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Abstract We consider the drift-diffusion (DD) model of one dimensional semiconductor devices, which is a

system involving not only first derivative convection terms but also second derivative diffusion terms and a

coupled Poisson potential equation. Optimal error estimates are obtained for both the semi-discrete and fully

discrete local discontinuous Galerkin (LDG) schemes with smooth solutions. In the fully discrete scheme, we

couple the implicit-explicit (IMEX) time discretization with the LDG spatial discretization, in order to allow

larger time steps and to save computational cost. The main technical difficulty in the analysis is to treat the

inter-element jump terms which arise from the discontinuous nature of the numerical method and the nonlinearity

and coupling of the models. A simulation is also performed to validate the analysis.
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1 Introduction

In a previous work [21], we have analyzed a local discontinuous Galerkin (LDG) finite element method

to solve time dependent and steady state moment models for semiconductor device simulations, in which

both the first derivative convection terms and second derivative diffusion (heat conduction) terms exist

and the convection-diffusion system is discretized by the local discontinuous Galerkin (LDG) method [13,

15], see also [10–12,14].

In the work [21], we have only used the LDG method to discretize the electron concentration equation.

For the electric potential equation, we still used the continuous methods to avoid having discontinuities

of two independent solution variables on cell boundaries, which is difficult to analyze. Also, we only

obtained the suboptimal error estimates O(hk+ 1
2 ) when P k elements (piecewise polynomials of degree k)

are used in the LDG scheme because of the nonlinear coupling of the electron concentration and the

electric field.

In this paper, we will give error estimates of the semi-discrete LDG scheme and implicit-explicit (IMEX)

time discretization coupled with the LDG scheme (see [27,28]) for smooth solutions. Unlike in [21], in this

paper the potential equation is also discretized by the LDG method. This unified discretization by using

the LDG method allows the full realization of the potential of this methodology in easy h-p adaptivity
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and parallel efficiency. The numerical results shown in [19, 20] already demonstrated good performance

of such unified LDG discretization for the moment models, comparable with the results obtained by

the ENO finite difference method [16]. However, as far as we know, an error estimate for such unified

methods has not been available until now. In the fully discrete scheme, we couple the LDG scheme with

the IMEX Runge-Kutta time discretization up to third order accuracy. We treat the nonlinear coupled

term explicitly and the diffusion term implicitly. With this treatment, we show that the IMEX LDG

schemes are unconditionally convergent, in the sense that the time step Δt does not need to be related to

the spatial mesh size h when both of them go to zero, even though the nonlinear coupled term is treated

explicitly. This greatly improves the computational efficiency of the scheme by allowing us to use larger

time steps.

We now briefly review the background of the LDG methods. The LDG methods have several attractive

properties [31]. They can be easily designed for any order of accuracy. In fact, the order of accuracy can

be locally determined in each cell, which allows for efficient p adaptivity. They can be used on arbitrary

triangulations, even those with hanging nodes, which allows for efficient h adaptivity. The methods have

excellent parallel efficiency, since they are extremely local in the sense that each cell needs to communicate

only with its immediate neighbors, regardless of the order of accuracy. Also, the methods have excellent

provable nonlinear stability.

For the DGmethod solving smooth solutions of linear conservation laws, optimal a priori error estimates

O(hk+1) for tensor product and certain other special meshes, and O(hk+ 1
2 ) for other cases, have been

given in [9, 17, 18, 23, 24]. The first a priori error estimate for the LDG method of linear convection-

diffusion equations was obtained by Cockburn and Shu [13]. Later, Castillo et al. [4–6] proved the

optimal rate of convergence order O(hk+1) for the LDG method with a particular numerical flux. Rivière

and Wheeler [25] gave an optimal error estimate for the methods applied to nonlinear convection-diffusion

equations for at least quadratic polynomials. Zhang and Shu [22,32–34] presented a priori error estimates

for the fully discrete Runge-Kutta DG methods with smooth solutions for scalar nonlinear conservation

laws and for symmetrizable systems, see also Burman et al. [3]. Xu and Shu [30] provided L2 error

estimates for the semi-discrete local discontinuous Galerkin methods for nonlinear convection-diffusion

equations and KdV equations with smooth solutions. Wang et al. [27,28] obtained optimal error estimates

of the LDG methods with IMEX time marching for linear and nonlinear convection-diffusion problems.

Although there have been many theoretical analysis of the LDG method, such analysis for semicon-

ductor device moment models which involve a coupling to a Poisson potential equation, by a unified LDG

method to both the concentration equation and the potential equation, still seems to be unavailable. The

main difficulty is how to treat the inter-element discontinuities of two independent solution variables (one

from the concentration equation and the other from the potential equation) on cell boundaries. Notice

that, in an LDG method, the solution and its spatial gradient are approximated by two independent

polynomials. Through exploring an important relationship between the gradient and interface jump of

the numerical solution polynomial with the independent polynomial numerical solution for the gradient

in the LDG methods, which is stated in Lemma 4.3, we obtain in this paper optimal error estimates for

both the semi-discrete LDG scheme and the IMEX LDG scheme.

The organization of the paper is as follows. In Section 2, we list some preliminaries. In Section 3,

we describe the drift-diffusion (DD) model and give its weak form. The semi-discrete LDG scheme for

the DD model with periodic boundary condition and its error estimate are given in Section 4. Section 5

contains several IMEX LDG schemes for the DD model with periodic boundary condition and their error

estimates. In Section 6, we obtain the error estimates of the LDG scheme for the DD model with Dirichlet

boundary conditions. Simulation results are presented in Section 7. Concluding remarks and a plan for

future work are given in Section 8.

2 Preliminaries

In this section, we introduce some notations and definitions to be used later in the paper and also present

some auxiliary results.
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First, we will give some basic notations of the finite element space. Then we define some projections

and present certain projection and inverse properties for the finite element spaces that will be used in

the error analysis.

2.1 Basic notation

Let Ij = (xj− 1
2
, xj+ 1

2
), j = 1, 2, . . . , N be a partition of the computational domain I,

Δxj = xj+ 1
2
− xj− 1

2
, xj =

1

2
(xj− 1

2
+ xj+ 1

2
), h = max

{
sup
j

Δxj

}
.

The finite-dimensional computational space is V k
h = {z : z|Ij ∈ P k(Ij)} where P k(Ij) denotes the set

of polynomials of degree up to k defined on Ij . Both the numerical solution and the test functions will

come from this space V k
h .

Note that in V k
h , the functions are allowed to have jumps at the interfaces xj+1/2, hence V k

h �⊆ H1.

This is one of the main differences between the discontinuous Galerkin method and most other finite

element methods. Moreover, both the mesh sizes Δxj and the degree of polynomials k can be changed

from element to element freely, thus allowing for easy h-p adaptivity.

We denote (uh)
+
j+ 1

2

= uh(x
+
j+ 1

2

) and (uh)
−
j+ 1

2

= uh(x
−
j+ 1

2

) , respectively. We use the usual notation

[uh]j+ 1
2
= (uh)

+
j+ 1

2

− (uh)
−
j+ 1

2

and (ūh)j+ 1
2
= 1

2 ((uh)
+
j+ 1

2

+ (uh)
−
j+ 1

2

) to denote the jump and the mean of

the function uh at each element boundary point, respectively.

We will denote by C a generic positive constant independent of h, which may depend on the exact

solution of the partial differential equations (PDEs) considered in this paper. We also denote by ε̃ a

generic small positive constant. C and ε̃ may take a different value in each occurrence. For problems

considered in this paper, the exact solution is assumed to be smooth. Also, 0 � t � T for a fixed T .

Therefore, the exact solution is always bounded.

2.2 Projection properties

In what follows, we will consider the standard L2-projection of a function u with k + 1 continuous

derivatives into space V k
h , denoted by P , i.e., for each j,

∫
Ij

(Pu(x)− u(x))v(x)dx = 0, ∀ v ∈ P k(Ij), (2.1)

and the special projections P± into V k
h which satisfy, for each j,

∫
Ij

(P+u(x)− u(x))v(x)dx = 0, ∀ v ∈ P k−1(Ij), and P+u(x+
j− 1

2

) = u(xj− 1
2
),

∫
Ij

(P−u(x)− u(x))v(x)dx = 0, ∀ v ∈ P k−1(Ij), and P−u(x−
j+ 1

2

) = u(xj+ 1
2
). (2.2)

From the projections mentioned above, it is easy to get (see [8])

‖η‖+ h‖η‖0,∞ + h
1
2 ‖η‖Γh

+ |η(x0)| � Chk+1, (2.3)

where η = Pu − u or η = P±u − u, ‖ · ‖ refers to the usual L2 norm, ‖ · ‖0,∞ refers to the L∞ norm,

‖η‖Γh
= [
∑N

j=1((η
+
j+ 1

2

)2 +(η−
j+ 1

2

)2)]
1
2 , and x0 is a fixed point in the computational domain I (e.g. one of

the boundary points). The positive constant C, solely depending on u and its derivatives, is independent

of h. Γh denotes the set of boundary points of all elements Ij .
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2.3 Inverse properties

Finally, we list some inverse properties (see [8]) of the finite element space V k
h that will be used in our

error analysis. For any v ∈ V k
h , there exists positive constants Ci independent of v and h, such that

(i) ‖vx‖ � C1h
−1‖v‖, (ii) ‖v‖Γh

� C2h
− 1

2 ‖v‖, (iii) ‖v‖0,∞ � C3h
− d

2 ‖v‖, (2.4)

where d is the spatial dimension. In our case d = 1.

3 The drift-diffusion (DD) model and the weak form

3.1 The DD model

The drift-diffusion model is described by the following equation (we refer to [7] and the reference therein

for more details)

nt − (μEn)x = τθnxx, (3.1)

φxx =
e

ε
(n− nd), (3.2)

where x ∈ (0, 1), with periodic boundary condition for the first equation and Dirichlet boundary condition

for the potential equation: φ(0, t) = 0, φ(1, t) = vbias. We will also consider Dirichlet boundary condition

for the first equation in Section 6. The Poisson equation (3.2) is the electric potential equation, E = −φx

represents the electric field.

In the system (3.1)–(3.2), the unknown variables are the electron concentration n and the electric

potential φ. m0 is the electron effective mass, k is the Boltzmann constant, e is the electron charge, μ

is the mobility, T0 is the lattice temperature, τ = m0μ
e is the relaxation parameter, θ = k

m0
T0, ε is the

dielectric permittivity, and nd is the doping which is a given function.

3.2 Weak form

The starting point of the LDG method is the introduction of an auxiliary variable to rewrite the PDE (3.1)

containing higher order spatial derivatives as a larger system containing only first order spatial derivatives.

