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Abstract Reflected Ornstein-Uhlenbeck process is a process that returns continuously and immediately to

the interior of the state space when it attains a certain boundary. It is an extended model of the traditional

Ornstein-Uhlenbeck process being extensively used in finance as a one-factor short-term interest rate model. In

this paper, under certain constraints, we are concerned with the problem of estimating the unknown parameter

in the reflected Ornstein-Uhlenbeck processes with the general drift coefficient. The methodology of estimation is

built upon the maximum likelihood approach and the method of stochastic integration. The strong consistency

and asymptotic normality of estimator are derived. As a by-product of the use, we also establish Girsanov’s

theorem of our model in this paper.
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1 Introduction

The Ornstein-Uhlenbeck processes, which are markovian, mean-reverting Gaussian prosseses, well de-

scribe various real-life phenomena and so have found widespread use in a broad range of application

domains, such as finance, life sciences, and operations research. However, all models involve unknown

parameters or functions, which need to be estimated from observations of the process. The estimation of

these processes is therefore a crucial step in all applications, in particular in applied finance. In the case

of Ornstein-Uhlenbeck processes driven by Wiener processes, the statistical inference for these processes

has been studied and a comprehensive survey of various methods was given in Prakasa Rao [26] and

Bishwal [8], for example, maximum likelihood estimation, minimum contrast estimation, maximum prob-

ability estimation and nonparametric inference, etc. By virtue of the markovian and gaussian properties

of Wiener processes, both the maximum likelihood estimator (MLE) and the least squares estimator

(LSE) are easy to obtain and exhibit asymptotic unbiasedness, efficiency and normality under the usual

regularity conditions. We refer to Bishwal [7, 9] and the references therein.

In many situations, though, the stochastic processes involved are not allowed to cross a certain bound-

ary, or are even supposed to remain within two boundaries. The resulting reflected Ornstein-Uhlenbeck

∗Corresponding author



1164 Zang Q P et al. Sci China Math June 2016 Vol. 59 No. 6

processes (denoted in the sequel by ROU) behave like the standard Ornstein-Uhlenbeck processes in the

interior of its domain. However, when they reach the boundary, the sample path returns to the interior

in a manner that the “pushing” force is minimal. This kind of process, which can be applied into the

field of queueing system, financial engineering, and mathematical biology, has attracted the attention of

scholars of the world.

Ricciardi and Sacerdote [28] applied the ROU processes into the field of mathematical biology. Krug-

man [21] limited the currency exchange rate dynamics in a target zone by two reflecting barriers.

In [16], the asset pricing models with truncated price distributions have been investigated. Ward and

Glynn [29–31] showed that the ROU processes serve as a good approximation for a Markovian queue with

reneging when the arrival rate is either close to or exceeds the processing rate and the reneging rate is

small and the ROU processes also well approximate queues having renewal arrival and service processes

in which customers have deadlines constraining total sojourn time. Customers either renege from the

queue when their deadline expires or balk if the conditional expected waiting time given the queue-length

exceeds their deadline. Linetsky [23] studied the analytical representation of transition density for re-

flected diffusions in terms of their Sturm-Liouville spectral expansions. Recently, Bo et al. [11,12] applied

the ROU processes to model the dynamics of asset prices in a regulated market, and they calculated the

conditional default probability with incomplete (or partial) market information.

Given a filtered probability space Λ := (Ω,F ,P) with the filtration (Ft)t�0 satisfying the usual condi-

tions, the diffusion processes {Xt, t � 0} reflected at the boundary b ∈ R
+ on Λ is defined as follows. Let

{Xt, t � 0} be the strong solution whose existence is guaranteed by an extension of the results of Lions

and Sznitman [24] to the stochastic differential equation⎧⎪⎪⎨
⎪⎪⎩
dXt = a(t,Xt, α)dt+ σdWt + dLt,

Xt � bL, for all t � 0,

X0 = x,

(1.1)

where bL ∈ R
+, x ∈ [bL,+∞), σ ∈ (0,+∞), α ∈ Θ (Θ is an open subset of R) and {Wt, t � 0} is a

one-dimensional standard Wiener process. Here, the drift coefficient a(·, ·, ·) is progressively measurable

and adapted. L = (Lt)t�0 is the minimal non-decreasing and non-negative process, which makes the

process Xt � bL for all t � 0. The process L increases only when X hits the boundary bL, so that∫
[0,∞)

