
SCIENCE CHINA
Mathematics

. ARTICLES . May 2016 Vol. 59 No. 5: 945–954

doi: 10.1007/s11425-015-5095-0

c© Science China Press and Springer-Verlag Berlin Heidelberg 2015 math.scichina.com link.springer.com

Strong laws of large numbers for sub-linear
expectations

CHEN ZengJing

School of Mathematics, Shandong University, Jinan 250100, China

Email: zjchen@sdu.edu.cn

Received February 21, 2015; accepted October 12, 2015; published online December 2, 2015

Abstract We investigate three kinds of strong laws of large numbers for capacities with a new notion of

independently and identically distributed (IID) random variables for sub-linear expectations initiated by Peng.

It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov’s strong law

of large numbers to the case where probability measures are no longer additive. An important feature of these

strong laws of large numbers is to provide a frequentist perspective on capacities.

Keywords capacity, strong law of large numbers, independently and identically distributed, nonlinear ex-

pectation

MSC(2010) 60F15, 60G50

Citation: Chen Z J. Strong laws of large numbers for sub-linear expectations. Sci China Math, 2016, 59: 945–954,

doi: 10.1007/s11425-015-5095-0

1 Introduction

The classical strong laws of large numbers (strong LLN) as fundamental limit theorems in probability

theory play a fruitful role in the development of probability theory and its applications. The key in

the proofs of these limit theorems is the additivity of probability measures and mathematical expec-

tations. However, such an additivity assumption is not feasible in many areas of applications because

many uncertain phenomena cannot be well modelled using additive probabilities or additive expectations.

More specifically, motivated by some problems in mathematical economics, statistics, quantum mechanics

and finance, a number of papers have used non-additive probabilities (called capacities) and nonlinear

expectations (for example Choquet integral/expectation, g-expectation) to describe and interpret the

phenomena which are generally nonadditive (see [1, 5–7, 10, 11, 19, 21]). A natural question is what is

the law of large numbers under nonadditive probabilities or nonlinear expectations? Recently, motivated

by the risk measures, super-hedge pricing and model uncertainty in finance, Peng [12–17] initiated the

notion of independently and identically distributed (IID) random variables under sub-linear expectations.

Under this framework, he proved a weak law of large numbers (LLN) and a central limit theorem (CLT).

In this paper, we investigate three strong laws of large numbers for capacities in Peng’s framework. All

of them are natural and fairly neat extensions of the classical Kolmogorov’s strong law of large numbers,

but the proofs here are different from the original proofs of the classical strong law of large numbers.

Now we describe the problem in more details. For a given set P of multiple prior probability measures

on (Ω,F), we define a pair (V, v) of capacities by

V(A) := sup
P∈P

P (A), v(A) := inf
P∈P

P (A), ∀A ∈ F .
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The corresponding Choquet integrals/expectations (CV, Cv) are defined by

CV [X ] :=

∫ ∞

0

V (X � t)dt+

∫ 0

−∞
[V (X � t)− 1]dt,

where V is replaced by V and v, respectively.

The pair of so-called maximum-minimum expectations (E, E) is defined by

E[ξ] := sup
P∈P

EP [ξ], E [ξ] := inf
P∈P

EP [ξ].

Here and in the sequel, EP denotes the classical expectation under probability P.

In general, the relation between Choquet integral and maximum-minimum expectations is as follows:

For any random variable X ,

E[X ] � CV[X ], Cv[X ] � E [X ].

Note that under some very special assumptions on P and V, both inequalities could become equalities

(see [6, 7, 18]).

Given a sequence {Xi}∞i=1 of IID random variables for capacities, the earlier papers related to strong

laws of large numbers for capacities can be found in [3, 20]. However, the more general results for

strong laws of large numbers for capacities were given by Maccheroni and Marinacci [8], Marinacci [9]

and Epstein and Schneider [4]. They show that, on full set, any cluster point of empirical averages lies

between the lower Choquet integral Cv[X1] and the upper Choquet integral CV[X1] with probability one

under capacity v, i.e.,

v

(
ω ∈ Ω : Cv[X1] � lim inf

n→∞
1

n

n∑
i=1

Xi(ω) � lim sup
n→∞

1

n

n∑
i=1

Xi(ω) � CV[X1]

)
= 1.

Marinacci [9] obtained his result under the assumptions that V is a totally monotone capacity on a Polish

space Ω random variables {Xi}∞i=1 are bounded or continuous. Epstein and Schneider [4] also showed the

same result under the assumptions that V is rectangular and the set P is finite.

