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1 Introduction

Cartan and Eilenberg [4] introduced the notions of right and left balanced functors. Then Enochs and

Jenda [9] generalized them to relative homological algebra as follows. Let C , D and E be abelian categories

and T (−,−) : C × D → E be an additive functor contravariant in the first variable and covariant in

the second. Then T is called right balanced by F × G if for any M ∈ C , there exists a T (−,G )-exact

complex · · · → F1 → F0 → M → 0 with each Fi ∈ F , and for any N ∈ D , there exists a T (F ,−)-exact

complex 0 → N → G0 → G1 → · · · with each Gi ∈ G . They showed that if T is right balanced by

F × G , and if F• → M is a T (−,G )-exact complex and N → G• is a T (F ,−)-exact complex, then

the complexes T (F•, N) and T (M,G•) have isomorphic homology. There are many examples of right

balanced functors in the module category when we regard T as Hom, see [10, Chapter 8]. Recently,

Chen [5] introduced the notion of balanced pairs of additive subcategories in an abelian category. Let

A be an abelian category with enough projectives and injectives. We use P(A ) and I (A ) to denote

the full subcategories of A consisting of projectives and injectives respectively. It is known that the pair

(P(A ), I (A )) is a balanced pair, which is called the classical balanced pair. Chen [5] showed that for

a balanced pair (X , Y ) of A , it inherits some nice properties from the classical one.

The notion of cotorsion pairs was first introduced by Salce [20], and it has been deeply studied in

homological algebra, representation theory and triangulated categories in recent years, see [11, 14–17],

and so on. In particular, Hovey [14] established a connection between cotorsion pairs in abelian categories

and model category theory. In classical homological algebra, the definition of the cotorsion pair is based
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on the functor ExtiA (−,−). The advantage is that this functor is independent of the choices of the

projective resolutions of the first variable, and also independent of the choices of the injective resolutions

of the second variable. In other words, the cotorsion pair is essentially based on the balanced pair

(P(A ), I (A )). Based on these backgrounds mentioned above, it is natural for us to introduce and

study cotorsion pairs relative to balanced pairs, and we show that relative cotorsion pairs share many

nice properties of the classical one. This paper is organized as follows.

In Section 2, we give some terminologies and some preliminary results.

In Section 3, for an abelian category A , we introduce the notion of cotorsion pairs relative to a

given balanced pair (X , Y ). Similar to the classical case, we also introduce the notions of complete,

hereditary and perfect cotorsion pairs relative to (X , Y ), and obtain some equivalent characterizations

for the cotorsion pair relative to (X , Y ) being complete, hereditary and perfect, respectively.

In Section 4, for a given balanced pair (X , Y ) of the abelian category A , we introduce the notions

of the right X -derived category D∗
RX (A ) and the left Y -derived category D∗

LY (A ) of A for ∗ ∈
{blank,−,+, b}. We show that in the bounded case, they are actually the same, and we denote both

by Db
∗(A ). Let (X , Y ) be an admissible balanced pair. We give some criteria for computing the

X -resolution dimension and the Y -coresolution dimension of an object in A in terms of the vanishing

of relative cohomology groups. Moreover, we show that if the X -resolution dimension of Y (resp. Y -

coresolution dimension of X ) is finite, then the bounded homotopy category of Y (resp. X ) is contained

in that of X (resp. Y ). This generalizes a classical result of Happel. As a consequence, we get that the

right X -singularity category coincides with the left Y -singularity category if the X -resolution dimension

of Y and the Y -coresolution dimension of X are finite.

2 Preliminaries

Throughout this paper, A is an abelian category. For a subcategory of A we mean a full additive

subcategory closed under isomorphisms and direct summands. We use P(A ) and I (A ) to denote

the subcategories of A consisting of projective and injective objects, respectively. We use C(A ) to

denote the category of complexes of objects in A , K∗(A ) to denote the homotopy category of A ,

and D∗(A ) to denote the usual derived category by inverting the quasi-isomorphisms in K∗(A ), where

∗ ∈ {blank,−,+, b}.
Let

X• := · · · → Xn−1 d
n−1
X→ Xn dnX→ Xn+1 → · · ·

be a complex in C(A ) and f : X• → Y • a cochain map in C(A ). We use Con(f) to denote the mapping

cone of f . Recall that X• is called acyclic (or exact) if H i(X•) = 0 for any i ∈ Z (the ring of integers),

and f is called a quasi-isomorphism if Hi(f) is an isomorphism for any i ∈ Z. We have that f is a

quasi-isomorphism if and only if Con(f) is acyclic.

Definition 2.1. (1) (See [2]) Let X ⊆ Y be subcategories of A . A morphism f : X → Y in A with

X ∈ X and Y ∈ Y is called a right X -approximation of Y if for any morphism g : X ′ → Y in A with

X ′ ∈ X , there exists a morphism h : X ′ → X such that the following diagram commutes:

X ′

g

��

h

���
�

�
�

X
f �� Y.