I(Xt > bL)dLt = 0, (1.2)

where I(·) denotes the indicator function. Sometimes L is called the regulator of the point bL(see [17])

and by virtue of Ata et al. [3], the paths of the regulator are nondecreasing, right continuous with left

limits and possess the support property

∫ t

0

I(Xs = bL)dLs = Lt. (1.3)

It can be shown that (see [17]) the process L has an explicit expression as

Lt = max
{
0, sup

s∈[0, t]

(Ls −Xs)
}
. (1.4)

It is often the case that the reflecting barrier is assumed to be zero in applications to queueing system,

storage model, engineering, finance, etc. This is mainly due to the physical restriction of the state

processes such as queue-length, inventory level, content process, stock prices and interest rates, which

take non-negative values. Of course, considering some other applications of the ROU processes, we still

assume that bL is non-negative except for being mentioned specially.

In contrast to the case for the standard Ornstein-Uhlenbeck processes, the statistical inference for the

ROU processes has been in the ascendant. Recently, based on continuous observations, Bo et al. [13] first
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presented the maximum likelihood estimation for the ROU processes with the ergodic case, i.e.,⎧⎪⎪⎨
⎪⎪⎩
dXt = −αXtdt+ σdWt + dLt,

Xt � bL, for all t � 0,

X0 = x,

(1.5)

where bL ∈ R
+, x ∈ [bL,+∞), σ ∈ (0,+∞), α ∈ R

+. {Wt, t � 0} and L = (Lt)t�0 are defined similarly

as above.

Our interest lies in the statistical inference for diffusion processes defined in (1.1) and (1.2). More

specifically, we would like to estimate the unknown parameter α included in the general drift coefficient

based on continuous observations of the state process {Xt, t � 0}. Noting that σ is an unknown constant

which is independent of the parameter α and the quadratic variation process [X ]t equals to σ2t, t � 0,

we assume that σ is known and set it equal to one in the situation of continuous observations.

The rest of this paper is organized as follows. In Section 2, the equivalent martingale measure of our

model is formulated. In Section 3, we propose the maximum likelihood estimation for the model, and its

statistical properties are established. In Section 4, the performance of our main results is demonstrated

through a nonstationary example. In Section 5, the paper is concluded and some opportunities for future

research are outlined.

2 Preliminaries

In this section, we review some of the basic concepts concerning our context and build the equivalent

martingale measure of the ROU processes with the general drift coefficient, which will be the basis of our

further study.

Throughout this paper, we denote PT
α (also PT

β , . . .) for the probability measure generated by the process

{Xα
t , 0 � t � T }(also {Xβ

t , 0 � t � T }, . . .) on the space (C[0, T ],BT ), where C[0, T ] denotes the space

of continuous functions endowed with the supremum norm and BT is the corresponding Borel σ-algebra.

Let Eα (also Eβ , . . .) denote expectation with respect to PT
α (also PT

β , . . .) and PT
W be the probability

measure induced by the standard Wiener process. Now we establish the equivalent martingale measure

of the ROU processes with the general drift coefficient.

Theorem 2.1 (Girsanov’s formula of our model). Suppose that Xβ and Xγ are two ROU processes

satisfying the following stochastic differential equations, respectively,⎧⎪⎪⎨
⎪⎪⎩
dXβ

t = a(t,Xβ
t , β)dt+ dWt + dLβ

t ,

Xt � bL, for all t � 0,

X0 = x,

(2.1)

and ⎧⎪⎪⎨
⎪⎪⎩
dXγ

t = a(t,Xγ
t , γ)dt+ dWt + dLγ

t ,

Xt � bL, for all t � 0,

X0 = x,

(2.2)

where, bL ∈ R
+, x ∈ [bL,+∞), a(t,Xβ

t , ·) is Fβ
t = σ{Xβ

s , 0 � s � t}-measurable for almost all t (0 � t

� T, T > 0). Lβ and Lγ are the corresponding regulators at bL. Let the following assumptions1) be

fulfilled:

(A1) Let ηt(ω) = a(t,Xβ
t , β)− a(t,Xβ

t , γ) satisfy

P

(∫ t

0

a2(s,Xβ
s , γ)ds < ∞

)
= P

(∫ t

0

a2(s,Xβ
s , β)ds < ∞

)
= 1, (2.3)

1) Here, our assumptions are inspired by Theorem 7.18 and its Corollary of Liptser and Shiryayev [25]
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for all 0 � t < ∞; and

(A2)

E exp

(
−
∫ T

0

ηs(ω)dWs − 1

2

∫ T

0

η2s(ω)ds

)
= 1. (2.4)

Then, for each T > 0, we have

dPT
γ

dPT
β

∣∣∣∣
Fβ

t

= exp

(
−

∫ T

0

ηs(ω)dWs − 1

2

∫ T

0

η2s(ω)ds

)
. (2.5)

Proof. Due to the assumption (A1) and Hölder’s inequality, it follows that

P

(∫ t

0

η2s (ω)ds < ∞
)

= 1,

for 0 � t < ∞. Then, according to the assertion of Karatzas and Shreve [20], we have
∫ T

0
ηs(ω)dWs is a

continuous local martingale with quadratic variation process [
∫ T

0
ηs(ω)dWs] =

∫ T

0
η2s(ω)ds. Furthermore,

by virtue of [19, Theorem 15.1], it implies that

exp

(
−
∫ T

0

ηs(ω)dWs − 1

2

∫ T

0

η2s (ω)ds

)

is a positive local martingale and hence a supermartingale. Together with the assumption (A2) and the

fact that a supermartingale with constant expectation is a martingale, it is verified that

Z(T )
Δ
= exp

(
−
∫ T

0

ηs(ω)dWs − 1

2

∫ T

0

η2s (ω)ds

)

is a martingale. For a given T > 0, we define the equivalent martingale measure P̃ as follows:

dP̃ = Z(T )dP.

Then, by the usual Girsanov’s theorem, we know that the process

W̃t = Wt +

∫ t

0

ηs(ω)ds, t ∈ [0, T ]

is a standard Brownian motion under P̃ and

dXβ
t = a(t,Xβ

t , β)dt+ dWt + dLβ
t

= a(t,Xβ
t , β)dt− ηt(ω)dt+ dW̃t + dLβ

t

= a(t,Xβ
t , β)dt− a(t,Xβ

t , β)dt+ a(t,Xβ
t , γ)dt+ dW̃t + dLβ

t

= a(t,Xβ
t , γ)dt+ dW̃t + dLβ

t ,

for t ∈ [0, T ]. Thus Xβ under P̃ has the same distribution as Xγ under P. Therefore, for each measurable

subset A of the space (C[0, T ],BT ), we have

P̃(Xβ ∈ A) = P(Xγ ∈ A),

and then by our preliminaries and the definition of conditional expectation, we have

P T
γ (A) = P(Xγ ∈ A) = P̃(Xβ ∈ A) =

∫
[Xβ∈A]

Z(T )dP

=

∫
[Xβ∈A]

E[Z(T ) | Fβ
t ]dP

=

∫
A

E[Z(T ) | Fβ
t ]dP

T
β .

Thus the proof is complete by the fact that Z(T ) is Fβ
t -measurable.
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3 Maximum likelihood estimation with respect to our model

In this section, via the maximum likelihood method and assuming that the state process is continuously

observable, we shall estimate the unknown parameter included in the drift function concerning our model.

It is natural that we will make some appropriate limitations to the drift function, and these limitations

will not impact the generality of our main results.

For ease of the following exposition, we introduce some technical assumptions used in the paper.

Assumption 1. For the equation (1.1), let

P

(∫ t

0

a2(s,Xs, α)ds < ∞
)

= 1,

for all 0 � t < ∞, and

P

(∫ ∞

0

[a′(s,Xs, α)]
2ds = ∞

)
= 1.

Assumption 2. Suppose that the following function lT (α) is twice continuously differentiable in a

neighborhood Vα of α for every α ∈ Θ, and that

Eα

(∫ T

0

(a′(t,Xt, α))
2dt

)
< ∞

and

Eα

(∫ T

0

(a′′(t,Xt, α))
2dt

)
< ∞.

