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Abstract Consider the transmission eigenvalue problem for the wave scattering by a dielectric inhomogeneous

absorbing obstacle lying on a perfect conducting surface. After excluding the purely imaginary transmission

eigenvalues, we prove that the transmission eigenvalues exist and form a discrete set for inhomogeneous non-

absorbing media, by using analytic Fredholm theory. Moreover, we derive the Faber-Krahn type inequalities

revealing the lower bounds on real transmission eigenvalues in terms of the media parameters. Then, for

inhomogeneous media with small absorption, we prove that the transmission eigenvalues also exist and form a

discrete set by using perturbation theory. Finally, for homogeneous media, we present possible components of

the eigenvalue-free zone quantitatively, giving the geometric understanding on this problem.
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1 Introduction

The transmission eigenvalue problems (TEVs) are boundary value problems for a coupled differential

system. Motivated by the determination of media property using these eigenvalues in inverse scattering

problems [9, 10, 14], the analysis for these new problems, such as the discreteness of eigenvalues, the

distribution and asymptotic behavior, has become an important mathematical research area. These

eigenvalue problems are not trivial since the corresponding operators are neither elliptic nor self-adjoint,

and consequently, cannot be covered by any existing standard spectrum theory for differential operators.

From the algebraic points of view, they are essentially the quadric eigenvalue problems. The efficient

computational schemes for catching several small eigenvalues in finite dimensional space for non-absorbing

media with constant background and Dirichlet boundary condition have been established in [17, 20].

The theoretical motivation for studying the TEVs lies on the fact that they are related to nonstan-

dard spectral problems for several classes of differential operators. For interior transmission eigenvalue

problems arising in inverse scattering, they cannot be unified in a general framework due to their own

special structure, since the physical configurations for wave scattering are very complicated. For exam-

ple, if the electromagnetic waves are applied, we need to consider the differential operator related to the

Maxwell equations; whereas the Helmholtz equation should be considered for scattering of the acoustic

waves. Even if for scattering of acoustic plane waves, the scattering process also depends on the interior
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structures of the media such as inhomogeneity and absorption, as well as the boundary property of the

interested media. All these practical configurations lead to many smart eigenvalue problems for differen-

tial systems, which constitute the interesting research areas for spectral theory of differential operators

in pure mathematics.

The motivation for the researches on TEVs from the applied areas comes from its potential applications

for inverse scattering problems. Firstly, it has been shown that real TEVs can be determined from the

corresponding scattered data such as the far field of the scattered wave [3]. Secondly, the scattered wave

contains the information about the obstacle. Therefore, TEVs carry information about obstacle properties

and can be used to quantify the presence of abnormalities inside homogeneous media. Moreover, by using

this information, we can test the integrity of materials which arises frequently in many nondestructive

testing scenarios. Due to the above reasons, TEVs play an essential role in some recently developed

reconstruction algorithms for inverse scattering problems, such as the linear sampling method and the

factorization method [2, 16]. To carry out this process, of particular interest is the spectrum property

associated with this generalized eigenvalue problem, corresponding to different scattering models.

Roughly speaking, the scattering models are determined by the obstacle structure as well as its bound-

ary state. In the case that an inhomogeneous non-absorbing obstacle embedded in a homogeneous

non-absorbing media, the TEVs have been well studied. By using analytic Fredholm theory, one can

show for several cases that the corresponding TEVs form at most a discrete set with infinity as the only

possible accumulation point [11, 12]. For scalar isotropic media, Päivärinta and Sylvester [18] obtained

the existence of a finite number of TEVs, provided that the index of refraction be large enough. Then

Kirsch [15] extended this result to anisotropic media for both the scalar case and Maxwell’s equations.

The difficult case for a medium with cavities is studied in [4]. At the same time, Cakoni and Haddar [7]

presented a general proof for the existence of TEVs for a wide class of scattering problems. In [22], Yang

and Monk considered the interior transmission problem for a bounded isotropic non-absorbing dielectric

medium lying on an infinite conducting surface. They established the Fredholm property and showed

that TEVs exist and form a discrete set. In [21], the discreteness and the continuity of the spectral

projections on the medium contrast is established for standard interior transmission model by proving

that interior transmission operator has upper triangular compact resolvent. It is noteworthy to mention

that there are still many open questions meriting further investigations [8]. In fact, up to now most of

the researches on TEVs have only considered the configurations with non-absorbing homogeneous back-

ground and non-absorbing obstacle. This restriction was given to avoid certain mathematical difficulties

in dealing with non-self-adjoint operators. The study on TEVs for absorbing media was initiated in [5].

For a constant index of refraction, they also gain regions in the complex plane where the TEVs cannot

exist and obtain a-priori estimates for real TEVs. Recently, it has been investigated for the simulation

of the radiation of an antenna situated on a large metallic structure [1].

Motivated by existing works mentioned above, here we consider an interior transmission problem arising

in a non-destructive testing application from inverse scattering models. In this case, the mixed boundary

condition should be introduced due to the presence of a perfect electric conducting surface. Moreover, we

assume the general case that both the obstacle and the background media are inhomogeneous absorbing

media. Such extensions of the transmission model make our problem more difficult and enable the

corresponding theoretical results applicable to simulate more realistic physical settings. The essential

difficulty here is, after establishing the variational formulation of the problem, that the existing schemes

proving the existence of infinite number of eigenvalues is invalid due to the inhomogeneity of the media.

We need a more elegant technique for inhomogeneous media to prove the existence of an infinite number of

eigenvalues. More precisely, we firstly establish the discreteness of the TEVs for non-absorbing media from

Fredholm theory, by decomposing the variational form into an operator equation with several components

on Sobolev spaces. Then the existence of an infinite set of TEVs for nonabsorbing inhomogeneous media

is shown by rewriting the variational formulation as a generalized eigenvalue problem and studying the

corresponding operators involved. Since we consider the general inhomogeneous background here, the

technique applied in [6] to prove the existence of an infinite set of TEVs for homogeneous background

media must be improved essentially. We present quantitative indices for the inhomogeneity of the media
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to ensure the existence of an infinite set of transmission eigenvalues. Then we make use of the stability

of eigenvalues for closed operators under small perturbations, as those analyzed in [13], to prove the

existence of (complex) TEVs. We would like to point out that, the technique applied in [21] may be a

possible candidate for dealing with our problem with mixed boundary condition here. However, since

some coercivity condition on the refraction index near the obstacle boundary are assumed there, essential

changes such as the domain for interior transmission operator and the restriction on refraction index are

required for our model with mixed boundary condition.