Let q =
√
τθ nx, thus (3.1) is rewritten as

nt − (μEn)x −
√
τθ qx = 0, (3.3)

q −
√
τθ nx = 0, (3.4)

Ex = −e

ε
(n− nd), (3.5)

E = −φx. (3.6)

We multiply equations (3.3)–(3.6) by test functions v, w, r, z ∈ V k
h , respectively, and formally integrate

by parts for all terms involving a spatial derivative to get∫
Ij

ntvdx+

∫
Ij

(μEn+
√
τθq)vxdx− (μEn+

√
τθq)j+ 1

2
v−
j+ 1

2

+ (μEn+
√
τθq)j− 1

2
v+
j− 1

2

= 0, (3.7)

∫
Ij

qwdx +

∫
Ij

√
τθnwxdx−

√
τθnj+ 1

2
w−

j+ 1
2

+
√
τθnj− 1

2
w+

j− 1
2

= 0, (3.8)

−
∫
Ij

Erxdx+ Ej+ 1
2
r−
j+ 1

2

− Ej− 1
2
r+
j− 1

2

= −e

ε

∫
Ij

(n− nd)rdx, (3.9)

∫
Ij

Ezdx−
∫
Ij

φzxdx+ φj+ 1
2
z−
j+ 1

2

− φj− 1
2
z+
j− 1

2

= 0, (3.10)

where j = 1, . . . , N and v, w, r, z in V k
h .
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4 Semi-discrete LDG scheme and its error estimate

4.1 Semi-discrete LDG scheme

Replacing the exact solutions n, q, E and φ in the above equations by their numerical approximations

nh, qh, Eh, φh in V k
h , noticing that the numerical solutions nh, qh, Eh and φh are not continuous on the

cell boundaries, then replacing terms on the cell boundaries by suitable numerical fluxes, we obtain the

semi-discrete LDG scheme: For any t > 0, find the numerical solution nh, qh, Eh, φh ∈ V k
h , such that∫

Ij

(nh)tvdx+

∫
Ij

(μEhnh +
√
τθqh)vxdx

−(μ̂Ehnh +
√
τθq̂h)j+ 1

2
v−
j+ 1

2

+ (μ̂Ehnh +
√
τθq̂h)j− 1

2
v+
j− 1

2

= 0, (4.1)∫
Ij

qhwdx +

∫
Ij

√
τθnhwxdx−

√
τθ(n̂h)j+ 1

2
w−

j+ 1
2

+
√
τθ(n̂h)j− 1

2
w+

j− 1
2

= 0, (4.2)

−
∫
Ij

Ehrxdx+ (Êh)j+ 1
2
r−
j+ 1

2

− (Êh)j− 1
2
r+
j− 1

2

= −e

ε

∫
Ij

(nh − nd)rdx, (4.3)

∫
Ij

Ehzdx−
∫
Ij

φhzxdx+ (φ̂h)j+ 1
2
z−
j+ 1

2

− (φ̂h)j− 1
2
z+
j− 1

2

= 0, (4.4)

where j = 1, . . . , N and v, w, r, z in V k
h .

The “hat” terms are the numerical fluxes. We choose the flux ̂Ehnh = 1
2 ((Ehnh)

++(Ehnh)
−) (we can

also choose an upwind flux here, the analysis in later section can go through as well), the alternating flux

for n̂h and q̂h, i.e.,

n̂h = (nh)
+, q̂h = (qh)

− or n̂h = (nh)
−, q̂h = (qh)

+, (4.5)

and the alternating flux for φ̂h and Êh, with an adjustment at one of the boundaries to take care of the

Dirichlet boundary condition, namely

(φ̂h) 1
2
= (φ−

h ) 1
2
= 0, (φ̂h)j− 1

2
= (φ+

h )j− 1
2
, j = 2, . . . , N, (φ̂h)N+ 1

2
= (φ+

h )N+ 1
2
= vbias,

(Êh) 1
2
= (E+

h ) 1
2
+ c0[φ] 1

2
, (Êh)j− 1

2
= (E−

h )j− 1
2
+ c0[φ]j− 1

2
, j = 2, . . . , N + 1, (4.6)

or

(φ̂h) 1
2
= (φ−

h ) 1
2
= 0, (φ̂h)j− 1

2
= (φ−

h )j− 1
2
, j = 2, . . . , N, (φ̂h)N+ 1

2
= (φ+

h )N+ 1
2
= vbias,

(Êh)j− 1
2
= (E+

h )j− 1
2
+ c0[φ]j− 1

2
, j = 1, . . . , N, (Êh)N+ 1

2
= (E−

h )N+ 1
2
+ c0[φ]N+ 1

2
, (4.7)

where c0 > 0 is an arbitrary positive constant. We take c0 = 1 in our numerical experiments.

Notice that the auxiliary variable qh or Eh can be locally solved from (4.2) or (4.4) and substituted

into (4.1) or (4.3). This is the reason the method is called the “local” discontinuous Galerkin method

and this also distinguishes LDG from the classical mixed finite element methods, where the auxiliary

variable qh or Eh must be solved from a global system.

4.2 Error estimate

We denote ‖u‖L∞(0,T ;L2) = max0�t�T ‖u‖L2(I), and ‖u‖L2(0,T ;L2) = (
∫ T

0
‖u‖2L2(I)dt)

1
2 in the following

analysis of the semi-discrete scheme.

Theorem 4.1. Let n, q be the exact solution to (3.7)–(3.10), which is sufficiently smooth with bounded

derivatives. Let nh, qh be the numerical solution to the semi-discrete LDG scheme (4.1)–(4.4). Denote the

corresponding numerical error by eu = u− uh (u = n, q). If the finite element space V k
h is the piecewise

polynomials of degree k � 0, then for small enough h there holds the following error estimates:

‖n− nh‖L∞(0,T ;L2) + ‖q − qh‖L2(0,T ;L2) � Chk+1, (4.8)
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where the constant C depends on the final time T , k, Cμ (see Lemma 4.3), the inverse constant C2,

‖n‖L∞(0,T ;Hk+1), ‖nx‖L∞ and ‖E‖L∞.

Before the proof of the theorem, we give two lemmas first.

Lemma 4.2. Let E be the exact solution of the problem to (3.9)–(3.10), and Eh be the numerical

solution to the semi-discrete LDG scheme (4.3)–(4.4). We have

‖E − Eh‖ � C(hk+1 + ‖n− nh‖). (4.9)

For a detailed proof of this lemma for the case of periodic boundary condition, we refer to [2]. For our

case with Dirichlet boundary condition for φ, the result can be proved along a similar line and is hence

omitted.

We recall that we have taken the alternating fluxes for n̂h and q̂h, that is, n̂h = (nh)
+, q̂h = (qh)

−.
We write the error eu = u − uh (u = n, q) as eu = ξu − ηu, where ξn = P+n − nh, ηn = P+n − n;

ξq = P−q − qh, ηq = P−q − q. Then we state the second lemma:

Lemma 4.3.

‖ξn,x‖ � Cμ√
τθ

(‖ξq‖+ ‖ηq‖), (4.10)

|
√
h−1[ξn]| � Cμ√

τθ
(‖ξq‖+ ‖ηq‖). (4.11)

For a detailed proof of this lemma we refer to [27].

Proof. Taking the difference of (3.7) and (4.1) and the difference of (3.8) and (4.2), we have the following

error equations:∫
Ij

(n− nh)tvdx+

∫
Ij

μ(En− Ehnh)vxdx

− μ(En−̂Ehnh)j+ 1
2
v−
j+ 1

2

+ μ(En−̂Ehnh)j− 1
2
v+
j− 1

2

+

∫
Ij

√
τθ(q − qh)vxdx−

√
τθ(q − q̂h)j+ 1

2
v−
j+ 1

2

+
√
τθ(q − q̂h)j− 1

2
v+
j− 1

2

= 0, (4.12)

∫
Ij

(q − qh)wdx +

∫
Ij

√
τθ(n− nh)wxdx

−
√
τθ(n− n̂h)j+1/2w

−
j+ 1

2

+
√
τθ(n− n̂h)j−1/2w

+
j− 1

2

= 0. (4.13)

If we choose v = ξn, w = ξq in the error equations (4.12)–(4.13), we have∫
Ij

(ξn − ηn)tξndx+

∫
Ij

μ(En− Ehnh)ξn,xdx

− μ(En−̂Ehnh)j+ 1
2
ξ−
n,j+ 1

2

+ μ(En−̂Ehnh)j− 1
2
ξ+
n,j− 1

2

+

∫
Ij

√
τθ(ξq − ηq)ξn,xdx−

√
τθ(ξq − ηq)

−
j+ 1

2

ξ−
n,j+ 1

2

+
√
τθ(ξq − ηq)

−
j− 1

2

ξ+
n,j− 1

2

= 0, (4.14)

and ∫
Ij

(ξq − ηq)ξqdx +

∫
Ij

√
τθ(ξn − ηn)ξq,xdx

−
√
τθ(ξn − ηn)

+
j+ 1

2

ξ−
q,j+ 1

2

+
√
τθ(ξn − ηn)

+
j− 1

2

ξ+
q,j− 1

2

= 0. (4.15)

Summing the above two equations, and summing over j, we have

N∑
j=1

∫
Ij

ξn,tξndx+

N∑
j=1

∫
Ij

ξ2qdx
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=

N∑
j=1

∫
Ij

ηn,tξndx +

N∑
j=1

∫
Ij

ηqξqdx

+

N∑
j=1

(∫
Ij

√
τθηqξn,xdx+

∫
Ij

√
τθηnξq,xdx−

√
τθη−

q,j+ 1
2

ξ−
n,j+ 1

2

+
√
τθη−

q,j− 1
2

ξ+
n,j− 1

2

−
√
τθη+

n,j+ 1
2

ξ−
q,j+ 1

2

+
√
τθη+

n,j− 1
2

ξ+
q,j− 1

2

)

+

N∑
j=1

(
−
∫
Ij

√
τθξqξn,xdx−

∫
Ij

√
τθξnξq,xdx+

√
τθξ−

q,j+ 1
2

ξ−
n,j+ 1

2

−
√
τθξ−

q,j− 1
2

ξ+
n,j− 1

2

+
√
τθξ+

n,j+ 1
2

ξ−
q,j+ 1

2

−
√
τθξ+

n,j− 1
2

ξ+
q,j− 1

2

)

+

N∑
j=1

(
−
∫
Ij

μ(En− Ehnh)ξn,xdx+ μ(En− ̂Ehnh)j+ 1
2
ξ−
n,j+ 1

2

− μ(En− ̂Ehnh)j− 1
2
ξ+
n,j− 1

2

)
=: T1 + T2 + T3 + T4 + T5. (4.16)

Next, we estimate Ti term by term. From the property (2.3) of the projection and the Schwartz

inequality, we can get

T1 =

N∑
j=1

∫
Ij

ηn,tξndx � C

∫
I

η2n,tdx+ C

∫
I

ξ2ndx � Ch2k+2 + C‖ξn‖2, (4.17)

T2 =

N∑
j=1

∫
Ij

ηqξqdx � C

∫
I

η2qdx+ ε̃

∫
I

ξ2qdx � Ch2k+2 + ε̃‖ξq‖2. (4.18)

Obviously, from the projection (2.2), we have

∫
Ij

ηnvdx = 0,

∫
Ij

ηqvdx = 0, ∀ v ∈ P k−1(Ij),

and η−
q,j+ 1

2

= 0, η+
n,j+ 1

2

= 0, then we get

T3 = 0. (4.19)

We also have

T4 =

N∑
j=1

(
−
∫
Ij

√
τθ(ξqξn)xdx+

√
τθξ−

q,j+ 1
2

ξ−
n,j+ 1

2

−
√
τθξ−

q,j− 1
2

ξ+
n,j− 1

2

+
√
τθξ+

n,j+ 1
2

ξ−
q,j+ 1

2

−
√
τθξ+

n,j− 1
2

ξ+
q,j− 1

2

)

=

N∑
j=1

(
√
τθ(ξqξn)

+
j− 1

2

−
√
τθ(ξqξn)

−
j+ 1

2

+
√
τθξ−

q,j+ 1
2

ξ−
n,j+ 1

2

−
√
τθξ−

q,j− 1
2

ξ+
n,j− 1

2

+
√
τθξ+

n,j+ 1
2

ξ−
q,j+ 1

2

−
√
τθξ+

n,j− 1
2

ξ+
q,j− 1

2

)

=

N∑
j=1

√
τθ(ξ+n,j+1/2ξ

−
q,j+1/2 − ξ+n,j−1/2ξ

−
q,j−1/2)

= 0. (4.20)



122 Liu Y X et al. Sci China Math January 2016 Vol. 59 No. 1

The above estimate of T4 used the periodic boundary condition for n, nh, q and qh. About the last

term T5 of (4.16), since we have chosen ̂Ehnh = 1
2 ((Ehnh)

+ + (Ehnh)
−), we have

T5 = −
∫
I

μ(En− Ehnh)ξn,xdx−
N∑
j=1

μ

(
En− 1

2
((Ehnh)

+ + (Ehnh)
−)
)

j− 1
2

[ξn]j−1/2 (4.21)

For the integral part of T5, we treat it as following:

−
∫
I

μ(En− Ehnh)ξn,xdx = −
∫
I

μE(n− nh)ξn,xdx−
∫
I

μ(E − Eh)nhξn,xdx.

