L− + 1)
and |Q(x) −Q−| � ε0 for x < −M,

|P ′
i (x)| <

1

8s
κ(p0 − ε0) and |P ′′

i (x)| <
1

8D
κ(p0 − ε0) for |x| > M,

|Q′
i(x)| <

1

8s
κ(q0 − ε0) and |Q′′

i (x)| <
1

8D
κ(q0 − ε0) for |x| > M.

(3.6)

For ε ∈ (0, ε0/(Np
0s)), we have v+(x; ε, α) ∈ [Ê−, Ê+] for x ∈ R

3. Furthermore, take

ε < min

{
1

2p0sN
min

1�i�N
{E+

i − Ui(M)}, κ(p0 − ε0)

8sN(L+ + 1)(p0)2

}
. (3.7)

For |μ(x)| > M and z′ ∈ R
2, we have

|Ii3| � εDi|p′′i (μ)|S(z′) + εs|p′i(μ)|S(z′) � 1

4
εκ(p0 − ε0)S (z′).



Wang Z C et al. Sci China Math October 2016 Vol. 59 No. 10 1879

Since

Ii6 = −
( N∑
j=1

∂

∂uj
F i(U(μ) + θεP (μ)S(z′))pj(μ)

)
εS(z′)

� −
( N∑
j=1

μ+
ijpj(μ)

)
σ(z′) � κpi(μ)εS(z

′)

� κ(p+i − ε0)εS(z
′)

and

Ii7 =
∑

j=1,...,N ;j �=i
L+
ij{E+

i − Ui(μ)− εpi(μ)S(z
′)}−(Uj(μ) + εpj(μ)S(z

′)− E+
j )

�
∑

j=1,...,N ;j �=i
ε2L+

ijpi(μ)pj(μ)S
2(z′)

� 1

8
κ(p0 − ε0)εS(z

′)

for μ > M and z′ ∈ R
2 due to (3.5)–(3.7), we have

Ni[v
+] = Ii1 + Ii2 + Ii3 + Ii4 + Ii5 + Ii6 − Ii7

� S(z′)
[
− Ci1α− Ci2α− 1

4
κ(p0 − ε0)ε

− Ci4α
2 + κ(p+i − ε0)ε − 1

8
κ(p0 − ε0)ε

]
>

[
− (Ci1 + Ci2 + αCi4)α+

1

2
κ(p+i − ε0)ε

]
S(z′) > 0

for μ(x) > M and z′ ∈ R
2 provided that

α < min
1�i�N

{
κ(p+i − ε0)

2(Ci1 + Ci2 + Ci4)

}
ε.

By (3.7), we have that Ii7(x) = 0 when μ(x) �M . Then using an argument similar to that for μ(x) > M ,

we have Ni[v
+] > 0 for μ(x) < −M and z′ ∈ R

2 provided that

α < min
1�i�N

{
κ(p−i − ε0)

2(Ci1 + Ci2 + Ci4)

}
ε.

Let

Mij := sup
u∈[ ̂E−, ̂E+]

∣∣∣∣ ∂∂uj F i(u)
∣∣∣∣ (3.8)

and Ci6 =
∑N

j=1Mijp
+
j , i, j = 1, . . . , N . Then |Ii6| � Ci6εS(z

′) for all z′ ∈ R
2. Take a constant Ci3 > 0

such that |Ii3| � Ci3εS(z
′) for all z′ ∈ R

2, i = 1, . . . , N . Let

p∗ := min
|x|�M,1�i�N

U ′
i(x) > 0.

For |μ(x)| �M and z′ ∈ R
2, we have

Ni[v
+
i ] = Ii1 + Ii2 + Ii3 + Ii4 + Ii5 + Ii6

� S(z′)[−Ci1α− Ci2α− Ci3ε− Ci4α
2 + p∗ − Ci6ε] > 0.

Up to now, we have showed that v+ is a supersolution of (1.6) provided that

ε < min
1�i�N

p∗

2(Ci3 + Ci6)
and α < min

1�i�N
min{p∗, κ(p0 − ε0)ε}
2(Ci1 + Ci2 + Ci4)

.
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Now we prove the inequality (3.3). It suffices to prove

Ui

(
c

s
(x3 + hj(x

′))
)
< v+i (x; ε, α) for all i = 1, . . . , N and j = 1, . . . , n.

When μ(x) � c
s (x3 + hj(x

′)), it is easy to get

Ui

(
c

s
(x3 + hj(x

′))
)

� Ui(μ(x)) < v+i (x; ε, α).

Assume that

μ(x) <
c

s
(x3 + hj(x

′)).

By the definition of μ, we have

c

s
(x3 + hj(x

′)) >
x3 +

1
αϕ(αx

′)√
1 + |∇ϕ(αx′)|2 =

x3 + hj(x
′) + 1

αϕ(αx
′)− hj(x

′)√
1 + |∇ϕ(αx′)|2 .

It follows that

(x3 + hj(x
′))
(

s√
1 + |∇ϕ(z′)|2 − c

)
<
s

α

hj(z
′)− ϕ(z′)√

1 + |∇ϕ(z′)|2 ,

namely,

x3 + hj(x
′) <

s

α

1√
1 + |∇ϕ(z′)|2

hj(z
′)− ϕ(z′)
S(z′)

.

By the definition of ν1, we have

x3 + hj(x
′) <

s

α

1√
1 + |∇ϕ(z′)|2

hj(z
′)− ϕ(z′)
S(z′)

� −cν1
α
.

Since

hj(x
′) =

1

α
hj(z

′) � 1

α
h(z′) � 1

α
ϕ(z′),

we have

v+i (x; ε, α)− Ui

(
c

s
(x3 + hj(x

′))
)

= Ui

(
x3 +

1
αϕ(αx

′)√
1 + |∇ϕ(αx′)|2

)
+ εpi

(
x3 +

1
αϕ(αx

′)√
1 + |∇ϕ(αx′)|2

)
S(αx′)

− Ui

(
c

s
(x3 + hj(x

′))
)

� Ui

(
x3 + hj(x

′)√
1 + |∇ϕ(αx′)|2

)
+ εpi

(
x3 +

1
αϕ(αx

′)√
1 + |∇ϕ(αx′)|2

)
S(αx′)

− Ui

(
c

s
(x3 + hj(x

′))
)
.

Since

Ui

(
x3 + hj(x

′)√
1 + |∇ϕ(αx′)|2

)
− Ui

(
c

s
(x3 + hj(x

′))
)

= (x3 + hj(x
′))

1

s
S(αx′)

×
∫ 1

0

U ′
i

(
(x3 + hj(x

′))
(

θ√
1 + |∇ϕ(αx′)|2 +

c

s
(1 − θ)

))
dθ,

we have

v+i (x; ε, α)− Ui

(
c

s
(x3 + hj(x

′))
)
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� εp0S(αx
′) + (x3 + hj(x

′))
1

s
S(αx′)

×
∫ 1

0

U ′
i

(
(x3 + hj(x

′))
(

θ√
1 + |∇ϕ(αx′)|2 +

c

s
(1 − θ)

))
dθ.

Note that
c

s
� θ√

1 + |∇ϕ(αx′)|2 +
c

s
(1− θ) � 1 and x3 + hj(x

′) < 0.

Consequently, we have

v+i (x; ε, α)− Ui

(
c

s
(x3 + hj(x

′))
)

� εp0S(αx
′) + (x3 + hj(x

′))
1

s
S(αx′)

×
∫ 1

0

U ′
i

(
(x3 + hj(x

′))
(

θ√
1 + |∇ϕ(αx′)|2 +

c

s
(1− θ)

))
dθ

� S(αx′)
s

[(x3 + hj(x
′))C1e

− cβ1
s |x3+hj(x

′)| + sεp0]

� S(αx′)
s

[
− sC1

cβ1
sup

x>
c2ν1β1

sα

xe−|x| + sεp0

]

� S(αx′)
s

[
− sC1

cβ1

c2ν1β1
sα

e−
c2ν1β1

sα + sεp0

]
=
S(αx′)
s

[
− cν1C1

α
e−

c2ν1β1
sα + sεp0

]
� 0

provided that α < α∗(ε), where 0 < α∗(ε) < s
c2ν1β1

satisfies

sεp0 − cν1C1

α
e−

c2ν1β1
sα > 0 for α < α∗(ε).

Now we prove (3.2). It is sufficient to show that

lim
γ→∞ sup

x∈D(γ)

∣∣∣∣Uj(μ(x))− Uj

(
c

s
(x3 + h(x′))

)∣∣∣∣ = 0

for all j = 1, . . . , N . Assume the contrary for some l ∈ {1, . . . , N}. Then there exist a positive constant ε′

and sequences {γk}k∈N ⊂ R and {xk}k∈N ⊂ R
3 such that

lim
k→∞

γk = ∞, xk ∈ D(γk) (3.9)

and ∣∣∣∣Ul(μ(xk))− Ul

(
c

s
(xk,3 + h(x′

k))

)∣∣∣∣ � ε′, (3.10)

where x′
k = (xk,1, xk,2). It follows that

μ(xk) =
1

α

zk,3 + ϕ(z′
k)√

1 + |∇ϕ(z′
k)|2

=
xk,3 + h(x′

k) +
1
α (ϕ(z

′
k)− h(z′

k))√
1 + |∇ϕ(z′

k)|2
.

If limk→∞ dist(x′
k, E) = ∞, by Lemma 2.6 we have limk→∞ |ϕ(x′

k)− h(x′
k)| = 0 and limk→∞ S(x′

k) = 0.

If further xk,3 + h(x′
k) → ±∞ as k → +∞, then μ(xk) → ±∞, which again contradicts (3.10). If

xk,3 + h(x′
k) are bounded for k ∈ N, we have

lim
k→∞

∣∣∣∣μ(xk)− c

s
(xk,3 + h(x′

k))

∣∣∣∣ = 0.
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This contradicts (3.10) once more. If dist(x′
k, E) keeps finite uniformly in k, then (3.9) implies that

limk→∞(xk,3 + h(x′
k)) = ±∞ and limk→∞ μ(xk) = ±∞, respectively. This contradicts (3.10). Thus, we

have proved (3.2).

Finally, we take

ε+ = min

{
1,

ε0
Np0s

, min
1�i�N

p∗

2(Ci3 + Ci6)
, min
1�i�N

E+
i − Ui(M)

2Np0s
,

κ(p0 − ε0)

8sN(L+ + 1)(p0)2

}
and

α+(ε) := min

{
1, min

1�i�N
min{p∗, κ(p0 − ε0)ε}
2(Ci1 + Ci2 + Ci4)

, α∗(ε)
}
.

This completes the proof.

Take ψ(ϑ) := − 1
m∗β2

ln(1 + exp(−β2ϑ)). There exist some constants C′
i > 0 (i = 2, 3, 4) such that

max

{∣∣∣∣ψ(ϑ)− ϑ

m∗

∣∣∣∣, ∣∣∣∣ψ′(ϑ)− 1

m∗

∣∣∣∣} � C′
2 sech(β2ϑ), for ϑ � 0,

max{|ψ(ϑ)|, |ψ′(ϑ)|} � C ′
2 sech(β2ϑ), for ϑ � 0,

max{|ψ′′(ϑ)|, |ψ′′′(ϑ)|} � C ′
2 sech(β2ϑ), for ϑ ∈ R,

c− sψ(ϑ)√
1 + ψ′(ϑ)2

� C′
3 min{1, exp(β2ϑ)}, for ϑ ∈ R,

0 � s√
1 + ψ′(ϑ)2

− cm∗ � C′
4 min{1, exp(β2ϑ)}, for ϑ ∈ R.

(3.11)

We notice that (3.11) follows directly from [43] (see also [53]).

To establish the existence of pyramidal traveling fronts for System (1.2), we still need the following

lemma which was proved in [53].

Lemma 3.2. Assume that (H1)–(H5) hold. There exist a positive constant ε− and a positive function

α−(ε) so that, for 0 < ε < ε− and 0 < α < α−(ε),

v̂(x, z; ε, α) := U

(
x+ ψ(αz)/α√
1 + ψ′(αz)2

)
− εQ

(
x+ ψ(αz)/α√
1 + ψ′(αz)2

)
sech(β2αz)

is a subsolution to the following system:

∂u

∂t
= D

(
∂2

∂x2
u+

∂2

∂z2
u

)
− s

∂

∂z
u+G(u(x, z, t)),

where x, z ∈ R. In addition, we have ∂
∂x v̂i > 0, i = 1, . . . , N .

