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1 Introduction

If f is a function defined in Rn satisfying an exponential growth condition in a cone and vanishing outside

this cone, then its Fourier transform can be extended to a holomorphic function in a certain domain in Cn.

This is the first consideration in this paper.

Next, if µ and f are given functions, we look for solutions u to the convolution equation µ ∗ u = f . If

we take the Fourier transforms of the functions involved, we obtain µ̂û = f̂ with pointwise multiplication

in the left-hand side. So if µ̂ and û are holomorphic in a domain, then f̂ is holomorphic in the same

domain.

We also see that û is a solution to a division problem: û = f̂/µ̂. So if f̂ and µ̂ are both holomorphic

in an open set Ω, then û will be holomorphic in the set Ω\Z(µ̂), where Z(µ̂) is the set of zeros of µ̂.

Such division problems have been studied a long time in the framework of partial differential equations,

going back to at least Leon Ehrenpreis’s paper [4]. We investigate possible holomorphic extensions of the

Fourier transform of u in terms of properties of µ.

The results of this paper were presented at a conference in Liverpool on December 16, 2013. Those of

them that do not use the Fourier transformation were published in [6]; now the Fourier transformation

will come in as an essential tool.

The plan of the paper is as follows. Sections 2–4 set the stage by recalling notions about discrete

convolution, the Fourier transformation, and tropicalization. Section 5 introduces measures of growth

at infinity of functions. Then extensions into the complex domain of Fourier transforms of solutions to

convolution equations are studied, first when the functions have support in Zn (see Section 6), then for
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more general supports (see Section 7). Results on the growth of solutions are given in Section 8. Section 9

includes some examples. Finally, Section 10 presents the conclusion and hints for further work.

Notation. The letters N, Z, R and C have their usual meaning according to Bourbaki [2]; thus for

instance N = {0, 1, 2, . . . } is the set of natural numbers. We shall use R+ to denote the set of all positive

real numbers and

R! = [−∞,+∞] = R ∪ {−∞,+∞}

to denote the set of extended real numbers, adding two infinities.

The ceiling function R ∋ t 7→ ⌈t⌉ ∈ Z and the floor function R ∋ t 7→ ⌊t⌋ ∈ Z are defined by the

inequalities

t 6 ⌈t⌉ < t+ 1 and t− 1 < ⌊t⌋ 6 t.

For brevity we shall write t≪ 0 when a condition holds for all real numbers t which are negative and

for which |t| is sufficiently large.

Addition R2 ∋ (x, y) 7→ x + y ∈ R can be extended in two different ways to operations (R!)
2 → R!:

the upper sum x+· y is defined as +∞ if one of the terms is equal to +∞, and the lower sum x+· y is

defined as −∞ if one of the terms is equal to −∞. We use x ∧ y for the minimum of x and y; x ∨ y for

the maximum. Under these operations Z and R are lattices, and Z! and R! are complete lattices.

The indicator function indA = − logχA, where χA is the characteristic function, takes the value 0 in A

and +∞ in its complement. We shall write card(A) for the cardinality of a set A. Thus card(∅) = 0,

card(N) = ℵ0 and card(R) = 2ℵ0 .

We shall use the lp-norm ∥x∥p = (
∑

j |xj |p)1/p, 1 6 p < +∞, and the l∞-norm ∥x∥∞ = supj |xj | for
x ∈ Rn. We use these norms also for functions. When any norm can serve, we write just ∥x∥. The inner

product is written ξ · x = ξ1x1 + · · ·+ ξnxn, (ξ, x) ∈ Rn × Rn.

In a metric space X with metric d we shall denote by B<(c, r) and B6(c, r) the strict ball and the

non-strict ball with center at c ∈ X and radius r ∈ R, respectively, thus

B<(c, r) = {x ∈ X; d(c, x) < r} and B6(c, r) = {x ∈ X; d(c, x) 6 r}.

The closure and interior of a subset A of a topological space will be denoted by A and A◦, respectively.

Thus in Rn, B<(c, r) = B6(c, r) if r is positive, and B6(c, r)◦ = B<(c, r) for all real r.

2 Convolution

Let G be an abelian group—most of the time we shall take G = Zn or G = Rn. We define the convolution

product h = f ∗ g of two functions f, g : G→ C by

h(x) = (f ∗ g)(x) =
∑

y+z=x

f(y)g(z), x ∈ G, (2.1)

provided the sum is convergent in a suitable sense. An obvious such condition is that the support of f ,

by which we mean just the set suppf = {x ∈ G; f(x) ̸= 0}, is finite. If G is the space Rn, we can

assume that the functions tend to zero sufficiently rapidly at infinity. See [6] for several kinds of algebras

satisfying this provision, and also for other situations when the convolution can be defined.

The Kronecker delta δa, defined by δa(a) = 1 and δa(x) = 0 for x ̸= a, satisfies δa ∗ δb = δa+b. Taking

a = 0, we see that δ0 is a neutral element for convolution: f ∗ δ0 = f for all functions f .