For the time being, we make the a-priori assumption

‖n− nh‖ � C̃h. (4.22)

We will verify the reasonableness of this a-priori assumption later. The a-priori assumption implies that

‖nh‖L∞ � C. With Young’s inequality, (2.3), and Lemma 4.2, we have∫
I

μ(En− Ehnh)ξn,xdx � C‖ξn‖2 + Ch2k+2 + ε̃‖ξn,x‖2. (4.23)

For the boundary part of T5, we have

−
N∑
j=1

μ

(
En− 1

2
((Ehnh)

+ + (Ehnh)
−)
)

j− 1
2

[ξn]j−1/2

= −
N∑
j=1

μ

(
1

2
E(n− (nh)

+) +
1

2
(E − (Eh)

+)(nh)
+

+
1

2
E(n− (nh)

−) +
1

2
(E − (Eh)

−)(nh)
−
)

j− 1
2

[ξn]j−1/2

= −1

2

N∑
j=1

μEj− 1
2
(ξ+n + ξ−n − η+n − η−n )j− 1

2
[ξn]j−1/2

− 1

2

N∑
j=1

μ(E − (Eh)
+)j− 1

2
(nh)

+
j− 1

2

[ξn]j−1/2

− 1

2

N∑
j=1

μ(E − (Eh)
−)j− 1

2
(nh)

−
j− 1

2

[ξn]j−1/2.

Using Young’s inequality and ‖nh‖L∞ � C, we get

−
N∑
j=1

μ

(
En− 1

2
((Ehnh)

+ + (Ehnh)
−)
)

j− 1
2

[ξn]j−1/2

� Ch(‖ξn‖2Γ + ‖ηn‖2Γ + ‖E − Eh‖2Γ) + ε̃h−1[ξn]
2.

Then from the inverse inequality (2.4), together with (4.9), we can obtain

−
N∑
j=1

μ

(
En− 1

2
((Ehnh)

+ + (Ehnh)
−)
)

j− 1
2

[ξn]j−1/2 � C(h2k+2 + ‖ξn‖2) + ε̃h−1[ξn]
2. (4.24)

Substituting (4.23) and (4.24) into (4.21), we have

T5 � C‖ξn‖2 + Ch2k+2 + ε̃‖ξn,x‖2 + ε̃h−1[ξn]
2. (4.25)
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Then substituting (4.17)–(4.20) and (4.25) into (4.16), we get

1

2

d

dt
‖ξn‖2 + ‖ξq‖2 � C‖ξn‖2 + Ch2k+2 + ε̃‖ξn,x‖2 + ε̃h−1[ξn]

2 + ε̃‖ξq‖2. (4.26)

Using Lemma 4.3, together with the property of the projection and Gronwall’s inequality, we can obtain

the theorem.

To complete the proof, let us verify the reasonableness of the a-priori assumption (4.22). For k � 0,

we can consider h small enough so that Chk+1 � 1
2 C̃h, where C is the constant in (4.8) determined

by the final time T . Then if t∗ = sup{t : ‖n(t) − nh(t)‖ � C̃h}, we should have ‖n(t∗) − nh(t
∗)‖ =

C̃h by continuity if t∗ is finite. On the other hand, our proof implies that (4.8) holds for t � t∗, in
particular ‖n(t∗) − nh(t

∗)‖ � Chk+1 � 1
2 C̃h. This is a contradiction if t∗ < T . Hence t∗ � T and the

assumption (4.22) is then valid.

5 IMEX Runge-Kutta fully discrete LDG schemes and their error estimates

In this section, we would like to consider the LDG spatial discretization coupled with three specific

IMEX Runge-Kutta schemes up to third order which are presented in [1, 27]. The idea is to treat the

linear diffusion part implicitly and to treat the nonlinear, coupled drift term explicitly, in order to save

computational cost, while still aiming for unconditional convergence in the sense that the time step and

the spatial mesh size do not need to be related when both of them go to zero.

5.1 Fully discrete schemes

Let {tm = mΔt}Mm=0 be the uniform partition of the time interval [0, T ], with time step Δt. The time

step could actually change from step to step, but in this paper we take the time step as a constant

for simplicity. Given nm
h , hence qmh , Em

h , φm
h , we would like to find the numerical solution at the next

level tm+1, maybe through several intermediate stages tm,l, by the following IMEX RK methods.

For simplicity of notation, we will denote

Hj(Eh, nh, v) = −(μEhnh, vx)Ij + (μ̂Ehnh)j+ 1
2
v−
j+ 1

2

− (μ̂Ehnh)j− 1
2
v+
j− 1

2

, (5.1)

H±
j (uh, v) = −

√
τθ(uh, vx)Ij +

√
τθ(u±

h )j+ 1
2
v−
j+ 1

2

−
√
τθ(u±

h )j− 1
2
v+
j− 1

2

, u = n, q, (5.2)

where j = 1, . . . , N and (·, ·)Ij is the usual inner product in L2(Ij).

Obviously, for smooth E, n, u, we have

Hj(E, n, v) = −(μEn, vx)Ij + (μEn)j+ 1
2
v−
j+ 1

2

− (μEn)j− 1
2
v+
j− 1

2

,

H±
j (u, v) = −

√
τθ(u, vx)Ij +

√
τθuj+ 1

2
v−
j+ 1

2

−
√
τθuj− 1

2
v+
j− 1

2

.

First order scheme. The LDG scheme with the first order IMEX time-marching scheme, where the

coupled nonlinear part of the concentration equation is treated by the forward Euler method and the

diffusion part is treated by the backward Euler method, is given in the following form using the notation

in (5.1) and (5.2): Find the numerical solution nm+1
h , qm+1

h ∈ V k
h , such that(

nm+1
h − nm

h

Δt
, v

)
Ij

= Hj(E
m
h , nm

h , v) +H−
j (qm+1

h , v), (5.3)

(qm+1
h , w)Ij = H+

j (nm+1
h , w), (5.4)

where j = 1, . . . , N and v, w in V k
h .

The LDG scheme of the electric potential equation is: Find Em
h , φm

h ∈ V k
h , such that

−
∫
Ij

Em
h rxdx+ (Êm

h )j+ 1
2
r−
j+ 1

2

− (Êm
h )j− 1

2
r+
j− 1

2

= −e

ε

∫
Ij

(nm
h − nd)rdx, (5.5)
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∫
Ij

Em
h zdx−

∫
Ij

φm
h zxdx+ (φ̂m

h )j+ 1
2
z−
j+ 1

2

− (φ̂m
h )j− 1

2
z+
j− 1

2

= 0, (5.6)

where j = 1, . . . , N and r, z in V k
h .

As in the semi-discrete case, the “hat” terms are the numerical fluxes and are still chosen as (4.6)

or (4.7).

Second order scheme. Using (5.1) and (5.2), the LDG scheme with the second order IMEX time-

marching scheme given in [1] is: Find the numerical solution nm+1
h , qm+1

h ∈ V k
h , such that

(
nm,1
h − nm

h

Δt
, v

)
Ij

= γHj(E
m
h , nm

h , v) + γH−
j (qm,1

h , v), (5.7)

(
nm+1
h − nm

h

Δt
, v

)
Ij

= δHj(E
m
h , nm

h , v) + (1 − δ)Hj(E
m,1
h , nm,1

h , v)

+ (1− γ)H−
j (qm,1

h , v) + γH−
j (qm+1

h , v), (5.8)

(qm,l
h , w)Ij = H+

j (nm,l
h , w), l = 1, 2, qm,2

h = qm+1
h , (5.9)

where j = 1, . . . , N and v, w in V k
h , and γ = 1−

√
2
2 , δ = 1− 1

2γ .

The LDG scheme of the electric potential equation is: Find Em,l
h , φm,l

h ∈ V k
h , such that

−
∫
Ij

Em,l
h rxdx+ (Êm,l

h )j+ 1
2
r−
j+ 1

2

− (Êm,l
h )j− 1

2
r+
j− 1

2

= −e

ε

∫
Ij

(nm,l
h − nd)rdx, (5.10)

∫
Ij

Em,l
h zdx−

∫
Ij

φm,l
h zxdx+ (φ̂m,l

h )j+ 1
2
z−
j+ 1

2

− (φ̂m,l
h )j− 1

2
z+
j− 1

2

= 0, (5.11)

where j = 1, . . . , N and r, z in V k
h , and l = 0, 1, um,0 = um.

The “hat” terms for the numerical flux are chosen as before.

Third order scheme. The LDG scheme with the third order IMEX time-marching scheme given

in [1] is: Find the numerical solution nm+1
h , qm+1

h ∈ V k
h , such that

(
nm,1
h − nm

h

Δt
, v

)
Ij

=
1

2
Hj(E

m
h , nm

h , v) +
1

2
H−

j (qm,1
h , v), (5.12)

(
nm,2
h − nm

h

Δt
, v

)
Ij

=
11

18
Hj(E

m
h , nm

h , v) +
1

18
Hj(E

m,1
h , nm,1

h , v)

+
1

6
H−

j (qm,1
h , v) +

1

2
H−

j (qm,2
h , v), (5.13)(

nm,3
h − nm

h

Δt
, v

)
Ij

=
5

6
Hj(E

m
h , nm

h , v)− 5

6
Hj(E

m,1
h , nm,1

h , v) +
1

2
Hj(E

m,2
h , nm,2

h , v)

− 1

2
H−

j (qm,1
h , v) +

1

2
H−

j (qm,2
h , v) +

1

2
H−

j (qm,3
h , v), (5.14)(

nm+1
h − nm

h

Δt
, v

)
Ij

=
1

4
Hj(E

m
h , nm

h , v) +
7

4
Hj(E

m,1
h , nm,1

h , v)

+
3

4
Hj(E

m,2
h , nm,2

h , v)− 7

4
Hj(E

m,3
h , nm,3

h , v)

+
3

2
H−

j (qm,1
h , v)− 3

2
H−

j (qm,2
h , v)

+
1

2
H−

j (qm,3
h , v) +

1

2
H−

j (qm+1
h , v), (5.15)

(qm,l
h , w)Ij = H+

j (nm,l
h , w), l = 1, 2, 3, 4, qm,4

h = qm+1
h , (5.16)

where j = 1, . . . , N and v, w in V k
h .
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The LDG scheme of the electric potential equation is: Find Em,l
h , φm,l

h ∈ V k
h , such that

−
∫
Ij

Em,l
h rxdx+ (Êm,l

h )j+ 1
2
r−
j+ 1

2

− (Êm,l
h )j− 1

2
r+
j− 1

2

= −e

ε

∫
Ij

(nm,l
h − nd)rdx, (5.17)

∫
Ij

Em,l
h zdx−

∫
Ij

φm,l
h zxdx+ (φ̂m,l

h )j+ 1
2
z−
j+ 1

2

− (φ̂m,l
h )j− 1

2
z+
j− 1

2

= 0, (5.18)

where j = 1, . . . , N and r, z in V k
h , and l = 0, 1, 2, 3, um,0 = um.

