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Abstract Classical Kolmogorov’s and Rosenthal’s inequalities for the maximum partial sums of random vari-

ables are basic tools for studying the strong laws of large numbers. In this paper, motived by the notion of inde-

pendent and identically distributed random variables under the sub-linear expectation initiated by Peng (2008),

we introduce the concept of negative dependence of random variables and establish Kolmogorov’s and Rosen-

thal’s inequalities for the maximum partial sums of negatively dependent random variables under the sub-linear

expectations. As an application, we show that Kolmogorov’s strong law of larger numbers holds for indepen-

dent and identically distributed random variables under a continuous sub-linear expectation if and only if the

corresponding Choquet integral is finite.
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1 Introduction and notation

Non-additive probabilities and non-additive expectations are useful tools for studying uncertainties in

statistics, measures of risk, superhedging in finance and non-linear stochastic calculus, see [2,5,7,10–13],

etc. This paper considers the general sub-linear expectations and related non-additive probabilities gen-

erated by them. The notion of independent and identically distributed (i.i.d. for short) random variables

under the sub-linear expectations was introduced by Peng [12,14,15] and the weak convergences such as

central limit theorems and weak laws of large numbers has been studied. Because the proofs of classical

Kolmogorov’s inequalities and Rosenthal’s inequalities for the maximum partial sums of random vari-

ables depend basically on the additivity of the probabilities and the expectations, such inequalities have

not been established under the sub-linear expectations. As a result, very few results on strong laws of

large numbers can be found under the sub-linear expectations. Recently, Chen [1] obtained Kolmogorov’s

strong law of large numbers for i.i.d. random variables under the condition of finite (1 + ε)-moments by

establishing an inequality of an exponential moment of partial sums of truncated independent random

variables. The moment condition is much stronger than the one for the classical Kolmogorov strong

law of large numbers. Also, Gao and Xu [3, 4] studied the large deviations and moderate deviations
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for quasi-continuous random variables in a complete separable metric space under the Choquet capacity

generalized by a regular sub-linear expectation. The main purpose of this paper is to establish basic

inequalities for the maximum partial sums of independent random variables in the general sub-linear

expectation spaces. These inequalities are basic tools to study the strong limit theorems. They are also

essential tools to prove the functional central limit theorem (see [23]). In the remainder of this section,

we give some notation under the sub-linear expectations. For explaining our main idea, we prove Kol-

mogorov’s inequality as our first result. Then, we introduce the concept of negative dependence under

the sub-linear expectation which is an extension of independence as well as the classical negative depen-

dence. In Section 2, we establish Rosenthal’s inequalities for this kind of negatively dependent random

variables. In Section 3, as applications of these inequalities, we establish the Kolmogorov type strong laws

of large numbers under the weakest moment conditions. In particular, we show that Kolmogorov’s type

strong law of large numbers holds for independent and identically distributed random variables under a

continuous sub-linear expectation if and only if the the corresponding Choquet integral is finite.

We use notation of Peng [14]. Let (Ω,F) be a given measurable space and let H be a linear space

of real functions defined on (Ω,F) such that if X1, . . . , Xn ∈ H then ϕ(X1, . . . , Xn) ∈ H for each

ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of (local Lipschitz) functions ϕ satisfying

|ϕ(x)− ϕ(y)| � C(1 + |x|m + |y|m)|x− y|, ∀x,y ∈ Rn,

for some C > 0, m ∈ N depending on ϕ.

H is considered as a space of “random variables”. In this case we denote X ∈ H .

Remark 1.1. It is easily seen that if ϕ1, ϕ2 ∈ Cl,Lip(Rn), then ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2 ∈ Cl,Lip(Rn) because

ϕ1 ∨ ϕ2 = 1
2 (ϕ1 + ϕ2 + |ϕ1 − ϕ2|), ϕ1 ∧ ϕ2 = 1

2 (ϕ1 + ϕ2 − |ϕ1 − ϕ2|).
Definition 1.2. A sub-linear expectation Ê on H is a functional Ê : H → R := [−∞,∞] satisfying

the following properties: For all X,Y ∈ H , we have

(a) Monotonicity: If X � Y then Ê[X ] � Ê[Y ].

(b) Constant preserving: Ê[c] = c.

(c) Sub-additivity: Ê[X + Y ] � Ê[X ] + Ê[Y ] whenever Ê[X ] + Ê[Y ] is not of the form +∞ − ∞ or

−∞+∞.

(d) Positive homogeneity: Ê[λX ] = λÊ[X ], λ � 0.

The triple (Ω,H , Ê) is called a sub-linear expectation space. Give a sub-linear expectation Ê, let us

denote the conjugate expectation Ê of Ê by

Ê [X ] := −Ê[−X ], ∀X ∈ H .

Obviously, for all X ∈ H , Ê [X ] � Ê[X ]. We also call Ê[X ] and Ê [X ] the upper-expectation and lower-

expectation of X , respectively.

Definition 1.3 (See [12,14]). (i) (Identical distribution) Let X1 and X2 be two n-dimensional random

vectors defined, respectively in sub-linear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are

called identically distributed, denoted by X1
d
= X2, if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cl,Lip(Rn),

whenever the sub-expectations are finite.

(ii) (Independence) In a sub-linear expectation space (Ω,H , Ê), a random vector Y = (Y1, . . . , Yn),

Yi ∈ H is said to be independent to another random vector X = (X1, . . . , Xm), Xi ∈ H under Ê

if for each test function ϕ ∈ Cl,Lip(Rm × Rn) we have Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x,Y )]|x=X ], whenever

ϕ(x) := Ê [|ϕ(x,Y )|] < ∞ for all x and Ê [|ϕ(X)|] < ∞.

(iii) (IID random variables) A sequence of random variables {Xn;n � 1} is said to be independent, if

Xi+1 is independent to (X1, . . . , Xi) for each i � 1. It is said to be identically distributed, if Xi
d
= X1

for each i � 1.
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As shown by Peng [14], it is important to note that under sub-linear expectations the condition that

“Y is independent to X” does not imply automatically that “X is independent to Y ”.

From the definition of independence, it is easily seen that, if Y is independent toX andX � 0, Ê[Y ] � 0,

then

Ê[XY ] = Ê[X ]Ê[Y ]. (1.1)

Furthermore, if Y is independent to X and X � 0, Y � 0, then

Ê[XY ] = Ê[X ]Ê[Y ], Ê [XY ] = Ê [X ]Ê[Y ]. (1.2)

If {Xn;n � 1} is a sequence of independent random variables with both the upper-expectations Ê[Xi]

and lower-expectations Ê [Xi] being zeros, then it is easily checked that

Ê[S2
n] = Ê

[ n∑
k=1

X2
k +

∑
i�=j

XiXj

]
=

n∑
k=1

Ê[X2
k ],

because Ê[XiXj] = Ê [XiXj] = 0 for i �= j by the definition of the independence, where Sn =
∑n

k=1 Xk.