3 The Fourier transformation

We define the Fourier transform f̂ of a function f : Rn → C by

f̂(ζ) =
∑
x∈Rn

f(x)eiζ·x, ζ ∈ Ω ⊂ Cn, (3.1)
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for those ζ ∈ Cn for which the sum has a good sense. We may take f with support in Zn, but allow also

functions defined in Rn with more general support.

A Fourier transform is actually a convolution product, f̂(ξ) = (f ∗ g)(0), where g(x) = e−iξ·x.

The Fourier transform of a convolution product is given by (f ∗ g)ˆ= f̂ ĝ under suitable conditions

on f and g.

We have adapted the signs in (3.1) to the usual conventions concerning Fourier series. For functions with

support in Zn, the Fourier inversion formula therefore becomes the formula for retrieving the coefficients

of the Fourier series, i.e., when suppf ⊂ Zn,

f(x) = (2π)−n

∫ 2π

0

· · ·
∫ 2π

0

f̂(ξ)e−iξ·x dξ1 · · · dξn, x ∈ Rn. (3.2)

Here, ξ = (ξ1, . . . , ξn) are n real variables.

4 Tropicalization: Infimal convolution and the Fenchel transformation

Tropicalization means, roughly speaking, to replace a sum or integral by a supremum. A simple example

is the lp-norm,

∥x∥p =

( n∑
j=1

|xj |p
)1/p

, x ∈ Rn, 1 6 p < +∞,

which becomes

∥x∥∞ =
(

sup
j=1,...,n

|xj |p
)1/p

= sup
j=1,...,n

|xj |

when the sum is replaced by the supremum.

4.1 Infimal convolution

Let us consider a convolution product

e−h(x) =

∫
Rn

e−f(x−y)e−g(y)dy, x ∈ Rn,

which is well defined if f and g tend to infinity fast enough, e.g., if they satisfy f(x), g(x) > ε∥x∥ − C

for some ε > 0 and some constant C. If we replace the integral by the supremum, we obtain

e−h(x) = sup
y∈Rn

e−f(x−y)e−g(y), x ∈ Rn,

more conveniently written as

h(x) = inf
y∈Rn

(f(x− y) + g(y)), x ∈ Rn.

We define generally the infimal convolution of f and g as h = f ⊓ g, where

h(x) = (f ⊓ g)(x) = inf
y∈Rn

(f(x− y) +· g(y)), x ∈ Rn.

Here, the upper addition allows us to admit functions with infinite values.

4.2 The Fenchel transformation

The Fenchel transform f̃ of a function f : Rn → R! is defined as

f̃(ξ) = sup
x∈Rn

(ξ · x− f(x)), ξ ∈ Rn.
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Clearly, ξ · x− f(x) 6 f̃(ξ), which can be written as

ξ · x 6 f(x) +· f̃(ξ), (ξ, x) ∈ Rn × Rn,

called Fenchel’s inequality. It follows that the second transform
˜̃
f satisfies

˜̃
f 6 f . We have equality here

if and only if f is convex, lower semicontinuous, and takes the value −∞ only if it is −∞ everywhere.

A Fenchel transform is actually an infimal convolution, f̃(ξ) = −(f ⊓ g)(0), where g(x) = ξ · x.
The Fenchel transformation f 7→ f̃ , named for Werner Fenchel (1905–1988), is a tropical counterpart

of the Fourier transformation. To avoid complex numbers, it is more convenient to look at the Laplace

transform of a function g, i.e.,

(L g)(ξ) =

∫ ∞

0

g(x)e−ξxdx, ξ ∈ R.

When we replace the integral by a supremum and take the logarithm, we get

log(Ltrop g)(ξ) = sup
x
(log g(x)− ξx) = f̃(−ξ), ξ ∈ R, f = − log g.

A special case of the Fenchel transform is obtained when the function is the indicator function of some

set, f = indA. Then f̃ is the supporting function HA of A,

HA(ξ) = sup
x∈A

ξ · x, ξ ∈ Rn.

We have

(f ⊓ g)˜= f̃ +· g̃ 6 f̃ +· g̃,

in analogy with the formula (f ∗ g)ˆ= f̂ ĝ. If φ and ψ are convex, then φ+
·
ψ is convex, but not always

φ+· ψ. However, when φ = f̃ and ψ = g̃, this is true: f̃ +· g̃ is always convex, and is often equal to f̃ +
·
g̃.

In fact, equality holds except for a few special cases.

5 Measuring the growth: The radial indicators

Definition 5.1. Given any subset A of Rn we define its asymptotic cone, to be denoted by A∞, as

the union of {0} and the set of all x ∈ Rn \ {0} such that there exists a sequence (a(j))j of points in A

with ∥a(j)∥ tending to +∞ and a(j)/∥a(j)∥ → x/∥x∥.
The asymptotic cone of Zn is equal to all of Rn.