The “hat” terms for the numerical flux are chosen as before.

5.2 The error estimate of the first order IMEX LDG scheme

Denote ‖u‖L∞(0,T ;L2) = max0�m�M ‖um‖L2(I), and ‖u‖L2(0,T ;L2) = (
∑M

m=0 ‖um‖2L2(I)Δt)
1
2 in the follow-

ing analysis of fully-discrete schemes.

Theorem 5.1. Let nm, qm be the exact solution of the problem (3.7)–(3.10) at time level m, which is

sufficiently smooth with bounded derivatives. Let nm
h , qmh be the numerical solution of the first order IMEX

LDG scheme (5.3)–(5.6). If the finite element space V k
h is the piecewise polynomials of degree k � 0,

then for small enough h, there exists a positive constant C independent of h, such that the following error

estimate holds:

‖n− nh‖L∞(0,T ;L2) + ‖q − qh‖L2(0,T ;L2) � C(hk+1 +Δt), (5.19)

where the constant C depends on the final time T , k, Cμ, the inverse constant C2, ‖n‖L∞(0,T ;Hk+1),

‖nx‖L∞ and ‖E‖L∞.

Proof. To get the error equation of the first order IMEX LDG scheme, we first rewrite (3.7) and (3.8)

at time level m or m+ 1 as the following:(
nm+1 − nm

Δt
, v

)
Ij

= −(μEmnm, vx)Ij + (μEmnm)j+ 1
2
v−
j+ 1

2

− (μEmnm)j− 1
2
v+
j− 1

2

− (
√
τθqm+1, vx)Ij + (

√
τθqm+1)j+ 1

2
v−
j+ 1

2

− (
√
τθqm+1)j− 1

2
v+
j− 1

2

+

(
nm+1 − nm

Δt
− nm

t , v

)
Ij

+ (
√
τθ(qm+1 − qm), vx)Ij

−
√
τθ(qm+1 − qm)j+ 1

2
v−
j+ 1

2

+
√
τθ(qm+1 − qm)j− 1

2
v+
j− 1

2

, (5.20)

(qm+1, w)Ij = −(
√
τθnm+1, wx)Ij + (

√
τθnm+1)j+ 1

2
w−

j+ 1
2

− (
√
τθnm+1)j− 1

2
w+

j− 1
2

. (5.21)

Taking the difference of (5.20) and (5.3), and the difference of (5.21) and (5.4), we have the following

error equation:(
(nm+1 − nm+1

h )− (nm − nm
h )

Δt
, v

)
Ij

= −(μEmnm − μEm
h nm

h , vx)Ij + (μEmnm − μ ̂Em
h nm

h )j+ 1
2
v−
j+ 1

2

− (μEmnm − μ ̂Em
h nm

h )j− 1
2
v+
j− 1

2

−
√
τθ(qm+1 − qm+1

h , vx)Ij

+
√
τθ(qm+1 − q̂m+1

h )j+ 1
2
v−
j+ 1

2

−
√
τθ(qm+1 − q̂m+1

h )j− 1
2
v+
j− 1

2

+

(
nm+1 − nm

Δt
− nm

t , v

)
Ij

+ (
√
τθqm+1 − qm, vx)Ij

−
√
τθ(qm+1 − qm)j+ 1

2
v−
j+ 1

2

+
√
τθ(qm+1 − qm)j− 1

2
v+
j− 1

2

,

(qm+1 − qm+1
h , w)Ij = −

√
τθ(nm+1 − nm+1

h , wx)Ij +
√
τθ(nm+1 − n̂m+1

h )j+ 1
2
w−

j+ 1
2

−
√
τθ(nm+1 − n̂m+1

h )j− 1
2
w+

j− 1
2

.

Choosing v = ξm+1
n , w = ξm+1

q , summing the above two equalities and summing j over I, we get

(ξm+1
n − ξmn , ξm+1

n ) + Δt(ξm+1
q , ξm+1

q )
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= (ηm+1
n − ηmn , ξm+1

n ) + Δt(ηm+1
q , ξm+1

q ) + Δt

(
nm+1 − nm

Δt
− nm

t , ξm+1
n

)

−Δt(μEmnm − μEm
h nm

h , ξm+1
n,x )−Δt

N∑
j=1

(μEmnm − μ ̂Em
h nm

h )j− 1
2
[ξm+1

n ]j− 1
2

−Δt
√
τθ(ξm+1

q − ηm+1
q , ξm+1

n,x )−Δt
√
τθ

N∑
j=1

((ξm+1
q )− − (ηm+1

q )−)j− 1
2
[ξm+1

n ]j− 1
2

+Δt
√
τθ(qm+1 − qm, ξm+1

n,x ) + Δt
√
τθ

N∑
j=1

((qm+1)− (qm))j− 1
2
[ξm+1

n ]j− 1
2

−Δt
√
τθ(ξm+1

n − ηm+1
n , ξm+1

q,x )−Δt
√
τθ

N∑
j=1

((ξm+1
n )+ − (ηm+1

n )+)j− 1
2
[ξm+1

q ]j− 1
2
.

Noting that (ξm+1
n − ξmn , ξm+1

n ) = 1
2‖ξm+1

n ‖2 − 1
2‖ξmn ‖2 + 1

2‖ξm+1
n − ξmn ‖2, we have

1

2
‖ξm+1

n ‖2 − 1

2
‖ξmn ‖2 + 1

2
‖ξm+1

n − ξmn ‖2 +Δt‖ξm+1
q ‖2

� (ηm+1
n − ηmn , ξm+1

n ) + Δt(ηm+1
q , ξm+1

q ) + Δt

(
nm+1 − nm

Δt
− nm

t , ξm+1
n

)

+

(
Δt

√
τθ(ηm+1

q , ξm+1
n,x ) + Δt

√
τθ(ηm+1

n , ξm+1
q,x )

+ Δt
√
τθ

N∑
j=1

(ηm+1
q )−

j− 1
2

[ξm+1
n ]j− 1

2
+Δt

√
τθ

N∑
j=1

(ηm+1
n )+

j− 1
2

[ξm+1
q ]j− 1

2

)

+

(
−Δt

√
τθ(ξm+1

q , ξm+1
n,x )−Δt

√
τθ(ξm+1

n , ξm+1
q,x )

−Δt
√
τθ

N∑
j=1

(ξm+1
n )+

j− 1
2

[ξm+1
q ]j− 1

2
−Δt

√
τθ

N∑
j=1

(ξm+1
q )−

j− 1
2

[ξm+1
n ]j− 1

2

)

+

(
Δt

√
τθ(qm+1 − qm, ξm+1

n,x )−Δt
√
τθ

N∑
j=1

(qm+1 − qm)j− 1
2
[ξm+1

n ]j− 1
2

)

+

(
−Δt(μEmnm − μEm

h nm
h , ξm+1

n,x )−Δt

N∑
j=1

(μEmnm − μ ̂Em
h nm

h )j− 1
2
[ξm+1

n ]j− 1
2

)

=:

7∑
i=1

T1i. (5.22)

Now, we estimate T1i term by term. From (2.3) of the projection, and Schwartz’s inequality or Young’s

inequality, we have

T11 � 1

2
Δth2k+2 +

1

2
Δt‖ξm+1

n ‖2, (5.23)

T12 � CΔth2k+2 + ε̃Δt‖ξm+1
q ‖2. (5.24)

Noting that
nm+1 − nm

Δt
− nm

t = O(Δt),

we can get

T13 � 1

2
(Δt)3 +

1

2
Δt‖ξm+1

n ‖2. (5.25)

Obviously, from (2.2), we have

T14 = 0. (5.26)
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We have also

T15 = −Δt
√
τθ

N∑
j=1

(∫
Ij

(ξm+1
q ξm+1

n )xdx+ (ξm+1
n )+

j− 1
2

[ξm+1
q ]j− 1

2
+ (ξm+1

q )−
j− 1

2

[ξm+1
n ]j− 1

2

)

= −Δt
√
τθ

N∑
j=1

((ξm+1
n )+

j+ 1
2

(ξm+1
q )−

j+ 1
2

− (ξm+1
n )+

j− 1
2

(ξm+1
q )−

j− 1
2

)

= 0. (5.27)

The above estimate of T15 used the periodic boundary condition for n, nh, q and qh.

Noting that qm+1 − qm = O(Δt), using Young’s inequality, we get

T16 � C(Δt)3 + ε̃Δt‖ξm+1
n,x ‖2 + C(Δt)3h+ ε̃h−1Δt[ξm+1

n ]2. (5.28)

About the last term T17, we need the a-priori assumption similarly to (4.22),

‖nm − nm
h ‖ � C̃h. (5.29)

From the above assumption, we can get ‖nm
h ‖L∞ � C. Then we estimate T17 similarly as T5 of the

semi-discrete scheme, using Em
h nm

h , ξm+1
n,x and [ξm+1

n ] instead of Ehnh, ξn,x and [ξn], respectively to

obtain

T17 � CΔt‖ξmn ‖2 + CΔth2k+2 + ε̃Δt‖ξm+1
n,x ‖2 + ε̃h−1Δt[ξm+1

n ]2. (5.30)

Substituting (5.23)–(5.30) to (5.22), we have

1

2
‖ξm+1

n ‖2 − 1

2
‖ξmn ‖2 + 1

2
‖ξm+1

n − ξmn ‖2 +Δt‖ξm+1
q ‖2

� CΔth2k+2 + CΔt(‖ξm+1
n ‖2 + ‖ξmn ‖2) + ε̃Δt‖ξm+1

q ‖2
+ (Δt)3 + ε̃Δt‖ξm+1

n,x ‖2 + C(Δt)3h+ ε̃h−1Δt[ξm+1
n ]2.

Summing the above inequality over the time step m, using the discrete Gronwall inequality and

Lemma 4.3, we get

‖ξMn ‖2 +Δt

M∑
m=0

‖ξmq ‖2 � ‖ξ0n‖2 + Ch2k+2 + C(Δt)2. (5.31)

To complete the proof, let us verify the a-priori assumption (5.29). For m = 0, we choose n0
h as the

projection of n0, so obviously, the assumption (5.29) holds. If (5.29) holds for m = 1, . . . ,M − 1, then

for m = M, we can get (5.31), i.e., (5.29) holds also for m = M .