We note that

ε− = min

{
ε0
q0
,

1

2q0
min

1�i�N
{Ui(−M)− E−

i },
κ(q0 − ε0)

8N(L− + 1)(q0)2
, min
1�i�N

C′
3p

∗

2(C ′
i3 + C′

i5)
inf
ϑ∈R

min{1, exp(ϑ)}
sech(ϑ)

}
and

α−(ε) := min

{
1, min

1�i�N
C′

3p
∗

2(C ′
i1 + C′

i2)
inf
ϑ∈R

min{1, exp(ϑ)}
sech(ϑ)

, min
1�i�N

κ(q0 − ε0)ε

2(C ′
i1 + C′

i2)

}
,

where ε0, q
0, q0 and M are defined as before, C ′

i1, C
′
i2, C

′
i3, C

′
i5 and C ′

3 are positive constants. Thus, it is

obvious that

v̂j(x; ε, α) := U

( hj(x
′)

m∗
+ ψ(αx3)

α√
1 + ψ′(αx3)2

)
− εQ

( hj(x
′)

m∗
+ ψ(αx3)

α√
1 + ψ′(αx3)2

)
sech(β2αx3)

is a subsolution of (2.1) on t > 0 and x ∈ R
3. Consequently, we have that

ṽ(x; ε, α) :=

n∨
j=1

v̂j(x; ε, α) = U

(
h(x′)/m∗ + ψ(αx3)/α√

1 + ψ′(αx3)2

)
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− εQ

(
h(x′)/m∗ + ψ(αx3)/α√

1 + ψ′(αx3)2

)
sech(β2αx3)

is a subsolution of (2.1) on t > 0.

In the following, we show the existence of pyramidal traveling fronts of (1.2). By the parabolic estimate,

we know that there exists K > 0 such that solutions v(x, t;v0) of (1.4)–(1.5) with v0(x) ∈ [E−,E+]

satisfy ‖v(·, t;v0)‖C3(R3) < K for any t � 1. Since v− is a subsolution of (1.6), we have v(x, t1;v
−)

� v(x, t2;v
−) for all x ∈ R

3 and 0 < t1 � t2. Consequently, define

V (x) := lim
t→∞v(x, t;v−) (3.12)

for all x ∈ R
3. It follows that v(·, t ;v−) converges monotonically to V (·) under the norm ‖ · ‖C2

loc(R
3) as

t→ ∞. Since V (x) � v+(x; ε, α) for any x ∈ R
3, by the arbitrariness of ε and α, we have

lim
γ→∞ sup

x∈D(γ)

|V (x)− v−(x)| = 0. (3.13)

Furthermore, following an argument in [44] we know that V (·) defined by (3.12) satisfies (1.6).

We thus have proved the following theorem on the existence of pyramidal traveling fronts for Sys-

tem (1.2).

Theorem 3.3. Assume that (H1)–(H5) hold. For any s > c, (1.2) admits a pyramidal traveling

front V satisfying (1.6), (3.13) and v−(x) < V (x) < v+(x; ε, α) for any x ∈ R
3, where 0 < ε < ε+ and

0 < α < α+(ε). Moreover, one has ∂
∂x3

Vi(x) > 0 for x ∈ R
3, i = 1, . . . , N .

In view of the monotonicity of v−(x) in the variable x3, we conclude that
∂
∂x3

Vi(x) � 0 for all x ∈ R
3.

Then the strong maximum principle implies the strict inequality.

4 Stability and uniqueness of traveling curved fronts

In this section we develop the arguments of Taniguchi [48] and Wang [53] to establish the stability and

uniqueness of the pyramidal traveling front V obtained in Section 3. We first prove that (1.9) holds for

u0 � v− and u0 � v−, respectively. See Theorems 4.13 and 4.17. We then characterize the pyramidal

traveling front as a combination of two-dimensional V -form fronts on the edges of the pyramid.

Consider the following Cauchy problem:⎧⎨⎩
∂

∂t
w̃(ξ, η, t) −D

∂2

∂ξ2
w̃(ξ, η, t) −D

∂2

∂η2
w̃(ξ, η, t) + s̄

∂

∂η
w̃(ξ, η, t)− F (w̃) = 0,

w̃(ξ, η, 0) = w̃0(ξ, η),

(4.1)

where (ξ, η) ∈ R
2, t > 0, i = 1, . . . , N ; w̃(ξ, η, t) = (w̃1(ξ, η, t), . . . , w̃N (ξ, η, t)). The following theorem

was established by Wang [53].

Theorem 4.1. Assume that (H1)–(H5) hold. Then for each s̄ > c, there exists a steady state Φ(ξ, η; s̄)

of (4.1) satisfying Φ(ξ, η; s̄) > ṽ−(ξ, η) and

lim
R→∞

sup
ξ2+η2>R2

|Φ(ξ, η)− ṽ−(ξ, η)| = 0,

where

ṽ−(ξ, η) = U

(
c

s̄

(
η +

√
s̄2 − c2

c
|ξ|
))

.

Moreover, for any w̃0 ∈ C(R2,RN ) with w̃0(ξ, η) ∈ [E−,E+] for (ξ, η) ∈ R
2 and

lim
R→∞

sup
ξ2+η2>R2

|w̃0(ξ, η) − ṽ−(ξ, η)| = 0,

the solution w̃(ξ, η, t; w̃0) of (4.1) with the initial value w̃0 satisfies

lim
t→∞ ‖w̃(·, t; w̃0)−Φ(·)‖C(R2) = 0.
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For any subset D ⊂ R
3 we denote the characteristic function of D by χD, namely, χD(x) = 1 for x ∈ D

and χD(x) = 0 for x /∈ D. Let hij(x, t) ∈ C(R3 × R+) (i, j = 1, . . . , N) be given continuous functions

satisfying

0 � hij(x, t) �Mij , i �= j, sup
x∈R3,t>0

|hij(x, t)| �Mij , i = j, (4.2)

where Mij is defined by (3.8). Consider the following linear system:⎧⎪⎪⎨⎪⎪⎩
∂

∂t
wi −Di

3∑
k=1

∂2

∂x2k
wi + s

∂

∂x3
wi −

N∑
j=1

hij(x, t)wj = 0, x ∈ R
3, t > 0,

wi(x, 0) = w0
i (x) ∈ C(R3,RN ) ∩ L∞(R3,RN ), x ∈ R

3, i = 1, . . . , N.

(4.3)

Lemma 4.2. Let w(x, t) := (w1(x, t), . . . , wN (x, t)) be a solution of (4.3). Then there exist positive

constants Ã, B̃ and λ0 such that

max
1�i�N

sup
x∈R3

wi(x, t) � eλ0tmax
{
0, max

1�i�N
sup
x∈R3

w0
i (x)

}
, ∀ t > 0,

eλ0tmin
{
0, min

1�i�N
inf

x∈R3
w0(x)

}
� min

1�i�N
inf

x∈R3
wi(x, t), ∀ t > 0,

max
1�i�N

sup
x∈R3

|wi(x, t)| � eλ0t max
1�i�N

‖w0
i ‖L∞(R3), ∀ t > 0

and for any γ > 0,

sup
1�i�N

sup
x∈D(2γ)

|wi(x, t)| � eλ0t
3πÃ

B̃

∫ +∞
√

3γ

3
√

t

exp(−B̃r2)dr max
1�i�N

sup
x∈D(γ)c

|w0
i (x)|

+
π
√
πÃ

B̃
√
B̃

eλ0t sup
1�i�N

sup
x∈D(γ)

|w0
i (x)|, ∀ t > 0, (4.4)

where D(γ)c = {x | x ∈ R
3,x �∈ D(γ)}. In particular, one has

sup
1�i�N

|wi(x0, t)| � eλ0t
3πÃ

B̃

∫ +∞

R√
t

exp(−B̃r2)dr max
1�i�N

sup
x∈R3

|w0
i (x)|, ∀ t > 0 (4.5)

for any x0 ∈ R
3 and R > 0, provided that w0

i (x) = 0 for any i = 1, . . . , N and x ∈ B(x0,
√
3R) := {x ∈

R
3 | |x− x0| <

√
3R}.

Proof. Define ŵ(x, t) = (ŵ1(x, t), . . . , ŵN (x, t)) by wi(x, t) = eλ
′
0tŵi(x, t), where λ

′
0 :=

∑N
i=1

∑N
j=1Mij

and Mij is defined by (3.8). Then we have⎧⎪⎪⎨⎪⎪⎩
∂

∂t
ŵi −Di

3∑
k=1

∂2

∂x2k
ŵi + s

∂

∂x3
ŵi + (λ′0 − hii(x, t))ŵi −

N∑
j=1,j �=i

hij(x, t)ŵj = 0,

ŵi(x, 0) = w0
i (x),

(4.6)

where x ∈ R
3, t > 0, i = 1, . . . , N . It is easy to show that the constant-valued function w(x, t) =

(w1(x, t), . . . , wN (x, t)) defined by

wi(x, t) ≡ max
{
0, max

1�i�N
sup
x∈R3

w0
i (x)

}
, x ∈ R

3, t � 0

is a supersolution of (4.6). Similarly, the function w(x, t) = (w1(x, t), . . . , wN (x, t)) defined by

wi(x, t) ≡ min
{
0, min

1�i�N
inf

x∈R3
w0
i (x)

}
, x ∈ R

3, t > 0

is a subsolution of (4.6). By Lemma 2.5, we have

min
{
0, min

1�i�N
inf

x∈R3
w0
i (x)

}
� ŵi(x, t) � max

{
0, max

1�i�N
sup
x∈R3

w0
i (x)

}
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for x ∈ R
3, t > 0 and i = 1, . . . , N . Therefore, for any x ∈ R

3 and t > 0 we have

eλ
′
0tmin

{
0, min

1�i�N
inf

x∈R3
w0
i (x)

}
� wi(x, t) � eλ

′
0tmax

{
0, max

1�i�N
sup
x∈R3

w0
i (x)

}
,

where i = 1, . . . , N . We have proved the first three inequalities in the lemma for any λ0 � λ′0. We will

determine an exact λ0 > 0 below.

Now we prove inequality (4.4). Consider the initial-value problems⎧⎪⎪⎨⎪⎪⎩
∂

∂t
w+
i −Di

3∑
k=1

∂2

∂x2k
w+
i + s

∂

∂x3
w+
i + (λ′0 − hii(x, t))w

+
i −

N∑
j=1,j �=i

hij(x, t)w
+
j = 0,

w+
i (x, 0) = max{0, w0

i (x)}

and ⎧⎪⎪⎨⎪⎪⎩
∂

∂t
w−
i −Di

3∑
k=1

∂2

∂x2k
w−
i + s

∂

∂x3
w−
i + (λ′0 − hii(x, t))w

−
i −

N∑
j=1,j �=i

hij(x, t)w
−
j = 0,

w−
i (x, 0) = min{0, w0

i (x)},
where x ∈ R

3, t > 0 and i = 1, . . . , N . It is easy to show that w+
i (x, t) � 0, w−

i (x, t) � 0 and

w−
i (x, t) � ŵi(x, t) � w+

i (x, t) for x ∈ R
3, t > 0 and i = 1, . . . , N . Consider⎧⎪⎪⎨⎪⎪⎩

∂

∂t
w̃i −Di

3∑
k=1

∂2

∂x2k
w̃i + s

∂

∂x3
w̃i + (λ′0 −Mii)w̃i −

N∑
j=1,j �=i

Mijw̃j = 0, x ∈ R
3, t > 0,

w̃i(x, 0) = |w0
i (x)|, x ∈ R

3.

(4.7)

By virtue of w̃i(x, 0) � w+
i (x, 0), it follows from Lemma 2.5 that w̃i(x, t) � w+

i (x, t) for x ∈ R
3, t > 0

and 1 � i � N . Similarly, we have w̃i(x, t) � −w−
i (x, t) for x ∈ R

3, t > 0 and 1 � i � N . Consequently,

we obtain

|ŵi(x, t)| � w̃i(x, t), ∀x ∈ R
3, t > 0, 1 � i � N.

Following [15, Chapter 9, Theorems 2 and 3], we know that there exists a smooth N ×N matrix-valued

function Ψ(x,y, t, s) for x,y ∈ R
3 and 0 � s < t � 2 such that

w̃(x, t) =

∫
R3

Ψ(x,y, t, 0)w̃(y, 0)dy.