Definition 5.2. Given a function f : A→ C we define its upper radial indicator as

pf (x) = lim sup
∥x∥
∥a∥

log |f(a)|, x ∈ A∞ \ {0},

where the limit superior is taken over all a ∈ A such that ∥a∥ → +∞ and a/∥a∥ → x/∥x∥. Similarly, we

define its lower radial indicator as

qf (x) = lim inf
∥x∥
∥a∥

log |f(a)|, x ∈ A∞ \ {0}.

Finally, we define pf (0) = qf (0) = 0.

Proposition 5.3. If f : Rn → C has finite support, then for a dense open set M in Rn, which depends

only on suppf , we have

pf̂ (ζ) = qf̂ (ζ) = Hsuppf (− Im ζ), ζ ∈ Cn, − Im ζ ∈M,

the supporting function of the support of f evaluated at − Im ζ. In particular,

pf̂ (−iη) = qf̂ (−iη) = Hsuppf (η), η ∈M ⊂ Rn.

Thus both radial indicators are equal and depend only on the convex hull of the support of the function

except for a small closed set.
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Proof. We have

|f̂(θ)| 6
∑
x

|f(x)|e− Im θ·x 6 m sup
x∈suppf

|f(x)|e− Im θ·x, θ ∈ Cn,

where m is the cardinality of suppf . From this we get

∥ζ∥
∥θ∥

log |f̂(θ)| 6 ∥ζ∥
∥θ∥

logm+ sup
x∈ suppf

∥ζ∥
∥θ∥

(log |f(x)| − Im θ · x) , θ, ζ ∈ Cn.

As ∥θ∥ → +∞ and θ/∥θ∥ → ζ/∥ζ∥, the right-hand side converges to

sup
x∈ suppf

(− Im ζ · x) = Hsuppf (− Im ζ).

Thus we have pf̂ (−iη) = qf̂ (−iη) 6 Hsuppf (η) everywhere.

To prove equality we consider a vector ζ ̸= 0 such that there is a point b in suppf satisfying

− Im ζ · x
∥ζ∥

<
− Im ζ · b

∥ζ∥
for all points x ∈ suppf different from b.

Then for all vectors θ ̸= 0 such that θ/∥θ∥ is sufficiently close to ζ/∥ζ∥, there is a positive number ε such

that we have

− Im θ · x
∥θ∥

6 − Im θ · b
∥θ∥

− ε for all points x ∈ suppf different from b.

We get

|f̂(θ)| > |f(b)|e− Im θ·b −
∑
x ̸= b

|f(x)|e− Im θ·x.

For ∥θ∥ large enough, the latter sum is at most half of the first term. Indeed,∑
x ̸= b

|f(x)|e− Im θ·x 6
∑
x ̸= b

|f(x)|e− Im θ·b−ε∥θ∥ 6 1

2
|f(b)|e− Im θ·b,

if ∑
x ̸= b

|f(x)|e−ε∥θ∥ 6 1

2
|f(b)|,

which is true for ∥θ∥ large enough. This implies that

log |f̂(θ)| > − Im θ · b+ log

(
1

2
|f(b)|

)
.

Thus,
∥ζ∥
∥θ∥

log |f̂(θ)| > ∥ζ∥
∥θ∥

(
− Im θ · b+ log

(
1

2
|f(b)|

))
→ − Im ζ · b = Hsuppf (− Im ζ)

as ∥θ∥ → +∞ and θ/∥θ∥ converges to ζ/∥ζ∥. Therefore, equality holds for all directions −η such that

the supporting hyperplane {x; −η · x = −η · b} at a point b intersects suppf only in this point. This is a

dense open set of vectors.

6 Domains of holomorphy for transforms of functions with support in Zn

For functions with support contained in Zn, we can profit from the arithmetic of integers to get easy

estimates.
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If f has its support in Nn and is of exponential growth, say |f(x)| 6 Ceσ·x, x ∈ Nn, for some

real vector σ, then f̂ and |f |ˆ are well defined and holomorphic in the domain defined by Im ζj > σj ,

j = 1, . . . , n, and can be estimated by

|f̂(ζ)| 6 ||f | (̂ζ)| 6 C

n∏
j=1

1

1− eσj−Im ζj
, ζ ∈ Cn, Im ζj > σj . (6.1)

If all the σj are negative, the Fourier transform is defined in Rn, but otherwise we have to go out into

complex space.

If f has its support in Nn and grows exponentially, we cannot apply the inversion formula (3.2) to f̂ ,

but to f̂θ, the Fourier transform of fθ(x) = f(x)eθ·x, for a real vector θ satisfying θj + σj < 0, where

the σj are chosen so that |f(x)| 6 Ceσ·x. We obtain

fθ(x) = f(x)eθ·x = (2π)−n

∫ 2π

0

· · ·
∫ 2π

0

f̂θ(ξ)e
−iξ·x dξ1 · · · dξn, x ∈ Zn,

where f̂θ(ζ) = f̂(ζ − iθ), which means that for f̂ , the integral goes over a cube in Rn translated in Cn by

the imaginary vector −iθ.

We can generalize (6.1) to the following.