Since the gap between the Choquet integrals CV[X ] and Cv[X ] is bigger than that of the maximum-

minimum expectations E[X ] and E [X ] for all X , it is of interest to ask whether we can obtain a more

precise result if the Choquet integrals/expectations in the above equality are replaced by maximum-

minimum expectations, i.e.,

v

(
ω ∈ Ω : E [X1] � lim inf

n→∞
1

n

n∑
i=1

Xi(ω) � lim sup
n→∞

1

n

n∑
i=1

Xi(ω) � E[X1]

)
= 1.

The first result in this paper is to show that the above equality is still true in Peng’s framework.

Furthermore, motivated by this result, we establish two new laws of large numbers. The first is to show

that there exist two cluster points of empirical averages which reach the minimum expectation E [X1] and

the maximum expectation E[X1], respectively under capacity V, i.e.,

V

(
ω ∈ Ω : lim sup

n→∞
1

n

n∑
i=1

Xi(ω) = E[X1]

)
= 1,

V

(
ω ∈ Ω : lim inf

n→∞
1

n

n∑
i=1

Xi(ω) = E [X1]

)
= 1.

The second is to prove that the cluster set of empirical averages coincides with the interval between

minimum expectation E [X1] and maximum expectation E[X1], i.e., let C({xn}) be the cluster set of {xn},
then, for any b ∈ [E [X1],E[X1]],

V

(
ω ∈ Ω : b ∈ C

({
1

n

n∑
i=1

Xi(ω)

}))
= 1.
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Obviously, if either V or v in the above results is a probability measure, all of our main results are

natural and fairly neat extensions of the classical Kolmogorov’s strong law of large numbers. Moreover,

an important feature of our strong laws of large numbers is to provide a frequentist perspective on

capacities.

2 Notation and lemmas

In order to prove our results in Peng’s framework, we shall recall briefly the notions of both IID random

variables and sub-linear expectations initiated by Peng [14].

Let (Ω,F) be a measurable space, and L be a subset of all random variables on (Ω,F) such that for

any A ∈ F , IA ∈ L, where IA is the indicator function of event A.

Definition 2.1. A functional E on L �→ (−∞,+∞) is called a sub-linear expectation, if it satisfies the

following properties: For all X,Y ∈ L,
(a) Monotonicity: X � Y implies E[X ] � E[Y ].

(b) Constant preserving: E[c] = c, ∀ c ∈ R.

(c) Sub-additivity: E[X + Y ] � E[X ] + E[Y ].

(d) Positive homogeneity: E[λX ] = λE[X ], ∀λ � 0.

Given a sub-linear expectation E, let us denote the conjugate expectation E of sub-linear E by

E [X ] := −E[−X ], ∀X ∈ L.
Obviously, for all X ∈ L, E [X ] � E[X ]. By the sub-additivity of E, we have the following lemma.

Lemma 2.2. If X,Y ∈ L, then
E [X ] � E[X + Y ]− E[Y ].

Given a sub-linear expectation, we can define a pair of capacities (V, v) as follows:

Definition 2.3. A pair (V, v) of capacities is said to be generated by a sub-linear expectation E, if

V(A) := E[IA], v(A) := E [IA], ∀A ∈ F .

It is easy to check that such capacities have the following properties:

Lemma 2.4. (1) V(∅) = v(∅) = 0,V(Ω) = v(Ω) = 1.

(2) V(A) � V(B), v(A) � v(B), whenever A ⊂ B and A,B ∈ F .

(3) V(A ∪B) � V(A) + V(B), A,B ∈ F .

(4) V(A) + v(Ac) = 1, ∀A ∈ F , where Ac is the complement set of A.

Motivated by the notion of IID random variables under sub-linear expectations initiated by Peng [14],

we adopt the following notion of IID random variables under sub-linear expectations to study strong law

of large numbers for non-additive probabilities.

Definition 2.5. Independence. Suppose that Y1, Y2, . . . , Yn is a sequence of random variables

such that Yi ∈ L. Random variable Yn is said to be independent of X := (Y1, . . . , Yn−1) under E, if for

each Borel-measurable function ϕ on R
n with ϕ(X,Yn) ∈ L and ϕ(x, Yn) ∈ L for each x ∈ R

n−1, we have

E[ϕ(X,Yn)] = E[ϕ(X)],

where ϕ(x) := E[ϕ(x, Yn)] and ϕ(X) ∈ L.
Identical distribution. Random variables X and Y are said to be identically distributed, denoted

by X
d
= Y , if for each Borel-measurable function ϕ such that ϕ(X), ϕ(Y ) ∈ L,

E[ϕ(X)] = E[ϕ(Y )].