However, when the popular truncation method is used for studying the limit theorems, the truncated

random variables usually no longer have zero sub-linear expectations. It is hard to centralize a random

variable such that its upper-expectation and lower-expectation are both zeros. But it is easy to centralize

a random variable X such that one of Ê[X ] and Ê [X ] is zero. For example, the random variable X− Ê[X ]

has zero upper-expectation. So, the moments of Sn with the condition Ê[Xi] = 0 (i = 1, . . . , n) are

much useful than those with the condition Ê[Xi] = Ê [Xi] = 0 (i = 1, . . . , n). Unfortunately, by noting

that the independence of X and Y does not imply Ê[(X − Ê[X ])(Y − Ê[Y ])] = 0 (or � 0), even to

get a good estimate of the second order moment Ê[(
∑n

k=1(Xk − Ê[Xk]))
2] is not a trivial work. As for

the probability inequalities or moment inequalities for the maximum partial sums maxk�n Sk, in the

classical probability space, the proof depends basically on the additivity of the probabilities and the

expectations. For example, the integral on the event {maxi�n Si � x} is usually split to integrals on

{maxi�k Si < x, Sk � x}, k = 1, . . . , n. The methods based on the additivity cannot be used under

the framework of sub-linear expectations. Other popular techniques such as the symmetrization, the

martingale method and the stopping time method are also not available under the sub-linear expectations

because they are essentially based on the additivity property. The main purpose of this paper is to

establish the moment inequalities for maxk�n Sk which can be applied to truncated random variables

freely. To explain our main idea, we first give the following result on Kolmogorov’s inequality.

Theorem 1.4 (Kolmogorov’s inequality). Let {X1, . . . , Xn} be a sequence of random variables in

(Ω,H , Ê) with Ê[Xk] = 0, k = 1, . . . , n. Suppose that Xk is independent to (Xk+1, . . . , Xn) for each

k = 1, . . . , n− 1. Denote Sk = X1 + · · ·+Xk, S0 = 0. Then

Ê

[(
max
k�n

Sk

)2]
�

n∑
k=1

Ê[X2
k ]. (1.3)

In particular, Ê[(S+
n )2] �

∑n
k=1 Ê[X

2
k ].

Proof. Set Tk = max(Xk, Xk+Xk+1, . . . , Xk+· · ·+Xn). Then Tk, T
+
k ∈ H , and Tk = Xk+T+

k+1, T
2
k =

X2
k +2XkT

+
k+1+(T+

k+1)
2. It follows that Ê[T 2

k ] � Ê[X2
k ]+ 2Ê[XkT

+
k+1]+ Ê[(T+

k+1)
2]. Note Ê[XkT

+
k+1] = 0

by (1.1). We conclude that Ê[T 2
k ] � Ê[X2

k ] + Ê[(T+
k+1)

2] � Ê[X2
k ] + Ê[T 2

k+1]. Hence, Ê[T 2
1 ] �

∑n
k=1 Ê[X

2
k ].

The proof is completed.

In the above proof, the independence is utilized to get Ê[XkT
+
k+1] � 0 and so can be weakened. Recall

that in the probability (Ω,F ,P ), two random vectors Y = (Y1, . . . , Yn) and X = (X1, . . . , Xm) are

said to be negatively dependent if for each pair of coordinatewise nondecreasing (resp. non-increasing)

functions ϕ1(x) and ϕ2(y) we haveEP [ϕ1(X)ϕ2(Y )] � EP [ϕ1(X)]EP [ϕ2(Y )] whenever the expectations

considered exist.

We introduce the concept of negative dependence under the sub-linear expectation.
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Definition 1.5 (Negative dependence). In a sub-linear expectation space (Ω,H , Ê), a random vec-

tor Y = (Y1, . . . , Yn), Yi ∈ H is said to be negatively dependent to another random vector X =

(X1, . . . , Xm), Xi ∈ H under Ê if for each pair of test functions ϕ1 ∈ Cl,Lip(Rm) and ϕ2 ∈ Cl,Lip(Rn) we

have Ê[ϕ1(X)ϕ2(Y )] � Ê[ϕ1(X)]Ê[ϕ2(Y )] whenever ϕ1(X) � 0, Ê[ϕ2(Y )] � 0, Ê[|ϕ1(X)ϕ2(Y )|] < ∞,

Ê[|ϕ1(X)|] < ∞, Ê[|ϕ2(Y )|] < ∞, and either ϕ1 and ϕ2 are coordinatewise nondecreasing or ϕ1 and ϕ2

are coordinatewise non-increasing.

By the definition, it is easily seen that, if Y = (Y1, . . . , Yn) is negatively dependent toX = (X1, . . . , Xm),

ϕ1 ∈ Cl,Lip(Rm) and ϕ2 ∈ Cl,Lip(Rn) are coordinatewise nondecreasing (resp. non-increasing) functions,

then ϕ2(Y ) is negatively dependent to ϕ1(X). Furthermore, if Y ∈ H is negatively dependent to X ∈ H

and X � 0, Ê[X ] < ∞, Ê[|Y |] < ∞, Ê[Y ] � 0, then

Ê[Y X ] � Ê[(Y − Ê[Y ])X ] + Ê[Ê[Y ]X ] � Ê[Y − Ê[Y ]]Ê[X ] � 0.

It is obvious that, if Y is independent to X, then Y is negatively dependent to X. The following is

the classical example introduced by Huber and Strassen [6].

Example 1.6. Let P be a family of probability measures defined on (Ω,F). For any random variable ξ,

we denote the upper expectation by Ê[ξ] = supQ∈P EQ[ξ]. Then Ê[·] is a sub-linear expectation. Moreover,

if X and Y are independent under each Q ∈ P , then Y is negatively dependent to X under Ê. In fact,

Ê[ϕ1(X)ϕ2(Y )] = sup
Q∈P

EQ[ϕ1(X)ϕ2(Y )] = sup
Q∈P

EQ[ϕ1(X)]EQ[ϕ2(Y )]

� sup
Q∈P

EQ[ϕ1(X)] sup
Q∈P

EQ[ϕ2(Y )] = Ê[ϕ1(X)]Ê[ϕ2(Y )]

whenever ϕ1(X) � 0 and Ê[ϕ2(Y )] � 0.

However, Y may be not independent to X.

With the similar argument, we can show that Y is negatively dependent to X under Ê if X and Y

are negatively dependent under each Q ∈ P .

According to its proof, the conclusion of Theorem 1.4 remains true under the concept of negative

dependence.

Corollary 1.7. Let {X1, . . . , Xn} be a sequence of random variables in (Ω,H , Ê) with Ê[Xk] � 0,

k = 1, . . . , n. Suppose that Xk is negatively dependent to (Xk+1, . . . , Xn) for each k = 1, . . . , n− 1. Then

(1.3) holds.

Our basic idea for obtaining Theorem 1.4 comes from Newman and Wright [9] and Matula [8] where

Kolmogorov’s inequality is estiblished for the classical positively and negatively dependent random vari-

ables, respectively.

2 Rosenthal’s inequalities

In this section, we extend Kolmogorov’s inequality to Rosenthal’s inequalities. For moment inequalities

of partial sums of the classical negatively dependent random variables and related strong limit theorems,

one can refer to Shao [17], Su et al. [18], Yuan and An [19], Zhang [20–22], Zhang and Wen [24], etc.

Some techniques from these papers will be used in the lines of our proofs. We let {X1, . . . , Xn} be a

sequence of random variables in (Ω,H , Ê), and denote Sk = X1 + · · ·+Xk, S0 = 0.