This paper is organized as follows. In Section 2, we formulate the interior transmission problem by a

coupled homogeneous system for the Helmholtz equation, and give its equivalent form. Then in Section 3

we show that the TEVs form at most a discrete set based on the analytic Fredholm theory and give

the Faber-Krahn type inequality for non-absorbing media. In addition, we also show the existence of

an infinite number of eigenvalues for this setting. Then the existence and discreteness of the (complex)

TEVs for the inhomogeneous media with small absorption are generated from the perturbation theory

of compact operators. In Section 4, we give a geometric description of the components of eigenvalue-free

zone for homogeneous absorbing media. Finally, in Section 5, we give some conclusions and present some

possible works in the future.

2 Problem setting and its variational form

Let D ⊂ Rd with d = 2, 3 be a bounded domain with a piecewise smooth Lipschitz boundary Γ = Γm∪Γα,

where Γm is the interface between the perfect conducting substrate Dm and D, and Γα is the interface

between the background dielectric medium Dα and D. Suppose that Dm = {(x, z) : z < h(x)} with

(x, z) = (x1, x2) for d = 2 and (x, z) = (x1, x2, x3) for d = 3. Denote by ν the unit normal outward vector

to ∂D, see Figure 1 for the geometric configuration.

Assume that there are absorption and inhomogeneity in both the obstacle and the background medium.

For this configuration, the interior transmission eigenvalue problem corresponding to the acoustic wave

scattering (also TE mode for electromagnetic wave scattering) in R
d reads as: Find nonzero (w, v) in a

suitable function space for some k ∈ C such that

Δw + k2
(
ε1(x) + i

γ1(x)

k

)
w = 0, in D, (2.1)

Δv + k2
(
ε0(x) + i

γ0(x)

k

)
v = 0, in D, (2.2)

∂w

∂ν
− ∂v

∂ν
= 0, on Γα, (2.3)

w − v = 0, on Γα, (2.4)

w = v = 0, on Γm. (2.5)

D

z

v

x

vDα

Γm
Dm

Γα

z = h(x)

Figure 1 Geometric configuration of the problem
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Here the real coefficients (εj(x), γj(x)) for j = 0, 1 are assumed to satisfy

εj(x), γj(x) ∈ L∞(D), εj(x) � θj > 0, γj(x) � 0 a.e. in D.

For complex-valued functions u, v ∈ L2(D), define (u, v)L2(D) :=
∫
D uv̄dx and ‖u‖ represents the L2(D)

norm. Except for the classical spaces H1(D) and H1
0 (D), we also need the Sobolev spaces (see [22] for

2-dimensional case)

H(div, D) = {u ∈ (L2(D))d : ∇ · u ∈ L2(D)},
H0(div, D) = {u ∈ H(div, D) : ν · u = 0 on Γ},
H0α(div, D) = {u ∈ H(div, D) : ν · u = 0 on Γα}

and

H̃(D) = {u ∈ H1(D) : ∇u ∈ H(div, D)},
H̃0(D) = {u ∈ H1

0 (D) : ∇u ∈ H0(div, D)},
H̃0α(D) = {u ∈ H1

0 (D) : ∇u ∈ H0α(div, D)}

equipped with the scalar product (u, v)H̃(D) := (u, v)L2(D) + (∇u,∇v)L2(D) + (Δu,Δv)L2(D) for H̃(D),

H̃0(D), H̃0α(D), which are the Hilbert spaces, and H̃0(D) is equivalent to H2
0 (D). Then the TEV problem

can be restated as: Find the values of k ∈ C such that there exists nonzero function pair (w, v) ∈ (L2(D))2

satisfying w − v ∈ H̃0α(D) and⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δw + k2
(
ε1(x) + i

γ1(x)

k

)
w = 0, in D,

Δv + k2
(
ε0(x) + i

γ0(x)

k

)
v = 0, in D,

w = v = 0, on Γm.

The boundary conditions (2.3) and (2.4) are incorporated in the requirement w − v ∈ H̃0α(D). It is

already known based on the analytic Fredholm theory that, for lossless media without the conducting

surface, the set of TEVs is at most discrete with +∞ as the only possible accumulation point [12,18,19].

We will prove that such a conclusion is also true under some hypotheses for our new model where there

exist both absorption and inhomogeneity in the background media.

Firstly, we write (2.1)–(2.2) as an equivalent quadratic eigenvalue problem for u := w − v ∈ H̃0α(D)

for a fourth order differential operator. In fact, (2.1)–(2.2) generates

Δu+ k2
(
ε0 + i

γ0
k

)
u = −k2w

(
εc + i

γc
k

)
in D (2.6)

with εc(x) := ε1(x) − ε0(x) and γc(x) := γ1(x) − γ0(x). Dividing both sides of (2.6) by k2εc + ikγc and

applying the equation for w generate

[Δ + k2ε1(x) + ikγ1(x)]
1

k2εc(x) + ikγc(x)
[Δ + k2ε0(x) + ikγ0(x)]u = 0 in D. (2.7)

On the other hand, we have from (2.6) and the boundary condition w = 0 in (2.5) that

1

k2εc + ikγc
(Δ + k2ε0 + ikγ0)u = 0 on Γm, (2.8)

which will turn out to be a natural boundary condition for u.