IID random variables. A sequence of random variables {Xi}∞i=1 is said to be IID, if Xi
d
= X1 and

Xi+1 is independent of Y := (X1, . . . , Xi) for each i � 1.
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The following lemma shows the relation between our independence and pairwise independence in [9].

Lemma 2.6. Suppose that X,Y ∈ L are two random variables. E is a sub-linear expectation and

(V, v) is the pair of capacities generated by E. If random variable X is independent of Y under E, then X

is also independent of Y under capacities V and v, i.e., for all subsets D and G ∈ B(R),

V (X ∈ D,Y ∈ G) = V (X ∈ D)V (Y ∈ G)

holds for both capacities V and v.

Proof. If we choose ϕ(x, y) = xy, by the definition of independence in Definition 2.5, it is easy to obtain

the independence for events,

V(X ∈ D,Y ∈ G) = E[I{X∈D}I{Y ∈G}] = E[ϕ(I{X∈D}, I{Y ∈G})] = V(X ∈ D)V(Y ∈ G).

Similarly, we can prove that X is independent of Y under capacity v by choosing ϕ(x, y) = −xy.

Chen et al. [2] proved that Borel-Cantelli lemma is still true for capacity under some assumptions.

Lemma 2.7 (See [2, Lemma 2.2]). Let {An, n � 1} be a sequence of events in F and (V, v) be a pair

of capacities generated by sub-linear expectation E.

(1) If
∑∞

n=1 V(An) < ∞, then V(
⋂∞

n=1

⋃∞
i=n Ai) = 0.

(2) If further V is upper continuous and {Ac
n}∞n=1 are mutually independent with respect to v, i.e., for

any n ∈ N,

v

( ∞⋂
i=n

Ac
i

)
=

∞∏
i=n

v(Ac
i ).

If
∑∞

n=1 V(An) = ∞, then

V

( ∞⋂
n=1

∞⋃
i=n

Ai

)
= 1.

Suppose that Cb(R) is the set of all continuous and bounded functions on R and C2
b (R) is the set of

all continuous and bounded functions on R whose second derivatives exist in Cb(R).

With the notion of IID under sub-linear expectation, we can obtain the following lemma.

Lemma 2.8. Let {Xi}∞i=1 be a sequence of IID random variables with finite means μ := E[X1], μ

:= E [X1], and Sn :=
∑n

i=1 Xi with S0 := 0. Suppose E[|X1|1+α] < ∞ for some α > 0. Then for any

positive function ϕ ∈ Cb(R),

lim inf
n→∞ E

[
ϕ

(
Sn

n

)]
� sup

μ�x�μ
ϕ(x).

Proof. We turn the proof into three steps. Let x∗ be the maximal point of ϕ over [μ, μ].

Step 1. We first prove that if {Xi}∞i=1 is an IID sequence, then

E

[
ϕ

(
1

n

n∑
i=1

Xi

)]
− ϕ(x∗) � n inf

x∈R

{
E

[
ϕ

(
x+

Xn−m − x∗

n

)]
− ϕ(x)

}
.

In fact, set Tk := 1
n

∑k
i=1 Xi with T0 = 0, k = 1, 2, . . . , n, and y := x∗

n .

E[ϕ(Tn)]− ϕ(x∗) = E[ϕ(Tn)]− E[ϕ(Tn−1 + y)]

+ E[ϕ(Tn−1 + y)]− E[ϕ(Tn−2 + 2y)] + · · ·
+ E[ϕ(Tn−m +my)]− E[ϕ(Tn−(m+1) + (m+ 1)y)] + · · ·
+ E[ϕ(T1 + (n− 1)y)]− E[ϕ(ny)]

=

n−1∑
m=0

{E[ϕ(Tn−m +my)]− E[ϕ(Tn−(m+1) + (m+ 1)y)]}. (2.1)
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We now evaluate each term inside the summation. Let

h(x) := E

[
ϕ

(
x+

Xn−m

n

)]
.

Then because of independence of {Xi}ni=1,

E[ϕ(Tn−m +my)] = E

[
E

[
ϕ

(
x+

Xn−m

n

)] ∣∣∣∣
x=Tn−(m+1)+my

]

= E[h(Tn−(m+1) +my)].