5.3 The error estimate of the second order IMEX LDG scheme

Theorem 5.2. Let nm, qm be the exact solution to (3.7)–(3.10) at time level m, which is sufficiently

smooth with bounded derivatives. Let nm
h , qmh be the numerical solution to the second order IMEX LDG

scheme (5.7)–(5.11). If the finite element space V k
h is the piecewise polynomials of degree k � 0, then for

small enough h, there exists a positive constant C independent of h, such that the following error estimate

holds

‖n− nh‖L∞(0,T ;L2) � C(hk+1 + (Δt)2), (5.32)

where the constant C depends on the final time T , k, Cμ, the inverse constant C2, ‖n‖L∞(0,T ;Hk+1),

‖nx‖L∞ and ‖E‖L∞.
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Proof. First, we rewrite the scheme (5.7)–(5.8) as the following

(nm,1
h − nm

h , v)Ij = γΔtHj(E
m
h , nm

h , v) + γΔtH−
j (qm,1

h , v), (5.33)

(nm+1
h − nm,1

h , v)Ij = (δ − γ)ΔtHj(E
m
h , nm

h , v) + (1− δ)ΔtHj(E
m,1
h , nm,1

h , v)

+ (1− 2γ)ΔtH−
j (qm,1

h , v) + γΔtH−
j (qm+1

h , v), (5.34)

To get the error equation, we need to define nm,1, qm,1,

nm,1 − nm

Δt
= γ(μEmnm))x+ γ

√
τθqm,1

x , qm,1 =
√
τθnm,1

x ,

where nm is the exact solution n at the m-th time level. Then we get the weak forms

(nm,1 − nm, v)Ij = γΔtHj(E
m, nm, v) + γΔtH−

j (qm,1, v), (5.35)

(nm+1 − nm,1, v)Ij = (δ − γ)ΔtHj(E
m, nm, v) + (1 − δ)ΔtHj(E

m,1, nm,1, v)

+ (1 − 2γ)ΔtH−
j (qm,1, v) + γΔtH−

j (qm+1, v) + (ζm, v), (5.36)

(qm,l, w)Ij = H+
j (nm,l, w), l = 1, 2, (5.37)

where ζm is the truncation error and ‖ζm‖ � C(Δt)3. The weak forms of the electric potential equation are

−
∫
Ij

Em,lrxdx+ Em,l

j+ 1
2

r−
j+ 1

2

− Em,l

j− 1
2

r+
j− 1

2

= −e

ε

∫
Ij

(nm,l − nd)rdx, (5.38)

∫
Ij

Em,lzdx−
∫
Ij

φm,lzxdx + φm,l

j+ 1
2

z−
j+ 1

2

− φm,l

j− 1
2

z+
j− 1

2

= 0, l = 0, 1. (5.39)

Denote em,l
u = um,l − um,l

h = ξm,l
u − ηm,l

u , u = n, q. Here, ξn, ηn, ξq, ηq are the same as before.

Subtracting the above weak forms of the electron concentration equation from those second order IMEX

LDG scheme of the electron concentration equation, i.e., (5.33)–(5.35), (5.34)–(5.36) and (5.9)–(5.37), we

get the following error equation

(ξm,1
n − ξmn , v)Ij = γΔt(Hj(E

m, nm, v)−Hj(E
m
h , nm

h , v))

+ (ηm,1
n − ηmn , v)Ij + γΔtH−

j (ξm,1
q , v)− γΔtH−

j (ηm,1
q , v),

(ξm+1
n − ξm,1

n , v)Ij = (δ − γ)Δt(Hj(E
m, nm, v)−Hj(E

m
h , nm

h , v))

+ (1 − δ)Δt(Hj(E
m,1, nm,1, v)−Hj(E

m,1
h , nm,1

h , v))

+ (1 − 2γ)ΔtH−
j (ξm,1

q , v)− (1− 2γ)ΔtH−
j (ηm,1

q , v)

+ γΔtH−
j (ξm+1

q , v)− γΔtH−
j (ηm+1

q , v) + (ηm+1
n − ηm,1

n , v)Ij + (ζm, v)Ij ,

(ξm,l
q , w)Ij = (ηm,l

q , w)Ij +H+
j (ξm,l

n , w) −H+
j (ηm,l

n , w), l = 1, 2.

Noting that H−
j (ηm,l

q , v) = 0 and H+
j (ηm,l

n , w) = 0 from the projection, taking v = ξm,1
n , ξm+1

n , w

= ξm,1
q , ξm+1

q in the above equalities, we get

(ξm,1
n − ξmn , ξm,1

n )Ij = γΔt(Hj(E
m, nm, ξm,1

n )−Hj(E
m
h , nm

h , ξm,1
n ))

+ (ηm,1
n − ηmn , ξm,1

n )Ij + γΔtH−
j (ξm,1

q , ξm,1
n ), (5.40)

(ξm+1
n − ξm,1

n , ξm+1
n )Ij = (δ − γ)Δt(Hj(E

m, nm, ξm+1
n )−Hj(E

m
h , nm

h , ξm+1
n ))

+ (1 − δ)Δt(Hj(E
m,1, nm,1, ξm+1

n )−Hj(E
m,1
h , nm,1

h , ξm+1
n ))

+ (1 − 2γ)ΔtH−
j (ξm,1

q , ξm+1
n ) + γΔtH−

j (ξm+1
q , ξm+1

n )

+ (ηm+1
n − ηm,1

n , ξm+1
n )Ij + (ζm, ξm+1

n )Ij , (5.41)

(ξm,1
q , ξm,1

q )Ij = (ηm,1
q , ξm,1

q )Ij +H+
j (ξm,1

n , ξm,1
q ), (5.42)

(ξm+1
q , ξm+1

q )Ij = (ηm+1
q , ξm+1

q )Ij +H+
j (ξm+1

n , ξm+1
q ). (5.43)
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If we choose w = ξm,1
q instead of w = ξm+1

q in (5.43), we get

(ξm+1
q , ξm,1

q )Ij = (ηm+1
q , ξm,1

q )Ij +H+
j (ξm+1

n , ξm,1
q ). (5.44)

Taking (5.42) × γΔt + (5.43)× γΔt + (5.44) × (1 − 2γ)Δt, then summing them together with (5.40)

and (5.41), and summing j over I, we have

1

2
‖ξm+1

n ‖2 − 1

2
‖ξmn ‖2 + 1

2
‖ξm+1

n − ξm,1
n ‖2 + 1

2
‖ξm,1

n − ξmn ‖2

+ γΔt‖ξm,1
q ‖2 + γΔt‖ξm+1

q ‖2 + (1− 2γ)Δt(ξm+1
q , ξm,1

q )

= ((ηm,1
n − ηmn , ξm,1

n ) + (ηm+1
n − ηm,1

n , ξm+1
n ))

+ (γΔtH−(ξm,1
q , ξm,1

n ) + (1 − 2γ)ΔtH−(ξm,1
q , ξm+1

n ) + γΔtH−(ξm+1
q , ξm+1

n )

+ γΔtH+(ξm,1
n , ξm,1

q ) + (1− 2γ)ΔtH+(ξm+1
n , ξm,1

q ) + γΔtH+(ξm+1
n , ξm+1

q ))

+ ((ζm, ξm+1
n ) + γΔt(ηm,1

q , ξm,1
q ) + γΔt(ηm+1

q , ξm+1
q ) + (1− 2γ)Δt(ηm+1

q , ξm,1
q ))

+ (γΔt(H(Em, nm, ξm,1
n )−H(Em

h , nm
h , ξm,1

n ))

+ (δ − γ)Δt(H(Em, nm, ξm+1
n )−H(Em

h , nm
h , ξm+1

n ))

+ (1− δ)Δt(H(Em,1, nm,1, ξm+1
n )−H(Em,1

h , nm,1
h , ξm+1

n )))

=:

4∑
i=1

T2i. (5.45)

Next, we estimate the term T2i one by one. Obviously, from the property of the projection (2.3) and

the Schwartz inequality, we can get

T21 � CΔth2k+2 + CΔt(‖ξm,1
n ‖2 + ‖ξm+1

n ‖2). (5.46)

From the periodic boundary condition, we have

T22 = 0. (5.47)

To estimate T23, we denote ξTq = (ξm,1
q , ξm+1

q ). Using the property of the projection (2.3), Schwartz’s

inequality and Young’s inequality, we have

T23 = C(Δt)5 + CΔt‖ξm+1
n ‖2 + CΔth2k+2 + ε̃Δt

∫
I

ξTq ξqdx. (5.48)

Similarly as the estimation of the term T17 in the first order IMEX LDG scheme, we have

γΔt(Hj(E
m, nm, ξm,1

n )−Hj(E
m
h , nm

h , ξm,1
n ))

� CΔt(h2k+2 + ‖ξmn ‖2) + ε̃(Δt‖ξm,1
n,x ‖2 +Δth−1[ξm,1

n ]2).

(δ − γ)Δt(Hj(E
m, nm, ξm+1

n )−Hj(E
m
h , nm

h , ξm+1
n ))

� CΔt(h2k+2 + ‖ξmn ‖2) + ε̃(Δt‖ξm+1
n,x ‖2 +Δth−1[ξm+1

n ]2).

(1− δ)Δt(Hj(E
m,1, nm,1, ξm+1

n )−Hj(E
m,1
h , nm,1

h , ξm+1
n ))

� CΔt(h2k+2 + ‖ξm,1
n ‖2) + ε̃(Δt‖ξm+1

n,x ‖2 +Δth−1[ξm+1
n ]2).

Noting that for both pairs of (ξm,l
n , ξm,l

q ), l = 1, 2, we have the similar result as Lemma 4.3,

‖ξm,l
n,x‖ � Cμ√

τθ
(‖ξm,l

q ‖+ ‖ηm,l
q ‖)

h− 1
2 [ξm,l

n ] � Cμ√
τθ

(‖ξm,l
q ‖+ ‖ηm,l

q ‖). (5.49)

Then we get

T24 � CΔt(h2k+2 + ‖ξmn ‖2 + ‖ξm,1
n ‖2) + 2ε̃

Cμ√
τθ

Δt‖ξm,1
q ‖2 + 4ε̃

Cμ√
τθ

Δt‖ξm+1
q ‖2. (5.50)



130 Liu Y X et al. Sci China Math January 2016 Vol. 59 No. 1

Substituting (5.46)–(5.48) and (5.50) to (5.45), we get

‖ξm+1
n ‖2 − ‖ξmn ‖2 + 2γΔt‖ξm,1

q ‖2 + 2γΔt‖ξm+1
q ‖2 + 2(1− 2γ)Δt(ξm+1

q , ξm,1
q )

� C(Δt)5 + CΔth2k+2 + CΔt(‖ξmn ‖2 + ‖ξm,1
n ‖2 + ‖ξm+1

n ‖2)
+ 2ε̃Δt

∫
I

ξTq ξqdx+ 4ε̃
Cμ√
τθ

Δt‖ξm,1
q ‖2 + 8ε̃

Cμ√
τθ

Δt‖ξm+1
q ‖2. (5.51)

We can choose ε̃ small enough that ε̃
Cµ√
τθ

� 1
16γ, so we have

‖ξm+1
n ‖2 − ‖ξmn ‖2 + 3

2
γΔt‖ξm,1

q ‖2 + 3

2
γΔt‖ξm+1

q ‖2 + 2(1− 2γ)Δt(ξm+1
q , ξm,1

q )

� C(Δt)5 + CΔth2k+2 + CΔt(‖ξmn ‖2 + ‖ξm,1
n ‖2 + ‖ξm+1

n ‖2) + 2ε̃Δt

∫
I

ξTq ξqdx. (5.52)

If we denote the last three term of the left hand as S, i.e.,

S :=
3

2
γΔt‖ξm,1

q ‖2 + 3

2
γΔt‖ξm+1

q ‖2 + 2(1− 2γ)Δt(ξm+1
q , ξm,1

q )

= Δt

∫
I

ξTq Mξqdx,

where

M =

(
3
2γ 1− 2γ

1− 2γ 3
2γ

)
.