In addition, we note that u = w − v ∈ H̃0α(D) implies that

u = 0 on Γ = Γm ∪ Γα,
∂u

∂ν
= 0 on Γα.
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By defining

P0(x) := kε0(x) + iγ0(x), P1(x) := kε1(x) + iγ1(x), Pc(x) := kεc(x) + iγc(x),

we finally conclude that the transmission eigenvalues k ∈ C are those such that there exists non-zero

solution u ∈ H̃0α(D) to the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[Δ + kP1(x)]

(
1

kPc(x)
[Δ + kP0(x)]u

)
= 0 in D,

u = 0 on Γ = Γm ∪ Γα,
1

kPc(x)
(Δ + kP0(x))u = 0 on Γm,

∂u

∂v
= 0 on Γα.

(2.9)

Using the boundary conditions, the variational form of the above interior TEV problem is to find k ∈ C

and the corresponding nonzero function u ∈ H̃0α(D) satisfying∫
D

1

Pc(x)
[Δu + kP0(x)u][Δψ̄ + kP1(x)ψ̄]dx = 0 for all ψ ∈ H̃0α(D), (2.10)

where − denotes the complex conjugate. In a similar fashion, the TEV problem can also be written as:

Find k ∈ C and the corresponding nonzero function u ∈ H̃0α(D) satisfying∫
D

−1

Pc(x)
(Δu + kP1(x)u)(Δψ̄ + kP0(x)ψ̄)dx = 0 for all ψ ∈ H̃0α(D). (2.11)

Similar to the proof in [5, 6, 19], we can prove the following equivalence result under our physical

configuration.

Lemma 2.1. If w, v ∈ L2(D) satisfy that w − v ∈ H̃(D) and w, v satisfy (2.1)–(2.5), then u := w − v

∈ H̃0α(D) satisfies (2.9). Conversely, if u ∈ H̃0α(D) is a solution of (2.9), then

w := − 1

k2εc + ikγc
(Δ + k2ε0 + ikγ0)u ∈ L2(D) and v := w − u ∈ L2(D)

satisfy (2.1)–(2.5).

Proof. It is clear that if w, v satisfy (2.1)–(2.5) then u := w − v ∈ H̃0α(D) satisfies (2.9). On the

contrary, if u ∈ H̃0α(D) solves (2.9), then w := − 1
k2εc+ikγc

(Δ + k2ε0 + ikγ0)u ∈ L2(D) meets (2.1) from

the equation in (2.9). Since v := w − u = − 1
k2εc+ikγc

(Δ + k2ε1 + ikγ1)u ∈ L2(D) and

[Δ + k2ε0(x) + ikγ0(x)]
1

k2εc(x) + ikγc(x)
[Δ + k2ε1(x) + ikγ1(x)]u = 0 in D

from the analogous derivation to (2.7), the fact that v solves (2.2)–(2.4) is obvious due to u = w − v

∈ H̃0α(D). From the boundary condition in (2.9) and the definition of w, we known that w = 0 on Γm

and therefore v = w − u = 0 on Γm from the boundary condition for u. The proof is complete.

3 Eigenvalues for inhomogeneous absorbing media

In the following, we will fix our analysis on 2-dimensional case with d = 2. However, it is easy to check

that the arguments also hold for 3-dimensional case with some obvious modifications.

Based on the equivalence result given in Lemma 2.1, we can analyze TEVs of system (2.1)–(2.5) in

terms of (2.9). The first result describing the transmission eigenvalue distribution is that we can exclude

the pure imaginary values if εcγc > 0.

Theorem 3.1. The interior transmission problem (2.1)–(2.5) for absorbing media does not have any

pure imaginary eigenvalue k = iτ for any τ > 0 if εc(x)γc(x) > 0 in D. Moreover, for nonabsorbing

media (i.e., γ1(x) ≡ γ0(x) ≡ 0), there is no imaginary eigenvalues k = iτ for any τ ∈ R if either εc(x) > 0

or εc(x) < 0 in D.
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Proof. Consider k = iτ for real τ > 0. Taking ψ(x) = u(x) in (2.10), we obtain that

0 =

∫
D

1

τεc + γc
[Δu − (τ2ε0 + τγ0)u][Δū− (τ2ε1 + τγ1)ū]dx

=

∫
D

1

τεc + γc
|Δu − (τ2ε0 + τγ0)u|2dx− τ

∫
D

[Δu − (τ2ε0 + τγ0)u]ūdx

=

∫
D

1

τεc + γc
|Δu − (τ2ε0 + τγ0)u|2dx+ τ

∫
D

|∇u|2dx+ τ2
∫
D

(τε0 + γ0)|u|2dx

�
∫
D

1

τεc + γc
|Δu − (τ2ε0 + τγ0)u|2dx.

Case 1. εc, γc > 0. The above inequality implies Δu − (τ2ε0(x) + τγ0(x))u = 0 in D from τ > 0.

However, we also have u = ∂u
∂ν = 0 on Γα. Therefore the uniqueness for the Cauchy problem for the

elliptic equation yields u ≡ 0 in D.

Case 2. εc, γc < 0. We apply (2.11), which essentially exchanges the position of (ε0, γ0) and (ε1, γ1),

to yield

0 �
∫
D

−1

τεc + γc
|Δu − (τ2ε1 + τγ1)u|2dx.

Then the similar arguments lead to u ≡ 0 in D.

Case 3. εc, γc > 0 for x in some subset D0 ⊂ D and εc, γc < 0 for x in D\D0. It is not hard to get that

0 �
∫
D\D0

−1

τεc + γc
|Δu− (τ2ε1 + τγ1)u|2dx+

∫
D0

1

τεc + γc
|Δu − (τ2ε0 + τγ0)u|2dx.

Therefore, there is no eigenvalue k = iτ for any τ > 0 for absorbing media provided εcγc > 0. For

non-absorbing media with γ1(x) ≡ γ0(x) ≡ 0, the conclusion follows similarly as above. The proof is

complete.

In general, the existence and distribution of TEVs for absorbing media are still open problems. How-

ever, if the absorptions γ0, γ1 are assumed to be small enough, we can still apply the perturbation theory

in [13] to show the existence of TEVs near the real axis. Before showing the main result for non-absorbing

media, we first state the following result given in [22] which is essentially the generalization of the Poincare

inequality.