Since the coefficients in (4.7) are constants, the matrix-valued function Ψ(x,y, t, s) can be rewritten into

Ψ(x− y, t− s), see [15, Subsection 9.2]. It follows that

w̃(x, t) =

∫
R3

Ψ(x− y, t)w̃(y, 0)dy

for x ∈ R
3 and 0 < t � 2. Consequently, by the uniqueness of solutions we have

w̃(x, t) =

∫
R3

Ψ(x− y1, 1)dy1

∫
R3

Ψ(y1 − y2, 1)dy2

· · ·
∫
R3

Ψ(yk−1 − yk, 1)dyk

∫
R3

Ψ(yk − y, t− k)w̃(y, 0)dy

for any t > 0, where k = max{[t− 1], 0} and [s] = max{n : n ∈ Z, n � s} for any s ∈ R. Therefore, we

have

w̃i(x, t) =

∫
R3

Ψi(x− y1, 1)dy1

∫
R3

Ψ(y1 − y2, 1)dy2 · · ·
∫
R3

Ψ(yk−1 − yk, 1)dyk

×
∫
R3

Ψ(yk − y, t− k)(χD(γ)(y)w̃(y, 0) + χD(γ)c(y)w̃(y, 0))dy
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for any t > 0 and i ∈ {1, 2, . . . , N}. Consequently, we have

w̃i(x, t) �
∫
R3

N∑
j=1

|Ψij(x− y1, 1)|dy1

∫
R3

N∑
l,j=1

|Ψlj(y1 − y2, 1)|dy2

· · ·
∫
R3

N∑
l,j=1

|Ψlj(yk−1 − yk, 1)|dyk

×
∫
R3

N∑
l,j=1

|Ψlj(yk − y, t− k)|χD(γ)(y)dy max
1�j�N

sup
y∈D(γ)

|w0
j (y)|

+

∫
R3

N∑
j=1

|Ψij(x− y1, 1)|dy1

∫
R3

N∑
l,j=1

|Ψlj(y1 − y2, 1)|dy2

· · ·
∫
R3

N∑
l,j=1

|Ψlj(yk−1 − yk, 1)|dyk

×
∫
R3

N∑
l,j=1

|Ψlj(yk − y, t− k)|χD(γ)c(y)dy max
1�j�N

sup
y∈D(γ)c

|w0
j (y)|. (4.8)

By [15, Chapter 9], there exist positive numbers Ã � 1 and B̃ � 1 such that∑
1�l,j�N

|Ψlj(x− y, t− s)| � Ã(t− s)−
3
2 exp

(
− B̃

|x− y|2
t− s

)
for any 0 � s < t � 2. Since γ � |dist(x,Γ)− dist(y,Γ)| � |x− y| for any x ∈ D(2γ) and y ∈ D(γ)c, we

have that∫
R3

N∑
j=1

|Ψij(x− y1, 1)|dy1

∫
R3

N∑
l,j=1

|Ψlj(y1 − y2, 1)|dy2

· · ·
∫
R3

N∑
l,j=1

|Ψlj(yk−1 − yk, 1)|dyk
∫
R3

N∑
l,j=1

|Ψlj(yk − y, t− k)|χD(γ)c(y)dy

� Ãk+1

∫
R3

exp(−B̃|x− y1|2)dy1

∫
R3

exp(−B̃|y1 − y2|2)dy2

· · ·
∫
R3

exp(−B̃|yk−1 − yk|2)dyk
∫
R3

(t− k)−
3
2 exp

(
− B̃

|yk − y|2
t− k

)
χD(γ)c(y)dy

= Ãk+1

∫
R3

exp

(
− B̃

2
|x− y1|2

)
dy1

∫
R3

exp

(
− B̃

2
|y1 − y2|2

)
dy2

· · ·
∫
R3

exp

(
− B̃

2
|yk−1 − yy|2

)
dyk

∫
R3

(t− k)−
3
2 exp

(
− B̃

2
|x− y1|2

)
· · · exp

(
− B̃

|yk − y|2
t− k

)
χD(γ)c(y)dy

� Ãk+1

(
t

t− k

) 3
2
(∫

R3

exp

(
− B̃|z|2

2

)
dz

)k ∫
R3

t−
3
2 exp

(
− B̃

|x− y|2
t

)
χD(γ)c(y)dy

� Ãk+1(1 + t)
3
2

(∫
R3

exp

(
− B̃|z|2

2

)
dz

)k ∫
R3

t−
3
2 exp

(
− B̃

|x− y|2
t

)
χD(γ)c(y)dy

� e2tÃk+1

(
2
√
2π

√
π

B̃
√
B̃

)k ∫
R3\B(x,γ)

t−
3
2 exp

(
− B̃

|x− y|2
t

)
dy

� 3e2tÃk+1

(
2
√
2π

√
π

B̃
√
B̃

)k ∫
y∈R3,|y1|�

√
3γ
3

t−
3
2 exp

(
− B̃

|y|2
t

)
dy
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= 3e2t
Ãπ

B̃

(
2
√
2π

√
πÃ

B̃
√
B̃

)t ∫ +∞
√

3γ

3
√

t

exp(−B̃r2)dr

for x ∈ D(2γ), where we have used the facts that k = 0 for t ∈ (0, 2), t − k < 2, and k � t and

(1 + t)
3
2 < e2t for t > 0. In addition, we have∫

R3

N∑
j=1

|Ψij(x− y1, 1)|dy1

∫
R3

N∑
l,j=1

|Ψlj(y1 − y2, 1)|dy2

· · ·
∫
R3

N∑
l,j=1

|Ψlj(yk−1 − yk, 1)|dyk
∫
R3

N∑
l,j=1

|Ψlj(yk − y, t− k)|χD(γ)(y)dy

� Ãk+1(1 + t)
3
2

(∫
R3

exp

(
− B̃

2
|z|2
)
dz

)k ∫
R3

t−
3
2 exp

(
− B̃

|x− y|2
t

)
χD(γ)(y)dy

� e2tÃk+1

(
2
√
2π

√
π

B̃
√
B̃

)k ∫
R3

t−
3
2 exp

(
− B̃

|x− y|2
t

)
dy

� e2t
Ãπ

√
π

B̃
√
B̃

(
2
√
2π

√
πÃ

B̃
√
B̃

)t
.

Thus, letting λ0 := λ′0 + 2 + ln(2
√
2π

√
πÃ

B̃
√
B̃

) yields the inequality (4.4). Note that the constants Ã and B̃

are independent of γ.

To prove the inequality (4.5), we need only to replace x and D(γ) with x0 and B(x0,
√
3R) in (4.8).

This completes the proof.

Remark 4.3. The positive constants Ã, B̃ and λ0 in Lemma 4.2 are independent of the functions

hij(x, t) ∈ C(R3 × R+) (i, j = 1, . . . , N) satisfying (4.2).

As in [48], in the following we show that the pyramidal traveling front V converges to two-dimensional

V -form fronts on edges of the pyramid at infinity. For each j (1 � j � n) we consider a plane perpendicular

to an edge Γj = Sj ∩ Sj+1. Then the cross section of −x3 = max{hj(x′), hj+1(x
′)} in this plane has a

V -form front. Let V j be the two-dimensional V -form front as in Theorem 4.1 corresponding to the cross

section −x3 = max{hj(x′), hj+1(x
′)}. We first determine the exact formulation of V j .

Let An+1 := A1 and Bn+1 := B1. Define

pj := AjBj+1 −Aj+1Bj > 0, qj :=
√
(Aj+1 −Aj)2 + (Bj+1 −Bj)2 > 0, 1 � j � n.

Take

νj =
1√

1 +m2∗
{m∗Aj ,m∗Bj , 1}, j = 1, . . . , n+ 1.

The direction of Γj is given by

νj+1 × νj =
1√

m2∗p2j + q2j

⎧⎪⎪⎨⎪⎪⎩
Bj+1 −Bj

Aj −Aj+1

m∗(Aj+1Bj −AjBj+1)

⎫⎪⎪⎬⎪⎪⎭ ,

and the traveling direction of the two-dimensional V -form wave V j is given by

(νj+1 × νj)× νj+1 − νj
|νj+1 − νj | =

1

qj
√
m2∗p2j + q2j

⎧⎪⎪⎨⎪⎪⎩
m∗(Bj+1 −Bj)pj

m∗(Aj −Aj+1)pj

q2j

⎫⎪⎪⎬⎪⎪⎭ .

Let sj be the speed of V j and 2θj (0 < θj < π/2) be the angle between Sj and Sj+1. Then we get

sj sin θj = c, sin θj =
√
m2∗p2j + q2j (qj

√
1 +m2∗)

−1, sj = sqj(
√
m2∗p2j + q2j )

−1.
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The speed of V j toward the x3-axis equals

sj

√
m2∗p2j + q2j /qj = c

√
1 +m2∗ = s,

which coincides with the speed of V . Let⎛⎜⎜⎝
x1

x2

x3

⎞⎟⎟⎠ = Rj

⎛⎜⎜⎝
ξ

η

ζ

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
ξ

η

ζ

⎞⎟⎟⎠ = RT
j

⎛⎜⎜⎝
x1

x2

x3

⎞⎟⎟⎠ ,

where RT
j is the transposed matrix of Rj . Here we take

Rj =

⎛⎜⎜⎜⎝
Aj+1−Aj

qj

m∗(Bj+1−Bj)pj

qj
√
m2∗p

2
j+q

2
j

Bj+1−Bj√
m2∗p

2
j+q

2
j

Bj+1−Bj

qj

m∗(Aj−Aj+1)pj

qj
√
m2∗p2j+q

2
j

Aj−Aj+1√
m2∗p2j+q

2
j

0
qj√

m2∗p
2
j+q

2
j

− m∗pj√
m2∗p

2
j+q

2
j

⎞⎟⎟⎟⎠ .

Define V j as V j(x) := Φ(ξ, η; sj). Direct calculations show that

−Di
∂2

∂ξ2
Φi −Di

∂2

∂η2
Φi + sj

∂

∂η
Φi − F i(Φ) = 0, ∀ (ξ, η) ∈ R

2, i = 1, . . . , N.

Hence, for each j (1 � j � n), V j(x) satisfies (1.6). We call V j a planar V -form front corresponding to

an edge Γj .

Set

Qj := {x ∈ R
3 | dist(x,Γ) = dist(x,Γj)}, 1 � j � n.

Then we have R
3 =

⋃n
j=1Qj . Define

V̂ (x) :=
∨

1�j�n
V j(x).

We have that V̂ (x) is strictly monotone increasing in x3 due to the strict monotonicity of V j(x) in x3.

In addition, V̂ (x) has the following properties.

Lemma 4.4. V̂ (x) satisfies v−(x) < V̂ (x) < V (x) for x ∈ R
3 and

lim
γ→∞ sup

x∈D(γ)

|V̂ (x)− v−(x)| = 0. (4.9)

Proof. By Theorem 4.1 we have

U

(
c

s
(x3 + hj(x

′))
)
∨U

(
c

s
(x3 + hj+1(x

′))
)
< V j(x), x ∈ R

3.

It follows that v−(x) = U( cs (x3 + h(x′))) < V̂ (x) for x ∈ R
3. In addition, by

U

(
c

s
(x3 + hj(x

′))
)
∨U

(
c

s
(x3 + hj+1(x

′))
)
< V j(x),

we get V j(x) � V (x) for x ∈ R
3. Therefore, we have V̂ (x) � V (x) for x ∈ R

3. Finally, (4.9) follows

from (3.13). This completes the proof.

Assume that v0 ∈ [E−,E+] satisfies (1.8). Let

v(x, t;v0) = (v1(x, t;v
0), . . . , vN (x, t;v0))
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be the solution of (1.4) and (1.5). By Lemma 4.2, we have

max
1�i�N

sup
x∈D(2γ)

|vi(x, t;v0)− Vi(x)|

� eλ0t
3πÃ

B̃

∫ +∞
√

3γ

3
√

t

exp(−B̃r2)dr max
1�i�N

sup
x∈D(γ)c

|v0i (x)− Vi(x)|

+
π
√
πÃ

B̃
√
B̃

eλ0t sup
1�i�N

sup
x∈D(γ)

|v0i (x)− Vi(x)| (4.10)

for any γ > 0 and t > 0. It follows that

lim
γ→∞ max

1�i�N
sup

x∈D(γ)

|vi(x, t;v0)− Vi(x)| = 0 for any fixed t > 0,

which implies

lim
γ→∞ sup

x∈D(γ)

|v(x, t;v0)− v−(x)| = 0 for any fixed t > 0, (4.11)

lim
γ→∞ max

1�j�n
sup

x∈D(γ),x∈Qj

|v(x, t;v0)− V j(x)| = 0 for any fixed t > 0 (4.12)

and

lim
γ→∞ sup

x∈D(γ)

|v(x, t;v0)− V̂ (x)| = 0 for any fixed t > 0. (4.13)

Now we state a proposition which plays a key role in the following estimates.

Proposition 4.5. Assume that v0 ∈ [E−,E+] satisfies (1.8). For any given ε1 > 0, one can choose

T ∗ > 0 large enough such that

lim
R→∞

max
1�j�n

sup
|x|�R,x∈Qj

|v(x, t;v0)− V j(x)| < ε1 for any fixed t � T ∗. (4.14)

Proof. Set

Ij := Ωj ∩ Ωj+1 =

{
r

(
Aj +Aj+1

Bj +Bj+1

) ∣∣∣∣ r � 0

}
, 1 � j � n− 1,

In := Ωn ∩ Ω1 =

{
r

(
An +A1

Bn +B1

) ∣∣∣∣ r � 0

}
.