Then by the sub-linearity of E in Lemma 2.2, we have

E[ϕ(Tn−m +my)]− E[ϕ(Tn−(m+1) + (m+ 1)y)]

= E[h(Tn−(m+1) +my)]− E[ϕ(Tn−(m+1) +my + y)]

� E [h(Tn−(m+1) +my)− ϕ(Tn−(m+1) +my + y)]

� inf
x∈R

(h(x) − ϕ(x+ y))

= inf
x∈R

{
E

[
ϕ

(
x+

Xn−m

n

)]
− ϕ

(
x+

x∗

n

)}

= inf
x∈R

{
E

[
ϕ

(
x+

Xn−m − x∗

n

)]
− ϕ(x)

}
.

It then follows that {Xi}∞i=1 is identical. The proof of Step 1 is complete.

Step 2. For ϕ ∈ C2
b (R), we shall prove that

lim inf
n→∞ n inf

x∈R

{
E

[
ϕ

(
x+

Xn−m − x∗

n

)]
− ϕ(x)

}
� 0.

The Taylor expansion of function ϕ implies that for some random variables {θi}ni=1 valued in [0, 1],

ϕ

(
x+

Xi − x∗

n

)
− ϕ(x) = ϕ′(x)

Xi − x∗

n
+ Jn(x,Xi, x

∗), (2.2)

where

Jn(x,Xi, x
∗) :=

[
ϕ′
(
x+ θi

Xi − x∗

n

)
− ϕ′(x)

]
Xi − x∗

n
, 1 � i � n.

Taking sub-linear expectation E on both sides of (2.2), and applying the sub-linearity of E, we have

−E[|Jn(x,Xi, x
∗)|] + E

[
ϕ′(x)

Xi − x∗

n

]
� E

[
ϕ

(
x+

Xi − x∗

n

)
− ϕ(x)

]
.

Since E[Xi] = μ, E [Xi] = μ and x∗ ∈ [μ, μ],

E

[
ϕ′(x)

Xi − x∗

n

]
= (ϕ′(x))+

μ− x∗

n
+ (ϕ′(x))−

x∗ − μ

n
� 0.

Therefore, we only need to prove that

n∑
i=1

sup
x∈R

E[|Jn(x,Xi, x
∗)|] → 0, n → ∞. (2.3)

In fact, for any ε > 0, using Hölder’s and Chebyshev’s inequalities and the fact that {Xi} is identical, we

get

n∑
i=1

sup
x∈R

E[|Jn(x,Xi, x
∗)|]
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�
n∑

i=1

{
sup
x∈R

E[|Jn(x,Xi, x
∗)|I{|Xi−x∗

n |>ε}] + sup
x∈R

E[|Jn(x,Xi, x
∗)|I{|Xi−x∗

n |�ε}]
}

�
n∑

i=1

{
E

[(
sup
x∈R

∣∣∣∣ϕ′
(
x+ θi

Xi − x∗

n

)∣∣∣∣+ sup
x∈R

|ϕ′(x)|
) |Xi − x∗|

n
I{|Xi−x∗|>nε}

]

+ E

[
sup
x∈R

∣∣∣∣ϕ′′
(
x+ θiθ̄i

Xi − x∗

n

)∣∣∣∣(Xi − x∗)2

n2
I{|Xi−x∗|�nε}

]}

� n

{
2‖ϕ′‖
n

(E[|X1 − x∗|1+α])
1

1+α (E[I{|X1−x∗|>nε}])
α

1+α +
ε

n
‖ϕ′′‖E[|X1 − x∗|]

}

� n

{
2‖ϕ′‖
n

(E[|X1 − x∗|1+α])
1

1+α

(
E[|X1 − x∗|1+α]

(nε)1+α

) α
1+α

+
ε

n
‖ϕ′′‖E[|X1 − x∗|]

}

� n

{
2

n1+αεα
‖ϕ′‖E[|X1 − x∗|1+α] +

ε

n
‖ϕ′′‖E[|X1 − x∗|]

}

=
2

(nε)α
‖ϕ′‖E[|X1 − x∗|1+α] + ε‖ϕ′′‖E[|X1 − x∗|]

→ ε‖ϕ′′‖E[|X1 − x∗|], as n → ∞,

where {θ̄i}∞i=1 are random variables valued in [0, 1]. For arbitrariness of ε, we obtain the conclusion (2.3).

Hence, Lemma 2.8 holds for ϕ ∈ C2
b (R).

Step 3. If ϕ ∈ Cb(R), then for any ε > 0 there exists ϕ ∈ C2
b (R) such that

sup
x∈R

|ϕ(x) − ϕ(x)| � ε.