Lemma 3.2. For any u ∈ H̃0α(D), we have the estimate ‖∇u‖2L2(D) � 1
λ(D)‖Δu‖2L2(D), where λ(D)

is the first eigenvalue of the following buckled plate eigenvalue problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δ2v = λΔv, in D,

v = 0, on Γ = Γm ∪ Γα,

ν · ∇v = 0, on Γα,

Δv = 0, on Γm.

(3.1)

Now we can clarify the distribution of eigenvalues for inhomogeneous non-absorbing media with mixed

boundary condition on Γ.

Theorem 3.3. For non-absorbing medium D with γj(x) ≡ 0 a.e. in D, assume that

A1. εj ∈ L∞(D) with the bounds ε∗j � εj(x) � θj > 0 for j = 0, 1;

A2. εc(x) has no zero points in D satisfying 1
|εc(x)| > α > 0 a.e. in D;

A3. the bounds on A1 satisfy

0 <
ε∗0

θ1 − ε∗0
< 1 for εc(x) > 0, 0 <

ε∗1
θ0 − ε∗1

< 1 for εc(x) < 0.

Then we have

(1) the set of TEVs is at most discrete and does not accumulate at zero;
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(2) all the real TEVs (if they exist) are such that

k2 �

⎧⎪⎪⎨
⎪⎪⎩
λ(D)α

1 − αε∗0
1 + αε∗0

, if 0 <
ε∗0

θ1−ε∗0
< 1,

λ(D)α
1 − αε∗1
1 + αε∗1

, if 0 <
ε∗1

θ0−ε∗1
< 1,

with λ(D) the first eigenvalue of (3.1).

Proof. Case 1. εc > 0. It follows from (2.10) for γ0 ≡ γ1 ≡ 0 a.e. in D that

0 =

∫
D

1

εc(x)
[Δu + k2ε0(x)u][Δψ̄ + k2ε1(x)ψ̄]dx

=

∫
D

1

εc(x)
[Δu + k2ε0(x)u][Δψ̄ + k2ε0(x)ψ̄]dx+ k4

∫
D

ε0(x)uψ̄dx− k2
∫
D

∇u · ∇ψ̄dx

for u, ψ ∈ H̃0α(D). We therefore arrive at the following equivalent form of finding a nonzero function

u ∈ H̃0α(D) and k ∈ C such that

Ãk2(u, ψ) − k2B̃(u, ψ) = 0 for all ψ ∈ H̃0α(D) (3.2)

with

Ãk2(u, ψ) =

(
1

εc(x)
[Δu + k2ε0(x)u],Δψ + k2ε0(x)ψ

)
L2(D)

+ k4(ε0(x)u, ψ)L2(D),

B̃(u, ψ) = (∇u,∇ψ)L2(D).

Furthermore, we have from εc∗ := infD |εc(x)| > 0 that

|Ãk2(u, ψ)| =

∣∣∣∣
∫
D

1

εc
(Δu + k2ε0u)(Δψ̄ + k2ε0ψ̄)dx+ k4

∫
D

ε0uψ̄dx

∣∣∣∣
�

∣∣∣∣
∫
D

[
1

εc
Δu Δψ̄ +

k4ε20
εc

uψ̄ + k4ε0uψ̄

]∣∣∣∣ +

∣∣∣∣
∫
D

[
k2ε0
εc

ψ̄Δu+
k2ε0
εc

uΔψ̄

]∣∣∣∣
� C‖Δu‖‖Δψ‖ + C‖u‖‖ψ‖ +

∣∣∣∣
∫
D

[
∇u · ∇

(
k2ε0
εc

ψ̄

)
+ ∇ψ̄ · ∇

(
k2ε0
εc

u

)]∣∣∣∣
� C(‖Δu‖‖Δψ‖ + ‖u‖‖ψ‖) + C(‖∇u‖‖ψ‖ + ‖∇u‖‖∇ψ‖ + ‖u‖‖∇ψ‖)

� C(‖Δu‖‖Δψ‖ + ‖u‖‖ψ‖ + ‖∇u‖‖∇ψ‖)

owing to the Poincare inequality. Thus we have

|Ãk2(u, ψ)|2 � C2[‖Δu‖2‖Δψ‖2 + ‖u‖2‖ψ‖2 + ‖∇u‖2‖∇ψ‖2] � C2‖u‖2
H̃(D)

‖ψ‖2
H̃(D)

,

which leads to

|Ãk2 (u, ψ)| � C‖u‖H̃(D)‖ψ‖H̃(D), (3.3)

with the constant C depending on (k, εc∗ , ε
∗
0, ‖∇ ε0

εc
‖L∞(D)). It is easy to see that

|B̃(u, ψ)|2 =

∣∣∣∣
∫
D

∇u · ∇ψ̄dx
∣∣∣∣
2

� ‖∇u‖2‖∇ψ‖2 � ‖u‖2
H̃(D)

‖ψ‖2
H̃(D)

. (3.4)

From the above two estimates, we know that both Ãk2(·, ·) and B̃(·, ·) are continuous sesquilinear forms

on H̃0α(D)×H̃0α(D). Denote by Ak2 and B the bounded linear operators from H̃0α(D) to H̃0α(D) defined

using Riesz representation theorem by

(Ak2u, ψ)H̃0α(D) = Ãk2(u, ψ), (3.5)
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(Bu, ψ)H̃0α(D) = B̃(u, ψ) (3.6)

for all ψ ∈ H̃0α(D).

To establish the invertibility of operator Ak2 , we apply the Lax-Milgram theorem. Indeed, following

the scheme in [7], we obtain

Ãk2 (u, u) =

(
1

εc(x)
[Δu+ k2ε0(x)u],Δu+ k2ε0(x)u

)
L2(D)

+ k4(ε0(x)u, u)L2(D)

� α‖Δu+ k2ε0u‖2L2(D) +
1

ε∗0
k4‖ε0u‖2L2(D)

� α(‖Δu‖2 + k4‖ε0u‖2 − 2k2‖Δu‖‖ε0u‖) +
1

ε∗0
k4‖ε0u‖2

� α

[
X2 + Y 2 −

(
X2

ε
+ εY 2

)]
+

1

ε∗0
Y 2

= α

(
1 − 1

ε

)
X2 +

(
α+

1

ε∗0
− αε

)
Y 2 (3.7)

for any ε > 0, where X = ‖Δu‖L2(D) and Y = k2‖ε0u‖L2(D).