Theorem 2.1 (Rosnethal’s inequality). (a) Suppose that Xk is negatively dependent to (Xk+1, . . . , Xn)

for each k = 1, . . . , n− 1, and Ê[Xk] � 0, k = 1, . . . , n. Then

Ê

[∣∣∣max
k�n

Sk

∣∣∣p] � 22−p
n∑

k=1

Ê[|Xk|p], for 1 � p � 2 (2.1)
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and

Ê

[∣∣∣max
k�n

Sk

∣∣∣p] � Cpn
p/2−1

n∑
k=1

Ê[|Xk|p], for p � 2. (2.2)

(b) Suppose that Xk is independent to (Xk+1, . . . , Xn) for each k = 1, . . . , n − 1, and Ê[Xk] � 0,

k = 1, . . . , n. Then

Ê

[∣∣∣max
k�n

Sk

∣∣∣p] � Cp

{ n∑
k=1

Ê[|Xk|p] +
( n∑

k=1

Ê[|Xk|2]
)p/2}

, for p � 2. (2.3)

(c) In general, suppose that Xk is negatively dependent to (Xk+1, . . . , Xn) for each k = 1, . . . , n − 1,

or Xk+1 is negatively dependent to (X1, . . . , Xk) for each k = 1, . . . , n− 1. Then

Ê

[
max
k�n

|Sk|p
]
� Cp

{ n∑
k=1

Ê[|Xk|p] +
( n∑

k=1

Ê[|Xk|2]
)p/2

+

( n∑
k=1

[(Ê [Xk])
− + (Ê[Xk])

+]

)p}
. (2.4)

Here Cp is a positive constant depending only on p.

If we consider the sequence {X1, X2, . . . , Xn} in the reverse order as {Xn, Xn−1, . . . , X1}, by Theo-

rems 2.1(a) and 2.1(b) we have the following corollary.

Corollary 2.2. Let {X1, . . . , Xn} be a sequence of random variables in (Ω,H , Ê) with Ê[Xk] � 0,

k = 1, . . . , n.

(a) Suppose that Xk+1 is negatively dependent to (X1, . . . , Xk) for each k = 1, . . . , n− 1. Then

Ê

[∣∣∣max
k�n

(Sn − Sk)
∣∣∣p] � 22−p

n∑
k=1

Ê[|Xk|p], for 1 � p � 2 (2.5)

and

Ê

[∣∣∣max
k�n

(Sn − Sk)
∣∣∣p] � Cpn

p/2−1
n∑

k=1

Ê[|Xk|p], for p � 2. (2.6)

In particular,

Ê[(S+
n )p] �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
22−p

n∑
k=1

Ê[|Xk|p], for 1 � p � 2,

Cpn
p/2−1

n∑
k=1

Ê[|Xk|p], for p � 2.

(2.7)

(b) Suppose that Xk+1 is independent to (X1, . . . , Xk) for each k = 1, . . . , n− 1. Then

Ê

[∣∣∣max
k�n

(Sn − Sk)
∣∣∣p] � Cp

{ n∑
k=1

Ê[|Xk|p] +
( n∑

k=1

Ê[|Xk|2]
)p/2}

, for p � 2. (2.8)

In particular,

Ê[(S+
n )p] � Cp

{ n∑
k=1

Ê[|Xk|p] +
( n∑

k=1

Ê[|Xk|2]
)p/2}

, for p � 2.

For the moments under Ê , we have the following estimates.

Theorem 2.3. Let {X1, . . . , Xn} be a sequence of random variables in (Ω,H , Ê) with Ê [Xk] � 0,

k = 1, . . . , n, and 1 � p � 2. If Xk is independent to (Xk+1, . . . , Xn) for each k = 1, . . . , n− 1, then

Ê
[∣∣∣max

k�n
Sk

∣∣∣p] � 22−p
n∑

k=1

Ê[|Xk|p], for 1 � p � 2. (2.9)

If Xk+1 is independent to (X1, . . . , Xk) for each k = 1, . . . , n− 1, then

Ê
[∣∣∣max

k�n
(Sn − Sk)

∣∣∣p] � 22−p
n∑

k=1

Ê[|Xk|p], for 1 � p � 2. (2.10)
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To prove Theorems 2.1–2.3, we need Hölder’s inequality under the sub-linear expectation which can

be proved by the same way under the linear expectation due to the properties of the monotonicity and

sub-additivity (see [16, Proposition 1.16]).

Lemma 2.4 (Hölder’s inequality). Let p, q > 1 be two real numbers satisfying 1
p + 1

q = 1. Then for

two random variables X,Y in (Ω,H , Ê) we have Ê[|XY |] � (Ê[|X |p]) 1
p (Ê[|Y |p]) 1

q .

Proof of Theorem 2.1. Let Tk be defined as in the proof of Theorem 1.4.

(a) We first prove (2.1). Substituting x = Xk and y = T+
k+1 to the following elementary inequality:

|x+ y|p � 22−p|x|p + |y|p + px|y|p−1sgn(y), 1 � p � 2 (2.11)

yields

Ê[|Tk|p] � 22−p
Ê[|Xk|p] + Ê[(T+

k+1)
p] + pÊ[Xk(T

+
k+1)

p−1]

� 22−p
Ê[|Xk|p] + Ê[|Tk+1|p]

by the definition of negative dependence and the facts that Ê[Xk] � 0, T+
k+1 � 0, and T+

k+1 is a coordi-

natewise nondecreasing function of Xk+1, . . . , Xn. Hence, Ê[|T1|p] � 22−p
∑n−1

k=1 Ê[|Xk|p] + Ê[|Xn|p]. So,
(2.1) is proved.

For (2.2), by the following elementary inequality:

|x+ y|p � 2pp2|x|p + |y|p + px|y|p−1sgn(y) + 2pp2x2|y|p−2, p � 2,

we have

|Tk|p � 2pp2|Xk|p + |Tk+1|p + pXk(T
+
k+1)

p−1 + 2pp2X2
k(T

+
k+1)

p−2.

It follows that

|Ti|p � 2pp2
n∑

k=i

|Xk|p + p

n−1∑
k=i

Xk(T
+
k+1)

p−1 + 2pp2
n−1∑
k=i

X2
k(T

+
k+1)

p−2. (2.12)

Hence by the definition of the negative dependence and Hölder’s inequality,

Ê[|Ti|p] � 2pp2Ê

[ n∑
k=i

|Xk|p
]
+ p

n−1∑
k=i

Ê[Xk(T
+
k+1)

p−1] + 2pp2
n−1∑
k=i

Ê[X2
k(T

+
k+1)

p−2]

� 2pp2Ê

[ n∑
k=1

|Xk|p
]
+ 2pp2

n−1∑
k=1

(Ê[|Xk|p]) 2
p (Ê[|Tk+1|p])1− 2

p .

Let An = maxk�n Ê[|Tk|p]. Then An � 2pp2
∑n

k=1 Ê[|Xk|p] + 2pp2
∑n−1

k=1 (Ê[|Xk|p]) 2
pA

1− 2
p

n . From the

above inequalities, it can be shown that

An � Cp

{ n∑
k=1

Ê[|Xk|p] +
( n−1∑

k=1

(Ê[|Xk|p]) 2
p

) p
2
}

� Cpn
p/2−1

n∑
k=1

Ê[|Xk|p].

(2.2) is proved.