If any endomorphism s : X → X is an automorphism whenever f = fs, then f is called right minimal.

If each object in Y has a right X -approximation, then X is called contravariantly finite in Y . Dually,

the notions of left X -approximations, left minimal morphisms and covariantly finite subcategories are

defined.

(2) (See [5]) A contravariantly finite subcategory X of A is called admissible if each right X -

approximation is epic. Dually, the notion of coadmissible subcategories is defined.
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Definition 2.2. (1) (See [5]) Given a subcategory X of A . A complex A• in C(A ) is called right

(resp. left) X -acyclic if the complex HomA (X,A•) (resp. HomA (A•, X) ) is acyclic for any X ∈ X . A

cochain map f : A• → B• in C(A ) is said to be right (resp. left) X -quasi-isomorphism if the cochain

(resp. chain) map HomA (X, f) (resp. HomA (f,X)) is a quasi-isomorphism for any X ∈ X . It is

equivalent to that Con(f) is right (resp. left) X -acyclic.

(2) (See [5, 10]) Given a contravariantly finite subcategory X of A and an object M ∈ A . An

X -resolution of M is a complex

· · · → X−2 d
−2→ X−1 d

−1→ X0 ε→M → 0

in A with each X i ∈ X such that it is right X -acyclic. Usually we denote the complex by X• ε→M for

short, where

X• := · · · → X−2 d
−2

→ X−1 → · · · d
−1

→ X0 → 0

is the deleted X -resolution of M . The X -resolution dimension X -res.dimM of M is defined to be the

minimal integer n � 0 such that there exists an X -resolution:

0 → X−n → · · · → X−1 → X0 →M → 0.

If no such an integer exists, we set X -res.dimM = ∞. The global X -resolution dimension X -res.dimA

of A is defined to be the supreme of the X -resolution dimensions of all objects in A .

Dually, if X is a covariantly finite subcategory of A , then the notions of X -coresolutions, X -

coresolution dimensions and the global X -coresolution dimension are defined.

Lemma 2.3. Let X be a subcategory of A and let

0 → L
f→M

g→ N → 0 (2.1)

be an acyclic complex.

(1) If (2.1) is right X -acyclic, then for any morphisms N ′ α→ N and L
s→ L′, we have the following

pull-back diagram with the upper row right X -acyclic:

0 �� L
f ′

�� M ′ g′ ��

β

��

N ′

α

��

�� 0

0 �� L
f �� M

g �� N �� 0,

and the following push-out diagram with the bottom row right X -acyclic:

0 �� L
f ��

s

��

M
g ��

t

��

N �� 0

0 �� L′ f ′′
�� M ′′ g′′ �� N �� 0.

(2) If (2.1) is left X -acyclic, then for any morphisms N ′ α→ N and L
s→ L′, we have the following

pull-back diagram with the upper row left X -acyclic:

0 �� L
f ′

�� M ′ g′ ��

β

��

N ′

α

��

�� 0

0 �� L
f �� M

g �� N �� 0,

and the following push-out diagram with the bottom row left X -acyclic:

0 �� L
f ��

s

��

M
g ��

t

��

N �� 0

0 �� L′ f ′′
�� M ′′ g′′ �� N �� 0.
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Proof. (1) Because the sequence (2.1) is right X -acyclic by assumption, for any morphism h : X → N ′

with X ∈ X there exists a morphism i : X → M such that αh = gi. Since the right square in the first

diagram is a pull-back diagram, there exists a morphism φ : X → M ′ such that h = g′φ. It implies that

the upper row in this diagram is right X -acyclic.

Also because the sequence (2.1) is right X -acyclic acyclic, for any morphism h′ : X → N with X ∈ X

there exists a morphism i′ : X → M such that h′ = gi′ = g′′ti′. It implies that the bottom row in the

second diagram is right X -acyclic.

(2) It is dual to (1).

Lemma 2.4. Let A• be a complex in C(A ). Then A• is right X -acyclic if and only if the complex

HomA (X•, A•) is acyclic for any X• ∈ K−(X ).

Proof. See [8, Lemma 2.4].

Lemma 2.5. (1) Let X• be a complex in K−(X ) and let f : A• → X• be a right X -quasi-isomorphism

in C(A ). Then there exists a cochain map g : X• → A• such that fg is homotopic to idX• .

(2) Any right X -quasi-isomorphism between two complexes in K−(X ) is a homotopy equivalence.

Proof. (1) Consider the distinguished triangle:

A• f→ X• → Con(f) → A•[1]

in K(A ) with Con(f) right X -acyclic. By applying the functor HomK(A )(X
•,−) to it, we get an exact

sequence:

HomK(A )(X
•, A•)

HomK(A )(X
•,f)→ HomK(A )(X

•, X•) → HomK(A )(X
•,Con(f)).

It follows from Lemma 2.4 that HomK(A )(X
•,Con(f)) ∼= H0HomA (X•,Con(f)) = 0. So there exists a

cochain map g : X• → A• such that fg is homotopic to idX• .

