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1 Introduction

Throughout this paper, by a topological dynamical system (t.d.s. for short) we mean a pair (X,T ),

where X is a compact metric space and T : X → X is a homeomorphism. In this section, we first discuss

the motivations and then state the main results of the article.

The study of the complexity of a dynamical system is one of the main topics in the study of the

system. There are several ways to measure the complexity of a t.d.s.. Entropy is a topological invariant

and a t.d.s. with positive entropy means that the complexity of the system is “big”. We now discuss the

so-called topological complexity, which was formally introduced in [2] and is suitable to measure systems

with ‘lower’ complexity, especially systems with zero entropy. Let (X,T ) be a t.d.s. and U be an open

cover of X . Define the complexity function with respect to U as n �→ N (
∨n−1

i=0 T−iU). We remark that

studying the topological complexity for a subshift has a long history, which is the complexity with respect

to the open cover consisting of cylinders of length 1, see for example [12].

It was shown in [2] that a t.d.s. is equicontinuous if and only if each nontrivial open cover has a bounded

topological complexity. Since an equicontinuous system is distal (which has zero topological entropy) and

each minimal distal t.d.s. is the result of a transfinite sequence of equicontinuous extensions, and their

limits, starting from a t.d.s. consisting of a singleton, it is natural to ask what the complexity of a minimal

distal system could be.

For a special class of minimal distal systems, namely systems of order d which are the inverse limits

of minimal d-step nilsystems (see Subsection 2.4 for definitions) it was proved in [3] that the complexity

function is bounded above by a polynomial. Host et al. [10] refined the result of [3] by giving the explicit

degree of the polynomial and showing that the lower bound and the upper bound have the same degree.

To state the result we note that the complexity defined by the open cover can be rephrased in the language
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of (n, ε)-spanning sets, namely one may consider the smallest cardinality r(n, ε) of (n, ε)-spanning sets

instead of the smallest cardinality of the subcovers. In this language one of the main results in [10] can

be stated as follows:

Let (X = G/Γ, T ) be a minimal s-step nilsystem (see Subsection 2.4 for the definition) for some s � 2

and assume that (X,T ) is not an (s− 1)-step nilsystem. Let dX be a distance on X defining its topology.

Then for every ε > 0 that is sufficiently small, there exist positive constants c(ε), c′(ε) and p � s− 1 such

that the topological complexity r(n, ε) of (X,T ) for the distance dX satisfies

c(ε)np � r(n, ε) � c′(ε)np for every n � 1.

Moreover, c(ε) → +∞ as ε → 0.

An open question asked in [10, Question 1] is what systems have the same topological complexity as

nilsystems, namely,

Question. Characterize the minimal t.d.s. (X,T ) satisfying the following property (1.1):

For every ε > 0 small enough, there exist constants c1(ε), c2(ε) > 0 such that

c1(ε)n � r(n, ε) � c2(ε)n for every n � 1 and c1(ε) → ∞ as ε → 0.
(1.1)

If in addition, we assume that (X,T ) is a distal system, then is it a 2-step nilsystem?

We will give a negative answer to the latter part of this question in this paper. To do this, we consider a

t.d.s. on T2 which is a group extension over an irrational rotation on T1. The criterion when the extension

is minimal, a system of order 2 and when the maximal equicontinuous factor is the rotation on T1 is

given. We note that dynamical systems on T2 have been studied by many authors, see for example [6–9].

In order to explicitly state our results, we denote T2 = T1 × T1 with the metric

d((x1, y1), (x2, y2)) = max{‖x1 − x2‖, ‖y1 − y2‖},

where ‖r − s‖ = minm∈Z |r − s+m|. Let (T2, T ) be the t.d.s., where T acts on T2 as follows:

T : T2 → T2, (x, y) �→ (x+ α, f(x) + y) (1.2)

with f ∈ Fl := {h : R → R : h is continuous on R, h(x+1)−h(x) ≡ l for all x ∈ R}, l ∈ Z and α ∈ R\Q.