Assumption 3. For any α ∈ Θ, there exists a neighborhood V ′
α of α ∈ Θ such that

P

(∫ T

0

[a(t,Xt, α0)− a(t,Xt, α)]
2dt < ∞

)
= 1, 0 < T < ∞

and

P

(∫ ∞

0

[a(t,Xt, α0)− a(t,Xt, α)]
2dt = ∞

)
= 1

for all α0 ∈ Θ− {α}.
The first part of Assumption 1 conventionally proposed in the study of the problem in this paper

(see [25]), together with Theorem 2.1, ensures that PT
α � dPT

W and we can define the log-likelihood

function as follows:

lT (α) = log
dPT

α

dPT
W

=

∫ T

0

a(t,Xt, α)dXt − 1

2

∫ T

0

a2(t,Xt, α)dt−
∫ T

0

a(t,Xt, α)dLt.

The maximum likelihood estimator (MLE) is naturally defined as

α̂T := arg sup
α∈Θ

lT (α).

Then, we can derive the maximum likelihood estimator (MLE) of the parameter α by solving the likelihood

equation l′T (α) = 0.

By imposing suitable regularity conditions on the drift function a(·, ·, ·), we will establish the following

lemma which will play a key role in our main proofs.

Lemma 3.1. For the log-likelihood function lT (α), we have

l′T (α) =
∫ T

0

a′(t,Xt, α)dWt (3.1)
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and

l′′T (α) =
∫ T

0

a′′(t,Xt, α)dWt −
∫ T

0

[a′(t,Xt, α)]
2dt, (3.2)

where, a′ and a′′ denote the first and second order derivatives with respect to α, respectively.

Proof. For any function g(t, x, α), let g′ and g′′ denote the first and second order derivatives with

respect to α, respectively. Suppose that a(t, x, α) is continuously differentiable in x. Let

F (t, x, α) =

∫ x

0

a(t, y, α)dy. (3.3)

Also suppose F is jointly continuous in (t, x) ∈ [0,∞) × R with the partial derivatives Fx, Fxx and Ft.

Apply Itô’s formula to F (T,XT , α), due to the quadratic variation [X ]t = t, it follows that

F (T,XT , α) = F (0, X0, α) +

∫ T

0

Ft(s,Xs, α)ds+

∫ T

0

Fx(s,Xs, α)dXs

+
1

2

∫ T

0

Fxx(s,Xs, α)d[X ]s

= F (0, X0, α) +

∫ T

0

Ft(s,Xs, α)ds+

∫ T

0

a(s,Xs, α)dXs

+
1

2

∫ T

0

ax(s,Xs, α)d[X ]s

=

∫ T

0

Ft(s,Xs, α)ds+
1

2

∫ T

0

ax(s,Xs, α)ds+

∫ T

0

a(s,Xs, α)dXs.

Let

f(t, x, α) = Ft(t, x, α) +
1

2
ax(t, x, α). (3.4)

This relation, together with (3.5), leads to∫ T

0

a(s,Xs, α)dXs = F (T,XT , α)−
∫ T

0

f(s,Xs, α)ds. (3.5)

Then, the log-likelihood function lT (α) can be written in the form2)

lT (α) = log
dPT

α

dPT
W

=

∫ T

0

a(t,Xt, α)dXt − 1

2

∫ T

0

a2(t,Xt, α)dt−
∫ T

0

a(t,Xt, α)dLt

= F (T,XT , α)−
∫ T

0

[
f(t,Xt, α) +

1

2
a2(t,Xt, α)

]
dt−

∫ T

0

a(t,Xt, α)dLt.

Now, we suppose that the integral defined by (3.4) and the integral on the right-hand side of (3.8) can be

differentiated under the integral sign with respect to α. Further assume that F ′ and F ′′ have the same

properties as F . Then, lT (α) is twice differentiable with respect to α and a further application of Itô’s

formula to F ′, repeating the same procedures, it follows that∫ T

0

a′(s,Xs, α)dXs = F ′(T,XT , α)−
∫ T

0

f ′(s,Xs, α)ds. (3.6)