Then Ij is the projection of Γj onto the x1-x2 plane and
⋃n
j=1 Ij is the projection of Γ onto the x1-x2

plane.

Fix j ∈ {1, . . . , n}. Without loss of generality, we assume that x ∈ Qj as |x| → ∞. Since (∂/∂x1)
2

+ (∂/∂x2)
2 is invariant under rotations on the x1-x2 plane, we assume Ωj ∩Ωj+1 = {(0, x2, 0) | x2 � 0},

(Aj , Bj) = (A,B) and (Aj+1, Bj+1) = (−A,B), where A > 0, B > 0 and A2 + B2 = 1. Two planes

Sj+1 and Sj are −x3 = m∗(−Ax1 + Bx2) and −x3 = m∗(Ax1 + Bx2), respectively. The common

line Γj of them is x1 = 0, −x3 = m∗Bx2. The projection of Qj onto the x1-x2 plane is given by

{x2 � a|x1|, x1 � 0} ∪ {x2 � b|x1|, x1 � 0} for some a > 0 and b > 0.

By the assumption on v0, we have

lim
γ→∞ sup

x∈D(γ),x∈Qj

∣∣∣∣v0(x)−U

(
c

s
(x3 +m∗Bx2 +m∗A|x1|)

)∣∣∣∣ = 0.

The unit normal vector of the common line Γj directing downwards and lying on the plane {x1 = 0} is

given by

1√
1 +m2∗B2

⎛⎜⎜⎝
0

m∗B

−1

⎞⎟⎟⎠ .
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Since 2θj is the angle between Sj and Sj+1 (0 < θj < π/2), we have that sin θj =
√
1 +m2∗B2/

√
1 +m2∗.

In this case, we make a change of variables as follows:⎛⎜⎜⎝
ξ

η

ζ

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
−1 0 0

0 m∗B√
1+m2∗B2

1√
1+m2∗B2

0 1√
1+m2∗B2

− m∗B√
1+m2∗B2

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

x1

x2

x3

⎞⎟⎟⎠ .

Then we have

U

(
c

sj

(
η +

√
s2j − c2

c
|ξ|
))

= U

(
c

s
(x3 +m∗Bx2 +m∗A|x1|)

)
,

where sj =
s√

1+m2∗B2
. It is obvious that

V j(x) = Φ(ξ, η; sj) = Φ

(
− x1,

x3 +m∗Bx2√
1 +m2∗B2

; sj

)
is a solution of (1.6). Let W̃ (ξ, η, t) = (W̃1(ξ, η, t; W̃

0), . . . , W̃N (ξ, η, t; W̃ 0)) be the solution of⎧⎨⎩
∂

∂t
W̃ −D

∂2

∂ξ2
W̃ −D

∂2

∂η2
W̃ + sj

∂

∂η
W̃ − F (W̃ ) = 0, (ξ, η) ∈ R

2, t > 0,

W̃ (ξ, η, 0) = W̃ 0(ξ, η), (ξ, η) ∈ R
2.

(4.15)

Taking W 0(x) = W̃ 0(−x1, x3+m∗Bx2√
1+m2∗B2

), we have that W (x, t;W 0) = W̃ (ξ, η, t; W̃ 0) satisfies

⎧⎨⎩
∂

∂t
W −DΔW + s

∂

∂x3
W − F (W ) = 0, x ∈ R

3, t > 0,

W (x, 0) = W 0(x), x ∈ R
3.

(4.16)

Utilizing (4.9) and the assumption on v0, we have

lim
γ→∞ sup

x∈D(γ)∩Qj

|v0(x)− V j(x)| = 0.

Choose functions gi(·) ∈ C(R) ∩ L∞(R) (i = 1, . . . , N) with

gi(γ) = sup
x∈D(γ)∩Qj

|v0i (x)− V ji (x)| for γ � 1,

sup
x∈D(γ)∩Qj

|v0i (x)− V ji (x)| � gi(γ) � E+
i − E−

i + 1 + ‖v0i − E−
i ‖L∞(R3) for 0 < γ < 1,

g′i(γ) � 0 for 0 < γ < 1,

gi(γ) = gi(−γ) for γ ∈ R.

It is obvious that gi(γ) is monotone nonincreasing in γ > 0 and satisfies limγ→∞ gi(γ) = 0. Since

dist(x,Γ) = dist(x,Γj) =

√
(1 +m2∗B2)x21 + (x3 +m∗Bx2)2√

1 +m2∗B2
for x ∈ Qj,

we have, for x ∈ Qj , that

|v0i (x)− V ji (x)| � gi(dist(x,Γ)) = gi

(√
(1 +m2∗B2)x21 + (x3 +m∗Bx2)2√

1 +m2∗B2

)
. (4.17)

We study (4.15) for W̃±,0(ξ, η) = (W̃±,0
1 (ξ, η), . . . , W̃±,0

N (ξ, η)) with

W̃+,0
i (ξ, η) := min{Φi(ξ, η; s̄) + gi(

√
ξ2 + η2), E+

i }
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and

W̃−,0
i (ξ, η) := max{Φi(ξ, η; s̄)− gi(

√
ξ2 + η2), E−

i },
which is equivalent to studying (4.16) for W±,0(x) = (W±,0

1 (x), . . . ,W±,0
N (x)) with

W+,0
i (x) := min

{
V ji (x) + gi

(√
x21 +

1

1 +m2∗B2
(x3 +m∗Bx2)2

)
, E+

i

}
and

W−,0
i (x) := max

{
V ji (x)− gi

(√
x21 +

1

1 +m2∗B2
(x3 +m∗Bx2)2

)
, E−

i

}
,

respectively. Then we have

lim
R→∞

sup
ξ2+η2>R2

|W̃±,0
i (ξ, η)− Φi(ξ, η; sj)| = 0, i = 1, . . . , N.

For sj =
s√

1+m2∗B2
, applying Theorem 4.1 we have

lim
t→∞ ‖W̃ (ξ, η, t; W̃±,0)−Φ(ξ, η; sj)‖C(R2) = 0,

which implies that limt→∞ ‖W (x, t;W±,0)− V j(x)‖C(R3) = 0. Take Tj > 0 large enough such that

sup
t�Tj

‖W (·, t;W±,0)− V j(·)‖C(R3) <
ε1
2
. (4.18)

Put v±(x, t) = v(x, t;v0)−W (x, t;W±,0). Then v± satisfy(
∂

∂t
−Di

∂2

∂x21
−Di

∂2

∂x22
−Di

∂2

∂x23
+ s

∂

∂x3

)
v±i (x, t)

+

N∑
k=1

(∫ 1

0

∂

∂uk
F i(θv(x, t) + (1− θ)W (x, t;W±,0))dθ

)
v±k (x, t) = 0, x ∈ R

3, t > 0,

v±i (x, 0) = v0i (x)−W±,0
i (x), x ∈ R

3,

respectively. In particular, from (4.17) we have v+(x, 0) � 0 and v−(x, 0) � 0 for x ∈ Qj . Let v̂
±(x, t)

be defined by(
∂

∂t
−Di

∂2

∂x21
−Di

∂2

∂x22
−Di

∂2

∂x23
+ s

∂

∂x3

)
v̂±i (x, t)

+
N∑
k=1

(∫ 1

0

∂

∂uk
F i(θv(x, t) + (1− θ)W (x, t;W±,0))dθ

)
v̂±k (x, t) = 0, x ∈ R

3, t > 0,

v̂+i (x, 0) = max{v+i (x, 0), 0} and v̂−i (x, 0) = max{−v−i (x, 0), 0}, x ∈ R
3.

It is easy to see that v̂+(x, 0) � v+(x, 0) and −v̂−(x, 0) � v−(x, 0) for x ∈ R
3. By the comparison

principle we obtain

v+(x, t) � v̂+(x, t), −v̂−(x, t) � v−(x, t), ∀x ∈ R
3, t > 0. (4.19)

Notice that |v̂±i (x, 0)| � 2(E+
i − E−

i ) + 1 for x ∈ R
3 and v̂±i (x, 0) = 0 for x ∈ Qj , where i = 1, . . . , N .

Applying the inequality (4.5) to v̂±(x, t), one has

0 � v̂±i (x, t) �
(
2 max
1�i�N

(E+
i − E−

i ) + 1
)
eλ0t

3πÃ

B̃

∫ +∞

R√
t

exp(−B̃r2)dr, ∀ t > 0,
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if x ∈ Qj and
√
3R < dist(x, ∂Qj) for i = 1, . . . , N . It follows that

lim
R→∞

sup
x∈Qj ,dist(x,∂Qj)�R

v̂±i (x, t) = 0, i = 1, . . . , N

for any fixed t > 0. Applying this equality, (4.18) and (4.19) to v(x, t;v0) = v±(x, t) +W (x, t;W 0), for

given t � Tj we can take a constant Rj > 0 large enough such that

sup
x∈Qj , dist(x,∂Qj)�Rj

|v(x, t;v0)− V j(x)| < ε1. (4.20)

Thus we have obtained the estimates on Qj for given j.

Set

T ∗ := max{T1, . . . , Tn}.
Fix t � T ∗. Let R̂ := max{R1, R2, . . . , Rn}. From the definitions of Γ and Qj we get

lim
R→∞

inf
|x|�R,dist(x,∂Qj)�R̂

dist(x,Γ) = ∞ for all 1 � j � n.

Using (4.12), we have

lim
R→∞

max
1�j�n

sup
|x|�R,x∈Qj,dist(x,∂Qj)�R̂

|v(x, t;v0)− V j(x)| = 0.

By this estimate and (4.20), we obtain (4.14). The proof is completed.

Lemma 4.6. Assume that v0 ∈ [E−,E+] satisfies (1.8). Let V be as in Theorem 3.3. For any given

ε1 > 0, one can choose T ∗ > 0 large enough such that

lim
R→∞

sup
|x|�R

|v(x, t;v0)− V (x)| < ε1 for any fixed t � T ∗. (4.21)

In particular, one has

lim
R→∞

sup
|x|�R

|V (x)− V̂ (x)| = 0. (4.22)

Proof. By taking v0 = V in Proposition 4.5, for any ε1 > 0 we have

lim
R→∞

max
1�j�n

sup
|x|�R,x∈Qj

|V (x)− V j(x)| < ε1.

Due to the arbitrariness of ε1 > 0, we obtain the equalities (4.22) and

lim
R→∞

max
1�j�n

sup
|x|�R,x∈Qj

|V (x)− V j(x)| = 0.

Furthermore, using the last equality and Proposition 4.5, we can obtain (4.21). This completes the

proof.

The equality (4.22) shows that the pyramidal traveling front V converges to two-dimensional V -form

fronts Φ near the edges.

Lemma 4.7. Let V be as in Theorem 3.3. Then it satisfies

lim
R→∞

sup
|x3+h(x′)|�R

∣∣∣∣ ∂∂x3V (x)

∣∣∣∣ = 0.

In addition, for any δ ∈ (0, ε0) we have

min
1�i�N

inf
E−

i +δ�V j
i (x)�E+

i −δ

∂

∂x3
V ji (x) > 0, 1 � j � n,

and

min
1�i�N

inf
E−

i +δ�Vi(x)�E+
i −δ

∂

∂x3
Vi(x) > 0. (4.23)
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Proof. Note that
∂

∂x3
V ji (x) :=

qj√
m2∗p2j + q2j

∂

∂η
Φi(ξ, η; sj),

where ξ = ((Aj+1 −Aj)x1 + (Bj+1 −Bj)x2)/qj and

η = (m∗(Bj+1 −Bj)pjx1 +m∗(Aj −Aj+1)pjx2 + q2jx3)/(qj

√
m2∗p2j + q2j ).

It follows from Wang [53, Lemma 4.2] that min1�i�N minE−
i +δ�V j

i (x)�E+
i −δ

∂
∂x3

V ji (x) > 0.

Now we show that (4.23) holds. Since ∂
∂x3

Vi > 0 in R
3, ∂

∂x3
Vi has a positive minimum on any compact

subset of R3. Thus we need only to study ∂
∂x3

Vi as |x| → ∞. Fix i ∈ {1, . . . , N}. Let

Ω̃i = {x ∈ R
3 | E−

i + δ � Vi(x) � E+
i − δ}.

By (4.22) and (3.13) we have

lim
R→+∞

sup
x∈B(Qj ,2),|x|�R

|V (x)− V j(x)| = 0,

where B(Qj , 2) := {x ∈ R
3 | dist(x, Qj) � 2}, j ∈ {1, . . . , n}. Then there exists R̂j > 0 such that

sup
x∈B(Qj ,2),|x|�R̂j

|V (x)− V j(x)| < δ

2
.