Now we state the main results of this paper. In Theorem A, we compute the topological complexity

for a class of systems (T2, T ) when the function f satisfies some mild conditions.

Theorem A. Let (T2, T ) be a t.d.s. defined in (1.2) such that f ∈ Fl, l �= 0, α ∈ R \ Q and f has a

bounded variation on [0, 1]. Then (1.1) holds.

Theorem B gives a characterization of equivalence condition for the system (T2, T ) to be order 2.

Theorem B. Let (T2, T ) be a t.d.s. defined in (1.2) such that f ∈ Fl and l �= 0. Then the following

statements are equivalent:

(1) (T2, T ) is a system of order 2.

(2) There exist ϕ ∈ F0 and c ∈ R such that f(x) = lx+ ϕ(x + α)− ϕ(x) + c for any x ∈ R.

For an irrational number α we may define a number ν(α) which measures the approximality of α by

rational numbers (see Section 5). We remark that the Lebesgue measure of {α ∈ (0, 1) : ν(2πα) = 0} is 1.

In Theorem C, we give a minimal distal system whose topological complexity is low, but it is not a system

of order 2. Moreover, by the construction of our example, we know that such systems are numerous.

Theorem C. For a given l �= 0 and an irrational number α with v(2πα) = 0, there exists a function

f ∈ Fl such that the t.d.s. (T2, T ) defined in (1.2) by f is a minimal distal system but not a system of

order 2, and (1.1) holds.

For readers interested in zero entropy diffeomorphisms on manifolds (particular T2), it is worth men-

tioning that, Fra̧czek [6, 7] concentrated on ergodic diffeomorphisms of T2 with polynomial (or linear)

growth of the derivative and obtained that they are (in some sense) “conjugate” to (1.2) with l �= 0.
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The paper is organized as follows. In Section 2, some definitions and related results are introduced. In

Section 3, we prove that if f satisfies some mild conditions, then its topological complexity of (T2, T ) is

low. In Section 4, we show that some system (T2, T ) is minimal distal and its maximal equicontinuous

factor is the irrational rotation. In Section 5, we give the main result in this paper, i.e., there exists a

minimal distal system (T2, T ) such that its topological complexity is low and it is not a system of order 2.

2 Preliminaries

2.1 Topological dynamical systems

A topological dynamical system (t.d.s. for short) is a pair (X,T ), where X is a compact metric space and

T : X → X is a homeomorphism from X to itself. We use d to denote the metric on X .

A t.d.s. (X,T ) is transitive if for any non-empty open sets U and V in X , there exists n ∈ Z such that

U ∩ T nV �= ∅. We say x ∈ X is a transitive point if its orbit orb(x, T ) = {x, Tx, T 2x, . . .} is dense in X .

A t.d.s. (X,T ) is minimal if the orbit of any point is dense in X . We say x ∈ X is a minimal point if

(orb(x, T ), T ) is a minimal subsystem of (X,T ).

Let (X,T ) be a t.d.s. and (x, y) ∈ X ×X . We say (x, y) is a proximal pair if infn∈Z d(T
nx, T ny) = 0,

and it is a distal pair if it is not proximal. A t.d.s. (X,T ) is called distal if (x, y) is distal whenever

x, y ∈ X are distinct. The following result is classical.

Lemma 2.1 (See [1]). Suppose (X,T ) is a distal t.d.s., then for any point x ∈ X, x is a minimal

point. In particular, if (X,T ) is distal, then (X,T ) is minimal if and only if (X,T ) has a transitive point.

A homomorphism π : X → Y between topological dynamical systems (X,T ) and (Y, S) is a continuous

onto map such that π◦T = S ◦π; one says that (Y, S) is a factor of (X,T ) and that (X,T ) is an extension

of (Y, S), and one also refers to π as a factor map or an extension. The systems are said to be conjugate

if π is bijective.