Under the condition A3 that

0 <
ε∗0

θ1 − ε∗0
< 1, (3.8)

it automatically yields εc := ε1(x) − ε0(x) > θ1 − ε∗0 > 0 and

αε∗0 <
ε∗0

ε1(x) − ε0(x)
<

ε∗0
θ1 − ε∗0

< 1.

Now we take ε = 1
2 (1 + 1

αε∗0
) > 1, and (3.7) becomes

Ãk2(u, u) � α
1 − αε∗0
1 + αε∗0

X2 +
1

2

(
α+

1

ε∗0

)
Y 2. (3.9)

Using Lemma 3.2, we have

‖u‖2
H̃(D)

= (u, u)L2(D) + (∇u,∇u)L2(D) + (Δu,Δu)L2(D)

� 1

k4θ20
Y 2 + ‖∇u‖2L2(D) +X2

� 1

k4θ20
Y 2 +

1

λ(D)
‖Δu‖2L2(D) +X2 =

(
1 +

1

λ(D)

)
X2 +

1

k4θ20
Y 2. (3.10)

Then (3.9)–(3.10) show that there exist a positive constant ck independent of u such that Ãk2 (u, u) �
ck‖u‖2H̃(D)

. So Ak2 : H̃0α(D) → H̃0α(D) is bijection for any fixed k ∈ R from the Lax-Milgram theorem,

since the sesquilinear form Ãk2(·, ·) is coercive in H̃0α(D) × H̃0α(D) for any fixed k ∈ R.

In order to use the analytic Fredholm theory, we first have the following observations.

(I) The sesquilinear form Ãk2 (·, ·) is analytic in k ∈ C.

(II) Denote by �L(·, ·) the set of all bound linear operators from one Banach space to another. We define

the operator-valued function f : k ∈ C → Ak2 ∈ �L(H̃0α(D), H̃0α(D)) such that for each u ∈ H̃0α(D), the

function fu : k ∈ C → Ak2u ∈ H̃0α(D) is weakly analytic. This is true since for each l ∈ [H̃0α(D)]∗ =

�L(H̃0α(D),C) where ∗ represents the dual space, we get that

l(fu(k)) = l(Ak2u) = (Ak2u, ψ)H̃0α(D) = Ãk2(u, ψ) ∈ C for some ψ ∈ H̃0α(D)

is analytic in k ∈ C. Thus, f is analytic in C.

(III) By the Lax-Milgram theorem, we firstly know that there exists a bounded linear inverse operator

A−1
k2 of Ak2 for k ∈ R. Therefore Ak2 is also invertible in a neighborhood of the positive real axis from

the analytic property of Ak2 . Moreover, A−1
k2 is also analytic in this neighborhood.
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On the other hand, it follows from (3.9) and Lemma 3.2 that

Ãk2 (u, u) − k2B̃(u, u) � α
1 − αε∗0
1 + αε∗0

X2 +
1

2

(
α+

1

ε∗0

)
Y 2 − k2‖∇u‖2L2(D)

�
(
α

1 − αε∗0
1 + αε∗0

− k2
1

λ(D)

)
X2 +

1

2

(
α+

1

ε∗0

)
Y 2. (3.11)

Therefore, if k2 < λ(D)α
1−αε∗0
1+αε∗0

, then Ak2 − k2B is invertible. Using the observation (III), this statement

yields that I − k2A−1
k2 B is also invertible for real small k from the decomposition

Ak2 − k2B ≡ Ak2 (I − k2A−1
k2 B).

However, I − k2A−1
k2 B is also analytic from observation (III). Combining these two conclusions together,

the analytic Fredholm theory (see [12, Theorem 8.26]) yields that (I−k2A−1
k2 B)−1 does not exist at most

in a discrete set of C, i.e., the set of TEV is at most discrete set.

Moreover, if real wave number k satisfies k2 < λ(D)α
1−αε∗0
1+αε∗0

, then k is not a TEV, since Ak2 − k2B is

invertible. Therefore all real TEVs satisfy k2 � λ(D)α
1−αε∗0
1+αε∗0

, if (3.8) holds.

Case 2. εc < 0. By using (2.11) (i.e., we exchange the position ε0(x) and ε1(x)) and taking the same

arguments as those for Case 1, we conclude that, under the condition 0 <
ε∗1

θ0−ε∗1
< 1, the first conclusion

of the theorem holds and all real TEVs satisfy k2 � λ(D)α
1−αε∗1
1+αε∗1

.

The proof is complete.

Remark 3.4. The second conclusion in this theorem is in fact the so-called Faber-Krahn inequality,

which gives the lower bounds on the transmission eigenvalues.

Remark 3.5. By checking the proof procedure carefully, we see that (3.11) is the key estimate for

giving the lower bounds for real eigenvalues. An important observation is that the second term −k2B̃(u, u)

generates the estimate on k2, which enters only the coefficient of X2. Therefore, we can improve the

lower bound on the real eigenvalues, if we can enlarge the coefficient of X2 in (3.7) and ensure 1 − 1
ε

> 0, α+ 1
ε∗0
−αε > 0 by choosing ε > 0 suitably. Using this procedure, it is possible to improve our second

result of the theorem.

Now we will consider the existence of TEV for non-absorbing media and extend the results to the

inhomogeneous background media with our mixed boundary conditions. We firstly state the following

general result given in [6] as the basis of the existence result.

Lemma 3.6. Let τ → Aτ be a continuous mapping from [0,∞) to the set of self-adjoint and positive

definite bounded linear operators on U and B be a self-adjoint and non-negative compact bounded linear

operator on U . We assume that there exist two positive constants τ1 > τ0 > 0 such that

(I) Aτ0 − τ0B is positive on U ;

(II) Aτ1 − τ1B is non-positive on an m dimensional subspace of U .