It is easy to check that M is positive definite. So if we choose ε̃ satisfying not only ε̃
Cµ√
τθ

� 1
16γ but also∫

I ξ
T
q (M − 2ε̃)ξqdx � 0, we can get

‖ξm+1
n ‖2 − ‖ξmn ‖2 � C(Δt)5 + CΔth2k+2 + CΔt(‖ξmn ‖2 + ‖ξm,1

n ‖2 + ‖ξm+1
n ‖2). (5.53)

The estimate for the stage values ‖ξm,1
n ‖ can be obtained along the similar argument as the result of (5.53),

so we omit the details and only state it in the following inequality:

‖ξm,1
n ‖2 � C(‖ξmn ‖2 + (Δt)5 +Δth2k+2). (5.54)

Combining (5.54) to (5.53), summing t over (0, T ) and using the discrete Gronwall inequality, we obtain

‖ξn‖L∞(0,T ;L2(I)) � C(Δt)2 + Chk+1. (5.55)

This completes the proof.

5.4 The error estimate of the third order IMEX LDG scheme

Theorem 5.3. Let nm, qm be the exact solution to (3.7)–(3.10) at time level m, which is sufficiently

smooth with bounded derivatives. Let nm
h , qmh be the numerical solution to the third order IMEX LDG

scheme (5.12)–(5.18). If the finite element space V k
h is the piecewise polynomials of degree k � 0, then

for small enough h, there exists a positive constant C independent of h, such that the following error

estimate holds:

‖n− nh‖L∞(0,T ;L2) � C(hk+1 + (Δt)3), (5.56)

where the constant C depends on the final time T , k, Cμ, the inverse constant C2, ‖n‖L∞(0,T ;Hk+1),

‖nx‖L∞ and ‖E‖L∞.

Proof. For the convenience of analysis, we would like to denote

D1u
m = 2um,2 − 3um,1, D2u

m = um,3 − 2um,2 + 2um,1,
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then introduce a series of notation

F1u
m = um,1 − um, F2u

m = D1u
m + um,

F3u
m = D2u

m − um,1, F4u
m = 2um+1 +D1u

m −D2u
m,

F41u
m = um+1 +D1u

m, F42u
m = um+1 −D2u

m.

We sum j over I and rewrite the scheme (5.12)–(5.15) into the following compact form:

{
(Fln

m
h , v) = Φl(E

m
h ,nm

h , v) + Ψl(q
m
h , v), l = 1, 2, 3, 4,

(qm,l
h , w) = H+(nm,l

h , v), l = 1, 2, 3, 4,
(5.57)

where nm
h = (nm

h , nm,1
h , nm,2

h , nm,3
h ), qm

h = (qm,1
h , qm,2

h , qm,3
h , qm+1

h ), and

Φ1(E
m
h ,nm

h , v) =
1

2
ΔtH(Em

h , nm
h , v),

Φ2(E
m
h ,nm

h , v) = − 5

18
ΔtH(Em

h , nm
h , v) +

1

9
ΔtH(Em,1

h , nm,1
h , v),

Φ3(E
m
h ,nm

h , v) =
1

9
ΔtH(Em

h , nm
h , v)− 17

18
ΔtH(Em,1

h , nm,1
h , v) +

1

2
ΔtH(Em,2

h , nm,2
h , v),

Φ4(E
m
h ,nm

h , v) = − 7

18
ΔtH(Em

h , nm
h , v) +

41

9
ΔtH(Em,1

h , nm,1
h , v) + ΔtH(Em,2

h , nm,2
h , v)

− 7

2
ΔtH(Em,3

h , nm,3
h , v),

and

Ψ1(q
m
h , v) =

1

2
ΔtH−(qm,1

h , v),

Ψ2(q
m
h , v) =

1

3
ΔtH−(qm,1

h , v) +
1

2
ΔtH−(D1q

m
h , v),

Ψ3(q
m
h , v) = − 7

12
ΔtH−(qm,1

h , v) +
1

4
ΔtH−(D1q

m
h , v) +

1

2
ΔtH−(D2q

m
h , v),

Ψ4(q
m
h , v) = − 1

12
ΔtH−(qm,1

h , v)− 1

4
ΔtH−(D1q

m
h , v) +

1

2
ΔtH−(D2q

m
h , v)

+ ΔtH−(qm+1
h , v).

To get the error equation, we need to define nm,l, qm,l, Em,l, φm,l as the following:

nm,1 − nm

Δt
=

1

2
(μEmnm)x +

1

2

√
τθqm,1

x ,

nm,2 − nm

Δt
=

11

18
(μEmnm)x +

1

18
(μEm,1nm,1)x +

1

6

√
τθqm,1

x +
1

2

√
τθqm,2

x ,

nm,3 − nm

Δt
=

5

6
(μEmnm)x − 5

6
(μEm,1nm,1)x +

1

2
(μEm,2nm,2)x

− 1

2

√
τθqm,1

x +
1

2

√
τθqm,2

x +
1

2

√
τθqm,3

x ,

nm+1 − nm

Δt
=

1

4
(μEmnm)x +

7

4
(μEm,1nm,1)x +

3

4
(μEm,2nm,2)x − 7

4
(μEm,3nm,3)x

+
3

2

√
τθqm,1

x − 3

2

√
τθqm,2

x +
1

2

√
τθqm,3

x +
1

2

√
τθqm+1

x +
ζm

Δt
,

qm,l =
√
τθnm,l

x , l = 1, 2, 3, 4,

(5.58)

and

Em,l = −φm,l
x , Em,l

x = −e

ε
(nm,l − nd), l = 0, 1, 2, 3, (5.59)
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where nm is the exact solution n on time level m, ζm is the local truncation error of the third order

IMEX RK method and ‖ζm‖ � C(Δt)4. Then we get the weak forms of the concentration equation,{
(Fln

m, v) = Φl(E
m,nm, v) + Ψl(q

m, v) + δl(ζ
m, v),

(qm,l, w) = H+(nm,l), w), l = 1, 2, 3, 4.
(5.60)

Here, nm = (nm, nm,1, nm,2, nm,3), qm = (qm,1, qm,2, qm,3, qm+1), and δl = 0 if l = 1, 2, 3, δ4 = 1. Now,

we get the error equation{
(Flξ

m
n , v) = Φl(E

m,nm, v)− Φl(E
m
h ,nm

h , v) + Ψl(ξ
m
q , v) + (Flη

m
n + δlζ

m, v),

(ξm,l
q , w) = H+(ξm,l

n , w) + (ηm,l
q , w), l = 1, 2, 3, 4,

(5.61)

since the projection error related terms in Ψl and H+ vanish by the property of the projection (2.3).

Taking v = ξm,1
n , D1ξ

m
n , D2ξ

m
n , ξm+1

n in (5.61), and writing F4ξ
m
n = F41ξ

m
n + F42ξ

m
n , we have

1

2
‖ξm,1

n ‖2 + 1

2
‖F1ξ

m
n ‖2 − 1

2
‖ξmn ‖2

= Φ1(E
m,nm, ξm,1

n )− Φ1(E
m
h ,nm

h , ξm,1
n ) + Ψ1(ξ

m
q , ξm,1

n ) + (F1η
m
n , ξm,1

n ), (5.62)

1

2
‖D1ξ

m
n ‖2 + 1

2
‖F2ξ

m
n ‖2 − 1

2
‖ξmn ‖2

= Φ2(E
m,nm, D1ξ

m
n )− Φ2(E

m
h ,nm

h , D1ξ
m
n ) + Ψ2(ξ

m
q , D1ξ

m
n ) + (F2η

m
n , D1ξ

m
n ), (5.63)

1

2
‖D2ξ

m
n ‖2 + 1

2
‖F3ξ

m
n ‖2 − 1

2
‖ξm,1

n ‖2

= Φ3(E
m,nm, D2ξ

m
n )− Φ3(E

m
h ,nm

h , D2ξ
m
n ) + Ψ3(ξ

m
q , D2ξ

m
n ) + (F3η

m
n , D2ξ

m
n ), (5.64)

‖ξm+1
n ‖2 + 1

2
‖F41ξ

m
n ‖2 + 1

2
‖F42ξ

m
n ‖2 − 1

2
‖D1ξ

m
n ‖2 − 1

2
‖D2ξ

m
n ‖2

= Φ4(E
m,nm, ξm+1

n )− Φ4(E
m
h ,nm

h , ξm+1
n )

+ Ψ4(ξ
m
q , ξm+1

n ) + (F4η
m
n , ξm+1

n ) + (O(Δt)4, ξm+1
n ). (5.65)

Adding them together, we have

‖ξm+1
n ‖2 − ‖ξmn ‖2 + S = TΦ + TΨ + Tη, (5.66)

where S = 1
2‖F1ξ

m
n ‖2 + 1

2‖F2ξ
m
n ‖2 + 1

2‖F3ξ
m
n ‖2 + 1

2‖F41ξ
m
n ‖2 + 1

2‖F42ξ
m
n ‖2, and

TΦ = Φ1(E
m,nm, ξm,1

n )− Φ1(E
m
h ,nm

h , ξm,1
n ) + Φ2(E

m,nm, D1ξ
m
n )− Φ2(E

m
h ,nm

h , D1ξ
m
n )

+ Φ3(E
m,nm, D2ξ

m
n )− Φ3(E

m
h ,nm

h , D2ξ
m
n ) + Φ4(E

m,nm, ξm+1
n )− Φ4(E

m
h ,nm

h , ξm+1
n ),

TΨ = Ψ1(ξ
m
q , ξm,1

n ) + Ψ2(ξ
m
q , D1ξ

m
n ) + Ψ3(ξ

m
q , D2ξ

m
n ) + Ψ4(ξ

m
q , ξm+1

n ),

Tη = (F1η
m
n , ξm,1

n ) + (F2η
m
n , D1ξ

m
n ) + (F3η

m
n , D2ξ

m
n ) + (F4η

m
n , ξm+1

n ) + (O(Δt)4, ξm+1
n ).