Given a t.d.s. (X,T ), define the regionally proximal relation:

Q(X,T ) =

+∞⋂
k=1

+∞⋃
n=−∞

(T × T )−nΔ 1
k
,

where Δ 1
k
:= {(x, y) ∈ X × X : d(x, y) < 1/k}. It is clear that (x, y) ∈ Q(X,T ) if and only if for any

ε > 0, any neighbourhoods U and V of x and y, respectively, there exist x′ ∈ U , y′ ∈ V and n ∈ Z such

that d(T nx′, T ny′) < ε.

A t.d.s. (X,T ) is said to be equicontinuous if the family of {T n : n ∈ Z} is equicontinuous, i.e., for any

ε > 0, there exists δ > 0 such that if d(x1, x2) < δ, then d(T nx1, T
nx2) < ε for any n ∈ Z. The following

result is well known.

Lemma 2.2 (See [1, Chapter 5]). Suppose π : (X,T ) → (Y, S) is an extension between two t.d.s..

Then the following are equivalent:

(1) (Y, S) is equicontinuous.

(2) Q(X,T ) ⊂ Rπ, where Rπ = {(x, y) ∈ X ×X : π(x) = π(y)}.
In particular, the maximal equicontinuous factor of (X,T ) is induced by the smallest closed invariant

equivalence relation containing Q(X,T ).

2.2 Topological complexity

Let (X,T ) be a t.d.s. and denote by d the metric on X . For any n ∈ N and ε > 0, a subset F of X is said

to be an (n, ε)-spanning set of X with respect to T if for any x ∈ X , there exists y ∈ F with dn(x, y) � ε,

where

dn(x, y) = max
0�i�n−1

d(T i(x), T i(y)).
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Let r(n, ε) denote the smallest cardinality of all (n, ε)-spanning subsets of X with respect to T , we call

r(n, ε) the topological complexity of the system (X,T ). We write r(n, ε, T ) to emphasise T if we need to.

We can also define topological complexity in terms of (n, ε)-separated set. A subset E of X is said to be

an (n, ε)-separated set of X with respect to T if x, y ∈ E, x �= y, implies dn(x, y) > ε, where dn(x, y) is

defined as mentioned above. Let s(n, ε) denote the largest cardinality of all (n, ε) separated subsets of X

with respect to T . We write s(n, ε, T ) to emphasise T if we need to.

We have r(n, ε) � s(n, ε) � r(n, ε/2) for any ε > 0 and n ∈ N (see [13, p. 169] for details).

2.3 Unique ergodicity

Suppose (X,B(X), μ) is a probability space, where X is a compact metrizable space and B(X) is the

smallest σ-algebra generated by all open subsets of X .

A continuous transformation T : X → X is called uniquely ergodic if there is only one T -invariant

Borel probability measure μ on X , i.e., μ(T−1(B)) = μ(B) for all B ∈ B(X).

It is well known that if T (x) = ax is a rotation on the compact metrizable group G, then T is uniquely

ergodic iff T is minimal. The Haar measure is the only T -invariant measure (see for example [13, p. 162]).

Lemma 2.3 (See [11]). Let T : X → X be a continuous transformation of a compact metrizable

space X. Then the following are equivalent:

(1) T is uniquely ergodic.

(2) There exists a T -invariant Borel probability measure μ such that for all f ∈ C(X) and all x ∈ X,
1
n

∑n−1
i=0 f(T ix) → ∫

X fdμ as n → +∞.

2.4 Nilpotent groups and systems of order 2

Let G be a group. For g, h ∈ G, we write [g, h] = ghg−1h−1 for the commutator of g and h and for

A,B ⊂ G, we write [A,B] for the subgroup spanned by {[a, b] : a ∈ A, b ∈ B}. The commutator

subgroups Gj , j � 1, are defined inductively by setting G1 = G and Gj+1 = [Gj , G]. Let d � 1 be an

integer, we say that G is d-step nilpotent if Gd+1 is the trivial subgroup.