(2) It is a consequence of (1).

3 Cotorsion pairs relative to balanced pairs

Definition 3.1 (See [5, 10]). A pair (X , Y ) of subcategories of A is called a balanced pair if the

following conditions are satisfied:

(1) X is contravariantly finite in A and Y is covariantly finite in A .

(2) For any object M ∈ A , there exists an X -resolution X• →M of M such that it is left Y -acyclic.

(3) For any object N ∈ A , there exists a Y -coresolution N → Y • of N such that it is right X -acyclic.

We list some examples of balanced pairs as follows.

Example 3.2. (1) Recall that A is said to have enough projectives (resp. enough injectives) if for any

M ∈ A , there exists an epimorphism P →M → 0 (resp. a monomorphism 0 →M → I) with P (resp. I)

in P(A ) (resp. I (A )). In case for A having enough projectives and injectives, it is well known that

the pair (P(A ), I (A )) is a balanced pair. We call it the classical balanced pair.

(2) (See [10, Example 8.3.2]) Let R be a ring and ModR the category of left R-modules, and let

PP(R) and PI (R) be the subcategories of ModR consisting of pure projective modules and pure

injective modules respectively. Then (PP(R),PI (R)) is a balanced pair in ModR.

(3) (See [10, Theorem 12.1.4]) Let R be an n-Gorenstein ring (that is, R is a left and right Noetherian

ring with left and right self-injective dimensions at most n), and let GProjR and GInjR be the subcate-

gories of ModR consisting of Gorenstein projective and Gorenstein injective modules respectively. Then

the pair (GProjR, GInjR) is a balanced pair in ModR.

Let X (resp. Y ) be a contravariantly finite (resp. covariantly finite) subcategory of A . Then the

pair (X , Y ) is a balanced pair if and only if the class of right X -acyclic complexes coincides with that

of left Y -acyclic complexes (see [5, Proposition 2.2]). In what follows, we call a complex ∗-acyclic if it is

both right X -acyclic and left Y -acyclic.
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Definition 3.3 (See [10, Definition 7.1.2]). Let A have enough projectives and injectives. A pair (C ,

D) of subcategories of A is called a cotorsion pair if C = ⊥D and D = C⊥, where ⊥D = {C ∈ A |
Ext1A (C,D) = 0 for any D ∈ D} and C⊥ = {D ∈ A | Ext1A (C,D) = 0 for any C ∈ C }.

Notice that the functor Ext1A (−,−) is based on the classical balanced pair (P(A ), I (A )), it induces

an isomorphism of cohomology groups whether we take a projective resolution of the first variable or take

an injective coresolution of the second variable. From this viewpoint we may say that the cotorsion pair

defined above is a cotorsion pair relative to the balanced pair (P(A ), I (A )).

Let (X , Y ) be a balanced pair and M,N ∈ A . Choose an X -resolution X• → M of M and a

Y -coresolution N → Y • of N . We get two cohomological groups ExtiX (M,N) := H i(HomA (X•, N))

and ExtiY (M,N) := Hi(HomA (M,Y •)) for any i ∈ Z. They are independent of the choices of the X -

resolutions ofM and the Y -coresolutions of N respectively. For any i ∈ Z, there exists an isomorphism of

abelian groups ExtiX (M,N) ∼= ExtiY (M,N) (see [10]). We denote both abelian groups by Exti∗(M,N).

Motivated by the above argument, we introduce the following:

Definition 3.4. Let (X , Y ) be a balanced pair. A pair (C , D) of subcategories of A is called a

cotorsion pair relative to (X , Y ) if C=⊥∗D and D=C⊥∗ , where ⊥∗D = {C ∈ A | Ext1∗(C,D) = 0 for

any D ∈ D} and C⊥∗ = {D ∈ A | Ext1∗(C,D) = 0 for any C ∈ C }.
In the rest of this section, we fix a balanced pair (X , Y ) and a cotorsion pair (C ,D) relative to (X ,

Y ) in A .

Proposition 3.5. For any A ∈ A , we have Ext�1
∗ (X,A) = 0 = Ext�1

∗ (A, Y ) for any X ∈ X and

Y ∈ Y .

Proof. It is straightforward.

Definition 3.6. (1) Let E be a subcategory of A . E is said to be closed under ∗-extensions if for any
∗-acyclic complex 0 → L → M → N → 0 in A , L,N ∈ E implies M ∈ E ; E is said to be closed under

∗-epimorphisms if for any ∗-acyclic complex 0 → L → M → N → 0 in A , M,N ∈ E implies L ∈ E ; E

is said to be closed under ∗-monomorphisms if for any ∗-acyclic complex 0 → L → M → N → 0 in A ,

L,M ∈ E implies N ∈ E .

(2) A subcategory E of A is called X -resolving if X ⊆ E and E is closed under ∗-extensions and

∗-epimorphisms; and E is called Y -coresolving if Y ⊆ E and E is closed under ∗-extensions and ∗-
monomorphisms.