(b) Note the independence. From (2.12) it follows that

Ê[|Ti|p] � 2pp2Ê

[ n∑
k=i

|Xk|p
]
+ p

n−1∑
k=i

Ê[Xk(T
+
k+1)

p−1] + 2pp2
n−1∑
k=i

Ê[X2
k(T

+
k+1)

p−2]

= 2pp2Ê

[ n∑
k=i

|Xk|p
]
+ p

n−1∑
k=i

Ê[Xk]Ê[(T
+
k+1)

p−1] + 2pp2
n−1∑
k=i

Ê[X2
k ]Ê[(T

+
k+1)

p−2]

� 2pp2Ê

[ n∑
k=1

|Xk|p
]
+ 2pp2

n−1∑
k=1

Ê[X2
k ](Ê[|Tk+1|p])1− 2

p .
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Let An = maxk�n Ê[|Tk|p]. Then

An � 2pp2Ê

[ n∑
k=1

|Xk|p
]
+ 2pp2

n−1∑
k=1

Ê[X2
k ]A

1− 2
p

n .

From the above inequality, it can be shown that

An � Cp

{ n∑
k=1

Ê[|Xk|p] +
( n∑

k=1

Ê[X2
k ]

) p
2
}
.

(2.2) is proved.

(c) We first show the Marcinkiewicz-Zygmund inequality:

Ê

[
max
k�n

|Sk|p
]
� Cp

{( n∑
k=1

((Ê[Xk])
+ + (Ê [Xk])

−)
)p

+ Ê

( n∑
k=1

X2
k

) p
2
}
. (2.13)

Without loss of generality, we assume that Xk is negatively dependent to (Xk+1, . . . , Xn) for all k =

1, 2, . . . , n − 1. If Xk+1 is negatively dependent to (X1, . . . , Xk) for all k = 1, 2, . . . , n − 1, then (2.13)

will hold with maxk�n |Sk| being replaced by max0�k�n |Sn − Sk|. By noting the fact maxk�n |Sk|
� max0�k�n |Sn − Sk|+ |Sn| � 2max0�k�n |Sn − Sk|, (2.13) also is true.

Write T̃1 = maxk�n |Sk|. It is easily seen that Sk + T+
k+1 = max

(
Sk, Sk+1, . . . , Sn) � T1. So, T+

k+1

� 2T̃1. Note (2.12). By the the definition of the negative dependence,

Ê[Xk(T
+
k+1)

p−1] �
{
Ê[Xk]Ê[(T

+
k+1)

p−1], if Ê[Xk] � 0

0, if Ê[Xk] < 0

� 2p−1(Ê[Xk])
+
Ê[T̃ p−1

1 ] � 2p−1(Ê[Xk])
+(Ê[T̃ p

1 ])
1− 1

p

by Hölder’s inequality. By (2.12) and Hölder’s inequality again, it follows that

Ê[|T1|p] � 2pp2Ê

[ n∑
k=1

|Xk|p
]
+ p

n−1∑
k=1

Ê[Xk(T
+
k+1)

p−1] + 2pp2Ê

[ n−1∑
k=1

X2
k(T

+
k+1)

p−2

]

� 2pp2Ê

[ n∑
k=1

|Xk|p
]
+ 2p−1p

n−1∑
k=1

(Ê[Xk])
+(Ê[T̃ p

1 ])
1− 1

p

+ 2pp22p−2
Ê

[ n−1∑
k=1

X2
k T̃

p−2
1

]

� 2pp2Ê

[ n∑
k=1

|Xk|p
]
+ 2p−1p

( n−1∑
k=1

(Ê[Xk])
+

)
(Ê[T̃ p

1 ])
1− 1

p

+ 22p−2p2
[
Ê

( n−1∑
k=1

X2
k

) p
2
] 2

p

(Ê[T̃ p
1 ])

1− 2
p .

Similarly,

Ê

[∣∣∣max
k�n

(−Sk)
∣∣∣p] � 2pp2Ê

[ n∑
k=1

|Xk|p
]
+ 2p−1p

( n−1∑
k=1

(Ê[−Xk])
+

)
(Ê[T̃ p

1 ])
1− 1

p

+ 22p−2p2
[
Ê

( n−1∑
k=1

X2
k

) p
2
] 2

p

(Ê[T̃ p
1 ])

1− 2
p .

Hence,

Ê[T̃ p
1 ] � 2p+1p2Ê

[ n∑
k=1

|Xk|p
]
+ 2p−1p

( n∑
k=1

[(Ê[Xk])
+ + (Ê [Xk])

−]
)
(Ê[T̃ p

1 ])
1− 1

p
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+ 22p−1p2
[
Ê

( n−1∑
k=1

X2
k

) p
2
] 2

p

(Ê[T̃ p
1 ])

1− 2
p ,

which implies

Ê[T̃ p
1 ] � Cp

{
Ê

[ n∑
k=1

|Xk|p
]
+

( n∑
k=1

((Ê[Xk])
+ + (Ê [Xk])

−)
)p

+ Ê

( n∑
k=1

X2
k

) p
2
}
.

Note ( n∑
k=1

|xk|p
) 2

p

=

( n∑
k=1

|x2
k|

p
2

) 2
p

�
n∑

k=1

x2
k for

2

p
� 1.

So
n∑

k=1

|Xk|p �
( n∑

k=1

X2
k

) p
2

.

The Marcinkiewicz-Zygmund inequality (2.13) is proved.

Now, for 2 � p � 4, applying (2.1) to the sequences {(X+
1 )2, . . . , (X+

n )2} yields

Ê

[({ n∑
k=1

[(X+
k )2 − Ê[(X+

k )2]]

}+) p
2
]

� 22−
p
2

n∑
k=1

Ê[|(X+
k )2 − Ê[(X+

k )2]| p2 ] � Cp

n∑
k=1

Ê[|Xk|p].

It follows that

Ê

( n∑
k=1

(X+
k )2

) p
2

� Cp

{( n∑
k=1

Ê[(X+
k )2]

) p
2

+

n∑
k=1

Ê[|Xk|p]
}
.

Similarly

Ê

( n∑
k=1

(X−
k )2

) p
2

� Cp

{( n∑
k=1

Ê[(X−
k )2]

) p
2

+

n∑
k=1

Ê[|Xk|p]
}
.

Hence,

Ê

( n∑
k=1

X2
k

) p
2

� Cp

{( n∑
k=1

Ê[X2
k ]

) p
2

+
n∑

k=1

Ê[|Xk|p]
}
.

Substituting the above estimate to (2.13) yield (2.3).

Suppose (2.3) is proved for 2l < p � 2l+1. Then applying it to the sequences {(X+
1 )2, . . . , (X+

n )2} and

{(X−
1 )2, . . . , (X−

n )2}, respectively with 2l < p/2 � 2l+1 yields

Ê

[( n∑
k=1

(X+
k )2

) p
2
]
� Cp

{ n∑
k=1

Ê[|(X+
k )2| p2 ] +

( n∑
k=1

(Ê[(X+
k )2])+

) p
2

+

( n∑
k=1

Ê[[(X+
k )2]2]

) p
4
}

� Cp

{ n∑
k=1

Ê[|Xk|p] +
( n∑

k=1

Ê[X2
k ]

) p
2

+

( n∑
k=1

Ê[X4
k ]

) p
4
}

and

Ê

[( n∑
k=1

(X−
k )2

) p
2
]
� Cp

{ n∑
k=1

Ê[|Xk|p] +
( n∑

k=1

Ê[X2
k ]

) p
2

+

( n∑
k=1

Ê[X4
k ]

) p
4
}
.
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Hence,

Ê

[( n∑
k=1

X2
k

) p
2
]
� Cp

{ n∑
k=1

Ê[|Xk|p] +
( n∑

k=1

Ê[X2
k ]

) p
2

+

( n∑
k=1

Ê[X4
k ]

) p
4
}
. (2.14)

By applying Hölder’s inequality, it follows that

Ê[X4
k ] = Ê[(X2

k)
p−4
p−2 (|Xk|p) 2

p−2 ] � (Ê[X2
k ])

p−4
p−2 (Ê[|Xk|p]) 2

p−2 ,

which implies ( n∑
k=1

Ê[X4
k ]

)p/4

� Cp

{ n∑
k=1

Ê[|Xk|p] +
( n∑

k=1

Ê[|Xk|2]
)p/2}

(2.15)

by some elementary calculation. Substituting (2.14) and (2.15) to (2.13), we conclude that (2.3) is also

valid for 2l+1 < p � 2l+2. By the induction, (2.3) proved.