Let G be a d-step nilpotent Lie group and Γ a discrete cocompact subgroup of G. The compact

manifold X = G/Γ is called a d-step nilmanifold. The group G acts on X by left translations and we

write this action as (g, x) �→ gx. Let τ ∈ G and T be the transformation x �→ τx, then (X,T ) is called a

d-step nilsystem.

The enveloping semigroup (or Ellis semigroup) E(X) of a topological dynamical system (X,T ) is

defined as the closure in XX of the set {T n : n ∈ Z} endowed with the product topology.

Let (Y, S) be a t.d.s., K a compact group, and φ : Y → K a continuous mapping. Form X = Y ×K

and define T : X → X by T (y, k) = (Sy, φ(y)k). The resulting system (X,T ) is called a group extension

of (Y, S). It is obvious that the system (T2, T ) defined in (1.2) is a group extension of an irrational

rotation on T1 by taking φ = f .

The following theorem relates the notion of system of order 2 and nilpotent group which will be used

in this paper. We recall that a minimal topological dynamical system is a system of order d if it is an

inverse limit of d-step nilsystems. In particular, a 2-step nilsystem is a system of order 2.

Theorem 2.1 (See [4, Theorem 1.2]). Let (X,T ) be a minimal t.d.s.. Then the following are equivalent:

(1) (X,T ) is a system of order 2.

(2) E(X) is a 2-step nilpotent group and (X,T ) is a group extension of an equicontinuous system.

The following theorem gives a more explicit characterization for the enveloping semigroup E(T2) to

become 2-step nilpotent.

Theorem 2.2 (See [9, Theorem 2.3]). Suppose (T2, T ) is minimal, which is the t.d.s. defined in (1.2)

such that f ∈ Fl, l �= 0, α ∈ R \ Q and that the projection (T2, T )
π−→ (T1, τ) onto the first coordinate is

the maximal equicontinuous factor, where τ : T1 → T1, x �→ x+ α. Then the following are equivalent:

(1) There exist ϕ ∈ F0 and c ∈ R such that f(x) = ϕ(x + α)− ϕ(x) + lx+ c.

(2) The system (T2, T ) satisfies that E(T2) (as an abstract group) is 2-step nilpotent.
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3 Proof of Theorem A

In this section, the topological complexity of the dynamical system on T2 is computed. We will show

that their topological complexity is low in some cases. Firstly, we introduce some notation. Let f be a

real-valued function on [a, b], Δ : a = x0 < x1 < x2 < · · · < xn = b be a partition,

vΔ =

n∑
i=1

|f(xi)− f(xi−1)|, and

b∨
a

(f) = sup{vΔ : Δ is a partition over [a, b]}.

We say that f is a function with bounded variation if
∨b

a(f) < +∞.

It is well known that f has a bounded variation on [a, b] if and only if f(x) = g(x)−h(x) for all x ∈ [a, b],

where g(x) = 1
2 (
∨x

a(f) + f(x)) and h(x) = 1
2 (
∨x

a(f)− f(x)) are increasing functions on [a, b].

Lemma 3.1. Let (T2, T ) be a t.d.s. defined in (1.2) such that f ∈ Fl, l �= 0 and α ∈ R \Q. If f has a

bounded variation on [0, 1], then

s(n, ε) � 20

( 1∨
0

(f) + 1

)
n/ε2 (3.1)

for any n ∈ N and ε > 0 small enough.

Proof. Clearly, T n(x, y) = (x + nα, fn(x) + y), where fn(x) =
∑n−1

i=0 f(x+ iα).