Furthermore,

l′T (α) = F ′(T,XT , α)−
∫ T

0

[f ′(t,Xt, α) + a(t,Xt, α)a
′(t,Xt, α)]dt

2) It is easy to see that an advantage of this form of the log-likelihood function is that it does not involve a stochastic

integral except for the last term on the right-hand side of (3.8) and is amenable to deal with. While the integrator of the

last term is of finite variation on any finite interval, the integral is defined as “pathwise” (i.e., for each ω ∈ Ω, separately)

and then it can be coped with as usual Lebesgue-Stieltjes integral. Then, the following assumption concerning being

differentiated under the integral sign is natural and weak.
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−
∫ T

0

a′(t,Xt, α)dLt

=

∫ T

0

a′(t,Xt, α)dXt −
∫ T

0

a(t,Xt, α)a
′(t,Xt, α)dt −

∫ T

0

a′(t,Xt, α)dLt

=

∫ T

0

a′(t,Xt, α)(a(t,Xt, α)dt+ dWt + dLt)−
∫ T

0

a(t,Xt, α)a
′(t,Xt, α)dt

−
∫ T

0

a′(t,Xt, α)dLt

=

∫ T

0

a′(t,Xt, α)dWt.

Apply the same procedure on the function F ′′. Then∫ T

0

a′′(s,Xs, α)dXs = F ′′(T,XT , α)−
∫ T

0

f ′′(s,Xs, α)ds. (3.7)

Hence, it follows that

l′′T (α) = F ′′(T,XT , α)−
∫ T

0

[f ′′(t,Xt, α) + [a′(t,Xt, α)]
2

+ a(t,Xt, α)a
′′(t,Xt, α)]dt−

∫ T

0

a′′(t,Xt, α)dLt

=

∫ T

0

a′′(t,Xt, α)dXt −
∫ T

0

[[a′(t,Xt, α)]
2 + a(t,Xt, α)a

′′(t,Xt, α)]dt

−
∫ T

0

a′′(t,Xt, α)dLt

=

∫ T

0

a′′(t,Xt, α)(a(t,Xt, α)dt + dWt + dLt)

−
∫ T

0

[[a′(t,Xt, α)]
2 + a(t,Xt, α)a

′′(t,Xt, α)]dt−
∫ T

0

a′′(t,Xt, α)dLt

=

∫ T

0

a′′(t,Xt, α)dWt −
∫ T

0

[a′(t,Xt, α)]
2dt.

Thus, the proof of Lemma 3.1 is completed.

Now, we state our main results concerning the strong consistency and asymptotic normality of the

maximum likelihood estimation.

Theorem 3.2. Under Assumptions 1–3 and the regularity conditions involved in the above proof, there

exists a root of the likelihood equation l′T (α) = 0, which is strongly consistent for α as T → ∞.

Proof. For any δ > 0 such that α± δ ∈ Θ, it follows from (3.1) that

lT (α± δ)− lT (α) = log
dPT

α±δ

dPT
α

=

∫ T

0

[a(t,Xt, α± δ)− a(t,Xt, α)]d(Xt − Lt)

− 1

2

∫ T

0

[a2(t,Xt, α± δ)− a2(t,Xt, α)]dt

=

∫ T

0

[a(t,Xt, α± δ)− a(t,Xt, α)]d[a(t,Xt, α)dt+ dWt]

− 1

2

∫ T

0

[a2(t,Xt, α± δ)− a2(t,Xt, α)]dt
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=

∫ T

0

[a(t,Xt, α± δ)− a(t,Xt, α)]dWt

− 1

2

∫ T

0

[a(t,Xt, α± δ)− a(t,Xt, α)]
2dt.

Let

Aα
t

Δ
= a(t,Xt, α± δ)− a(t,Xt, α) (3.8)

and

KT
Δ
=

∫ T

0

(Aα
t )

2dt. (3.9)

Then, it follows that

lT (α± δ)− lT (α)

KT
=

∫ T

0 Aα
t dWt∫ T

0
(Aα

t )
2dt

− 1

2
. (3.10)

Under Assumption 3,
∫ T

0 Aα
t dWt is a continuous local martingale, using the Skorohod embedding of the

continuous local martingale
∫ T

0
Aα

t dWt, we have

∫ T

0 Aα
t dWt∫ T

0
(Aα

t )
2dt

=
B̃∫

T
0
(Aα

t )2dt∫ T

0
(Aα

t )
2dt

, (3.11)

where B̃ is another Brownian motion with respect to the enlarged filtration (Fτt)t�0 with τt = inf{s :∫ s