Then each of the equations λj(τ) = τ for j = 1, . . . ,m has at least one solution in [τ0, τ1] where λj(τ) is

the j-th eigenvalue (counting multiplicity) of Aτ with respect to B, i.e., ker(Aτ − λj(τ)B) �= {0}.
Theorem 3.7. Under the assumptions A1 and A2 stated in Theorem 3.3 and the assumption

B3. the bounds on A1 satisfy

either

εc(x) > 0, 0 <
ε∗0

θ1 − ε∗0
<

1

8
(3.12)

or

εc(x) < 0, 0 <
ε∗1

θ0 − ε∗1
<

1

8
, (3.13)

there exists an infinite number of eigenvalues with +∞ as the only possible accumulation point for (2.1)

–(2.5) with γ0 = γ1 = 0.
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Proof. The discreteness of the TEV has been proved in Theorem 3.3. For existence, we adopt the proof

scheme of [6, Theorem 2.5] with essential modifications when constructing the m-dimensional subspace

required in Lemma 3.6.

We only consider the first situation (3.12). The situation (3.13) can be treated analogously by ex-

changing the position of ε0(x) and ε1(x). Set

M := max
1

ε1(x) − ε0(x)
� 1

θ1 − ε∗0
.

Take U = H̃0α(D). It follows from (3.11) that for any fixed τ0 := k2 < λ(D)α
1−αε∗0
1+αε∗0

, the operator

Ak2 − k2B is positive and therefore the condition (I) in Lemma 3.6 holds.

To verify that the condition (II) in Lemma 3.6 is also satisfied, we introduce the Dirichlet eigenfunction

uS
j
ε (x) of −Δ in Sj

ε corresponding to the first eigenvalue λ1(Sj
ε ), where Sj

ε is a disk with center xj ∈ D

and radius ε > 0, i.e., {
−ΔuS

j
ε = λ1(Sj

ε )uS
j
ε , in Sj

ε ,

uS
j
ε = 0, on ∂Sj

ε .
(3.14)

Take ε > 0 small enough and choose the center xj ∈ D suitably such that D contains m := m(ε) � 1

disjoint discs S1
ε , S

2
ε , . . . , S

m
ε . Without loss of generality, we assume that ‖uSj

ε ‖L2(Sj
ε )

= 1. Then we

extend each uS
j
ε (x) from Sj

ε to D by defining uS
j
ε (x) ≡ 0 outside of Sj

ε . Denote by uj(x) the function

from this extension. Obviously any two functions of u1(x), . . . , um(x) are L2-orthogonal each other and

‖uj‖L2(D) = 1. Now we take the m-dimensional subspace as span{u1(x), . . . , um(x)} in H̃0α(D).

For any u =
∑m

j=1 cjuj ∈ span{u1(x), . . . , um(x)} and any τ > 0, we have

((Aτ − τB)u, u)H̃0α(D)

= Ãτ (u, u) − τB̃(u, u)

=

∫
D

|Δu+ τε0(x)u|2
ε1(x) − ε0(x)

dx+ τ2
∫
D

ε0(x)|u|2dx− τ

∫
D

|∇u|2dx

=

m∑
j=1

|cj |2
[∫

Sj
ε

|ΔuSj
ε + τε0(x)uS

j
ε |2

ε1(x) − ε0(x)
dx+ τ2

∫
Sj
ε

ε0(x)|uSj
ε |2dx− τ

∫
Sj
ε

|∇uSj
ε |2dx

]
(3.15)

from the property of uS
j
ε (x). On the other hand, it follows from (3.14) that ‖∇uSj

ε‖2 = λ1(Sj
ε ) and

‖ΔuS
j
ε‖2 = λ21(Sj

ε ) from straightforward computations. Therefore we have∫
Sj
ε

|ΔuSj
ε + τε0(x)uS

j
ε |2

ε1(x) − ε0(x)
dx+ τ2

∫
Sj
ε

ε0(x)|uSj
ε |2dx− τ

∫
Sj
ε

|∇uSj
ε |2dx

=

∫
Sj
ε

|ΔuSj
ε |2

ε1(x) − ε0(x)
dx+ τ2

∫
Sj
ε

ε20(x)|uSj
ε |2

ε1(x) − ε0(x)
dx+ τ

∫
Sj
ε

ε0(x)(ūS
j
ε ΔuS

j
ε + uS

j
ε ΔūS

j
ε )

ε1(x) − ε0(x)
dx

+ τ2
∫
Sj
ε

ε0(x)|uSj
ε |2dx − τ

∫
Sj
ε

|∇uSj
ε |2dx

�M‖ΔuS
j
ε‖2 + τ2[ε∗0 + (ε∗0)2M ] + 2τε∗0M‖ΔuS

j
ε‖ − τ‖∇uSj

ε ‖2
= Mλ21(Sj

ε ) + τ2[ε∗0 + (ε∗0)2M ] + 2τε∗0Mλ1(Sj
ε ) − τλ1(Sj

ε ). (3.16)

This estimate holds for all τ > 0. Consider the right-hand side as a polynomial of degree 2 with respect

to real variable τ ∈ R+. Especially, at

τ1 :=
(1 − 2Mε∗0)λ1(Sj

ε )

2(ε∗0 + (ε∗0)2M)
> 0

for θ1, ε
∗
0 satisfying (3.12), which is the minimizer of the right-hand side, we have∫

Sj
ε

|ΔuSj
ε + τ1ε0(x)uS

j
ε |2

ε1(x) − ε0(x)
dx + τ21

∫
Sj
ε

ε0(x)|uSj
ε |2dx− τ1

∫
Sj
ε

|∇uSj
ε |2dx



Li T X et al. Sci China Math June 2016 Vol. 59 No. 6 1091

�Mλ21(Sj
ε ) + τ21 [ε∗0 + (ε∗0)2M ] + 2τ1ε

∗
0Mλ1(Sj

ε ) − τ1λ1(Sj
ε )

=
−1 + 8ε∗0M

4(ε∗0 + (ε∗0)2M)
λ21(Sj

ε ). (3.17)

Noticing that λ1(Sj
ε ) is in fact independent of the point xj and therefore denoted by λ1,ε, by combining

the above estimates together, we have in the m-dimensional space span{u1(x), . . . , um(x)} that

((Aτ1 − τ1B)u, u)H̃0α(D) �
−1 + 8ε∗0M

4(ε∗0 + (ε∗0)2M)
λ21,ε

m∑
j=1

|cj |2 =
−1 + 8ε∗0M

4(ε∗0 + (ε∗0)2M)
λ21,ε‖u‖2 < 0

for constants θ1, ε
∗
0 satisfying (3.12). Therefore we have verified the condition (II) in Lemma 3.6 for τ1 > 0

defined above.