Theorem 6.1. Let f : Zn → C have support in a cone K and satisfy an estimate |f(x)| 6 Ceσ·x for

x ∈ K. Then the Fourier transform f̂(ζ) is holomorphic for Im ζ in the interior of σ + Kdual, where

Kdual is the dual of K, defined as

Kdual = {η ∈ Rn; η · x > 0 for all x ∈ K}. (6.2)

Proof. By considering f(x)e−σ·x/C we are reduced to the case σ = 0, C = 1. We shall thus prove

that, if ∥f∥∞ 6 1, then f̂ is well defined and holomorphic in Rn × iΛ, where Λ is the interior of Kdual.

We have

|f̂(ζ)| 6
∑

x∈K∩Zn

e−η·x, ζ ∈ Cn, η = Im ζ,

for certain values of ζ to be determined now. Define cones

Λτ = {η ∈ Rn; η · x > τ∥η∥∥x∥1 for all x ∈ K}, τ > 0. (6.3)

The union of all the Λτ \ B<(0, ρ), τ > 0, ρ > 0, is equal to Λ. Fix τ and ρ. Then, for Im ζ = η ∈ Λτ ,

we obtain

|f̂(ζ)| 6
∑

x∈K∩Zn

e−τ∥η∥∥x∥1 6
∑

x∈Zn

e−τ∥η∥∥x∥1 =
∑
x∈Zn

n∏
j=1

e−τ∥η∥|xj |. (6.4)

When τ, ρ > 0 and ∥η∥ > ρ, the last expression is equal to

n∏
j=1

1 + e−τ∥η∥

1− e−τ∥η∥ =

(
1 + e−τ∥η∥

1− e−τ∥η∥

)n

6
(
1 + e−τρ

1− e−τρ

)n

< +∞.

Thus f̂ is bounded in Rn + i(Λτ \ B<(0, ρ)) for every positive τ and ρ, and holomorphic in the interior,

hence also holomorphic in the union Rn + iΛ as claimed.

Remark 6.2. Any norm can be used for ∥η∥ in the definition of Λ. We have used the same norm to

define B<(0, ρ) in the calculation, but actually also here any norm can be used. On the other hand, the

use of the l1 norm ∥x∥1 in (6.4) is essential for the precise result in the calculation.

Theorem 6.3. Given a strict closed convex cone K, assume that a function f : Zn → C with support

in K satisfies a family of estimates

|f(x)| 6 Cσe
σ·x, x ∈ K, σ ∈ Σ,

for some subset Σ of Rn. Then the Fourier transform of f is holomorphic in the union of all the sets

Rn + i(σ + (Kdual)◦), σ ∈ Σ.
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Proof. For any two elements ρ and σ of Σ, there is a point τ in Rn such that

τ ∈ (ρ+ Λ) ∩ (σ + Λ),

where again Λ stands for (Kdual)◦. To see this, pick a point η in the open cone Λ, which is nonempty by

assumption. Then for large positive t we have

1

t
(ρ− σ) + η ∈ Λ.

Multiplying by t we get

ρ+ tη ∈ σ + tΛ = σ + Λ,

so that τ = ρ+ tη belongs to both ρ+ Λ and σ + Λ. Moreover, τ + Λ is contained in (ρ+ Λ) ∩ (σ + Λ).

We thus have a holomorphic function in each of the convex open sets Rn+i(σ+Λ), σ ∈ Σ. These open

sets all intersect, and in all intersections they agree. So in the union we have a well-defined holomorphic

function.

If f has finite support, or more generally bounded support and if ∥f∥1 is finite, its Fourier transform

is an entire function. When studying holomorphy of a transform, such functions do not influence the

domain. This fact we now use to improve the result in Theorem 6.1.

Theorem 6.4. Let f : Zn → C be given and define Kr as the smallest closed convex cone containing

{a ∈ suppf ; ∥a∥ > r}, r > 0, and K∞ as the intersection of all the Kr, 0 6 r < +∞. Given a vector σ

such that, for some cone L such that L◦ ⊃ K∞ \ {0}, the estimate |f(x)| 6 Ceσ·x holds for all x ∈ L, the

Fourier transform f̂ of f is holomorphic in Ω = Rn + i(σ + (Kdual
∞ )◦).

Proof. Define fr as f in Kr and zero elsewhere. The transforms f̂r and f̂ are holomorphic in the same

open set. So applying Theorem 6.1 to fr, we see that its transform is holomorphic in

Ωr = Rn + i(σ + (Kdual
r )◦).

The union of all the Ωr is equal to the set Ω defined in the statement of the theorem. In fact, given any

compact subset Γ of (Kdual
r )◦, there exists a number r such that Kr is contained in L. So f̂r, hence f̂ as

well, is holomorphic in Rn + i(σ + Γ◦), therefore in all of Ω.