0 (A
α
r )

2dr > t} and B̃ independent of
∫ T

0 (Aα
t )

2dt. By Assumption 3 and the fact that as T → ∞,

lim
T→∞

B̃T

T
= 0 a.s.,

then as T → ∞, ∫ T

0
Aα

t dWt∫ T

0
(Aα

t )
2dt

→ 0 a.s. (3.12)

This leads to, as T → ∞,

lT (α± δ)− lT (α)

KT
→ −1

2
a.s. (3.13)

Note that also from Assumption 3, KT > 0 a.s. for large enough T . Hence, there exists T0 such that

T > T0, we have

lT (α± δ) < lT (α) a.s. (3.14)

Since lT (α) is continuous on the closed interval [α− δ, α+ δ], by virtue of (3.20), it attains the maximum

in the interior of the interval, i.e., there exists α̂T ∈ (α− δ, α+ δ) such that

lT (α̂T ) = sup
α∈(α−δ,α+δ)

lT (α), (3.15)

which leads to l′T (α̂T ) = 0. Thus, The proof of the desired result is complete.

Theorem 3.3. One has

(α̂T − α)

√∫ T

0

[a′(t,Xt, α)]2dt
D→ N , (3.16)

as T → ∞, where
D→ denotes the convergence in distribution and N is the standard normal random

variable.
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Proof. Applying Taylor’s expansion to l′T (α) around α̂T , it follows that

l′T (α) = l′T (α̂T ) + (α− α̂T )l
′′
T (α̂T + βT (α− α̂T ))

= (α− α̂T )l
′′
T (α̂T + βT (α− α̂T )),

where from Theorem 3.2 |βT | � 1 for large enough T . On the other hand, under Assumption 2, it is

obvious to see that l′T (α) =
∫ T

0
a′(t,Xt, α)dWt is a zero mean square integrable martingale with quadratic

variation process ∫ T

0

[a′(t,Xt, α)]
2dt,

i.e., for Mα
t := l′t(α), we have [Mα]t =

∫ t

0 [a
′(s,Xs, α)]

2ds. Setting

Lα
t = inf{s : [Mα]s > t}, (3.17)

then, ˜̃Bt = Mα
Lα

t
is a Brownian motion with respect to the enlarged filtration FLα

t
and Mα

t = ˜̃B[Mα]t
3) .

In fact, ˜̃Bt is the so-called Dambis, Dubins-Schwarz Brownian motion of Mα
t (see [27, Theorem 1.6,

Chapter 5, p. 173]). Furthermore, note that
∫ t

0 [a
′(s,Xs, α)]

2ds > 0, a.s. for t sufficiently large. The

scaling property of Brownian motion implies that

Mα
t√

[Mα]t
=

1√
[Mα]t

˜̃B[Mα]t
D
= N .

Hence, we have

l′T (α)√∫ T

0 [a′(t,Xt, α)]2dt

D
= N . (3.18)

On the other hand, in view of Theorem 3.2 and the continuity of l′′T (α) with respect to α, it is easy to

see that

l′′T (α̂T + βT (α− α̂T ))− l′′T (α) → 0

in probability as T → ∞. Furthermore, together with Theorem 3.2 and the second part of Assumption 1,

it holds

(α− α̂T )
l′′T (α)√∫ T

0
[a′(t,Xt, α)]2dt

D→ N . (3.19)

Under Assumption 2,
∫ T

0 a′′(t,Xt, α)dWt is a zero mean square integrable martingale. This assertion,

coupled with the second part of Assumption 1, ensures that [15, Theorem 2.1] holds, i.e., as T → ∞,

∫ T

0
a′′(t,Xt, α)dWt∫ T

0
[a′(t,Xt, α)]2dt

→ 0. (3.20)

Therefore, one has

l′′T (α)∫ T

0
[a′(t,Xt, α)]2dt

→ −1

in probability as T → ∞ from (3.12). This, together with (3.26), yields the desired result.

3) See [20, Remark 4.1] for the exact construction of the extended probability space. It is important to note that the

extension does not change the law of the local martingale. In this paper, we study properties of sequences of such laws and

therefore we may assume that each continuous local martingale in question is embedded in a Brownian motion in the sense

of the above theorem.
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4 A nonstationary case

In this section, we propose to a nonstationary case concerning our main results. Consider the following

stochastic differential equation4): ⎧⎪⎪⎨
⎪⎪⎩
dXt = αtXtdt+ dWt + dLt,

Xt � 0, for all t � 0,

X0 = 0, α > 0.