Hence we know that there are m(ε) TEVs (counting multiplicity) inside [τ0, τ1]. Letting ε → 0 which

means we can take m := m(ε) → ∞. Therefore there exists an infinite countable set of TEVs with +∞
as the only possible accumulation point. The proof is complete.

We already establish the distribution property of the transmission eigenvalues for inhomogeneous non-

absorbing media with mixed boundary condition. The next issue is to extend the result to the absorbing

media. Since the mixed boundary condition is incorporated into the functional space H̃0α(D), which has

the same inner product as that of H2
0 (D), the mixed boundary condition has no essential influence on

the extension as already established in [5] for absorbing media with Dirichlet boundary condition in ∂D.

Since the conclusion and the proof are completely the same as those for [5, Theorem 2.5], we just state

the results for our setting and give the outline for the proof.

Lemma 3.8. Assume that k∗ is a real transmission eigenvalue for non-absorbing media corresponding

to inhomogeneous media (ε0(x), ε1(x)). Then there exists a constant η(k∗) > 0 such that, if the absorption

γ(x) := (γ0(x), γ1(x)) satisfies

0 � sup
D
γ0(x) + sup

D
γ1(x) � η(k∗), (3.18)

then there exists at least one TEV in the complex plane near k∗.

Proof. Define the linear operators E,Fγ , Gε: L
2(D) × L2(D) → L2(D) × L2(D) by

E =

(
Δ00 0

0 Δ

)
, Fγ =

(
iγ1 iγc

0 iγ0

)
, Gε =

(
ε1 εc

0 ε0

)
,

where Δ00 indicates that the Laplacian acts on a function in H̃0α(D). Then the TEV problem can be

reformulated as the following quadratic eigenvalue problem,

Ep+ kFγp+ k2Gεp = 0, p ∈ L2(D) × L2(D). (3.19)

By introducing U := (p, kGεp)
T, the eigenvalue problem (3.19) is transformed into

(K − kIε,γ)U = 0, U ∈ (L2(D) × L2(D))2, (3.20)

where the 4 × 4 matrix operators K and Iε,γ are given by

K =

(
E 0

0 I

)
, Iε,γ =

( −Fγ −I

Gε 0

)
,

and I is the identity operator in L2(D) × L2(D). Define the unbounded operator Tε,γ := I−1
ε,γK. The

proof is complete by considering Tε,γ as a small perturbation for Tε,γ≡0 from the estimate

δ̂(Tε,γ ,Tε,γ=0) � ‖P‖ � ‖FγG
−1
ε ‖ � 4(supD ε0 + supD ε1)(supD γ0 + supD γ1)

(infD ε0)(infD ε1)
(3.21)

and (3.18) with δ̂(·, ·) being the distance between two operators, noticing we already prove that there

exists a real transmission eigenvalue k∗ for Tε,γ≡0 in Theorem 3.7 under some assumptions on εi(x) for

i = 1, 2.
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Using this result, we have the following theorem.

Theorem 3.9. Assume that εi(x) ∈ L∞(D) such that εi(x) � θi > 0 for i = 0, 1 and 1
εc(x)

� α > 0

a.e. in D. Let ki > 0, i = 0, 1, . . . , l be the first l + 1 real TEVs (multiple eigenvalues are counted once)

corresponding to (2.1)–(2.5) for non-absorbing media (γ0 = γ1 = 0 a.e. in D). Then for every σ > 0, there

exists η̄ > 0 depending on σ such that if the absorption in the media is such that supD γ0 + supD γ1 < η̄,

then there exist at least l + 1 TEVs against (2.1)–(2.5) each in a σ-neighborhood of ki, i = 0, 1, 2, . . . , l.

Proof. It is clear that from (3.21) we can select η̄ = min{η̄k0 , η̄k1 , . . . , η̄kl
}, where

η̄ki <
ηki(infD ε0)(infD ε1)

4(supD ε0 + supD ε1)

and ηki is the size of the perturbation corresponding to real transmission eigenvalue ki, i = 0, 1, . . . , l for

non-absorbing media. Now we can apply Lemma 3.8 by choosing k∗ = ki for i = 0, 1, . . . , l. The proof is

complete.

4 Transmission eigenvalue-free zones

The goal of this section is to give some components of eigenvalue-free zones in the complex plane, of

particular interest from a practical point of view are the estimates for real TEVs (if they exist) since they

can be measured from the scattering data [4]. We restrict ourselves to homogeneous absorbing media.

For general inhomogeneous media, the description of TEV-free zone is very difficult.