Theorem 6.5. Given a function f : Zn → C, define Kr, 0 6 r 6 ∞, as in Theorem 6.4 and assume

that f satisfies a family of estimates

|f(x)| 6 Cσe
σ·x, x ∈ Lσ, σ ∈ Σ,

for some subset Σ of Rn, where, for each σ ∈ Σ, Lσ is a cone such that L◦
σ ⊃ K∞ \{0}. Then the Fourier

transform of f is holomorphic in the union of all the sets

Rn + i(σ + (Kdual
∞ )◦), σ ∈ Σ.

Proof. We just combine the proofs of Theorems 6.3 and 6.4.

7 Domains of holomorphy for transforms of functions with more general

support

By moving points in the support of a function to an integer point nearby with larger norm we can get a

result for functions with arbitrary (not necessarily discrete support).

Theorem 7.1. Given f : Rn → C, define

fZ(x) =
∑

a∈C(x)

|f(a)|, x ∈ Zn,
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where C(x), x ∈ Zn, is the set of all a ∈ Rn such that ⌈|aj |⌉ = |xj |, j = 1, . . . , n. If fZ satisfies an

estimate |fZ(x)| 6 Ceσ·x for x ∈ K ∩ Zn, where K is the smallest closed convex cone which contains all

points x ∈ Zn such that C(x) is nonempty, then the Fourier transform f̂(ζ) is holomorphic for Im ζ in

the interior of σ +Kdual.

So C(x) is a cube with a vertex at x ∈ Zn and such that

∥x∥∞ − 1 < ∥a∥∞ 6 ∥x∥∞

for all a ∈ C(x). The function fZ is obtained by balayage of f from Rn to Zn.

Proof. We apply Theorem 6.4 to fZ and observe that all estimates for fZ are valid also for f , as is the

conclusion about holomorphy.

The cone L spanned by the cubes C(x) can be large, since when ∥x∥ is small, the cube subtends a

big angle as viewed from the origin. But by removing points near the origin we can again get a larger

domain of holomorphy:

Theorem 7.2. Given a function f : Rn → C such that∑
a∈Rn

∥a∥<r

|f(a)|

is finite for every r with 0 < r < +∞, define Kr and K∞ as in Theorem 6.4 and

fZ,r(x) =
∑

a∈Cr(x)

|f(a)|, x ∈ Zn,

where for ∥x∥ > r, Cr(x) is defined as C(x) in Theorem 7.1, while Cr(x) = ∅ when ∥x∥ < r. If, for

some r, fZ,r satisfies an estimate |fZ,r(x)| 6 Ceσ·x for x ∈ L∩Zn, where L is a closed convex cone such

that L◦ contains K∞ \ {0}, then the Fourier transform f̂(ζ) is holomorphic for Im ζ in the interior of

σ + (K∞)dual.

Proof. Given a cone L the interior of which contains K∞ \{0}, we can take r so large that the points x

for which Cr(x) is nonempty is contained in L. Then Theorem 6.4 will yield the result.

We can also use an estimate for f itself if its support is sufficiently sparse, and we here can also remove

points near the origin.

Theorem 7.3. Assume that the support A of a function f : Rn → C is sparse in the sense that C(x),

x ∈ Zn, as defined in Theorem 7.1, contains a number of points in A which grows slower than every

exponential function eε∥x∥ , ε > 0. Define Kr, 0 6 r 6 ∞, as in Theorem 6.4. If f satisfies an estimate

|f(x)| 6 Ceσ·x for x ∈ L, where the interior of L contains K∞ \ {0}, then the Fourier transform f̂(ζ) is

holomorphic for Im ζ in the interior of σ +Kdual
∞ .

Proof. It is clear that the series∑
a∈Kr∩A

e−τ∥η∥∥a∥1 6
∑
x∈Zn

card(C(x))e−τ∥η∥∥x∥1

converges for τ > 0, ∥η∥ > ρ > 0 (see (6.4)). In the estimate card(C(x)) 6 eε∥x∥1 we take ε < τρ.

8 Estimates for solutions to convolution equations

The study of solutions w to a convolution equation ν ∗ w = f =
∑

a∈Rn f(a)δa can be reduced to the

special equation (δ0 − µ) ∗ u = δ0 as explained in [6, Lemma 4.3] . In the sequel, we consider only this

equation; all results can then be translated to the equation ν ∗ w = f .
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8.1 Sufficient conditions for the growth of solutions

Theorem 8.1. Let µ : Rn → C be a nonzero function with finite support and θ ̸= 0 a given vector

in Rn. Define

r = inf
y
(θ · y; y ∈ suppµ), R = sup

y
(θ · y; y ∈ suppµ).