Proposition 3.7. (1) X ⊆ C and Y ⊆ D .

(2) Both C and D are closed under ∗-extensions.
Proof. (1) It is trivial.

(2) Let

0 → L→M → N → 0

be a ∗-acyclic complex in A with L,N ∈ C . By [10, Theorem 8.2.3], for any D ∈ D we have an acyclic

complex

Ext1∗(N,D) → Ext1∗(M,D) → Ext1∗(L,D).

Then we have Ext1∗(N,D) = 0 = Ext1∗(L,D). So Ext1∗(M,D) = 0 and M ∈ C . Thus C is closed under

∗-extensions. Similarly, we have that D is closed under ∗-extensions.
The following result is a relative version of [2, Lemmas 3.1 and 3.2].

Theorem 3.8. The following statements are equivalent:

(1) C is X -resolving.

(2) D is Y -coresolving.

(3) Ext�1
∗ (C,D) = 0 for any C ∈ C and D ∈ D .

In this case, (C ,D) is called hereditary.



866 Li H H et al. Sci China Math May 2016 Vol. 59 No. 5

Proof. (1) ⇒ (3). Let C ∈ C and D ∈ D , and let

0 → K → X → C → 0

be a ∗-acyclic complex in A with X ∈ X . Then X ∈ C by Proposition 3.7(1), and so K ∈ C by (1).

Hence

Ext1∗(K,D) = 0.

By [10, Theorem 8.2.3], we have an exact sequence:

Ext1∗(X,D) → Ext1∗(K,D) → Ext2∗(C,D) → Ext2∗(X,D).

Since Ext1∗(X,D) = 0 = Ext2∗(X,D) by Proposition 3.5, we have Ext2∗(C,D) ∼= Ext1∗(K,D) = 0. We get

Ext�1
∗ (C,D) = 0 inductively.

(3) ⇒ (1). Let

0 → L→M → N → 0

be a ∗-acyclic complex in A with M,N ∈ C . By [10, Theorem 8.2.3], for any D ∈ D we have the

following exact sequence:

Ext1∗(M,D) → Ext1∗(L,D) → Ext2∗(N,D).

Because

Ext1∗(M,D) = 0 = Ext2∗(N,D)

by assumption, we have Ext1∗(L,D) = 0 and L ∈ C . Now the assertion follows from Proposition 3.7.

Dually, we get (2) ⇔ (3).

Definition 3.9 (See [10, Definition 7.1.5]). (1) (C , D) is said to have enough projectives if for any

M ∈ A , there exists a ∗-acyclic complex

0 → D → C →M → 0

in A with C ∈ C and D ∈ D ; and it is said to have enough injectives if for any M ∈ A , there exists a

∗-acyclic complex

0 →M → D → C → 0

in A with C ∈ C and D ∈ D .

(2) If (C , D) has enough projectives and enough injectives, then it is called complete.

Proposition 3.10. X is admissible if and only if Y is coadmissible. In this case, (X , Y ) is called

admissible.

Proof. See [5, Corollary 2.3].

It is obvious that if (X , Y ) is admissible, then each ∗-acyclic complex is acyclic.

Theorem 3.11. If (X ,Y ) is admissible, then (C ,D) has enough projectives if and only if it has

enough injectives.

Proof. We only show the “if” part, and the “only if” part follows dually.

Assume that (C , D) has enough injectives and M ∈ A . Choose a ∗-acyclic complex

0 → K → X →M → 0

in A with X ∈ X . Since (C , D) has enough injectives, there exists a ∗-acyclic complex

0 → K → D → C → 0



Li H H et al. Sci China Math May 2016 Vol. 59 No. 5 867

in A with C ∈ C and D ∈ D . Because (X , Y ) is admissible, each ∗-acyclic complex is acyclic. So we

have the following push-out diagram with acyclic columns and rows:

0

��

0

��
0 �� K ��

��

X ��

��

M �� 0

0 �� D ��

��

E ��

��

M �� 0

C

��

C

��
0 0.

Then all of columns and rows are ∗-acyclic by Lemma 2.3. Since X,C ∈ C , it follows from Proposition 3.7

that E ∈ C . The assertion follows.

Lemma 3.12. Let (X ,Y ) be admissible and E a subcategory of A which is closed under ∗-extensions.
(1) If ϕ : E →M is a minimal right E -approximation and

0 �� S

f

��

i �� P

θ

��

π �� G �� 0

E
ϕ �� M

is a commutative diagram with G ∈ E such that the upper row is ∗-acyclic, then there exists a morphism

α : P → E such that f = αi and θ = ϕα.

(2) If ψ :M → E is a minimal left E -approximation and

M
ψ ��

θ

��

E

f

��
0 �� F

i �� Q
π �� K �� 0

is a commutative diagram with F ∈ E such that the bottom row is ∗-acyclic, then there exists a morphism

α : E → Q such that θ = αψ and f = πα.

Proof. (1) Consider the following push-out diagram:

0 �� S

f

��

i �� P

k

��

π �� G �� 0

0 �� E
j �� X �� G �� 0.