Let k = a+ bi be a complex wave number. From (2.10) for u ∈ H̃0α(D), we have

0 =

∫
D

[Δu+ (k2ε0 + kiγ0)u][Δū+ (k2ε1 + kiγ1)ū]dx

=

∫
D

|Δu+ (k2ε0 + kiγ0)u|2dx− (k2ε1 + kiγ1 − k2ε0 + ik̄γ0)

∫
D

|∇u|2dx

+ (k2ε1 + kiγ1 − k2ε0 + ik̄γ0)(k2ε0 + kiγ0)

∫
D

|u|2dx. (4.1)

Substituting k = a+ bi into (4.1), we obtain that

0 =

∫
D

|Δu + [(a2 − b2 − 2abi)ε0 + akiγ0 − bkγ0]u|2dx− (Ṁ0 + Ṅ0i)

∫
D

|∇u|2dx

+ (Ṗ0 + Q̇0i)

∫
D

|u|2dx (4.2)

with

Ṁ0 = (a2 − b2)εc − bγc,

Ṅ0 = 2ab(ε0 + ε1) + a(γ0 + γ1),

Ṗ0 = Ṁ0[(a2 − b2)ε0 − bγ0] − Ṅ0(2abε0 + aγ0),

Q̇0 = Ṅ0[(a2 − b2)ε0 − bγ0] + Ṁ0(2abε0 + aγ0).

For given constants (εi, γi) for i = 0, 1, if there exists a nonzero solution u ∈ L2(D) to (4.2), then

k = a + bi is the TEVs. In other words, if the point (a, b) is such that (4.2) does not hold for any

nonzero u in L2(D), then (a, b) is in the TEVs-free zone. Now we derive the sufficient condition for these

statements.

Taking real part of (4.2), we have

0 =

∫
D

|Δu+ [(a2 − b2 − 2abi)ε0 + akiγ0 − bkγ0]u|2dx− Ṁ0

∫
D

|∇u|2dx+ Ṗ0

∫
D

|u|2dx. (4.3)
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Denote by μ(D) the first (smallest) Dirichlet eigenvalue of −Δ. Then we have

μ(D) = min
u∈H1

0 (D),u�=0

‖∇u‖2
‖u‖2

from the Rayleigh-Ritz characterization of the first Dirichlet eigenvalue, which generates ‖∇u‖2 �
μ(D)‖u‖2 for all u ∈ H1

0 (D).

If Ṁ0 � 0, we have

−Ṁ0

∫
D

|∇u|2dx+ Ṗ0

∫
D

|u|2dx � [−Ṁ0μ(D) + Ṗ0]‖u‖2L2.

So the real part of (4.3) cannot be zero for any nonzero u ∈ L2(D) if −Ṁ0μ(D) + Ṗ0 > 0, noticing that

the first term in the right-hand side of (4.3) is positive. Hence we know that

D0
1 := {(a, b) : Ṁ0 � 0,−Ṁ0μ(D) + Ṗ0 > 0}

is one of the components of TEVs-free zone.

Taking imaginary part of (4.2), we have 0 = Q̇0

∫
D |u|2dx − Ṅ0

∫
D |∇u|2dx � [Q̇0 − Ṅ0μ(D)]‖u‖2L2

for Ṅ0 � 0, i.e., D0
2 := {(a, b) : Ṅ0 � 0, Q̇0 − Ṅ0μ(D) > 0} is also the component of TEVs-free zone.

Moreover, we have

0 = Q̇0

∫
D

|u|2dx− Ṅ0

∫
D

|∇u|2dx �
(

Q̇0

μ(D)
− Ṅ0

)
‖∇u‖2

for Q̇0 � 0, i.e., D0
3 := {(a, b) : Q̇0 � 0, Q̇0 − Ṅ0μ(D) < 0} is also the component of TEVs-free zone.

In a similar way, we can deal with (2.11). Defining

Ṁ1 = −Ṁ0,

Ṅ1 = Ṅ0,

Ṗ1 = Ṁ1[(a2 − b2)ε1 − bγ1] − Ṅ1(2abε1 + aγ1),

Q̇1 = Ṅ1[(a2 − b2)ε1 − bγ1] + Ṁ1(2abε1 + aγ1),

we know that

D1
1 := {(a, b) : Ṁ1 � 0,−Ṁ1μ(D) + Ṗ1 > 0},

D1
2 := {(a, b) : Ṅ1 � 0, Q̇1 − Ṅ1μ(D) > 0},

D1
3 := {(a, b) : Q̇1 � 0, Q̇1 − Ṅ1μ(D) < 0}

are the other three components of eigenvalue-free zone.

So we can assert that the TEVs-free zone is at least F := D0
1 ∪D0

2 ∪D0
3 ∪D1

1 ∪D1
2 ∪D1

3.

Remark 4.1. We extract six components of the eigenvalue-free zone based on (4.1) and its version

by exchanging (ε1, γ1) and (ε0, γ0), which are special equalities coming from the variational form of our

transmission problem with mixed boundary condition. However, if the mixed boundary condition is

replaced by the Cauchy boundary condition u = ∂u
∂ν ≡ 0 in the whole boundary ∂D as discussed in [5],

i.e., Γm = ∅ and therefore Γ = Γα in (2.9), the equality (4.1) as well as its version by exchanging (ε1, γ1)

and (ε0, γ0) are also true, which means that we will get the same eigenvalue-free components for the media

with specified constants εi, γi for i = 0, 1 but different kinds of boundary conditions. In other words, the

scheme proposed in this section to give the information about the components of eigenvalue-free zone

has nothing to to with the boundary state. This phenomenon is natural, since we only give part of the

eigenvalue-free zone.
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5 Conclusions and future work

We consider the transmission eigenvalue problem motivated from the wave scattering by a dielectric in-

homogeneous absorbing obstacle lying on a perfect conducting surface. Different from the well-known

spectral theory for elliptic or self adjoint operators, the spectrum distribution analysis and the computa-

tions for such kinds of problems need to develop some new techniques. We prove that the transmission

eigenvalues exist and form a discrete set, and there is no eigenvalues with real parts vanishing. Moreover,

we derive the Faber-Krahn type inequalities for real transmission eigenvalues in terms of the media param-

eters. We prove that the transmission eigenvalues also exist and form a discrete set for inhomogeneous

media with small absorption. Finally, we present the possible eigenvalue-free zones for homogeneous

media quantitatively.

Numerical computations of transmission eigenvalues are challenging due to the existence of zero eigen-

value and complex ones. In the forthcoming works, the efficient algorithms to compute the real transmis-

sion eigenvalues and the applications of these eigenvalues to inverse scattering problems are important

research topics.
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