Assume that r is positive. Let a real vector σ = (σ1, . . . , σn) be given and define a real number γ by

|µ| (̂iσ) =
∑
y

|µ(y)|e−σ·y = eγ . (8.1)

Then the unique function u : Rn → R which solves (δ0 − µ) ∗ u = δ0 and is zero when θ · x ≪ 0 can be

estimated as

|u(x)| 6 e(σ+γθ/r)·x, x ∈ Rn, if γ > 0 (8.2)

and

|u(x)| 6 e(σ+γθ/R)·x, x ∈ Rn, if γ 6 0. (8.3)

The same conclusions hold if µ is nonnegative, if we have u(x) = 0 when θ · x ≪ 0 and u satisfies only

the inequality u 6 δ0 + u ∗ µ.
Remark 8.2. For σ = sθ, s ∈ R, the estimates take the form

|u(x)| 6 e(s+γ/r)θ·x, x ∈ Rn, if γ = log |µ| (̂isθ) > 0; (8.4)

in particular for s = 0,

|u(x)| 6 ∥µ∥θ·x/r1 , x ∈ Rn, if ∥µ∥1 = eγ > 1

and

|u(x)| 6 e(s+γ/R)θ·x, x ∈ Rn, if γ = log |µ| (̂isθ) 6 0; (8.5)

in particular for s = 0,

|u(x)| 6 ∥µ∥θ·x/R1 , x ∈ Rn, if ∥µ∥1 = eγ 6 1.

This shows that u tends to zero as θ · x tends to +∞ if ∥µ∥1 < 1; that u is bounded if ∥µ∥1 = 1; and

that u grows at most exponentially if ∥µ∥1 > 1.

Corollary 8.3. With µ, u and σ as in Theorem 8.1, the estimate |µ| (̂iσ) 6 1 implies that |u(x)| 6 eσ·x,

x ∈ Rn.

Proof of Theorem 8.1. If u = δ0 + u ∗ µ, we have u(0) = 1 and, for x ̸= 0,

|u(x)| 6 |(u ∗ µ)(x)| 6
∑
y

|µ(y)| |u(x− y)|. (8.6)

If µ is nonnegative and u satisfies the inequality u 6 δ0+u∗µ, we have u(0) 6 1 and the same inequality

holds.

Let us try to prove that

|u(x)| 6 e(σ+tθ)·x, x ∈ Rn, (8.7)

where t is a real number to be determined later. Now the values of y for which µ(y) ̸= 0 in (8.6) must

satisfy θ · y > r, so that θ · (x− y) 6 θ · x− r. By induction on θ · x we may therefore assume that all the

values of u(x− y) that occur in (8.6) satisfy the estimate. We get

|u(x)| 6
∑
y

|µ(y)|e(σ+tθ)·(x−y) = e(σ+tθ)·x
∑
y

|µ(y)|e−(σ+tθ)·y

6 e(σ+tθ)·x
∑
y

|µ(y)|e−σ·y sup
y

e−tθ·y 6 e(σ+tθ)·xeγ sup
y

e−tθ·y.

For t > 0 we have eγ supy e
−tθ·y = eγ−tr; for t 6 0 we have eγ supy e

−tθ·y = eγ−tR. We now choose

t = γ/r if γ > 0 and t = γ/R if γ 6 0. With these choices of t in (8.7) we obtain the estimates (8.2)

and (8.3).
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When σ = sθ, there is an inverse relation between s and γ, the larger s is, the smaller is γ. It is

therefore natural to ask which is the best estimate that can be obtained by this method. The answer is

an easy one.

Corollary 8.4. Let µ, θ, r and R be as in the theorem, take σ = sθ, and define s0 as the unique

real number such that |µ| (̂is0θ) = 1. Then the best estimate of the form (8.4) or (8.5) is obtained when

γ = 0, i.e.,

|u(x)| 6 es0θ·x, x ∈ Rn.

Proof. The function γ : R → R defined by

eγ(s) = |µ| (̂isθ) =
∑
y

|µ(y)|e−sθ·y, s ∈ R,

is strictly decreasing, tends to +∞ when s → −∞, and tends to 0 when s → +∞. The existence and

uniqueness of s0 such that eγ(s0) = 1 is therefore clear.

We obtain

es+γ(s)/r =

(∑
y

|µ(y)|es(r−θ·y)
)1/r

, s 6 s0,

and

es+γ(s)/R =

(∑
y

|µ(y)|es(R−θ·y)
)1/R

, s > s0.

Since r 6 θ · y 6 R for all y that occur, the first is decreasing and the second is increasing. Hence, both

expressions attain their minima at s = s0, which proves the corollary.

Example 8.5. For the array b of binomial coefficients (see Subsection 9.1), as well as for the array bn
of multinomial coefficients (see Subsection 9.2), we choose a θ with all components θj positive, and obtain

r = minj θj , R = maxj θj . If θ = (1, 1, . . . , 1), then R = r = 1, and in general we get R = r if the support

of µ is contained in a hyperplane {x; θ ·x = r}, r > 0. We have eγ =
∑

j e
−σj . If σ = s(1, 1, . . . , 1), we get

s0 = log n, so that bn(x) 6 nx1+···+xn , which is the best possible estimate of the form bn(x) 6 ax1+···+xn .