Proof of Theorem 2.3. Suppose that Xk is independent to (Xk+1, . . . , Xn) for each k = 1, . . . , n − 1.

Due to (2.11), we have |Tk|p � 22−p|Xk|p + (T+
k+1)

p + pXk(T
+
k+1)

p−1. By the independence and the fact

that Ê [X + Y ] � Ê [X ] + Ê[Y ], it follows that

Ê [22−p|Xk|p + (T+
k+1)

p + pXk(T
+
k+1)

p−1 | T+
k+1]

� 22−p
Ê[|Xk|p] + (T+

k+1)
p + pÊ [Xk](T

+
k+1)

p−1 � 22−p
Ê[|Xk|p] + (T+

k+1)
p.

So

Ê [|Tk|p] � Ê [22−p|Xk|p + (T+
k+1)

p + pXk(T
+
k+1)

p−1] � 22−p
Ê[|Xk|p] + Ê [|Tk+1|p].

It follows that Ê [|T1|p] � 22−p
∑n

k=1 Ê[|Xk|p]. Now, (2.9) is proved. (2.10) follows from (2.9) by consid-

ering the sequence {X1, X2, . . . , Xn} in the reverse order as {Xn, Xn−1, . . . , X1}.

3 Strong laws of large numbers under capacities

Let G ⊂ F . A function V : G → [0, 1] is called a capacity if

V (∅) = 0, V (Ω) = 1 and V (A) � V (B), ∀A ⊂ B, A,B ∈ G.

It is called to be sub-additive if V (A ∪B) � V (A) + V (B) for all A,B ∈ G with A ∪B ∈ G.
Here we only consider the capacities generated by a sub-linear expectation. Let (Ω,H , Ê) be a sub-

linear space, and Ê be the conjugate expectation of Ê. Furthermore, let us denote a pair (V,V) of

capacities by

V(A) := inf{Ê[ξ] : IA � ξ, ξ ∈ H }, V(A) := 1− V(Ac), ∀A ∈ F ,

where Ac is the complement set of A. Then

V(A) := Ê[IA], V(A) := Ê [IA], if IA ∈ H ,

Ê[f ] � V(A) � Ê[g], Ê [f ] � V(A) � Ê [g], if f � IA � g, f, g ∈ H .
(3.1)

The corresponding Choquet integrals/expecations (CV, CV) are defined by

CV [X ] =

∫ ∞

0

V (X � t)dt+

∫ 0

−∞
[V (X � t)− 1] dt

with V being replaced by V and V , respectively.
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Definition 3.1. (I) A sub-linear expectation Ê : H → R is called to be countably sub-additive if it

satisfies

(e) Countable sub-additivity: Ê[X ] �
∑∞

n=1 Ê[Xn], whenever X �
∑∞

n=1 Xn, X,Xn ∈ H and X � 0,

Xn � 0, n = 1, 2, . . .

It is called continuous if it satisfies

(f) Continuity from below: Ê[Xn] ↑ Ê[X ] if 0 � Xn ↑ X , where Xn, X ∈ H .

(g) Continuity from above: Ê[Xn] ↓ Ê[X ] if 0 � Xn ↓ X , where Xn, X ∈ H .

(II) A function V : F → [0, 1] is called to be countably sub-additive if

V

( ∞⋃
n=1

An

)
�

∞∑
n=1

V (An), ∀An ∈ F .

(III) A capacity V : F → [0, 1] is called a continuous capacity if it satisfies:

(III1) Continuity from below: V (An) ↑ V (A) if An ↑ A, where An, A ∈ F .

(III2) Continuity from above: V (An) ↓ V (A) if An ↓ A, where An, A ∈ F .

Example 1.6 (Continued). The sub-linear expectation Ê defined in Example 1.6 is continuous from

below, and so is countably sub-additive. If H is the set of all random variables and P is a weakly

compact set of probability measures defined on (Ω,F), then (V,V) is a pair of continuous capacities.

Definition 3.2. Let {Xn;n � 1} be a sequence of random variables in the sub-linear expectation

space (Ω,H , Ê). X1, X2, . . . are said to be independent if Xi+1 is independent to (X1, . . . , Xi) for each

i � 1, they are said to be negatively dependent if Xi+1 is negatively dependent to (X1, . . . , Xi) for each

i � 1, and they are said to be identically distributed if Xi
d
= X1 for each i � 1.

It is obvious that, if {Xn;n � 1} is a sequence of independent random variables and f1(x), f2(x),

. . . ∈ Cl,Lip(R), then {fn(Xn);n � 1} is also a sequence of independent random variables; if {Xn;n � 1}
is a sequence of negatively dependent random variables and f1(x), f2(x), . . . ∈ Cl,Lip(R) are non-decreasing

(resp. non-increasing) functions, then {fn(Xn);n � 1} is also a sequence of negatively dependent random

variables.

For a sequence {Xn;n � 1} of random variables in the sub-linear expectation space (Ω,H , Ê), we

denote Sn =
∑n

k=1 Xk, S0 = 0. The main purpose of this section is to establish the following Kolmogorov

type strong laws of large numbers.

Theorem 3.3. (a) Let {Xn;n � 1} be a sequence of negatively dependent and identically distributed

random variables. Suppose that V is countably sub-additive, CV[|X1|] < ∞ and limc→∞ Ê[(|X1|−c)+] = 0.

Then

V

({
lim inf
n→∞

Sn

n
< Ê [X1]

}
∪
{
lim sup
n→∞

Sn

n
> Ê[X1]

})
= 0. (3.2)

(b) Suppose that {Xn;n � 1} is a sequence of independent and identically distributed random variables,

and V is continuous. If

V

(
lim sup
n→∞

|Sn|
n

= +∞
)
< 1, (3.3)

then CV[|X1|] < ∞.

(c) Suppose that {Xn;n � 1} is a sequence of independent and identically distributed random variables

with CV[|X1|] < ∞ and limc→∞ Ê [(|X1| − c)+] = 0. If V is continuous, then

V

(
lim inf
n→∞

Sn

n
= Ê [X1] and lim sup

n→∞
Sn

n
= Ê[X1]

)
= 1 (3.4)

and

V

(
C

{
Sn

n

}
= [Ê [X1], Ê[X1]]

)
= 1, (3.5)

where C({xn}) denotes the cluster set of a sequence of {xn} in R.

The following corollary follows from Theorem 3.3 immediately.
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Corollary 3.4. Suppose that H is a monotone class in the sense that X ∈ H whenever H � Xn ↓
X � 0. Assume that Ê is continuous. Let {Xn;n � 1} be a sequence of independent and identically

distributed random variables in (Ω,H , Ê). Then (3.3) ⇒ CV[|X1|] < ∞ ⇒ (3.2).