Consequently, we have E−
i + δ

2 � V ji (x) < E+
i − δ

2 for x ∈ B(Qj , 2)∩ Ω̃i with |x| � R̂j . For any x0 ∈ Qj,

we have

lim
R→+∞

sup
x0∈Qj ,|x0|�R

‖F i(V (·))− F i(V j(·))‖Lp(B(x0,2)) = 0,

where p > 3, B(x0, r) := {x ∈ R
3 | |x − x0| < r}. Applying the interior Schauder estimate of [17,

Theorem 9.11] to

−DiΔ(Vi − V ji ) + s
∂

∂x3
(Vi − V ji ) = F i(V )− F i(V j) in B(x0, 2), ∀x0 ∈ Qj ,

we obtain

lim
R→+∞

sup
x0∈Qj ,|x0|�R

‖Vi(·)− V ji (·)‖W 2,p(B(x0,1)) = 0.

Therefore, we have

lim
R→+∞

sup
x∈Qj ,|x|�R

∣∣∣∣ ∂∂x3Vi(x)− ∂

∂x3
V ji (x)

∣∣∣∣ = 0.

Thus, by virtue of the estimate on V j there exists R̃j > R̂j such that

min
x∈˜Ωi∩Qj ,|x|�R̃j

∂

∂x3
Vi(x) > 0.

Applying the above arguments to all j = 1, . . . , n and i = 1, . . . , N , we obtain (4.23).

Obviously, the assumption |x3 + h(x′)| → ∞ implies dist(x,Γ) → ∞. It follows that

lim
R→+∞

sup
x3+h(x′)�R

|V (x)−E+| → 0 and lim
R→+∞

sup
x3+h(x′)�−R

|V (x)−E−| → 0,

which yields limR→∞ sup|x3+h(x′)|�R |F i(V (x))| = 0. Applying the interior Schauder estimate to

−DiΔVi + s
∂

∂x3
Vi = F i(V ) in B(x̄, 2), ∀ x̄ ∈ R

3,
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we have

lim
R→∞

sup
1�i�N

sup{‖Vi‖W 2,p(B(x̄,1)) | x̄ ∈ R
3, |x̄3 + h(x̄′)| � R} = 0

for p > 3. Therefore, we have

lim
R→∞

sup
|x3+h(x′)|�R

∣∣∣∣ ∂∂x3Vi(x)
∣∣∣∣ = 0, 1 � i � N.

This completes the proof.

Lemma 4.8. Assume that δ ∈ (0, ε0). For any x ∈ R
3 with

E−
i + δ � V̂i(x) = max

1�j�n
V ji (x) � E+

i − δ,

we have

inf
0<�<�0

V̂i(x
′, x3 + �)− V̂i(x)

�
� min

1�j�n
min

1�i�N
inf

E−
i + δ

2�V j
i (x)�E+

i − δ
2

∂

∂x3
V ji (x) > 0,

where �0 is a positive constant depending on δ and is independent of x.

Proof. Fix i ∈ {1, . . . , N}. By the uniform continuity of V̂ , there exists �0 > 0 such that

E−
i +

δ

2
� V̂i(x

′, x3 + �) � E+
i − δ

2
for � ∈ (0, �0),

if x satisfies E−
i + δ � V̂i(x) � E+

i − δ. For any x0 = (x01, x
0
2, x

0
3) ∈ R

3 with E−
i + δ � V̂i(x

0) � E+
i − δ,

there exists j0 ∈ {1, . . . , n} such that V̂i(x
0) = V j0i (x0). Then we have

V̂i(x
0
1, x

0
2, x

0
3 + �)− V̂i(x

0) = V̂i(x
0
1, x

0
2, x

0
3 + �)− V j0i (x0)

� V j0i (x01, x
0
2, x

0
3 + �)− V j0i (x0)

� � min
E−

i + δ
2�V

j0
i (x)�E+

i − δ
2

∂

∂x3
V j0i (x)

� � min
1�j�n

min
1�i�N

inf
E−

i + δ
2�V j

i (x)�E+
i − δ

2

∂

∂x3
V ji (x).

Finally, the arbitrariness of � and x0 yields the expected result. This completes the proof.

For M > 0 defined in Lemma 3.1, it is not difficult to show that

E+
i > Ě+

i := sup
c
s (x3+h(x′))�M

Vi(x) � Ui(M)

and

E−
i < Ui

(
−M +

c

s
m0

)
� Ě−

i := inf
c
s (x3+h(x′))�−M

Vi(x)

for i = 1, . . . , N , where m0 = 2πm∗
∫∞
0
r2ρ̃(r)dr. In particular, Ě±

i are independent of ε > 0 and α > 0.

By Lemmas 4.7 and 4.8, there exists β3 > 0 so that

min
1�i�N

inf
| cs (x3+h(x′))|�M

∂

∂x3
Vi(x) > β3 and min

1�i�N
inf

|μ(x)|�M
∂

∂x3
v+i (x) > β3.

Lemma 4.9. There exist a positive constant ρ sufficiently large and a positive constant β small enough

such that, for any δ > 0 with

δ < δ∗ := min

{
ε0
Np0

, min
1�i�N

{
1

2p0
(E+

i − Ě+
i )

}
,

κ(p0 − ε0)

8N(L+ + 1)(p0)2

}
,
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W+ defined by

W+(x, t; δ) = V (x′, x3 + ρδ(1− e−βt)) + δP (ς+)e−βt

is a supersolution of (2.1), and for any δ > 0 with

δ < min

{
ε0
Nq0

, min
1�i�N

{
1

2q0
(Ui(−M)− E−

i )

}
,

κ(q0 − ε0)

8N(L− + 1)(q0)2

}
,

W− defined by

W−(x, t; δ) = V (x′, x3 − ρδ(1− e−βt))− δQ(ς−)e−βt

is a subsolution of (2.1), where

ς± =
x3 ± ρδ(1 − e−βt) + ϕ(x′)√

1 + |∇ϕ(x′)|2 .

Proof. It follows from Lemma 2.5 that h(x′) � ϕ(x′) � m0 + h(x′) for all x′ ∈ R
2. It is easy to verify

that there exist constants C+
i > 0 such that∣∣∣∣P ′′

i (μ)(μ
2
x1

+ μ2
x2
) + P ′

i (μ)(μx1x1 + μx2x2) + P ′′
i (μ)

1

1 + |∇ϕ(αx′)|2
∣∣∣∣ � C+

i , (4.24)∣∣∣∣Q′′
i (μ)(μ

2
x1

+ μ2
x2
) +Q′

i(μ)(μx1x1 + μx2x2) +Q′′
i (μ)

1

1 + |∇ϕ(αx′)|2
∣∣∣∣ � C+

i (4.25)

for any α ∈ (0, 1] and x ∈ R
3, where μ is defined by (3.1) and i = 1, . . . , N . In addition, we can take

M > 0 large enough in Lemma 3.1 so that∣∣∣∣P ′′
i (μ)(μ

2
x1

+ μ2
x2
) + P ′

i (μ)(μx1x1 + μx2x2) +
P ′′
i (μ)

1 + |∇ϕ(αx′)|2
∣∣∣∣ < 1

4D
κ(p0 − ε0), (4.26)∣∣∣∣Q′′

i (μ)(μ
2
x1

+ μ2
x2
) +Q′

i(μ)(μx1x1 + μx2x2) +
Q′′
i (μ)

1 + |∇ϕ(αx′)|2
∣∣∣∣ < 1

4D
κ(q0 − ε0) (4.27)

for any α ∈ (0, 1] and μ > M or α ∈ (0, 1] and μ < −M + c
sm0 < 0, i = 1, . . . , N .

We omit the rest of the proof, which is similar to that of [53, Lemma 4.2]. This completes the proof.

Lemma 4.10. There exists a positive constant ρ sufficiently large and a positive constant β small

enough such that, for any δ > 0 with

δ < δ∗ � min

{
ε0
Np0

, min
1�i�N

{
1

2p0
(E+

i − Ui(M))

}
,

κ(p0 − ε0)

8N(p0)2(L+ + 1)

}
,

w+ defined by

w+(x, t; δ) = v+(x′, x3 + ρδ(1− e−βt); ε, α) + δP (τ)e−βt

is a supersolution of (2.1), where

τ =
x3 + ρδ(1− e−βt) + ϕ(αx′)/α√

1 + |∇ϕ(αx′)|2 .

The proof of the lemma is similar to that of Lemma 4.9. Following [53, Lemma 4.4], we obtain the

following lemma.

Lemma 4.11. There exists a positive constant ρ sufficiently large and a positive constant β small

enough such that, for any δ > 0 with

δ < min

{
ε0
q0
, min
1�i�N

{
1

2q0
(Ui(−M)− E−

i )

}
,

κ(q0 − ε0)

8N(q0)2(L− + 1)

}
,

ŵj’s defined by

ŵj(x, t; δ) = U(�̂)− εQ(�̂)sech(αx3)− δQ(�̂)e−βt
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are subsolutions of (2.1), j = 1, . . . , n, where

�̂ =
hj(x

′)/m∗ − ρδ(1− e−βt) + ψ(αx3)/α√
1 + ψ′2(αx3)

.

Following this lemma, we know that

w̃(x, t; δ) :=

n∨
j=1

ŵj(x, t; δ) = U(�̃)− εQ(�̃)sech(αx3)− δQ(�̃)e−βt

is also a subsolution of (2.1), where

�̃ =
h(x′)/m∗ − ρδ(1− e−βt) + ψ(αx3)/α√

1 + ψ′2(αx3)
.

In the following we prove (1.9) for the case u0 = v0 with v0 � v−. We further restrict that ε+0 <

min{ε+, δ∗p0
4(s+1)p0 } in Lemma 3.1. Then for ε ∈ (0, ε+0 ) and α ∈ (0, α+(ε)), let v+(x; ε, α) be as in

Lemma 3.1. Define

V ∗(x) := lim
t→∞v(x, t;v+

∗ ), ∀x ∈ R
3,

where v+∗ (x; ε, α) = v+(x; ε, α)∧E+. Since v+(x; ε, α) is a supersolution of (2.1), v+∗ (x) is a supersolu-

tion of (1.4). Consequently, we have that v(x, t;v+
∗ ) � v+

∗ (x) for any x ∈ R
3 and t > 0. Then proceeding

the similar argument as to V (x), we have that V ∗(x) is C2 in x and satisfies (1.6). Clearly,

V (x) � V ∗(x), x ∈ R
3.

Lemma 4.12. For x ∈ R
3, V ∗(x) ≡ V (x) holds.

Proof. Assume the contrary. Namely, V ∗(x) �≡ V (x). Take δ ∈ ( δ
∗
2 , δ

∗). By the definition of V ∗(x),
there exists a sufficiently large λ > 0 such that

v+
∗ (x) � V (x′, x3 + λ) + δP

(
x3 + λ+ ϕ(x′)√
1 + |∇ϕ(x′)|2

)
, ∀x ∈ R

3. (4.28)

Due to Lemma 4.9, we know that the function W+(x′, x3 + λ, t; δ) is a supersolution of (2.1) on t � 0.

Thus by Corollary 2.3 we have

v(x, t;v+
∗ ) � W+(x′, x3 + λ, t; δ) (4.29)

for x ∈ R
3 and t > 0. Letting t→ ∞ we get

V ∗(x) � V (x′, x3 + λ+ ρδ) for x ∈ R
3. (4.30)

Here we first show that

lim
R→∞

sup
|x|�R

|V ∗(x)− V̂ (x)| = 0. (4.31)

It follows from (4.30) that limR→∞ sup|x3+h(x′)|�R |V ∗(x)−V̂ (x)| = 0. For x ∈ R
3 with |x3+h(x′)| � R∗

for some sufficiently large R∗ > 0, there must be dist(x′, E) → ∞ if dist(x,Γ) → ∞. Then by V ∗ � v+

and Lemmas 2.6 and 2.7 we have

lim
γ→∞ sup

|x3+h(x′)|�R∗,x∈D(γ)

|V ∗(x)− v−(x)| = 0.

Combining the above arguments, we obtain limγ→+∞ supx∈D(γ) |V ∗−v−| = 0. Applying Proposition 4.5

to V ∗, we obtain (4.31).

Define

Λ := inf{λ ∈ R | V ∗(x) � V (x′, x3 + λ), ∀x ∈ R
3}.
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Then Λ � 0 and V ∗(x) � V (x′, x3 + Λ) for x ∈ R
3. The assumption V ∗(x) �≡ V (x) yields Λ > 0. By

the strong maximum principle of elliptic equations we have that either V ∗
i (x) ≡ Vi(x

′, x3 + Λ) for all

x ∈ R
3 and some i ∈ {1, . . . , N} or V ∗(x) � V (x′, x3+Λ) for any x ∈ R

3. We conclude that the former

is impossible. In fact, take a sequence {x′
m ∈ R

2}m∈N satisfying h(x′
m) → +∞ and dist(x′

m, E) → +∞.