Example 8.6. For the array of Delannoy numbers, we have ∥µ∥1 = 3; µ̂(iσ) = e−σ1 + e−σ2 + e−σ1−σ2

= eγ . For a vector θ with positive components, we have r = min(θ1, θ2), R = θ1 + θ2, thus R > 2r. We

may take θ = (1, 1), so that r = 1 and R = 2. Then µ̂(isθ) = 2e−s + e−2s. Thus for σ = sθ, we have

γ > 0 if and only if 2e−s + e−2s > 1, and γ 6 0 if and only if 2e−s + e−2s 6 1. The number s0 is equal

to log(
√
2+ 1); thus d(x) 6 (

√
2+ 1)x1+x2 , which is the best possible estimate of the form d(x) 6 ax1+x2

for the Delannoy numbers.

8.2 Necessary conditions for the growth of solutions

Conversely we have, under the extra assumption that µ is nonnegative.

Theorem 8.7. Let µ : Rn → [0,+∞[ have finite support contained in a half space {x ∈ Rn; θ · x > r},
r > 0, and let K be the smallest convex cone which contains suppµ. Let u be defined as in Theorem 8.1.

If for any positive ε an estimate

u(x) 6 Cεe
(σ+εθ)·x, x ∈ K, (8.8)

holds for some constant Cε, then

|µ| (̂iσ) = |µ̂(iσ)| = µ̂(iσ) 6 1.

Proof. We note that u > 0 here since µ is nonnegative.

It is enough to consider the case σ = 0. Assume that ∥µ∥1 > 1,

∥µ∥1 = µ̂(0) =
∑
y

µ(y) > 1.
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Then µ̂(itθ) =
∑

y µ(y)e
−tθ·y, t > 0, takes a value larger than 1 for t = 0 and tends to zero when t

tends to +∞ since θ · y > r > 0 in the support of µ. We first determine a positive number t0 such

that
∑

y µ(y)e
−t0θ·y = 1. Hence, µ̂(itθ) is smaller than 1 for t > t0 and equal to 1 when t = t0. This

implies that

û(itθ) =
1

1− µ̂(itθ)
, t > t0,

is finite for t > t0 and tends to +∞ as t↘ t0.

For a small enough positive τ , θ belongs to the cone Λτ defined by (6.3). Fix such a τ . According

to the proof of Theorem 6.1, û(ζ) is bounded for every positive ε when τ∥ Im ζ∥ > ε; in particular,

û(itθ) is bounded when tτ∥θ∥ > ε. We can choose ε = t0τ∥θ∥, so that û(itθ) is bounded for all t > t0,

contradicting the formula above which shows that û(itθ) tends to +∞ when t tends to t0. Hence we

cannot have µ̂(0) > 1.

By combining [6, Theorem 8.3] with Theorems 8.1 and 8.7, we obtain the following result.

Theorem 8.8. Given a function µ : Rn → [0,+∞[ which is nonzero only at finitely many points in

a half space {x ∈ Rn; θ · x > r}, r > 0, let u be the unique function u : Rn → C which is zero where

θ · x≪ 0 and solves the equation (δ0 −µ) ∗ u = δ0. Then, given an arbitrary vector σ ∈ Rn, the following

four conditions are equivalent.

(A) For every positive ε there exists a constant Cε such that

u(x) 6 Cεe
σ·x+ε∥x∥ , x ∈ Rn.

(A′) The upper radial indicator of u satisfies

pu(x) 6 σ · x, x ∈ Rn.

(A′′) The Fenchel transform of −pu satisfies (−pu)˜(−σ) 6 0.

(A′′′) −σ ∈Mf , where Mf is the set such that (−pf )˜= indMf
.

(B) u(x) 6 eσ·x for all x ∈ Rn.

(C) µ̂(iσ) 6 1.

Proof. Here (A), (A′), (A′′) and (A′′′) are the same as in [6, Theorem 8.3] and equivalent as already

proved there, whereas (B) and (C) are from the present section. We have (A) ⇒ (C) ⇒ (B) ⇒ (A), where

the first implication comes from Theorem 8.7, the second from Theorem 8.1, and the third is trivially

true.

We note in particular the implication (A) ⇒ (B), which is a kind of Liouville theorem.

Corollary 8.9. Let u be as in Theorem 8.8. Then log u(x) − ε∥x∥ is bounded from above for every

positive ε if and only if u is bounded.

9 Examples

9.1 The binomial coefficients

Let

b(x, y) =

(
x+ y

x

)
=

(x+ y)!

x! y!
, (x, y) ∈ N2,

be the binomial coefficients. We define them also when x 6 −1 or y 6 −1 by taking them equal to zero

there. This array satisfies the equation (µb − δ0) ∗ b = δ0, where µb(x, y) = δ(1,0) + δ(0,1).

Using Stirling’s formula in the simple form

log x! = x log x− x+O(log x), x→ +∞,
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we see that the radial indicators are

pb(x, y) = qb(x, y) = x log(1 + y/x) + y log(1 + x/y), (x, y) ∈ R2
+. (9.1)

In particular, pb(x, x) = 2x log 2 ≈ 1.3863x.