Apply Step 2 for function ϕ(x) and the fact that

lim inf
n→∞ E

[
ϕ

(
Sn

n

)]
− sup

μ�x�μ
ϕ(x)

= lim inf
n→∞ E

[
ϕ

(
Sn

n

)
− ϕ

(
Sn

n

)
+ ϕ

(
Sn

n

)]
− sup

μ�x�μ
[ϕ(x) − ϕ(x) + ϕ(x)]

� lim inf
n→∞ E

[
ϕ

(
Sn

n

)]
− sup

μ�x�μ
ϕ(x) − 2ε

� −2ε.

For arbitrariness of ε, the proof of this lemma is complete.

3 Main result

The following theorem is our main result.

Theorem 3.1. Let {Xi}∞i=1 be a sequence of IID random variables for sublinear expectation E. Suppose

E[|X1|1+α] < ∞ for some α ∈ (0, 1]. Set μ := E[X1], μ = E [X1] and Sn :=
∑n

i=1 Xi. Then

(I)

V

({
lim inf
n→∞ Sn/n < μ

}
∪
{
lim sup
n→∞

Sn/n > μ
})

= 0. (3.1)

Also

v
(
μ � lim inf

n→∞ Sn/n � lim sup
n→∞

Sn/n � μ
)
= 1. (3.2)

If furthermore V is upper continuous, then

(II)

V

(
lim sup
n→∞

Sn/n = μ
)
= 1, V

(
lim inf
n→∞ Sn/n = μ

)
= 1.
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(III) Suppose that C({xn}) is the cluster set of a sequence of {xn} in R, then, for any b ∈ [μ, μ],

V(b ∈ C({Sn/n})) = 1.

Proof. (I) can be deduced from [2, Theorem 3.1] directly, so we omit the details.

We now prove (II). If μ = μ, it is trivial. Suppose μ > μ, then we only need to prove that there exists

an increasing subsequence {nk} of N such that for any 0 < ε < μ− μ,

V

( ∞⋂
m=1

∞⋃
k=m

{Snk
/nk � μ− ε}

)
= 1. (3.3)

Since E is upper continuous, we have

V

(
lim sup
k→∞

Snk
/nk � μ

)
= 1.

This together with (I) suffices to yield the desired result (II).

Indeed, choose nk = kk for k � 1. Set Sn :=
∑n

i=1(Xi − μ), then

V

(
Snk

− Snk−1

nk − nk−1
� μ− ε

)
= V

(
Snk−nk−1

nk − nk−1
� μ− ε

)

= V

(
Snk−nk−1

− (nk − nk−1)μ

nk − nk−1
� −ε

)

= V

(
Snk−nk−1

nk − nk−1
� −ε

)

� E

[
φ

(
Snk−nk−1

nk − nk−1

)]
,

where φ(x) is defined by

φ(x) =

{
1− e−(x+ε), x � −ε,

0, x < −ε.

Consider the sequence of IID random variables {Xi − μ}∞i=1. Obviously,

E[Xi − μ] = 0, E [Xi − μ] = −(μ− μ).

Applying Lemma 2.8, we have nk − nk−1 → ∞ as k → ∞ and

lim inf
n→∞ E

[
φ

(
Snk−nk−1

nk − nk−1

)]
� sup

−(μ−μ)�y�0

φ(y) = φ(0) = 1− e−ε > 0.

Thus ∞∑
k=1

V

(
Snk

− Snk−1

nk − nk−1
� μ− ε

)
�

∞∑
k=1

E

[
φ

(
Snk−nk−1

nk − nk−1

)]
= ∞.

Note the fact that {Snk
− Snk−1

}k�1 is a sequence of independent random variables for k � 1. Using the

second Borel-Cantelli lemma, we have

lim sup
k→∞

Snk
− Snk−1

nk − nk−1
� μ− ε, a.s. V.

But
Snk

nk
� Snk

− Snk−1

nk − nk−1
· nk − nk−1

nk
− |Snk−1

|
nk−1

· nk−1

nk
.

From the fact that
nk − nk−1

nk
→ 1,

nk−1

nk
→ 0, as k → ∞,
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and

lim sup
n→∞

Sn/n � μ, lim sup
n→∞

(−Sn)/n � −μ, a.s. v,

we have

lim sup
n→∞

|Sn|/n � max{|μ|, |μ|}, a.s. v.