Easily from Schwarz’s inequality and the property of the projection, we can get

Tη � CΔt

4∑
l=1

‖ξm,l
n ‖2 + CΔth2k+2 + C(Δt)7. (5.67)

To estimate TΨ, from the definition of H± in (5.2) and the error equation (5.61), we first have

H−(ξq, ξn) = −H+(ξn, ξq) = −‖ξq‖2 + (ηq, ξq), (5.68)

and

H−(ξ1q , ξ
2
n) = −H+(ξ2n, ξ

1
q ) = −(ξ2q , ξ

1
q ) + (η2q , ξ

1
q ). (5.69)

Then we have TΨ = Tηq + Tξq, where

Tηq =
1

2
(ηm,1

q , ξm,1
q )Δt+

1

3
(D1η

m
q , ξm,1

q )Δt+
1

2
(D1η

m
q , D1ξ

m
q )Δt
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− 7

12
(D2η

m,1
q , ξm,1

q )Δt+
1

4
(D2η

m
q , D1ξ

m
q )Δt+

1

2
(D2η

m
q , D2ξ

m
q )2Δt

− 1

12
(ηm+1

q , ξm,1
q )Δt− 1

4
(ηm+1

q , D1ξ
m
q )Δt+

1

2
(ηm+1

q , D2ξ
m
q )Δt+ (ηm+1

q , ξm+1
q )Δt,

Tξq = −1

2
‖ξm,1

q ‖2Δt− 1

3
(D1ξ

m
q , ξm,1

q )Δt− 1

2
‖D1ξ

m
q ‖2Δt

+
7

12
(D2ξ

m,1
q , ξm,1

q )Δt− 1

4
(D2ξ

m,1
q , D1ξ

m
q )Δt− 1

2
‖D2ξ

m
q ‖2Δt

+
1

12
(ξm+1

q , ξm,1
q )Δt+

1

4
(ξm+1

q , D1ξ
m
q )Δt− 1

2
(ξm+1

q , D2ξ
m
q )Δt− ‖ξm+1

q ‖2Δt

= −Δt

∫
I

ξTq Mξqdx,

here, ξTq = (ξm,1
q , D1ξ

m
q , D2ξ

m
q , ξm+1

q ), and

M =

⎛
⎜⎜⎜⎜⎝

1
2

1
6 − 7

24 − 1
24

1
6

1
2 − 1

8 − 1
8

− 7
24

1
8 − 1

2
1
4

− 1
24 − 1

8
1
4 1

⎞
⎟⎟⎟⎟⎠ .

It can be verified that M is positive definite by verifying the principle minor determinants of M are

all positive, so Tξq � 0.

And using Young’s inequality, for ∀ ε̃ > 0, we have Tηq � ε̃Δt
∫
I
ξTq ξqdx + Cε̃Δt

∑4
l=1 ‖ηm,l

q ‖2, where
Cε̃ is a positive constant only depending on ε̃. Then we have

TΨ � −Δt

∫
I

ξTq (M − ε̃I)ξqdx+ Cε̃Δth2k+2. (5.70)

Finally, we estimate TΦ as follows:

TΦ =

4∑
l=1

(Φl(E
m,nm, vl)− Φl(E

m
h ,nm

h , vl))

= Δt

4∑
l=1

3∑
i=0

δli(H(Em,i, nm,i, vl)−H(Em,i
h , nm,i

h , vl)).

Here and below we use the notation v1 = ξm,1
n , v2 = D1ξ

m
n , v3 = D2ξ

m
n , v4 = D1ξ

m+1
n , and δli are listed

in Table 1.

For each H(Em,i, nm,i, vl)−H(Em,i
h , nm,i

h , vl) in TΦ, from the definition of H , we have

H(Em,i, nm,i, vl)−H(Em,i
h , nm,i

h , vl)

= −(μEm,inm,i − μEm,i
h nm,i

h , vl,x)−
M∑
j=1

(μEm,inm,i − μ ̂Em,i
h nm,i

h )j− 1
2
[vl]j− 1

2
.

Table 1 The value of δli

δli

li 0 1 2 3

1 1
2

0 0 0

2 − 5
18

1
9

0 0

3 1
9

− 17
18

1
2

0

4 − 7
18

41
9

1 − 7
2
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Similar analysis as the term T17 in the first order IMEX LDG scheme, we get

|H(Em,i, nm,i, vl)−H(Em,i
h , nm,i

h , vl)| � C

( 3∑
i=0

‖ξm,i
n ‖2 + h2k+2

)
+ ε̃(‖vl,x‖2 + h−1[vl]

2). (5.71)

Then we have

TΦ � CΔt(

3∑
l=0

‖ξm,l
n ‖2 + h2k+2) + ε̃Δt(‖ξm,1

n,x ‖2 + ‖D1ξ
m
n,x‖2 + ‖D2ξ

m
n,x‖2 + ‖ξm+1

n,x ‖2)

+ ε̃Δth−1([ξm,1
n ]2 + [D1ξ

m
n ]2 + [D2ξ

m
n ]2 + [ξm+1

n ]2).

Noting that for any pair of (ξm,l
n , ξm,l

q ), l = 1, 2, 3, 4, we have the similar result as (5.49). Moreover, by

the linear structure of (5.61), (5.49) also holds for any linear combination of any pairs of (ξm,l
n , ξm,l

q ). For

example, for v2 = D1ξ
m
n = 2ξm,2

n − 3ξm,1
n , we have

‖v2,x‖ � Cμ√
τθ

(‖2ξm,2
q − 3ξm,1

q ‖+ ‖2ηm,2
q − 3ηm,1

q ‖),

h− 1
2 [D1ξ

m
n ] � Cμ√

τθ
(‖2ξm,2

q − 3ξm,1
q ‖+ ‖2ηm,2

q − 3ηm,1
q ‖).

Hence, from (5.49) (l = 1, 2, 3, 4), the above inequalities and the property of the projection (2.3),

we have

TΦ � CΔt

( 3∑
l=0

‖ξm,l
n ‖2 + h2k+2

)
+ ε̃Δt

∫
I

ξTq ξqdx. (5.72)

Substituting (5.67), (5.70) and (5.72) into (5.66), we obtain

‖ξm+1
n ‖2 − ‖ξmn ‖2 + S � CΔt

( 4∑
l=0

‖ξm,l
n ‖2 + h2k+2

)
+ C(Δt)7 −Δt

∫
I

ξTq (M − 2ε̃I)ξqdx.

We can choose ε̃ small enough, so that
∫
I ξ

T
q (M − 2ε̃I)ξqdx � 0. Then we get

‖ξm+1
n ‖2 − ‖ξmn ‖2 � CΔt

4∑
l=0

‖ξm,l
n ‖2 + CΔth2k+2 + C(Δt)7. (5.73)

Similar argument as the result of (5.73), we can get

‖ξm,l
n ‖2 � C(‖ξmn ‖2 +Δth2k+2 + (Δt)7), l = 1, 2, 3. (5.74)

Combining the above two inequalities (5.73) and (5.74), using the discrete Gronwall inequality, we can

obtain

‖ξn‖L∞(0,T ;L2(I)) � C(Δt)3 + Chk+1. (5.75)

This completes the proof.

6 Error estimates of the LDG method with Dirichlet boundary conditions

We have used periodic boundary condition for the concentration equation in the previous sections to

simplify the analysis. In practice, the boundary condition of the models of semiconductor devices is

usually Dirichlet. In this section, we discuss the error estimates of LDG method with Dirichlet boundary

conditions. We only give the detailed analysis for the semi-discrete scheme, as the analysis for the

fully-discrete schemes follows the same lines but is more tedious.
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The Dirichlet boundary condition is

n(0, t) = nl, n(1, t) = nr (6.1)

φ(0, t) = 0, φ(1, t) = vbias. (6.2)

The semi-discrete LDG scheme is the same as (4.1)–(4.4), except that the fluxes n̂h and q̂h should be

changed at one of the boundaries to take care of the Dirichlet boundary condition. We choose the flux

for n̂h and q̂h similarly to (4.6) or (4.7) as the following because of the Dirichlet boundary condition:

(n̂h) 1
2
= (n−

h ) 1
2
= nl, (n̂h)j− 1

2
= (n+

h )j− 1
2
, j = 2, . . . , N, (n̂h)N+ 1

2
= (n+

h )N+ 1
2
= nr,

(q̂h) 1
2
= (q+h ) 1

2
, (q̂h)j− 1

2
= (q−h )j− 1

2
, j = 2, . . . , N + 1. (6.3)

Or

(n̂h) 1
2
= (n−

h ) 1
2
= nl, (n̂h)j− 1

2
= (n−

h )j− 1
2
, j = 2, . . . , N, (n̂h)N+ 1

2
= (n+

h )N+ 1
2
= nr,

(q̂h)j− 1
2
= (q+h )j− 1

2
, j = 1, . . . , N, (q̂h)N+ 1

2
= (q−h )N+ 1

2
. (6.4)

The fluxes Êh and φ̂h are the same as before. Then we get the following error estimate.

Theorem 6.1. Let n, q be the exact solution to (3.7)–(3.10), which is sufficiently smooth with bounded

derivatives. Let nh, qh be the numerical solution of the semi-discrete LDG scheme (4.1)–(4.4), and choose

the fluxes of n̂h, q̂h as (6.3) or (6.4). Denote the corresponding numerical error by eu = u−uh (u = n, q).

If the finite element space V k
h is the piecewise polynomials of degree k � 0, then for small enough h there

holds the following error estimates

‖n− nh‖L∞(0,T ;L2) + ‖q − qh‖L2(0,T ;L2) � Chk+ 1
2 , (6.5)

where the constant C depends on the final time T , k, Cμ, the inverse constant C2, ‖n‖L∞(0,T ;Wk+1∞ ),

‖nx‖L∞ and ‖E‖L∞.

Proof. Taking the difference of (3.7) and (4.1) and the difference of (3.8) and (4.2), we get the same

error equations (4.12) and (4.13). Taking the flux (6.3) for example, we have∫
Ij

ξn,tvdx +

∫
Ij

√
τθξqvxdx+

∫
Ij

μ(En− Ehnh)vxdx

− μ(En−̂Ehnh)j+ 1
2
v−
j+ 1

2

+ μ(En−̂Ehnh)j− 1
2
v+
j− 1

2

=

∫
Ij

ηn,tvdx+
√
τθξ−

q,j+ 1
2

v−
j+ 1

2

−
√
τθξ−

q,j− 1
2

v+
j− 1

2

,

∫
Ij

ξqwdx +

∫
Ij

√
τθξnwxdx =

∫
Ij

ηqwdx +
√
τθξ+

n,j+ 1
2

w−
j+ 1

2

−
√
τθξ+

n,j− 1
2

w+
j− 1

2

,

for j = 2, . . . , N − 1, and∫
I1

ξn,tvdx+

∫
I1

√
τθξqvxdx

+

∫
I1

μ(En− Ehnh)vxdx− μ(En−̂Ehnh) 3
2
v−3

2

+ μ(En−̂Ehnh) 1
2
v+1

2

=

∫
I1

ηn,tvdx +
√
τθξ−

q, 32
v−3

2

− (
√
τθξ+

q, 12
v+1

2

−
√
τθη+

q, 12
v+1

2

),∫
I1

ξqwdx+

∫
I1

√
τθξnwxdx =

∫
I1

ηqwdx +
√
τθξ+

n, 32
w−

3
2

,

and ∫
IN

ξn,tvdx +

∫
IN

√
τθξqvxdx
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+

∫
IN

μ(En− Ehnh)vxdx− μ(En−̂Ehnh)N+ 1
2
v−
N+ 1

2

+ μ(En−̂Ehnh)N− 1
2
v+
N− 1

2

=

∫
IN

ηn,tvdx+
√
τθξ−

q,N+ 1
2

v−
N+ 1

2

−
√
τθξ−

q,N− 1
2

v+
N− 1

2

,∫
IN

ξqwdx +

∫
IN

√
τθξnwxdx =

∫
IN

ηqwdx−
√
τθξ+

n,N− 1
2

w+
N− 1

2

.

We get the above equalities for j = 1, . . . , N by using the projection∫
Ij

ηnwxdx = 0, η+
n,j− 1

2

= 0,

∫
Ij

ηqvxdx = 0, η−
q,j+ 1

2

= 0,

and (n− n̂h) 1
2
= 0, (n− n̂h)N+ 1

2
= 0.