Then by v− � V � V ∗ � v+, we have

lim
m→+∞V ∗(x′

m,−h(x′
m)) = U(0) and lim inf

m→+∞V (x′
m,−h(x′

m) + Λ) � U

(
c

s
Λ

)
,

which contradicts V ∗
i (x) ≡ Vi(x

′, x3 + Λ).

Now we assume that

V ∗(x′, x3) � V (x′, x3 + Λ), ∀x ∈ R
3.

By Lemma 4.7, we can take R∗ > 0 sufficiently large satisfying

2ρ sup
|x3+h(x′)|�R∗−ρδ∗

∣∣∣∣ ∂∂x3V (x′, x3 + Λ)

∣∣∣∣ < p0.

Define

D := {x ∈ R
3 | |x3 + h(x′)| � R∗}.

We choose a constant ε1 > 0 sufficiently small satisfying 0 < ε1 < min{ δ∗2 , Λ
4ρ}. Utilizing Lemma 4.8, for

x ∈ D we have

V̂i

(
x′, x3 +

Λ

2

)
− V̂i

(
x′, x3 +

Λ

4

)
� min

{
�0,

Λ

4

}
min

1�j�n
min

1�i�N
inf

E−
i +

δ0
2 �V j

i (x)�E+
i − δ0

2

∂

∂x3
V ji (x) > 0,

where

δ0 = min
1�i�N

min

{
δ∗

2
, E+

i − max
1�j�n

sup
x∈D

V ji

(
x′, x3 +

Λ

2

)
, min
1�j�n

inf
x∈D

V ji (x)− E−
i

}
,

and �0 is defined in Lemma 4.10 associated with δ0. Thus, it follows that

inf
x∈D

(V̂i(x
′, x3 + Λ− 2ρε1)− V̂i(x))

> min

{
�0,

Λ

4

}
min

1�j�n
min

1�i�N
inf

E−
i +

δ0
2 �V j

i (x)�E+
i − δ0

2

∂

∂x3
V ji (x) > 0.

Applying Lemma 4.7 and (4.31), we have that there exists R0 > 0 such that

V ∗(x) < V

(
x′, x3 +

Λ

2

)
� V (x′, x3 + Λ− 2ρε1) for x ∈ D with |x| > R0.

Since D ∩ B(0;R0) is compact, we have V ∗(x) < V (x′, x3 + Λ − 2ρε1) in D ∩ B(0;R0) for sufficiently

small ε1. Thus,

V ∗(x) < V (x′, x3 + Λ− 2ρε1) in D.
In R

3 \ D, we have

Vi(x
′, x3 + Λ)− Vi(x

′, x3 + Λ− 2ρε1) = 2ρε1

∫ 1

0

∂

∂x3
Vi(x

′, x3 + Λ+ 2θρε1)dθ � ε1p0

for i = 1, . . . , N . Combining both cases, we have V ∗(x) � V (x′, x3 + Λ − 2ρε1) + ε1P
− in R

3. By

Lemma 4.11 we know that W+(x′, x3 + Λ − 2ρε1, t; ε1) is a supersolution of (2.1). Thus V ∗(x) �
W+(x′, x3 +Λ− 2ρε1, t; ε1) for x ∈ R

3 and t > 0. Letting t→ ∞ yields V ∗(x) � V (x′, x3 +Λ− ρε1) for

x ∈ R
3. This contradicts the definition of Λ. Thus Λ = 0 follows and we have proved that V ∗(x) ≡ V (x).

The proof is completed.
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Theorem 4.13. Assume that (H1)–(H5) hold. Let V (x′, x3+st) be a pyramidal traveling front of (1.2)

with speed s > c established in Section 3. Assume that v0 ∈ C(R3,RN) satisfying v0(x) ∈ [E−,E+] for

x ∈ R
3, v0(x) � v−(x) for x ∈ R

3 and

lim
γ→∞ sup

x∈D(γ)

|v0(x)− V (x)| = 0. (4.32)

Then the solution v(x, t;v0) of (1.4) with the initial value v0 satisfies

lim
t→∞ ‖v(·, t;v0)− V (·)‖C(R3) = 0. (4.33)

Proof. Let δ ∈ (0, δ
∗
2 ) be given arbitrarily. Take ε ∈ (0,min{ε+0 , δ

∗
4s}). Utilizing (4.21), we take

α ∈ (0, α+(ε)) such that

v(x, 1;v0) � v+(x; ε, α) + δp0I for x ∈ R
3,

where I is the N × N identical matrix. By using an argument similar to that in Taniguchi [48], we

have that

lim
t→∞ ‖v(·, t;v−)− V (·)‖L∞(R3) = 0 and lim

t→∞ ‖v(·, t;v+
∗ )− V (·)‖L∞(R3) = 0.

Take t̂ > 0 large enough such that

v(x, t;v−) � v(x, t;v+
∗ ) < V (x) + δp0I for x ∈ R

3 and t � t̂. (4.34)

Let ρ and β be as in Lemma 4.12 and note that ρ and β are independent of δ. We have that w+(x, t; δ)

is a supersolution of (1.3). Then there exists t̃ > 0 large enough so that

v(x, t+ 1;v0) < v+(x′, x3 + ρδ) + δe−λ0 t̂p0I

for any t � t̃. Let v+,δ
∗ (x) = v+(x′, x3 + ρδ) ∧E+. Then

v(x, t̃+ 1;v0) < v+,δ
∗ (x) + δe−λ0 t̂p0I.

Lemma 4.2 implies that v(x, t̃ + t̂ + 1;v0) � v(x, t̂;v+,δ
∗ ) + δp0I for x ∈ R

3. Using (4.34), we have

v(x, t̃+ t̂+1;v0) � V (x′, x3+ρδ)+2δp0I for x ∈ R
3. By Lemma 4.9, it follows that v(x, t+ t̃+ t̂+1;v0)

� W+(x′, x3 + ρδ, t; 2δ) for t > 0. Therefore, we have

V (x) � v(x, t;v0) � V (x′, x3 + ρδ + 2ρδ) + 2δp0 � V (x) +M∗δI

for t > tδ := t̃+ t̂+1, where M∗ > 0 is a constant and is independent of δ. Due to the arbitrariness of δ,

we have completed the proof.

Now we consider the case that the initial value u0 = v0 satisfies v0 � v−. Define

δ∗ = min

{
ε0
Nq0

, min
1�i�N

1

4q0
(Ui(−M)− E−

i ),
κ(q0 − ε0)

8N(L− + 1)(q0)2

}
.

Take 0 < ε < min{ε−0 , 12δ∗, ε0q0
2(q0)2 }. Define

v(x) := V (x′, x3 −M ′) and v−(x) := ṽ(x; ε, α) ∨ v(x),

where M ′ > 0 is a constant specified later. Recall that w̃ is defined in Lemma 4.11. Set

w(x, t; δ) := W−(x′, x3 −M ′, t; δ) and w−(x, t; δ) := w̃(x, t; δ) ∨w(x, t; δ).
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Lemma 4.14. For any positive constant δ and any initial function v0 satisfying

lim
γ→∞ sup

x∈D(γ)

|v0 − v−| = 0 and v0(x) ∈ [E−,E+] for x ∈ R
3,

there exist positive constants ε < min{ε−, 14δ∗, ε0q0
2(q0)2 }, α < α−(ε), T ′ and M ′ such that

v−(x)− δQ+ � v(x, T ′;v0) for x ∈ R
3.

Proof. Clearly, E− � v(x, t;v0) � E+. Applying Proposition 4.5 with ε1 = δq0
4 and Lemma 4.7,

we have

lim
R→∞

sup
|x|>R

|v(x, T ∗ + 1;v0)− V (x)| � δq0
4
, (4.35)

where T ∗ is determined in Proposition 4.5. Fix T ′ = T ∗+1. By (4.35) we can choose a large constantM ′

such that

v(x)− δQ+ = V (x′, x3 −M ′)− δQ+ � v(x, T ′;v0) for x ∈ R
3.

From (4.35) there exists a positive constant R1 such that

V (x)− δ

4
Q+ � v(x, T ′;v0) for |x| > R1.

Note that

ṽ(x; ε, α) � U

(
h(x′)/m∗ + ψ(αx3)/α√

1 + ψ′(αx3)2

)
− εQ+sech(β2αx3).

Since ψ(αx3)
α = − 1

m∗αβ2
ln(1 + exp(−β2αx3)) � x3

m∗
, we have

ṽ(x; ε, α) � U

(
x3 + h(x′)

m∗
√
1 + ψ′(αx3)2

)
− εQ+sech(β2αx3).

It is not difficult to show that there exists R′
1 > 0 such that

U

(
x3 + h(x′)

m∗
√
1 + ψ′(αx3)2

)
− δ

2
Q+ � v−(x)

for x ∈ R
3 with |x3 + h(x′)| > R′

1. Since 1

m∗
√

1+ψ′(αx3)2
→ c

s as αx3 → −∞, there exists R2 > 0

such that

U

(
x3 + h(x′)

m∗
√
1 + ψ′(αx3)2

)
− δ

2
Q+ � v−(x)

for x ∈ R
3 with |x3 + h(x′)| � R′

1 and αx3 < −R2. Note that R2 is independent of α ∈ (0, 1). For

−R2/α � x3 � R′
1 and |x3 + h(x′)| � R′

1, it follows from the definition of ψ that there exists a small

positive constant α such that

1√
1 + ψ′(αx3)2

(
1

α
ψ(αx3) +

1

m∗
h(x′)

)
=

1√
1 + ψ′(αx3)2

(
x3
m∗

− 1

αm∗β2
ln(1 + eαβ2x3) +

1

m∗
h(x′)

)
� 1√

1 + ψ′(αx3)2

(
R′

1

m∗
− 1

αm∗β2
ln(1 + e−β2R2)

)
� U−1

i

(
E−
i +

δ

2
q+i

)
.

Take R′
1 and R2 large enough so that

{x ∈ R
3 | |x| � R1} ⊂ {x ∈ R

3 | −R2/α � x3 � R′
1, |x3 + h(x′)| � R′

1}.
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Therefore,

ṽ(x; ε, α)− δQ+ � v(x, T ′;v0) for x ∈ R
3.

Finally, it is clear that

v−(x)− δQ+ = (ṽ(x; ε, α)− δQ+) ∨ (v(x)− δQ+).

This completes the proof.

Take 0 < δ < δ∗. For x ∈ R
3, define

vδ−(x) := ṽδ−(x) ∨ v(x′, x3 −m∗ρδ),

where ṽδ−(x) = U(�̌(x))− εQ(�̌(x))sech(αx3) with

�̌(x) :=
h(x′)/m∗ − ρδ + ψ(αx3)/α√

1 + ψ′(αx3)2
.

In view of w−(x, t; δ) � v(x, t+ T ′;v0), taking t→ ∞ we have

vδ−(x) � lim inf
t→+∞ v(x, t;v0). (4.36)

Lemma 4.15. We have

lim
R→∞

inf
|x|�R

(vδ−(x)− v−(x′, x3 −m∗ρδ)) � 0. (4.37)

Proof. It is clear that |vδ−(x)−V (x′, x3−m∗ρδ)| → 0 as x3 → +∞ uniformly for x′ ∈ R
2. In addition,

one can show that

lim
R→∞

sup
|x3+h(x′)|�R

|vδ−(x)− V (x′, x3 −m∗ρδ)| = 0.

It remains to consider |x3 + h(x′)| < X2 for some X2 > 0 sufficiently large and x3 < X1. To ensure that

|x| → +∞, there must be x3 → −∞. By the definition of ṽδ−(x) we have

lim
R→∞

sup
|x3+h(x′)|<X2,x3�−R

|ṽδ−(x)− v−(x′, x3 −m∗ρδ)| = 0.

Since v−(x′, x3 −m∗ρδ) � V (x′, x3 −m∗ρδ), it follows that (4.37) holds. The proof is completed.

Lemma 4.16. The limit of v(x, t;vδ−) as t→ ∞ exists and the limit function

V δ
∗ (x) := lim

t→∞ v(x, t;vδ−)

satisfies L[V δ∗ ] = 0, vδ− � V δ∗ � V and V δ∗ (x) � V (x′, x3 −m∗ρδ) on R
3.

Proof. Take v∗
−(x) = vδ−(x) ∨ v−(x). Then vδ− � v∗

−. By the comparison principle, we have

v(x, t;vδ−) � v(x, t;v∗
−). It follows from Theorem 4.13 that

lim
t→∞ sup

x∈R3

|v(·, t;v∗
−)− V (·)| = 0.