Hence,

lim sup
k→∞

Snk

nk
� lim sup

k→∞

Snk
− Snk−1

nk − nk−1
lim
k→∞

nk − nk−1

nk
− lim sup

k→∞

|Snk−1
|

nk−1
lim
k→∞

nk−1

nk
.

We conclude that

lim sup
k→∞

Snk

nk
� μ− ε, a.s. V.

Since ε is arbitrary and V is upper continuous, we have

V

(
lim sup
k→∞

Snk
/nk � μ

)
= 1.

By (I), we know V(lim supn→∞ Sn/n > μ) = 0, thus

V

(
lim sup
n→∞

Sn/n = μ
)
= V

(
lim sup
n→∞

Sn/n = μ
)
+ V

(
lim sup
n→∞

Sn/n > μ
)

� V

(
lim sup
n→∞

Sn/n � μ
)
= 1.

Considering the sequence of {−Xn}∞n=1, we have

V

(
lim sup
n→∞

(−Sn)/n = E[−X1]
)
= 1.

Therefore,

V

(
lim inf
n→∞ Sn/n = −E[−X1]

)
= 1.

But μ = −E[−X1], thus

V

(
lim inf
n→∞ Sn/n = μ

)
= 1.

The proof of (II) is complete.

To prove (III), we only need to prove that for b ∈ (μ, μ),

V

(
lim inf
n→∞ |Sn/n− b| = 0

)
= 1.

To do so, we only need to prove that for any ε > 0 there exists an increasing subsequence {nk} of N such

that for any b ∈ (μ, μ),

V

( ∞⋂
m=1

∞⋃
k=m

{|Snk
/nk − b| � ε}

)
= 1. (3.4)

Indeed, for any 0 < ε � min{μ− b, b− μ}, let us choose nk = kk for k � 1.

Set Sn :=
∑n

i=1(Xi − b), then

V

(∣∣∣∣Snk
− Snk−1

nk − nk−1
− b

∣∣∣∣ � ε

)
= V

(∣∣∣∣ Snk−nk−1

nk − nk−1
− b

∣∣∣∣ � ε

)

= V

(∣∣∣∣Snk−nk−1
− (nk − nk−1)b

nk − nk−1

∣∣∣∣ � ε

)

= V

(∣∣∣∣ Snk−nk−1

nk − nk−1

∣∣∣∣ � ε

)

� E

[
φ

(
Snk−nk−1

nk − nk−1

)]
,
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where φ(x) is defined by

φ(x) =

{
1− e|x|−ε, |x| � ε,

0, |x| > ε.

Consider the sequence of IID random variables {Xi − b}∞i=1. Obviously,

E[Xi − b] = μ− b > 0, E [Xi − b] = μ− b < 0.

Applying Lemma 2.8, we have

lim inf
k→∞

E

[
φ

(
Snk−nk−1

nk − nk−1

)]
� sup

μ−b�y�μ−b
φ(y) = φ(0) = 1− e−ε > 0.

Thus
∞∑
k=1

V

(∣∣∣∣Snk
− Snk−1

nk − nk−1
− b

∣∣∣∣ � ε

)
�

∞∑
k=1

E

[
φ

(
Snk−nk−1

nk − nk−1

)]
= ∞.

Note the fact that the sequence of {Snk
− Snk−1

}k�1 are independent random variables. Using the

second Borel-Cantelli lemma, we have

lim inf
k→∞

∣∣∣∣Snk
− Snk−1

nk − nk−1
− b

∣∣∣∣ � ε, a.s. V.

But ∣∣∣∣Snk

nk
− b

∣∣∣∣ �
∣∣∣∣Snk

− Snk−1

nk − nk−1
− b

∣∣∣∣ · nk − nk−1

nk
+

[ |Snk−1
|

nk−1
+ |b|

]
nk−1

nk
. (3.5)

Note that
nk − nk−1

nk
→ 1,

nk−1

nk
→ 0, as k → ∞

and

lim sup
n→∞

Sn/n � μ, lim sup
n→∞

(−Sn)/n � −μ, a.s. v,

which implies

lim sup
n→∞

|Sn|/n � max{|μ|, |μ|} < ∞ a.s. v.

Hence, from inequality (3.5), for any ε > 0,

lim inf
k→∞

∣∣∣∣Snk

nk
− b

∣∣∣∣ � ε, a.s. V,

i.e.,

V

(
lim inf
n→∞ |Sn/n− b| � ε

)
= 1.

Since ε is arbitrary, we have

V

(
lim inf
n→∞ |Sn/n− b| = 0

)
= 1.

The proof of (III) is complete.
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