Still choosing v = ξn, w = ξq and summing j from 1 to N , we get

N∑
j=1

∫
Ij

ξn,tξndx+
N∑
j=1

∫
Ij

ξ2qdx =
N∑
j=1

∫
Ij

ηn,tξndx+
N∑
j=1

∫
Ij

ηqξqdx

+

N∑
j=1

(
−
∫
Ij

√
τθξqξn,xdx−

∫
Ij

√
τθξnξq,xdx

)

+

N∑
j=1

(
√
τθξ−

q,j+ 1
2

ξ−
n,j+ 1

2

−
√
τθξ−

q,j− 1
2

ξ+
n,j− 1

2

)

+
√
τθξ−

q, 12
ξ+
n, 12

−
√
τθξ+

q, 12
ξ+
n, 12

+
√
τθη+

q, 12
ξ+
n, 12

+

N−1∑
j=2

(
√
τθξ+

n,j+ 1
2

ξ−
q,j+ 1

2

−
√
τθξ+

n,j− 1
2

ξ+
q,j− 1

2

)

+
√
τθξ+

n, 32
ξ−
q, 32

−
√
τθξ+

n,N− 1
2

ξ+
q,N− 1

2

+
N∑
j=1

(
−
∫
Ij

μ(En− Ehnh)ξn,xdx

+ μ(En− ̂Ehnh)j+ 1
2
ξ−
n,j+ 1

2

− μ(En− ̂Ehnh)j− 1
2
ξ+
n,j− 1

2

)
=: T1 + T2 + T3 + T4. (6.6)

We analyze T1, T2 and T4 as before. For T3, after a trivial deduction, we have

T3 =
√
τθη+

q, 12
ξ+
n, 12

� Ch−1|η+
q, 12

|2 + Ch|ξ+
n, 12

|2 � Ch2k+1 + C‖ξn‖2. (6.7)

Then (4.26) is changed to be

1

2

d

dt
‖ξn‖2 + ‖ξq‖2 � C‖ξn‖2 + Ch2k+1 + ε̃‖ξn,x‖2 + ε̃h−1[ξn]

2 + ε̃‖ξq‖2. (6.8)

Using Lemma 4.3, together with the property of the projection and the Gronwall inequality, we can

obtain the theorem.

Remark 6.2. If we choose the flux at the boundary as

(q̂h) 1
2
= (q+h ) 1

2
+ c0[nh] 1

2
. (6.9)

we can obtain the following optimal error estimate.
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Theorem 6.3. Replace the flux (q̂h) 1
2
in (6.3) by (6.9) in Theorem 6.1, we have the following optimal

error estimates:

‖n− nh‖L∞(0,T ;L2) + ‖q − qh‖L2(0,T ;L2) � Chk+1, (6.10)

where the constant C depends on the final time T , k, Cμ, the inverse constant C2, ‖n‖L∞(0,T ;Wk+1∞ ),

‖nx‖L∞ and ‖E‖L∞.

Proof. Comparing with the proof of Theorem 6.1, we have∫
I1

ξn,tvdx+

∫
I1

√
τθξqvxdx+

∫
I1

μ(En− Ehnh)vxdx

− μ(En−̂Ehnh) 3
2
v−3

2

+ μ(En−̂Ehnh) 1
2
v+1

2

=

∫
I1

ηn,tvdx +
√
τθξ−

q, 32
v−3

2

− (
√
τθξ+

q, 12
v+1

2

−
√
τθη+

q, 12
v+1

2

− c0
√
τθ[nh] 1

2
v+1

2

).

Then

T3 =
N∑
j=1

(
−
∫
Ij

√
τθξqξn,xdx−

∫
Ij

√
τθξnξq,xdx

)

+

N∑
j=1

(
√
τθξ−

q,j+ 1
2

ξ−
n,j+ 1

2

−
√
τθξ−

q,j− 1
2

ξ+
n,j− 1

2

)

+
√
τθξ−

q, 12
ξ+
n, 12

−
√
τθξ+

q, 12
ξ+
n, 12

+
√
τθη+

q, 12
ξ+
n, 12

+ c0
√
τθ[nh] 1

2
ξ+
n, 12

+

N−1∑
j=2

(
√
τθξ+

n,j+ 1
2

ξ−
q,j+ 1

2

−
√
τθξ+

n,j− 1
2

ξ+
q,j− 1

2

)

+
√
τθξ+

n, 32
ξ−
q, 32

−
√
τθξ+

n,N− 1
2

ξ+
q,N− 1

2

=
√
τθη+

q, 12
ξ+
n, 12

+ c0
√
τθ[nh] 1

2
ξ+
n, 12

=
√
τθη+

q, 12
ξ+
n, 12

+ c0
√
τθ((n− n−

h )− (n− n+
h )) 1

2
ξ+
n, 12

=
√
τθη+

q, 12
ξ+
n, 12

− c0
√
τθ(ξ+

n, 12
)2,

since n 1
2
= (n−

h ) 1
2
and η+

n, 12
= 0. So

T3 � C|η+
q, 12

|2 + ε̃|ξ+
n, 12

|2 − c0
√
τθ|ξ+

n, 12
|2 � Ch2k+2 − (c0

√
τθ − ε̃)|ξ+

n, 12
|2.

Then (6.8) is changed to be

1

2

d

dt
‖ξn‖2 + ‖ξq‖2 � C‖ξn‖2 + Ch2k+2 + ε̃‖ξn,x‖2 + ε̃h−1[ξn]

2 + ε̃‖ξq‖2 − (c0
√
τθ − ε̃)|ξ+

n, 12
|2. (6.11)

We can choose ε̃ small enough so that c0
√
τθ− ε̃ � 0 to get the optimal error result in Theorem 6.3.

7 Numerical simulation

In this section, we show the simulation results of the third order IMEX LDG scheme, until a steady state

is reached for our steady state diode test case. We also show the results by the third order explicit total

variation diminishing (TVD) Runge-Kutta time discretization [26] for comparison. Since different choices

of bases for V k
h do not alter the algorithm, we choose locally orthogonal Legendre polynomial basis over

Ij = (xj−1/2, xj+1/2), v
(j)
0 (x) = 1, v

(j)
1 (x) = x − xj , v

(j)
2 (x) = (x − xj)

2 − 1
12Δx2

j , . . . In our implemen-

tation, we use scaled Legendre polynomial basis over [− 1
2 ,

1
2 ], v

(j)
0 (ξ) = 1, v

(j)
1 (ξ) = ξ, v

(j)
2 (ξ) = ξ2− 1

12 , . . . ,
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Table 2 The time step Δt, the number of time steps nsteps, the time t, and the CPU time to reach the steady state

for third order RK LDG and third order IMEX LDG methods with 100 mesh cells in [0, 0.6]

Third order EX-RK Third order IMEX

Δt 1.688e−5 1.2e−3 1.8e−3 2.4e−3 3.0e−3 3.6e−3

nsteps 44063 711 476 356 286 239

t 0.7436 0.8532 0.8568 0.8544 0.8580 0.8604

CPU time 58.8904 4.6332 3.4008 2.5272 2.0592 1.4820

Table 3 The time step Δt, the number of time steps nsteps, the time t, and the CPU time to reach the steady state

for third order RK LDG and third order IMEX LDG methods with 200 mesh cells in [0, 0.6]

Third order EX-RK Third order IMEX

Δt 4.22e−6 1.2e−3 1.8e−3 2.4e−3 3.0e−3 3.6e−3

nsteps 176081 727 480 360 298 249

t 0.7431 0.8724 0.8640 0.8640 0.8940 0.8964

CPU time 202.3957 7.5349 5.5224 4.3680 3.4476 3.2760
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Figure 1 [0, 0.6] with 100 or 200 mesh cells, Δt = 1.2E − 3. (a) density n (1012cm−3); (b) electric field E (V/um)

where ξ =
x−xj

Δxj
. The numerical solution can then be written as uh(x, t) =

∑k
l=0 u

(l)
j (t)v

(j)
l (x), for x ∈ Ij

(u = n, q).

We simulate the DD model with a length of 0.6μm and a doping defined by nd = 5×1017cm−3 in [0, 0.1]

and in [0.5, 0.6] and nd = 2 × 1015cm−3 in [0.15, 0.45], and a smooth transition in between. The lattice

temperature is taken as T0 = 300◦K. The constants k = 0.138× 10−4, ε = 11.7 × 8.85418, e = 0.1602,

m = 0.26×0.9109×10−31kg, and the mobility μ = 0.75, in our units. The boundary conditions are given

as follows: φ = φ0 = kT
e ln(nd

ni
) at the left boundary, with ni = 1.4 × 1010cm−3, φ = φ0 + vbias with the

voltage drop vbias = 1.5 at the right boundary for the potential; T = 300◦K at both boundaries for the

temperature; and n = 5× 1017cm−3 at both boundaries for the concentration.

Tables 2 and 3 show the time step, the number of time steps, the time, and the CPU time on the

steady state for third order RK LDG and third order IMEX LDG methods when we use 100 mesh cells

and 200 mesh cells in [0, 0.6], respectively. Figure 1 plots the simulation results of DD model with 100

and 200 mesh cells in [0, 0.6].

The numerical simulations show that the scheme is stable regardless of the choice of h (100 or 200

mesh cells in [0, 0.6]). The codes produce numerically convergent results during mesh refinement (mesh

refinement results not shown to save space), as can be anticipated from the theoretical results shown in

this paper.

From Tables 2 and 3, we can see that using the third order IMEX LDG scheme, we can use much larger

time step and hence save in CPU time significantly. The IMEX scheme is thus a reliable and efficient
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tool for the study of suitability of models such as DD to describe the correct physics.

8 Concluding remarks and future work

In this paper, we study a unified local discontinuous Galerkin (LDG) spatial discretization to the drift-

diffusion (DD) model for semi-conductor device simulations, both in semi-discrete form and in fully

discrete form by the implicit-explicit (IMEX) Runge-Kutta time discretization. Optimal a priori L2 error

estimates are obtained in both cases. The IMEX method uses implicit time discretization only for the

linear diffusion term and treat the nonlinear drift term coupled with the potential equation explicitly, yet

the method is still shown to be unconditionally stable and convergent for smooth solutions in the sense

that the time step Δt only needs to be smaller than a fixed constant. The proof relies on an important

relationship between the gradient and interface jump of the numerical solution polynomial with the

independent polynomial numerical solution for the gradient in the LDG methods, which was first obtained

in [27], and also a careful study on different stages of the IMEX discretization and the coupling between

the potential equation and the concentration equation. Comparing with the results in [21], this paper

uses semi-discrete and fully-discrete unified LDG method to approximate the DD model with periodic or

Dirichlet boundary condition and obtain optimal error estimate, while [21] used only semi-discrete semi-

LDG (the concentration equation was approximated by an LDG method, but the potential equation

was approximated by a continuous method) to approximate the DD model with periodic boundary

condition and obtained sub-optimal error estimate. Comparing with the results in [28], this paper treats

a model including a nonlinear coupling term of the concentration and the electric field with Dirichlet

boundary condition, while [28] treated an uncoupled nonlinear equation with periodic boundary condition.

Numerical results are provided to verify the efficiency of the IMEX time discretization. There is in

principle no difficulty in generalizing the proof to higher order IMEX methods, especially to higher order

multi-step IMEX methods. The proof can also be easily extended to fully explicit Runge-Kutta methods,

under the standard time step restriction Δt = O(h2), see [29] for such results for linear convection-

diffusion equations without coupling to the potential equation. In future work, we plan to generalize the

results to other models in semi-conductor device simulations.
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