Since vδ− is a subsolution of (1.4), the solution v(x, t;vδ−) is increasing in t and the limiting function V δ
∗

exists with

L[V δ
∗ ] = 0 and vδ− � V δ

∗ � V .

By (4.36), we get limR→∞ inf |x|�R(vδ−(x) − v−(x′, x3 − m∗ρδ)) � 0. Applying Proposition 4.5 we

further have

lim
R→∞

inf
|x|�R

(V δ
∗ (x)− V (x′, x3 −m∗ρδ)) � 0. (4.38)
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We prove V δ
∗ (x) � V (x′, x3 −m∗ρδ) for all x ∈ R

3 by contradiction. Take

Λ∗ = min{λ > 0 | V δ
∗ (x) � V (x′, x3 − λ) for x ∈ R

3}

and assume Λ∗ > m∗ρδ. By (4.38), we have Vi(·, ·−Λ∗) �≡ V δ∗,i(·, ·) for all i = 1, . . . , N . Furthermore, the

strong maximum principle implies that

V (x′, x3 − Λ∗) � V δ
∗ (x) for x ∈ R

3. (4.39)

Note that limR→∞ sup|x3+h(x′)|�R | ∂
∂x3

V (x)| = 0. Take R∗ > 0 large enough so that

2ρ sup
|x3+h(x′)|>R∗−ρδ∗

∣∣∣∣ ∂∂x3V (x′, x3 − Λ∗)
∣∣∣∣ < q0.

By vδ−(x) � V δ
∗ (x) and V (x′, x3 − Λ∗) < V (x′, x3 − m∗ρδ) for x ∈ R

3 and (4.38), we can choose

0 < h∗ < min{ δ∗2 , Λ
∗−m∗ρδ

2ρ } small enough such that

V (x′, x3 − Λ∗ + 2ρh∗) < V δ
∗ (x) in D′, (4.40)

where

D′ := {(x) : |x3 + h(x′)| � R∗}.
In R

3\D′, we have

V (x′, x3 − Λ∗ + 2ρh∗)− V (x′, x3 − Λ∗)

= 2ρh∗
∫ 1

0

∂

∂x3
V (x′, x3 − Λ∗ + 2θρh∗)dθ � h∗Q+,

which implies that

W−(x′, x3 − Λ∗ + 2ρh∗, 0;h∗)

� V (x′, x3 − Λ∗ + 2ρh∗)− h∗Q+ � V (x′, x3 − Λ∗) in R
3\D′. (4.41)

Combining (4.39)–(4.41), we have W−(x′, x3 − Λ∗ + 2ρh∗, 0;h∗) � V δ∗ (x) in R
3. Since W−(x′, x3 − Λ∗

+ 2ρh∗, t;h∗) is a subsolution of (2.1), Corollary 2.3 yields that

W−(x′, x3 − Λ∗ + 2ρh∗, t;h∗) � V δ
∗ (x) in R

3 × [0,∞).

Letting t→ ∞ in the last inequality, we get V (x′, x3 − Λ∗ + ρh∗) � V δ
∗ (x) in R

3, which contradicts the

definition of Λ∗. This completes the proof.

Theorem 4.17. Assume that (H1)–(H5) hold. If v0(x) satisfies v0(x) � v−(x) and v0(x) ∈ [E−,E+]

for x ∈ R
3 and

lim
γ→∞ sup

x∈D(γ)

|v0(x)− v−(x)| = 0,

then the solution v(x, t;v0) of (1.4)–(1.5) satisfies

lim
t→∞ ‖v(·, t;v0)− V (·)‖C(R3) = 0.

Proof. Given any δ < δ∗
4 , by v0(x) � v−(x) we have v(x, t;v0) � V (x) for any x ∈ R

3 and

t > 0. Since limt→+∞ v(x, t;vδ−) = V δ∗ (x) � V (x′, x3 −m∗ρδ), there exists t̂ > 0 such that v(x, t;vδ−)
� V (x′, x3 −m∗ρδ)− δq0I for t � t̂. It follows from Lemma 4.14 that

v(x, T ′;v0) � v−(x)− δQ+.

Then by (4.36) there exists t′ > 0 so that

v(x, t+ T ′;v0) � vδ−(x)− δq0e
−λ0 t̂I for t � t′.
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By Lemma 4.2, we have v(x, t̂+ t′ + T ′;v0) � v(x, t̂;vδ−)− δq0I. Therefore, we have

v(x, t̂+ t′ + T ′;v0) � V (x′, x3 −m∗ρδ)− 2δq0I

for x ∈ R
3. By Lemma 4.11, we have

v(x, t+ t̂+ t′ + T ′;v0) � W−(x′, x3 −m∗ρδ, t; 2δ)

for t > 0. Then

V (x) � v(x, t+ t̂+ t′ + T ′;v0) � V (x′, x3 −m∗ρδ − 2ρδ)− 2δq0Ie−βt, t > 0.

It follows that for any t > Tδ := t̂+ t′ + T ′,

v(x, t;v0) � V (x)− 2δq0I − 2M ′′ρδI −M ′′m∗ρδI,

where M ′′ = supx∈R3 | ∂
∂x3

V (x)|. From the arbitrariness of δ > 0, we have that v(·, t;v0) converges to

V (·) as t→ ∞ in ‖ · ‖C(R3). The proof is completed.

Proof of Theorem 1.1. Take v0(x) = u0(x). Let

v0
+(x) = v−(x) ∨ v0(x) and v0

−(x) = v−(x) ∧ v0(x).

Then E− � v0− � v− � v0
+ � E+, E− � v0− � v0 � v0

+ � E+ and

lim
γ→∞ sup

x∈D(γ)

|v0
±(x)− v−(x)| = 0.

Note that u(x, t;u0) = v(x′, x3 + st, t;v0). By the comparison principle and using Theorems 4.13

and 4.17, we complete the proof.

The following corollary shows that a three-dimensional pyramidal traveling front is uniquely determined

as a combination of two-dimensional V -form fronts.

Corollary 4.18. Assume that (H1)–(H5) hold. Let V be the three-dimensional pyramidal traveling

front associated with the pyramid −x3 = h(x′). If (1.6) has a solution W with

lim
γ→∞ sup

x∈D(γ)

|W (x)− V̂ (x)| = 0,

then W ≡ V .

5 Applications

In this section, we apply the results of this paper to three important models in biology.

5.1 Two species Lotka-Volterra competition-diffusion systems

Consider a Lotka-Volterra competition-diffusion system with two components⎧⎪⎨⎪⎩
∂

∂t
u1 = Δu1 + u1(x, t)[1− u1(x, t)− k1u2(x, t)],

∂

∂t
u2 = dΔu2 + ru2(x, t)[1− u2(x, t)− k2u1(x, t)],

x ∈ R
3, t > 0, (5.1)

where k1, k2, r and d are positive constants. The variables u1(x, t) and u2(x, t) stand for the population

densities of two competing species, respectively. Assume that k1 > 1 and k2 > 1. Note that (5.1)

is normalized so that it has the equilibrium solutions (u1, u2) = (1, 0), (0, 1), denoted by Eu = (1, 0)

and Ev = (0, 1). It is well known that (5.1) admits a planar traveling wave solution Φ(x · e + ct) :=
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(φ1(x ·e+ct), φ2(x ·e+ct)) with wave speed c ∈ R connecting Eu = (1, 0) and Ev = (0, 1) (see [20,21,32]

and the references therein), where e ∈ R
3 and |e| = 1. In particular, the traveling wave solution

Φ(ξ) = (φ1(ξ), φ2(ξ)) is unique up to translation. It should be pointed out that to determine the sign of

the wave speed c for (5.1) is a difficult job. Recently, some sufficient conditions have been obtained for

the positivity of the wave speed c (see [1, 20]).

Put u∗2 = 1− u2. Then (5.1) reduces to (for the sake of simplicity, we drop the symbol ∗)⎧⎪⎨⎪⎩
∂

∂t
u1 = Δu1 + u1(x, t)[1− k1 − u1(x, t) + k1u2(x, t)],

∂

∂t
u2 = dΔu2 + r(1 − u2(x, t))[k2u1(x, t)− u2(x, t)],

x ∈ R
3, t > 0. (5.2)

Correspondingly, the equilibria Eu = (1, 0) and Ev = (0, 1) become E1 = (1, 1) and E0 = (0, 0),

respectively. In addition, (5.2) admits a unique traveling wave solution

Ψ(x · e+ ct) := (ψ1(x · e+ ct), ψ2(x · e+ ct))

connecting E0 = (0, 0) and E1 = (1, 1). It is easy to verify that (H1)–(H4) hold (see the arguments

of Example 1 in [53, Section 5]). Furthermore, we assume that the planar wave speed c > 0. Then

(H5) holds.

Fix s > c > 0. Let hj(x
′) (j = 1, . . . , n), h(x′) and D(γ) be defined in Section 1. It follows from

Theorem 1.1 that there exists a solution u(x, t) = V (x′, x3+st) = (V1(x
′, x3+st), V2(x′, x3+st)) of (5.2)

satisfying V (x) > Ψ−(x) for x ∈ R
3 and

lim
γ→∞ sup

x∈D(γ)

|V (x)−Ψ−(x)| = 0,

where

Ψ−(x) = Ψ

(
c

s
(x3 + h(x′))

)
=

(
ψ1

(
c

s
(x3 + h(x′))

)
, ψ2

(
c

s
(x3 + h(x′))

))
.

Moreover, for any u0(x) ∈ C(R3, [E0,E1]) satisfying

lim
γ→∞ sup

x∈D(γ)

|u0(x)− V (x)| = 0,

the solution u(x, t;u0) of (5.2) with the initial value u0 satisfies

lim
t→∞ ‖u(·, ·, t;u0)− V (·, ·+ st)‖C(R2×R) = 0.

Returning to System (5.1), we know that there exists a solution

u(x, t) = U(x′, x3 + st) = (U1(x
′, x3 + st), U2(x

′, x3 + st))

of (5.2) satisfying U1(x) > φ−1 (x) and U2(x) < φ−2 (x) for x ∈ R
3, and

lim
γ→∞ sup

x∈D(γ)

|U(x) −Φ−(x)| = 0,

where

Φ−(x) = (φ−1 (x), φ
−
2 (x)) =

(
φ1

(
c

s
(x3 + h(x′))

)
, φ2

(
c

s
(x3 + h(x′))

))
.

Furthermore, for any u0(x) ∈ C(R3, [E0,E1]) satisfying

lim
γ→∞ sup

x∈D(γ)

|u0(x)−U(x)| = 0,

the solution u(x, t;u0) of (5.1) with the initial value u0 satisfies

lim
t→∞ ‖u(·, ·, t;u0)−U(·, · + st)‖C(R2×R) = 0.
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5.2 Lotka-Volterra competition-diffusion systems with spatio-temporal delays

Consider a Lotka-Volterra competition-diffusion system with spatio-temporal delays⎧⎪⎨⎪⎩
∂

∂t
u1 = Δu1 + u1(x, t)[1− u1(x, t)− k1(g1 ∗ u2)(x, t)],

∂

∂t
u2 = dΔu2 + ru2(x, t)[1− u2(x, t)− k2(g2 ∗ u1)(x, t)],

(5.3)

where x ∈ R
3, t > 0, g1(x, t) =

1
τ1
e−

1
τ1
t 1

(4πdt)
3
2
e−

|x|2
4dt , g2(x, t) =

1
τ2
e−

1
τ2
t 1

(4πt)
3
2
e−

|x|2
4t , τi > 0 and

⎧⎪⎪⎨⎪⎪⎩
(g1 ∗ u2)(x, t) =

∫ t

−∞

∫
R3

g1(x− y, t− s)u2(y, s)dyds,

(g2 ∗ u1)(x, t) =
∫ t

−∞

∫
R3

g2(x− y, t− s)u1(y, s)dyds,

which has been studied by Gourley and Ruan [18] and Lin and Li [37]. The coefficients k1, k2, r and d are

assumed to be the same as in Subsection 5.1. After changes of variables (see Example 2 in [53, Section 5]),

(5.3) reduces to the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
û1 = Δû1 + û1(x, t)[1− k1 − û1(x, t) + k1û3(x, t)],

∂

∂t
û2 = dΔû2 + r(1 − û2(x, t))[k2û4(x, t)− û2(x, t)],

∂

∂t
û3 = dΔû3 + γ1(û2 − û3),

∂

∂t
û4 = Δû4 + γ2(û1 − û4).

(5.4)

The equilibria of (5.4) corresponding to Eu = (1, 0) and Ev = (0, 1) of (5.3) are E1 = (1, 1, 1, 1) and

E0 = (0, 0, 0, 0). It is not difficult to show that (H1)–(H4) hold for (5.4) (see also [53]). Following Lin

and Li [37], we know that (5.4) admits a traveling wave front Ψ(ξ) = (ψ1(ξ), ψ2(ξ), ψ3(ξ), ψ4(ξ)) with

ξ = x · e+ ct satisfying ψ′
i(ξ) > 0 for ξ ∈ R, Ψ(ξ) → E0 as ξ → −∞ and Ψ(ξ) → E1 as ξ → +∞, where

e ∈ R
3 and |e| = 1.