Because the first row is ∗-acyclic by assumption, it follows from Lemma 2.3 that the bottom row is also ∗-
acyclic. Since E,G ∈ E , we have X ∈ E . By the universal property of push-outs there exists a morphism

h : X → M such that ϕ = hj and θ = hk. Because ϕ : E → M is a minimal right E -approximation by

assumption, there exists a morphism g : X → E such that h = ϕg. Thus ϕ = hj = ϕgj, which implies

that gj : E → E is an automorphism. We may assume gj = idE . Then by letting α = gk, we have

jf = ki = jgki = jαi. Since j is a monomorphism, f = αi. It follows from θ = hk and h = ϕg that

θ = hk = ϕgk = ϕα, we complete the proof.

(2) It is dual to (1).
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The following result is a relative version of the Wakamatsu’s lemma.

Proposition 3.13. Let (X , Y ) be admissible and E a subcategory of A which is closed under ∗-
extensions. Then we have the following:

(1) The kernel of every minimal right E -approximation is in E ⊥∗ .

(2) The cokernel of every minimal left E -approximation is in ⊥∗E .

Proof. (1) Let ϕ : E → M be a minimal right E -approximation of an objectM in A , and let K := Kerϕ

and i : K → E be the inclusion. Because X is contravariantly finite in A , for any E′ ∈ E there exists a

∗-acyclic complex,

0 → S → X → E′ → 0

in A with X ∈ X . By applying the functor HomA (−,K) we get an exact sequence:

HomA (X,K) → HomA (S,K) → Ext1∗(E
′,K) → 0.

For any morphism f : S → K, it follows from Lemma 3.12 that there exists a morphism g : X → E such

that the following diagram

S ��

if

��

X

0

��

g

���
�

�
�

E
ϕ �� M

is commutative. Then

Im g ⊆ Kerϕ = K.

So the map

HomA (X,K) → HomA (S,K)

is epic and Ext1∗(E
′,K) = 0.

(2) It is dual to (1).

Definition 3.14. (C , D) is called perfect if every object of A has a minimal right C -approximation

and a minimal left D-approximation.

Let (X , Y ) be admissible. If (C , D) is perfect, then it is complete by Proposition 3.13. The following

result is a relative version of [11, Theorem 3.8].

Theorem 3.15. Let (X , Y ) be admissible and (C , D) a hereditary cotorsion pair. Then the following

statements are equivalent:

(1) (C , D) is perfect.

(2) Every object of A has a minimal right C -approximation and every object of C has a minimal left

D-approximation.

(3) Every object of A has a minimal left D-approximation and every object of D has a minimal right

C -approximation.

Proof. Both (1) ⇒ (2) and (1) ⇒ (3) are trivial. In the following we only prove (2) ⇒ (1), and

(3) ⇒ (1) follows dually.

Let ϕ : C →M be a minimal right C -approximation of an objectM in A . Since (X , Y ) is admissible,

by Proposition 3.13(1) that there exists a ∗-acyclic complex,

0 → D
i→ C

ϕ→M → 0

in A with D ∈ D . Let ψ : C → D′ be a minimal left D-approximation of C. Then by Proposition 3.13(2),

we get a ∗-acyclic complex

0 → C
ψ→ D′ π→ C′ → 0
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in A with C′ ∈ C . Since C,C′ ∈ C , we have D′ ∈ C ∩ D . Consider the following push-out diagram:

0

��

0

��
0 �� D

i �� C

ψ

��

ϕ �� M

ψ′

��

�� 0

0 �� D
i′ �� D

′

π

��

ϕ′
�� X

��

�� 0

C ′

��

C′

��
0 0.

By Lemma 2.3 the rightmost column is ∗-acyclic. For any morphism f : D → Y with Y ∈ Y , there

exists a morphism g : C → Y such that f = gi, and then there exists a morphism j : D′ → Y such that

g = jψ. It follows that f = gi = jψi = ji′ and the middle row is ∗-acyclic. Because (C , D) is hereditary

by assumption, we have X ∈ D .

To get the desired assertion, it suffices to show ψ′ :M → X is left minimal. Let h : X → X satisfying

ψ′ = hψ′. By applying the functor HomA (D′,−) to the middle row, we have a morphism h′ : D′ → D′

such that the following diagram

D′ ϕ′
��

h′

���
�
� X

h

��
D′ ϕ′

�� X

is commutative. Hence we have the following commutative diagram:

D′ ϕ′
��

h′

���
�
� X

h

��

M
ψ′

��

D′ ϕ′
�� X M.