Because V may be not countably sub-additive in general, we define an outer capacity V
∗ by

V
∗(A) = inf

{ ∞∑
n=1

V(An) : A ⊂
∞⋃

n=1

An

}
, V∗(A) = 1− V

∗(Ac), A ∈ F .

Then it can be shown that V
∗(A) is a countably sub-additive capacity with V

∗(A) � V(A) and the

following properties:

(a*) If V is countably sub-additive, then V
∗ ≡ V.

(b*) If IA � g, g ∈ H , then V
∗(A) � Ê[g]. Furthermore, if Ê is countably sub-additive, then

Ê[f ] � V
∗(A) � V(A) � Ê[g], ∀ f � IA � g, f, g ∈ H . (3.6)

(c*) V
∗ is the largest countably sub-additive capacity satisfying the property that V

∗(A) � Ê[g]

whenever IA � g ∈ H , i.e., if V is also a countably sub-additive capacity satisfying V (A) � Ê[g]

whenever IA � g ∈ H , then V (A) � V
∗(A).

In fact, it is obvious that (c*) implies (a*). For (b*) and (c*), suppose A ⊂ ⋃∞
n=1 An,

∑∞
n=1 V(An) �

V
∗(A) + ε/2 with IAn � fn ∈ H and Ê[fn] � V(An) + ε/2n+2. If H � f � IA, then f �

∑∞
n=1 IAn �∑∞

n=1 fn, which implies

Ê[f ] �
∞∑

n=1

Ê[fn] �
∞∑
n=1

V(An) +

∞∑
n=1

ε/2n+2 � V
∗(A) + ε

by the countable sub-additivity of Ê. While, if V is countably sub-additive, then

V (A) �
∞∑
n=1

V (An) �
∞∑

n=1

Ê[fn] �
∞∑

n=1

V(An) +

∞∑
n=1

ε/2n+2 � V
∗(A) + ε.

Theorem 3.5. Let {Xn;n � 1} be a sequence identically distributed random variables in (Ω,H , Ê).

(a) Suppose that X1, X2, . . . are negatively dependent with CV[|X1|] < ∞ and limc→∞ Ê[(|X1| − c)+]

= 0. Then

V
∗
({

lim inf
n→∞

Sn

n
< Ê [X1]

}
∪
{
lim sup
n→∞

Sn

n
> Ê[X1]

})
= 0. (3.7)

(b) Suppose that X1, X2, . . . are independent, V∗ is continuous and Ê is countably sub-additive. If

V
∗
(
lim sup
n→∞

|Sn|
n

= +∞
)
< 1, (3.8)

then CV[|X1|] < ∞.

For proving the theorems, we need some properties of the sub-linear expectations and capacities. We

define an extension of Ê on the space of all random variables by E
∗[X ] = inf{Ê[Y ] : X � Y, Y ∈ H }.

Then E
∗ is a sub-linear expectation on the space of all random variables, and

E
∗[X ] = Ê[X ], ∀X ∈ H , V(A) = E

∗[IA], ∀A ∈ F .

We have the following properties.

Lemma 3.6. (P1) If Ê is continuous from below, then it is countably sub-additive. Similarly, if V is

continuous from below, then it is countably sub-additive.

(P2) If V is continuous from above, then V and V are continuous.

(P3) If Ê is continuous from above, then Ê is continuous from below controlled, i.e., Ê[Xn] ↑ Ê[X ] if

0 � Xn ↑ X, where Xn, X ∈ H and ÊX < ∞.
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(P4) Suppose that Ê is countably sub-additive. If X �
∑∞

n=1 Xn, X,Xn � 0 and X ∈ H , then

Ê[X ] �
∑∞

n=1 E
∗[Xn].

(P5) Set H = {A : IA ∈ H }, then V is a countably sub-additive capacity in H if Ê is countably

sub-additive in H , and (V,V) is a pair of continuous capacities in H if Ê is continuous in H .

Proof. For (P1), if 0 � X �
∑∞

k=1 Xn, 0 � X,Xn ∈ H , then

Ê[X ] = Ê

[( ∞∑
k=1

Xk

)
∧X

]
= lim

n→∞ Ê

[( n∑
k=1

Xk

)
∧X

]

� lim
n→∞ Ê

[ n∑
k=1

Xk

]
� lim

n→∞

n∑
k=1

Ê[Xk] �
∞∑
k=1

Ê[Xk].

(P1) is proved.

For (P2), it is sufficient to note that, if An ↑ A, then A\An ↓ ∅ and 0 � V(A) − V(An) � V(A\An).

Similarly, for (P3), it is sufficient to note that X −Xn ↓ 0 and 0 � Ê[X ]− Ê[Xn] � Ê[X −Xn].

For (P4), choose 0 � Yn ∈ H such that Yn � Xn, Ê[Yn] � E
∗[Xn] +

ε
2n+1 . Then X �

∑∞
n=1 Yn. By

the countable sub-additivity of Ê,

Ê[X ] �
∞∑
n=1

Ê[Yn] �
∞∑
n=1

(
E
∗[Xn] +

ε

2n+1

)
�

∞∑
n=1

E
∗[Xn] + ε.

(P4) is proved. (P5) is obvious.

The following is the “the convergence part” of the Borel-Cantelli lemma for a countably sub-additive

capacity.

Lemma 3.7 (Borel-Cantelli’s lemma). Let {An, n � 1} be a sequence of events in F . Suppose that V

is a countably sub-additive capacity. If
∑∞

n=1 V (An) < ∞, then

V (An i.o.) = 0, where {An i.o.} =

∞⋂
n=1

∞⋃
i=n

Ai.

Proof. By the monotonicity and countable sub-additivity, it follows that

0 � V

( ∞⋂
n=1

∞⋃
i=n

Ai

)
� V

( ∞⋃
i=n

Ai

)
�

∞∑
i=n

V (Ai) → 0 as n → ∞.

Remark 3.8. It is important to note that the condition that“X is independent to Y under Ê” does not

imply that “X is independent to Y under V” because the indicator functions I{X ∈ A} and I{X ∈ A}
are not in Cl,Lip(R), and also, “X is independent to Y under V” does not imply that “X is independent

to Y under Ê” because Ê is not an integral with respect to V. So, we do not have “the divergence part”

of the Borel-Cantelli lemma.

Similarly, the conditions that “X and Y are identically distributed under Ê” and that “X and Y are

identically distributed under V” do not imply each other.

Lemma 3.9. Suppose that X ∈ H and CV(|X |) < ∞.

(a) Then
∞∑
j=1

Ê[(|X | ∧ j)2]

j2
< ∞. (3.9)

(b) Furthermore, if limc→∞ Ê[|X | ∧ c] = Ê[|X |], then
Ê[|X |] � CV(|X |). (3.10)

(c) If Ê is countably sub-additive, then

Ê[|Y |] � CV(|Y |), ∀Y ∈ H (3.11)
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and

lim
c→∞ Ê[(|X | − c)+] = 0, lim

c→∞ Ê[|X | ∧ c] = Ê[|X |] (3.12)

whenever CV(|X |) < ∞.

Proof. (a) Note

(|X | ∧ j)2 =

j∑
i=1

|X |2I{i− 1 < |X | � i}+ jI{|X | > j}

�
j∑

i=1

i2I{i− 1 < |X | � i}+ jI{|X | > j}

=

j−1∑
i=0

(i+ 1)2I{|X | > i} −
j∑

i=1

i2I{|X | > i}+ jI{|X | > j}

� 1 +

j−1∑
i=1

(2i+ 1)I{|X | > i}+ jI{|X | > j}

� 1 + 3

j∑
i=1

iI{|X | > i}.