The function pb is positively homogeneous of order 1 and concave. To prove concavity it is enough to

note that x 7→ log(1+ x) is concave. This implies that the homogeneous function (x, y) 7→ y log(1 + x/y)

is concave; by symmetry also (x, y) 7→ x log(1 + y/x) is concave.

The gradient of pb is

grad pb(x, y) = (log(1 + y/x), log(1 + x/y)), x, y > 0.

We note the following special case of Theorem 8.8.

Proposition 9.1. The Fenchel transform (−pb)˜ of the function −pb is equal to indMb
, where

Mb = {η ∈ R2; eη1 + eη2 6 1}.

Since −pb is convex, lower semicontinuous, and does not take the value −∞, we also get qb = pb =

−(−pb)˜̃= −(indMb
) .̃

9.2 The multinomial coefficients

We can generalize the array b as follows. Let x ∈ Nn. The number of ways of choosing n subsets with

x1, . . . , xn elements out of a set with
∑
xj = 1 · x elements is

bn(x) =
(1 · x)!∏n
j=1 xj !

, x ∈ Nn.

Here we define 1 = (1, 1, . . . , 1). The radial indicators of bn are

pbn(x) = qbn(x) =

n∑
j=1

xj log
1 · x
xj

, x ∈ Rn
+,

generalizing (9.1), b2 = b. In the formula (δ0 − µbn) ∗ bn = δ0, we have

µbn =
n∑

j=1

δe(j) ,

where e(j) is the unit vector with 1 at the j-th place, j = 1, . . . , n. Its Fourier transform is

µ̂bn(ζ) =
n∑

j=1

eiζj , ζ ∈ Cn. (9.2)

9.3 The Delannoy numbers

The Delannoy numbers d(x, y), (x, y) ∈ Z2, are defined as 0 when x 6 −1 or when y 6 −1, as 1 when

(x, y) = (0, 0), and for (x, y) ∈ N2 \ {(0, 0)} by the recursion formula

d(x, y) = d(x− 1, y) + d(x− 1, y − 1) + d(x, y − 1). (9.3)

The array satisfies the equation (µd − δ0) ∗ d = δ0, where µd = δ(1,0) + δ(1,1) + δ(0,1).

This array is named for Henri-Auguste Delannoy (1833–1915) and was introduced in [3]. He investigated

the possible moves on a chessboard. The numbers under consideration here appear when one studies “la

marche de la Reine”. For biographies of Delannoy, see [1, 9].

It follows from (9.2) that

µ̂d(ζ1, ζ2) = µ̂b3(ζ1, ζ2, ζ1 + ζ2), (ζ1, ζ2) ∈ C2.
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This means that information on d can be obtained from b3.

The Delannoy numbers appear in many problems in mathematics; see Sulanke [10], who lists 29 different

examples. To mention just one, d(n, r) = d(r, n) is the cardinality of the ball of radius r in Zn equipped

with the l1 metric (also known as the hyperoctahedron),

{x ∈ Zn; ∥x∥1 = |x1|+ · · ·+ |xn| 6 r},

Vassilev and Atanasov [11], quoted here from Sulanke [10, Note 18]. The symmetry in (n, r) is by no

means obvious a priori.

To Sulanke’s examples the author added a thirtieth [5]: for (a, b) ∈ Z2 and a + b > 0, the number

of Khalimsky-continuous functions [0, a + b]Z → Z satisfying f(0) = 0 and f(a + b) = a − b is equal to

d(a, b). For a detailed proof, see Samieinia [8, Theorem 2.2]. Then a thirty-first: a fundamental solution

E(x+ iy) = iy−xd(x, y), x+ iy ∈ Z[i],

for a discrete analogue of the Cauchy-Riemann operator [5]. Thus, we came to the Delannoy numbers

along two paths, digital geometry, where the Khalimsky topology is a useful structure; and discrete

complex analysis.

Again, we note a special case of Theorem 8.8.

Proposition 9.2. The Fenchel transform (−pd)˜ of the function −pd is equal to indMd
, where

Md = {η ∈ R2; eη1 + eη2 + eη1+η2 6 1}.

From this proposition, we deduce the following result for the array of Delannoy numbers.

Theorem 9.3. The upper radial indicator pd of the array of Delannoy numbers is

pd(x, y) = x log
r + y

x
+ y log

r + x

y
, (x, y) ∈ R2

+,

where r =
√
x2 + y2.

We have proved this using the methods developed here. It was proved earlier by Pemantle and Wil-

son [7] using other methods.

10 Conclusion and hints for further work

We have obtained results on holomorphic extensions of the Fourier transforms of functions defined on Rn,

especially those that solve convolution equations.

The growth of a solution u to an equation (δ0 − µ) ∗ u = δ0 is related to the behavior of the Fourier

transform µ̂ of µ. This relation is well understood when µ > 0. It is not well understood when µ takes

real values of both signs or non-real values. The growth of a solution u to an equation (δ0 − µ) ∗ u = δ0
can sometimes be roughly the same as that of the solution v to (δ0 − |µ|) ∗ v = δ0; sometimes v grows

much faster than u.
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