Assume c > 0. Then (H5) holds. For any s > c > 0, let hj(x
′) (j = 1, . . . , n), h(x′) and D(γ) be

defined in Subsection 5.1. Denote

Ψ−(x) = Ψ

(
c

s
(x3 + h(x′))

)
=

(
ψ1

(
c

s
(x3 + h(x′))

)
, . . . , ψ4

(
c

s
(x3 + h(x′))

))
.

By Theorem 1.1, for any s > c System (5.4) admits a pyramidal traveling front

V (x′, x3 + st) := (V1(x
′, x3 + st), . . . , V4(x

′, x3 + st))

satisfying ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔV1(x)− s
∂

∂x3
V1(x) + V1(x)[1 − k1 − V1(x) + k1V3(x)] = 0,

dΔV2(x)− s
∂

∂x3
V2(x) + r(1 − V2 (x))[k2V4(x)− V2(x)] = 0,

dΔV3(x)− s
∂

∂x3
V3(x) + γ1[V2(x)− V3(x)] = 0,

ΔV4(x)− s
∂

∂x3
V4(x) + γ2[V1(x)− V4(x)] = 0

for any x ∈ R
3 and limγ→∞ supx∈D(γ) |V (x)−Ψ−(x)| = 0. Moreover, for any

û0(x) := (û01(x), . . . , û
0
4(x))
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with û0i ∈ C(R3, [0, 1]) and

lim
γ→∞ sup

x∈D(γ)

|û0(x)−Ψ−(x)| = 0,

the solution û(x, t; û0) of (5.4) with the initial value û0 satisfies

lim
t→∞ ‖û(·, ·, t; û0)− V (·, ·+ st)‖C(R2×R) = 0.

It is not difficult to find that Φ(ξ) = (φ1(ξ), φ2(ξ)) with φ1(ξ) = ψ1(ξ) and φ2(ξ) = 1 − ψ2(ξ) is a

planar traveling wave front of (5.3) (see [37, 53]). In addition,

U(x′, x3 + st) := (U1(x
′, x3 + st), U2(x

′, x3 + st))

with U1(x
′, x3 + st) = V1(x

′, x3 + st) and U2(x
′, x3 + st) = 1 − V2(x

′, x3 + st) is a pyramidal traveling

front of (5.3) satisfying⎧⎪⎪⎨⎪⎪⎩
ΔU1(x)− s

∂

∂x3
U1(x) + U1(x)[1− U1(x)− k1(g1 � U2)(x)] = 0,

dΔU2(x)− s
∂

∂x3
U2(x) + rU2(x)[1− U2(x)− k2(g2 � U1)(x)] = 0,

and limγ→∞ supx∈D(γ) |U(x)−Φ−(x)| = 0, where

Φ−(x) = Φ

(
c

s
(x3 + h(x′))

)
=

(
φ1

(
c

s
(x3 + h(x′))

)
, φ2

(
c

s
(x3 + h(x′))

))
,

(g1 � U2)(x) =

∫ ∞

0

∫
R3

1

τ1
e−

s
τ1

1

(4πds)
3
2

e−
x2+y2+z2

4ds U2(x1 − x, x2 − y, x3 − z − cs)dxdydz,

(g2 � U1)(x) =

∫ ∞

0

∫
R2

1

τ2
e
− s

τ2
1

(4πs)
3
2

e−
x2+y2+z2

4s U1(x1 − x, x2 − y, x3 − z − cs)dxdydz.

For (5.3), give an initial value u0(x, θ) = (u01(x, θ), u
0
2(x, θ)) with

u0i (x, θ) ∈ C(R3 × (−∞, 0], [0, 1]) and lim
γ→∞ sup

x∈D(γ)

|u0(x)−Φ−(x)| = 0.

Furthermore, let u03(x) = (g1 ∗ u02)(x, 0), u04(x) = (g2 ∗ u01)(x, 0) and

ũ0(x) = (u01(x, 0), u
0
2(x, 0), u

0
3(x), u

0
4(x)).

Let û(x, t; ũ0) be the solution of (5.4) with the initial value ũ0. Then by Lin and Li [37, Theorem 3.3],

we have that u(x, t;u0) = (u1(x, t;u
0), u2(x, t;u

0)) defined by

u1(x, t;u
0) = û1(x, t; ũ

0), u2(x, t;u
0) = 1− û2(x, t; ũ

0) for t > 0,

and

ui(x, θ;u
0) = u0i (x, θ) for θ � 0, i = 1, 2

is a classical solution of (5.3) with the initial value u0. Following the previous arguments, we have

lim
t→∞ ‖u(·, ·, t;u0)−U(·, · + st)‖C(R2×R) = 0.

5.3 Reaction-diffusion systems with multiple obligate mutualists

Consider a system of m obligate mutualists

∂

∂t
ui(x, y, t) = DiΔui + ui

(
− (m− 2)− ui +

(1 + (m− 1)β)
∑

1�j�m,j �=i uj
1 + β

∑
1�j�m,j �=i uj

)
, (5.5)
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where Di > 0, β > m−2
m−1 , i = 1, 2, . . . ,m and m � 3. This system has been studied by Mischaikow and

Hutson [39] (see also the references therein). The system exactly admits three equilibria E0 = (0, . . . , 0),

Eθ =
m−2

(m−1)β (1, . . . , 1), E1 = (1, . . . , 1). As showed by Wang [53], (5.5) satisfies (H1)–(H4) by replacing

E− and E+ with E0 and E1, respectively. It follows from [39] that (5.5) admits a traveling wave front

Φ(ξ) = (φ1(ξ), . . . , φn(ξ)) connecting E0 and E1, where ξ = x · e+ ct, e ∈ R
3 and |e| = 1. In addition,

the traveling wave front is unique up to translation and satisfies φ′i(ξ) > 0 for ξ ∈ R. Assume that c > 0

(in fact, when D1 = · · · = Dn and 1
6 +

1
2β − m

β2(m−1) +
m

β3(m−1)2 ln(1 + β(m− 1)) > 0, there holds c > 0).

Then Theorem 1.1 is applicable to (5.5).

6 Discussion

In the recent years, great attention has been paid to the study of multidimensional traveling fronts for

scalar reaction-diffusion equations and various new types of nonplanar traveling waves have been observed,

such as V -formed curved fronts for two-dimensional spaces (see [2,19,23–25,42,43,46,55,57]), cylindrically

symmetric traveling fronts (see [24, 25]) and traveling fronts with pyramidal shapes (see [34, 45, 47–50])

in higher-dimensional spaces.

For systems of reaction-diffusion equations, most results are on two-dimensional V -form curved fronts

(see [28–30,53]). For Lotka-Volterra competition-diffusion systems in higher-dimensional spaces, Ni and

Taniguchi [41] established the existence of pyramidal traveling wave solutions. In this article, by extending

the arguments of [47,48] for a scalar equation and using the approaches of [53] for a system, we studied the

existence, uniqueness and stability of traveling waves of pyramidal shapes for reaction-diffusion systems

in the three-dimensional space R
3 and applied the theoretical results to some biological models, such as

competition-diffusion systems with or without spatio-temporal delays and reaction-diffusion systems of

multiple obligate mutualists.

Recently, Wang et al. [56] have established the existence of axisymmetric traveling fronts in Lotka-

Volterra competition-diffusion systems in the three-dimensional space R
3, i.e., traveling fronts which are

axially symmetric with respect to the x3-axis. However, we were unable to prove the uniqueness and

stability of such axisymmetric traveling fronts. It will be interesting to study the existence, uniqueness

and stability of axisymmetric traveling fronts and other types of nonplanar traveling fronts for reaction-

diffusion systems in higher-dimensional spaces.
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2006, 23: 283–329

29 Haragus M, Scheel A. Almost planar waves in anisotropic media. Comm Partial Differential Equations, 2006, 31:

791–815

30 Haragus M, Scheel A. A bifurcation approach to non-planar traveling waves in reaction-diffusion systems. GAMM-Mitt,

2007, 30: 75–95

31 Huang R. Stability of travelling fronts of the Fisher-KPP equation in RN . NoDEA Nonlinear Differential Equations

Appl, 2008, 15: 599–622

32 Kan-on Y. Parameter dependence of propagation speed of travelling waves for competition-diffusion equations. SIAM

J Math Anal, 1995, 26: 340–363

33 Kapitula T. Multidimensional stability of planar travelling waves. Trans Amer Math Soc, 1997, 349: 257–269

34 Kurokawa Y, Taniguchi M. Multi-dimensional pyramidal travelling fronts in the Allen-Cahn equations. Proc Roy Soc

Edinburgh Sect A, 2011, 141: 1031–1054

35 Levermore C D, Xin J X. Multidimensional stability of traveling waves in a bistable reaction-diffusion equation II.

Comm Partial Differential Equations, 1992, 17: 1901–1924

36 Liang X, Zhao X-Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm

Pure Appl Math, 2007, 60: 1–40

37 Lin G, Li W-T. Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays. J

Differential Equations, 2008, 244: 487–513

38 Martin R H, Smith H L. Abstract functional differential equations and reaction-diffusion systems. Trans Amer Math

Soc, 1990, 321: 1–44

39 Mischaikow K, Hutson V. Travelling waves for mutualist species. SIAM J Math Anal, 1993, 24: 987–1008

40 Morita Y, Ninomiya H. Monostable-type traveling waves of bistable reaction-diffusion equations in the multi-

dimensional space. Bull Inst Math Acad Sin, 2008, 3: 567–584



1908 Wang Z C et al. Sci China Math October 2016 Vol. 59 No. 10

41 Ni W M, Taniguchi M. Traveling fronts of pyramidal shapes in competition-diffusion systems. Netw Heterog Media,

2013, 8: 379–395

42 Ninomiya H, Taniguchi M. Existence and global stability of traveling curved fronts in the Allen-Cahn equations. J

Differential Equations, 2005, 213: 204–233

43 Ninomiya H, Taniguchi M. Global stability of traveling curved fronts in the Allen-Cahn equations. Discrete Contin

Dyn Syst, 2006, 15: 829–832

44 Sattinger D H. Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ Math

J, 1972, 21: 979–1000

45 Sheng W-J, Li W-T, Wang Z-C. Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-

periodic nonlinearity. J Differential Equations, 2012, 252: 2388–2424

46 Sheng W-J, Li W-T, Wang Z-C. Multidimensional stability of V -shaped traveling fronts in the Allen-Cahn equation.

Sci China Math, 2013, 56: 1969–1982

47 Taniguchi M. Traveling fronts of pyramidal shapes in the Allen-Cahn equations. SIAM J Math Anal, 2007, 39: 319–344

48 Taniguchi M. The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations. J

Differential Equations, 2009, 246: 2103–2130

49 Taniguchi M. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete Contin Dyn Syst,

2012, 32: 1011–1046

50 Taniguchi M. An (N − 1)-dimensional convex compact set gives an N-dimensional traveling front in the Allen-Cahn

equation. SIAM J Math Anal, 2015, 47: 455–476

51 Tsai J-C. Global exponential stability of traveling waves in monotone bistable systems. Discrete Contin Dyn Syst,

2008, 21: 601–623

52 Volpert A I, Volpert V A, Volpert V A. Travelling Wave Solutions of Parabolic Systems. Providence: American

Mathematical Society, 1994

53 Wang Z-C. Traveling curved fronts in monotone bistable systems. Discrete Contin Dyn Syst, 2012, 32: 2339–2374

54 Wang Z-C. Cylindrically symmetric traveling fronts in periodic reaction-diffusion equations with bistable nonlinearity.

Proc Roy Soc Edinburgh Sect A, 2015, 145: 1053–1090

55 Wang Z-C, Bu Z-H. Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-

KPP nonlinearities. J Differential Equations, 2016, 260: 6405–6450

56 Wang Z-C, Niu H-L, Ruan S. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion

systems in R3. Discrete Contin Dyn Syst Ser B, 2016, in press

57 Wang Z-C,Wu J. Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity.

J Differential Equations, 2011, 250: 3196–3229

58 Xin J X. Multidimensional stability of traveling waves in a bistable reaction-diffusion equation I. Comm Partial

Differential Equations, 1992, 17: 1889–1899

59 Zeng H. Stability of planar travelling waves for bistable reaction-diffusion equations in multiple dimensions. Appl Anal,

2014, 93: 653–664

60 Zeng H. Multidimensional stability of traveling fronts in monostable reaction-diffusion equations with complex pertur-

bations. Sci China Math, 2014, 57: 353–366