(4.1)

Here, L = (Lt)t�0 is the minimal non-decreasing and non-negative process, which makes the process

Xt � 0 for all t � 0. The process L increases only when X hits the boundary zero, so that∫
[0,∞)

I(Xt > 0)dLt = 0. (4.2)

Then, {Xt}t�0 is a non-stationary and nonhomogeneous process. It is easy to see that, to check the

above assumptions, we only need to verify that∫ T

0

t2X2
t dt → ∞ a.s. as T → ∞. (4.3)

Some other conditions are naturally satisfied. Apply Itô’s formula to the function xe−
αt2

2 , it follows that

Xt = e
αt2

2

∫ t

0

e−
αs2

2 dWs + e
αt2

2

∫ t

0

e−
αs2

2 dLs.

In comparison to the model (4.1), we introduce the non-stationary process {Yt, t � 0} satisfying the

following stochastic differential equation{
dYt = αtYtdt+ dWt,

Y0 = 0, α > 0.
(4.4)

Thus, we have

Yt = e
αt2

2

∫ t

0

e−
αs2

2 dWs (4.5)

and

Xt − Yt = e
αt2

2

∫ t

0

e−
αs2

2 dLs � 0, (4.6)

for all t � 0. On the other hand, let ξt =
∫ t

0
e−

αs2

2 dWs, since the quadratic variation process

[ξ]∞ =

√
π

α
< ∞.

Thus, {ξt}t�0 is a square-integrable Ft-martingale. Moreover, ξt is a normal random variable with

distribution N (0,
∫ t

0
e−αs2ds). Therefore, by martingale convergence theorem, it follows that

lim
t→∞ ξt =

∫ ∞

0

e−
αs2

2 dWs.

Then, by L’Hospital rule as T → ∞,∫ T

0 t2Y 2
t dt∫ T

0 t2eαt2dt
→

(∫ ∞

0

e−
αt2

2 dWt

)2

a.s.,

4) In most practical applications, the reflecting barrier is usually taken as b = 0 (see [1, 2, 5, 6, 32]). Thus, it does not

impact on the application of our results, if we set b equal to zero here.
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which is a chi-square random variable. Hence,
∫ T

0
t2Y 2

t dt → ∞ a.s. as T → ∞, and then (4.3) holds

through (4.6).

Note that

α̂T − α =

∫ T

0 tXtdXt∫ T

0 t2X2
t dt

− α =

∫ T

0 tXtdWt∫ T

0 t2X2
t dt

by the fact that the process L increases only when X hits the boundary zero, and then together with (4.3),

α̂T − α =
W∫

T
0

t2X2
t dt∫ T

0
t2X2

t dt
→ 0 a.s.

On the other hand, we have

E

[ ∫ T

0

tXtdWt

]
= 0

and

E

[∫ T

0

tXtdWt

]2
= E

[ ∫ T

0

t2X2
t dt

]
.

By virtue of central limit theorem (see [26]), we have

(α̂T − α)

√∫ T

0

t2X2
t dt

D→ N .

5 Conclusions

Based on the continuous observations, this paper contributes a method for maximum-likelihood estimation

(MLE) of the reflected Ornstein-Uhlenbeck (ROU) processes with the general drift coefficient. Under some

sufficient (but not necessary) technical conditions, the strong consistency and asymptotic normality of

the maximum likelihood estimation are theoretically justified. Owing to the limited space of this paper

which focuses on maximum-likelihood estimation and its statistical properties, investigations on more

asymptotic properties related to the MLE can be regarded as a future research topic, for example, a

similar estimation for our model based on discrete observations, as well as its consistency and asymptotic

distribution (see [18]).

On the other hand, some future work may investigate the other estimators for the other reflected

diffusions. For example, Lee et al. [22] proposed a sequential maximum likelihood estimation (SMLE)

of the unknown drift of the ROU process without jumps; the reflected jump-diffusion or Lévy processes

have been extensively investigated in the literature (see [1, 2, 4–6, 10, 12, 14, 32]).
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