So, Ê[(|X | ∧ j)2] = E
∗[(|X | ∧ j)2] � 1+3

∑j
i=1 iV(|X | > i), by the (finite) sub-additivity of E∗. It follows

that

∞∑
j=1

Ê[(|X | ∧ j)2]

j2
�

∞∑
j=1

1 + 3
∑j

i=1 iV(|X | > i)

j2

� 2 + 3
∞∑
i=1

iV(|X | > i)
∞∑

j=i+1

1

j2
� 2 + 3

∞∑
i=1

V(|X | > i) � 2 + 3CV(|X |).

(3.9) is proved.

(b) For n > 2, note

|X | ∧ n =

n∑
i=1

|X |I{i− 1 < |X | � i}+ nI{|X | > n}

�
n∑

i=1

i(I{|X | > i− 1} − I{|X | > i}) + nI{|X | > n} � 1 +

n∑
i=1

I{|X | > i}.

It follows that Ê[|X | ∧ n] = E
∗[|X | ∧ n] � 1 +

∑n
i=1 V(|X | � i) � 1 +

∫ n

0 V(|X | � x)dx. Taking n → ∞
yields Ê[|X |] = limn→∞ Ê[|X | ∧ n] � 1 + CV(|X |). By considering |X |/ε instead of |X |, we have

Ê

[ |X |
ε

]
� 1 + CV

( |X |
ε

)
= 1 +

1

ε
CV(|X |),

i.e., Ê[|X |] � ε+ CV(|X |). Taking ε → 0 yields (3.10).

(c) Now, from the fact that |Y | � 1 +
∑∞

i=1 I{|Y | � i}, by the countable sub-additivity of Ê and

Property (P4) in Lemma 3.6, it follows that

Ê[|Y |] � 1 +
∞∑
i=1

E
∗[I{|Y | � i}] = 1 +

∞∑
i=1

V(|Y | � i) � 1 + CV(|Y |).

Then (3.11) is proved by the same argument in (b) above.

Letting Y = (|X | − c)+ in (3.11) yields

Ê[(|X | − c)+] � CV((|X | − c)+) =

∫ ∞

c

V(|X | � x)dx → 0 as c → ∞.
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So

0 � Ê[|X |]− Ê[|X | ∧ c] � Ê[(|X | − c)+] → 0 as c → ∞.

(3.12) is proved.

Proof of Theorems 3.3 and 3.5. We first prove Theorem 3.5(a). Theorem 3.3(a) follows from Theo-

rem 3.5(a) because V
∗ = V when V is countably sub-additive.

Without loss of generality, we assume Ê[X1] = 0. Define

fc(x) = (−c) ∨ (x ∧ c), f̂c(x) = x− fc(x) (3.13)

and

Xj = fj(Xj)− Ê[fj(Xj)], Sj =

j∑
i=1

Xi, j = 1, 2, . . .

Then fc(·), f̂c(·) ∈ Cl,Lip(R), and Xj , j = 1, 2, . . . are negatively dependent. Let θ > 1, nk = [θk]. For

nk < n � nk+1, we have

Sn

n
=

1

n

{
Snk+1

+

nk+1∑
j=1

Ê[fj(Xj)] +

n∑
j=1

f̂j(Xj)−
nk+1∑
j=n+1

fj(Xj)

]

�
S
+

nk+1

nk
+

∑nk+1

j=1 |Ê[fj(X1)]|
nk

+

∑nk+1

j=1 |f̂j(Xj)|
nk

+

∑nk+1

j=nk+1{f+
j (Xj)− Ê[f+

j (Xj)]}
nk

+

∑nk+1

j=nk+1{f−
j (Xj)− Ê[f−

j (Xj)]}
nk

+
(nk+1 − nk)Ê|X1|

nk

=: (I)k + (II)k + (III)k + (IV )k + (V )k + (V I)k.

It is obvious that limk→∞(V I)k = (θ − 1)Ê[|X1|] � (θ − 1)CV(|X1|) by Lemma 3.9(b).

For (I)k, applying (2.7) yields

V(Snk+1
� εnk) �

∑nk+1

j=1 Ê[X
2

j ]

ε2n2
k

�
4
∑nk+1

j=1 Ê[f2
j (X1)]

ε2n2
k

� 4nk+1

ε2n2
k

+
4
∑nk+1

j=1 Ê[(|X1| ∧ j)2]

ε2n2
k

.

It is obvious that
∑

k
nk+1

n2
k

< ∞. Also,

∞∑
k=1

∑nk+1

j=1 Ê[(|X1| ∧ j)2]

n2
k

�
∞∑
j=1

Ê[(|X1| ∧ j)2]
∑

k:nk+1�j

1

n2
k

� C

∞∑
j=1

Ê[(|X1| ∧ j)2]
1

j
< ∞

by Lemma 3.9(a). Hence,
∞∑
k=1

V
∗((I)k � ε) �

∞∑
k=1

V((I)k � ε) < ∞.

By the Borel-Cantelli’s lemma and the countable sub-additivity of V∗, it follows that

V
∗
(
lim sup
k→∞

(I)k > ε
)
= 0, ∀ ε > 0.
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Similarly,

V
∗
(
lim sup
k→∞

(IV )k > ε
)
= 0, V

∗
(
lim sup
k→∞

(V )k > ε
)
= 0, ∀ ε > 0.

For (II)k, note that by the (finite) sub-additivity,

|Ê[fj(X1)]| = |Ê[fj(X1)]− ÊX1| � Ê[|f̂j(X1)|] = Ê[(|X1| − j)+] → 0.

It follows that

(II)k =
nk+1

nk

∑nk+1

j=1 |Ê[fj(X1)]|
nk+1

→ 0.

At last, we consider (III)k. By the Borel-Cantelli’s lemma, we will have

V
∗
(
lim sup
k→∞

(III)k > 0
)
� V

∗({|Xj | > j} i.o.) = 0

if we have shown that ∞∑
j=1

V
∗(|Xj | > j) �

∞∑
j=1

V(|Xj | > j) < ∞. (3.14)

Let gε be a function satisfying that its derivatives of each order are bounded, gε(x) = 1 if x � 1, gε(x) = 0

if x � 1− ε, and 0 � gε(x) � 1 for all x, where 0 < ε < 1. Then

gε(·) ∈ Cl,Lip(R) and I{x � 1} � gε(x) � I{x > 1− ε}.
Hence, by (3.1),

∞∑
j=1

V(|Xj | > j) �
∞∑
j=1

Ê[g1/2(|Xj |/j)] =
∞∑
j=1

Ê[g1/2(|X1|/j)] (since Xj
d
= X1)

�
∞∑
j=1

V(|X1| > j/2) � 1 + CV(2|X1|) < ∞.

(3.14) is proved. So, we conclude that

V
∗
(
lim sup
n→∞

Sn

n
> ε

)
= 0, ∀ ε > 0,

by the arbitrariness of θ > 1. Hence

V
∗
(
lim sup
n→∞

Sn

n
> 0

)
= V

∗
( ∞⋃

k=1

{
lim sup
n→∞

Sn

n
>

1

k

})
�

∞∑
k=1

V
∗
(
lim sup
n→∞

Sn

n
>

1

k

)
= 0.