ψ′
��

Note that the diagram

C
ϕ ��

ψ

��

M

ψ′

��
D′ ϕ′

�� X

is both a push-out diagram and a pull-back diagram. Then there exists morphism h′′ : C → C such that

the following diagram

C ��

���
�
�
�

�����
�

M

�����
�

D′ ��

��

X

��

C ��

�����
�

M

�����
�

D′ �� X

is commutative. Since ϕ : C → M is right minimal, h′′ : C → C is an automorphism. Then it follows

from the left minimality of ψ : C → D′ that h′ : D′ → D′ is also an automorphism. It implies that

h : X → X is an automorphism and ψ′ :M → X is left minimal.
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4 Derived categories relative to balanced pairs

Let X be a subcategory of A . It is known that K∗(A ) is a triangulated category for ∗ ∈ {blank,−,+, b}.
Denote by K∗

RX −ac(A ) (resp. K∗
LX −ac(A )) the full triangulated subcategory of K∗(A ) consisting of

right X -acyclic (resp. left X -acyclic) complexes. Both of them are thick subcategories because they

are closed under direct summands. Denote by
∑∗

RX (resp.
∑∗

LX ) the class of all right (resp. left)

X -quasi-isomorphisms in K∗(A ). Then a cochain map is a right (resp. left) X -quasi-isomorphism if

and only if its mapping cone is right (resp. left) X -acyclic. Thus
∑∗

RX (resp.
∑∗

LX ) is the saturated

compatible multiplicative system determined by K∗
RX −ac(A ) (resp. K∗

LX −ac(A )).

Definition 4.1 (See [21]). The Verdier quotient category D∗
RX (A ) := K∗(A )/K∗

RX -ac(A ) is called

the right X -derived category of A , where ∗ ∈ {blank,−,+, b}. The left X -derived category D∗
LX (A )

of A is defined dually.

Example 4.2. Let A have enough projectives.

(1) If X = P(A ), then D∗
RX (A ) is the usual derived category D∗(A ).

(2) If X = G (A ) (the subcategory of A consisting of Gorenstein projective objects), then D∗
RX (A )

is the Gorenstein derived category D∗
gp(A ) defined in [12].

The following two results are cited from [1].

Proposition 4.3 (See [1]). (1) D−
RX (A ) is a triangulated subcategory of DRX (A ), and Db

RX (A ) is

a triangulated subcategory of D−
RX (A ).

(2) For any X• ∈ K−(X ) and C• ∈ C(A ), there exists an isomorphism of abelian groups:

HomK(A )(X
•, C•) ∼= HomDRX (A )(X

•, C•).

(3) Let X ⊆ A be admissible. Then the composition functor A → Kb(A ) → Db
RX (A ) is fully

faithful, where both functors are canonical ones.

Set

K−,RX b(X ) := {X• ∈ K−(X ) | there exists n ∈ Z such that

H i(HomA (X,X•)) = 0 for any X ∈ X and i � n},
and

K+,LX b(X ) := {X• ∈ K+(X ) | there exists n ∈ Z such that

H i(HomA (X•, X)) = 0 for any X ∈ X and i � n}.
Proposition 4.4 (See [1, Theorem 3.3]). If X is a contravariantly finite subcategory of A , then we

have a triangle-equivalence K−,RX b(X ) � Db
RX (A ).

As consequences of Propositions 4.4 and 4.3, we have the following two results.

Proposition 4.5. Let (X , Y ) be a balanced pair in A . Then we have triangle-equivalences:

K−,RX b(X ) � Db
RX (A ) = Db

LY (A ) � K+,LY b(Y ).

Proof. The first equivalence follows from Proposition 4.4, and the last one is its dual.

By [5, Proposition 2.2], we have that the class of right X -acyclic complexes coincides with that of left

Y -acyclic complexes if (X , Y ) is a balanced pair. Then Kb
RX -ac(A ) coincides with Kb

LY -ac(A ), and so

we have Db
RX (A ) = Db

LY (A ).

For a balanced pair (X , Y ) in A , we call Db
RX (A ) and Db

LY (A ) the relative bounded derived category

relative to (X , Y ), and denote them by Db
∗(A ). The following result means that the relative cohomology

group Exti∗(M,N) may be computed in the relative bounded derived category Db∗(A ).

Proposition 4.6. Let (X , Y ) be a balanced pair in A . Then for any M,N ∈ A and i � 1, there

exists an isomorphism of abelian groups:

Exti∗(M,N) ∼= HomDb∗(A )(M,N [i]).
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Proof. Let ε : X•
M → M be a X -resolution of M . View M as a stalk complex concentrated in degree

zero. Note that ε is a right X -quasi-isomorphism. So M ∼= X•
M in DRX (A ). Since X•

M ∈ K−(X ), by

Proposition 4.3 we have isomorphisms of abelian groups:

Exti∗(M,N) = H iHomA (X•
M , N) ∼= HomK(A )(X

•
M , N [i]) ∼= HomDRX (A )(X

•
M , N [i])

∼= HomDRX (A )(M,N [i]) ∼= HomDb
RX (A )(M,N [i]) ∼= HomDb∗(A )(M,N [i]).

Given a balanced pair (X , Y ) in A , from the viewpoint of relative derived category relative to (X ,

Y ), the X -resolution of an object M ∈ A is exactly an isomorphism X•
M → M in Db∗(A ), where

X•
M ∈ K−(X ) with components vanish in the positive degrees, while the Y -coresolution of an object

N ∈ A is exactly an isomorphism N → Y •
N in Db∗(A ), where Y •

N ∈ K+(Y ) with components vanish

in the negative degrees. In the following result, we give some criteria for computing the X -resolution

dimension of an object in A in terms of the vanishing of relative cohomology groups.

Theorem 4.7. Let (X , Y ) be an admissible balanced pair in A . Then the following statements are

equivalent for any M ∈ A and n � 0:

(1) X -res.dimM � n.

(2) Ext�n+1
∗ (M,N) = 0 for any N ∈ A .

(3) Extn+1
∗ (M,N) = 0 for any N ∈ A .

(4) For any X -resolution X• →M of M , we have Ker d−n+1
X ∈ X .

Proof. Both (2) ⇒ (3) and (4) ⇒ (1) are trivial.

(1) ⇒ (2) Let

0 → X−n → X−n+1 → · · · → X0 →M → 0

be an X -resolution of M . Then HomA (X−i, N) =0 for any N ∈ A and i � n + 1 and the assertion

follows.

(3) ⇒ (4) Let

· · · → X−n d−n
X→ X−n+1 → · · · → X0 →M → 0

be an X -resolution of M . Then we have a ∗-acyclic sequence:

0 → Ker d−nX → X−n → Kerd−n+1
X → 0. (4.1)

Since Extn+1
∗ (M,Ker d−nX ) = 0, by the dimension shifting we have

Ext1∗(Ker d−n+1
X ,Kerd−nX ) ∼= Extn+1

∗ (M,Ker d−nX ) = 0.

It follows from [10, Theorem 8.2.3] that (4.1) splits. So Ker d−n+1
X is isomorphic to a direct summand of

X−n and Ker d−n+1
X ∈ X .

Dually, we have the following theorem.

Theorem 4.8. Let (X , Y ) be an admissible balanced pair in A . Then the following statements are

equivalent for any N ∈ A and n � 0:

(1) Y -cores.dimN � n.

(2) Ext�n+1
∗ (M,N) = 0 for any M ∈ A .

(3) Extn+1
∗ (M,N) = 0 for any M ∈ A .

(4) For any Y -coresolution N → Y • of N , we have Im dn−1
Y ∈ Y .

As an immediate consequence of Theorems 4.7 and 4.8, we have the following corollary.

Corollary 4.9 (See [5, Corollary 2.5]). Let (X , Y ) be an admissible balanced pair in A . Then

X -res.dimA = Y -cores.dimA .

Set

X - res.dimY := sup{X - res.dimY | Y ∈ Y },
and

Y - cores.dimX := sup{Y - cores.dimX | X ∈ X }.
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Theorem 4.10. For a balanced pair (X , Y ) in A , in Db
∗(A ) we have

(1) If X - res.dimY <∞, then Kb(Y ) ⊆ Kb(X ).

(2) If Y - cores.dimX <∞, then Kb(X ) ⊆ Kb(Y ).

Proof. (1) It suffices to show that for any Y • ∈ Kb(Y ), there exists a right X -quasi-isomorphism

X•
Y → Y • with X•

Y ∈ Kb(X ). We proceed by induction on the width ω(Y •) (:= the cardinal of the set

{Y i �= 0 | i ∈ Z}) of Y •.
For the case ω(Y •)=1, the assertion follows from the assumption that X is contravariantly finite and

X -res.dimY <∞.

Let ω(Y •) � 2 with Y j �= 0 and Y i = 0 for any i < j. Put

Y •
1 := Y j [−j − 1] and Y •

2 := σ>jY •.

Let g = djY [−j − 1] where djY is the j-th differential of Y •. We have a distinguished triangle

Y •
1

g→ Y •
2 → Y • → Y •

1 [1]

in Kb(Y ). By the induction hypothesis, there exist right X -quasi-isomorphisms fY1 : X
•
Y1

→ Y •
1 and

fY2 : X
•
Y2

→ Y •
2 with X•

Y1
, X•

Y2
∈ Kb(X ). Then by Lemma 2.4, fY2 induces an isomorphism:

HomKb(A )(X
•
Y1
, X•

Y2
) ∼= HomKb(A )(X

•
Y1
, Y •

2 ).

So there exists a morphism f : X•
Y1

→ X•
Y2
, which is unique up to homotopy, such that fY2f = gfY1. Put

X•
Y = Con(f). We have the following distinguished triangle:

X•
Y1

f→ X•
Y2

→ X•
Y → X•

Y1
[1]

in Kb(X ). Then there exists a morphism fY : X•
Y → Y • such that the following diagram commutes:

X•
Y1

f ��

fY1

��

X•
Y2

��

fY2

��

X•
Y

��

fY

���
�
�

X•
Y1
[1]

fY1 [1]

��
Y •
1

g �� Y •
2

�� Y • �� Y •
1 [1].