Finally,

V
∗
(
lim inf
n→∞

Sn

n
< Ê [X1]

)
= V

∗
(
lim sup
n→∞

∑n
k=1(−Xk − Ê[−Xk])

n
> 0

)
= 0.

The proof of (3.2) is now completed.

For (b) of Theorems 3.3 and 3.5, suppose CV(|X1|) = ∞. Then, by (3.1),

∞∑
j=1

Ê

[
g1/2

( |Xj |
Mj

)]
=

∞∑
j=1

Ê

[
g1/2

( |X1|
Mj

)]
(since Xj

d
= X1)

�
∞∑
j=1

V(|X1| > Mj) = ∞, ∀M > 0. (3.15)

For any l � 1,

V
( n∑

j=1

g1/2

( |Xj |
Mj

)
< l

)
= V

(
exp

{
− 1

2

n∑
j=1

g1/2

( |Xj |
Mj

)}
> e−l/2

)
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� el/2Ê
[
exp

{
−

n∑
j=1

g1/2

( |Xj |
Mj

)}]

= el/2
n∏

j=1

Ê
[
exp

{
− 1

2
g1/2

( |Xj |
Mj

)}]

by (3.1) again and the independence because 0 � exp{− 1
2g1/2(

|xj|
Mj )} ∈ Cl,Lip(R). Applying the elementary

inequality

e−x � 1− 1

2
x � e−x/2, ∀ 0 � x � 1

2

yields

Ê
[
exp

{
− 1

2
g1/2

( |Xj|
Mj

)}]
� 1− 1

4
Ê

[
g1/2

( |Xj |
Mj

)]
� exp

{
− 1

4
Ê

[
g1/2

( |Xj|
Mj

)]}
.

It follows that

V
( n∑

j=1

g1/2

( |Xj|
Mj

)
< l

)
� el/2 exp

{
− 1

4

n∑
j=1

Ê

[
g1/2

( |Xj |
Mj

)]}
→ 0 as n → ∞,

by (3.15). So

V

( n∑
j=1

g1/2

( |Xj |
Mj

)
> l

)
→ 1 as n → ∞.

If V is continuous as assumed in Theorem 3.3, then V ≡ V
∗. If Ê is countably sub-additive as assumed

in Theorem 3.5, then

V
∗(|X | � c) � V(|X | � c) � Ê[gε(|X |/c)] � V

∗(|X | � c(1− ε)),

by (3.1) and (3.6). In either case, we have

V
∗
( n∑

j=1

g1/2

( |Xj |
Mj

)
>

l

2

)
� V

( n∑
j=1

g1/2

( |Xj |
Mj

)
> l

)
→ 1 as n → ∞.

Now, by the continuity of V∗,

V
∗
(
lim sup
n→∞

|Xn|
n

>
M

2

)
= V

∗
({ |Xj |

Mj
>

1

2

}
i.o.

)
� V

∗
( ∞∑

j=1

g1/2

( |Xj |
Mj

)
= ∞

)

= lim
l→∞

V
∗
( ∞∑

j=1

g1/2

( |Xj |
Mj

)
>

l

2

)

= lim
l→∞

lim
n→∞V

∗
( n∑

j=1

g1/2

( |Xj |
Mj

)
>

l

2

)
= 1.

On the other hand,

lim sup
n→∞

|Xn|
n

� lim sup
n→∞

( |Sn|
n

+
|Sn−1|

n

)
� 2 lim sup

n→∞
|Sn|
n

.

It follows that

V
∗
(
lim sup
n→∞

|Sn|
n

> m

)
= 1, ∀m > 0.

Hence,

V
∗
(
lim sup
n→∞

|Sn|
n

= +∞
)

= lim
m→∞V

∗
(
lim sup
n→∞

|Sn|
n

> m

)
= 1,



Zhang L X Sci China Math April 2016 Vol. 59 No. 4 767

which contradicts (3.3) and (3.8). So, CV(|X1|) < ∞.

Finally, we consider Theorem 3.3(c). For (3.4), we first show that

V

(
Sn

n
> Ê[X1]− ε

)
→ 1, ∀ ε > 0. (3.16)

Let fc(x) and f̂c(x) be defined as in (3.13). Then

V

( |∑n
k=1 f̂c(Xk)|

n
> ε

)
�

∑n
k=1 Ê[|f̂c(Xk)|]

εn
� Ê[(|X1| − c)+]

ε
→ 0 as c → ∞,

Ê[X1]− Ê[fc(X1)] → 0 as c → ∞, and by Theorem 2.3,

V
(∑n

k=1 fc(Xk)

n
� Ê[fc(X1)]− ε

)
= V

( n∑
k=1

(−fc(Xk)− Ê [−fc(Xk)]) � nε

)

� Ê [|(∑n
k=1(−fc(Xk)− Ê [−fc(Xk)]))

+|2]
n2ε2

� 2
Ê[(−fc(X1)− Ê [−fc(X1)])

2]

nε2

� 2(2c)2

nε2
→ 0 as n → ∞.

Then (3.16) is proved. By considering {−Xn;n � 1} instead, from (3.16) we have

V

(
Sn

n
� Ê [X1] + ε

)
→ 1, ∀ ε > 0. (3.17)

Note the independence. We conclude that

V

(
Sn

n
< Ê [X1] + ε and

Sn2 − Sn

n2 − n
> Ê[X1]− ε

)
� Ê

[
φ

(
Sn

n
− Ê [X1]

)
φ

(
Ê[X1]− Sn2 − Sn

n2 − n

)]
� Ê

[
φ

(
Sn

n
− Ê [X1]

)]
· Ê

[
φ

(
Ê[X1]− Sn2 − Sn

n2 − n

)]
� V

(
Sn

n
< Ê [X1] +

ε

2

)
· V

(
Sn2 − Sn

n2 − n
> Ê[X1]− ε

2

)
→ 1, ∀ ε > 0,

where φ(x) ∈ Cl,Lip(R) is a function such that I{x � ε} � φ(x) � I{x � ε/2}. Now, by (3.2) and the

continuity of V,

V

(
lim inf
n→∞

Sn

n
� Ê [X1] + ε and lim sup

n→∞
Sn

n
� Ê[X1]− ε

)
� V

(
lim inf
n→∞

Sn

n
� Ê [X1] + ε and lim sup

n→∞
Sn2 − Sn

n2 − n
� Ê[X1]− ε

)
� V

(
Sn

n
< Ê [X1] + ε and

Sn2 − Sn

n2 − n
> Ê[X1]− ε i.o.

)
� lim sup

n→∞
V

(
Sn

n
< Ê [X1] + ε and

Sn2 − Sn

n2 − n
> Ê[X1]− ε

)
= 1, ∀ ε > 0.

By the continuity of V again,

V

(
lim inf
n→∞

Sn

n
� Ê [X1] and lim sup

n→∞
Sn

n
� Ê[X1]

)
= 1,

which, together with (3.2) implies (3.4).
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Finally, note
Sn

n
− Sn−1

n− 1
=

Xn

n
− Sn−1

n− 1

1

n
→ 0 a.s. V.

It can be verified that (3.4) implies (3.5).

Proof of Corollary 3.4. It is sufficient to note the facts that V(A) = Ê[IA] is continuous in H = {A, IA
∈ H } and all events we consider are in H because H is monotone and I{x � 1} = limε→0 gε(x).
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