For any X ∈ X and n ∈ Z, we have the following commutative diagram with exact rows:

(X,X•
Y1
) ��

(X,fY1 )

��

(X,X•
Y2
) ��

(X,fY2 )

��

(X,X•
Y )

��

(X,fY )

���
�
�

(X,X•
Y1
[1])

(X,fY1 [1])

��

�� (X,X•
Y2
[1])

(X,fY2 [1])

��
(X,Y •

1 ) �� (X,Y •
2 ) �� (X,Y •) �� (X,Y •

1 [1]) �� (X,Y •
2 [1]),

where (X,−) denotes the functor HomK(A )(X, [n](−)). Since fY1 and fY2 are right X -quasi-isomorphisms,

we have that (X, fY1) and (X, fY2) are isomorphisms. So (X, fY ) is also an isomorphism and fY is a right

X -quasi-isomorphism. The proof is finished.

(2) It is dual to (1).

Let A be a finite-dimensional algebra over a field k. We use modA to denote the category of finitely

generated left A-modules, and use projA (resp. injA) to denote the full subcategory of modA consisting

of projective (resp. injective) modules. For a module M ∈ modA, we use pdAM and idAM to denote

the projective and injective dimensions of M , respectively. As an application of Theorem 4.10, we get

the following corollary.

Corollary 4.11 (See [13]). For a finite-dimensional algebra A over a field k, in Db(A) we have the

following:

(1) pdAD(AA) <∞ if and only if Kb(injA) ⊆ Kb(projA).

(2) idAA <∞ if and only if Kb(projA) ⊆ Kb(injA).

(3) A is Gorenstein if and only if Kb(projA) = Kb(injA).
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Proof. We only prove (1), because (2) is dual to (1), and (3) is an immediate consequence of (1) and (2).

The necessity follows from Theorem 4.10. For the sufficiency, since Kb(injA) ⊆ Kb(projA) in

Db(A), we have D(AA) ∈ Kb(projA). Then there exists a quasi-isomorphism Q• → D(AA) with

Q• ∈ Kb(projA). Let P • → D(AA) be the projective resolution of D(AA) in modA. It follows that P •

and Q• are homotopy equivalence. Thus P • ∈ Kb(projA) and hence pdAD(AA) <∞.

Let (X , Y ) be a balanced pair in A . It follows from Proposition 4.3 that Kb(X ) is a triangulated

subcategory of Db∗(A ). Motivated by the definition of classical singularity categories, we introduce the

following definition.

Definition 4.12. We call the quotient category DRX -sg(A ) := Db
∗(A ) /Kb(X ) the right X -singula-

rity category relative to (X , Y ), and call DLY -sg(A ) := Db
∗(A ) /Kb(Y ) the left Y -singularity category

relative to (X , Y ).

Let A be a finite-dimensional algebra over a field k. In the case for X = projA, we have that Db
X (A )

coincides with the usual bounded derived category Db(A ) and DRX -sg(A ) is the classical singularity

category Dsg(A) which is called the “stabilized derived category” in [3]. For the properties of singularity

categories and related topics, we refer to [6, 7, 13, 18, 19] and so on. It is known that Dsg(A) = 0 if and

only if A is of finite global dimension. So Dsg(A) measures the homological singularity of the algebra A.

Theorem 4.13. Let (X , Y ) be a balanced pair in A .

(1) If X -res.dimY <∞ and Y -cores.dimX <∞, then DRX -sg(A ) = DLY -sg(A ).

(2) If (X , Y ) is admissible and X -res.dimA <∞, then DRX -sg(A ) = 0 = DLY -sg(A ).

Proof. (1) If X -res.dimY < ∞ and Y -cores.dimX < ∞, then it follows from Theorem 4.10 that

Kb(X ) = Kb(Y ). So we have DRX -sg(A ) = DLY -sg(A ).

(2) Since (X , Y ) is an admissible balanced pair and X -res.dim A <∞, it follows from Corollary 4.9

that Y -cores.dimA <∞. For the first equality it suffices to show that for any A• ∈ Kb(A ), there exists

a right X -quasi-isomorphism X•
A → A• with X•

A ∈ Kb(X ). By using an induction on the width ω(A•)
of A• and a similar argument to that in proof of Theorem 4.10, we get the assertion. Dually, we get the

second equality.

Let A be a finite-dimensional algebra over a field k. We use GprojA (resp. GinjA) to denote the full

subcategory of modA consisting of Gorenstein projective (resp. injective) modules. It follows from [5,

Proposition 2.6] that (GprojA, GinjA) is an admissible balanced pair in modA whenever A is Gorenstein.

Let (X , Y )=(GprojA, GinjA). Consider the following quotient categories (see [12]):

DRG -sg(A) := Db
∗(modA)/Kb(GprojA),

DLG -sg(A) := Db
∗(modA)/Kb(GinjA).

By Theorem 4.13(2), we have the following corollary.

Corollary 4.14. Let A be a Gorenstein algebra. Then DRG -sg(A) = 0 and DLG -sg(A) = 0.
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