Let g(x) = 1
2 (
∨x

0(f) + f(x)) and h(x) = 1
2 (
∨x

0(f) − f(x)). Then g and h are increasing functions on

[0, 1] satisfying

f(x) = g(x)− h(x), g(x+ 1)− g(x) = M and h(x+ 1)− h(x) = M − l

for any x ∈ R. Take M = 1
2 (
∨1

0(f) + l), then M � 0 and M − l � 0.

For n ∈ N, let

gn(x) =
n−1∑
i=0

g(x+ iα) and hn(x) =
n−1∑
i=0

h(x+ iα).

We can choose a partition

Δ1 : 0 = s0 < s1 < s2 < · · · < sm = 1

such that si+1 − si � ε/2 for 0 � i � m− 1 with m = [2/ε] + 1, and a partition

Δ2 : 0 = t0 < t1 < t2 < · · · < tr = 1

such that

gn(tj+1)− gn(tj) � ε/4 and hn(tj+1)− hn(tj) � ε/4

for any 0 � j � r − 1 with r � [4Mn/ε] + [4(M − l)n/ε] + 1.

By joining Δ1 with Δ2, we get a new partition

0 = x0 < x1 < x2 < · · · < xp = 1

for ε > 0 small enough with p � m+ r � 5(
∨1

0(f) + 1)n/ε.

We can also take a partition

0 = y0 < y1 < y2 < · · · < yq = 1

such that yi+1 − yi < ε/3 for any 0 � i � q − 1 and ε > 0 small enough with q = [3/ε] + 1 � 4/ε.

Now we show that s(n, ε) � pq � 20(
∨1

0(f) + 1)n/ε2 for ε > 0 small enough. Suppose this result dose

not hold, then there exists an (n, ε)-separated set E of (T2, T ) such that |E| > 20(
∨1

0(f) + 1)n/ε2. Since

|E| > pq, there exist 0 � i � p− 1 and 0 � j � q − 1 such that there are at least two points

(u1, v1), (u2, v2) ∈ E ∩ ([xi, xi+1]× [yj , yj+1])
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with (u1, v1) �= (u2, v2). Thus,

dn((u1, v1), (u2, v2)) = max
0�i�n−1

d(T i(u1, v1), T
i(u2, v2))

= max
0�i�n−1

max{‖u1 − u2‖, ‖gi(u1)− gi(u2)− hi(u1) + hi(u2) + v1 − v2‖}

� max
0�i�n−1

max{‖u1 − u2‖, ‖gi(u1)− gi(u2)‖ + ‖hi(u1)− hi(u2)‖+ ‖v1 − v2‖}

� max
0�i�n−1

{|u1 − u2|, |gi(u1)− gi(u2)|+ |hi(u1)− hi(u2)|+ |v1 − v2|}

� max{|u1 − u2|, |gn(u1)− gn(u2)|+ |hn(u1)− hn(u2)|+ |v1 − v2|}
< ε.

This is a contradiction with the definition of the (n, ε)-separated set E. This shows that (3.1) holds.

Lemma 3.2. Let (T2, T ) be a t.d.s. defined in (1.2) such that f ∈ Fl and l �= 0. Then

s(n, ε) � n|l|/3(ε+ η(ε)) (3.2)

for any n ∈ N and ε > 0 small enough, where η(ε) = sup|x−y|�ε |f(x)− f(y)|.
Proof. Clearly, T n(x, y) = (x + nα, fn(x) + y), where fn(x) =

∑n−1
i=0 f(x + iα). Since fn(1) − fn(0)

= nl, one has either fn(1/2) − fn(0) � nl/2 or fn(1) − fn(1/2) � nl/2. Without loss of generality, we

suppose fn(1/2) − fn(0) � nl/2. For the other case, the argument is similar. Since f is continuous

and f(x + 1) − f(x) = l, it is not hard to check that ε ↘ 0 implies η(ε) ↘ 0. Take ε0 > 0 such that

ε0 + η(ε0) < 1/3. We can find a sequence 0 = x0 < x1 < x2 · · · < xk � 1/2 such that

fn(xi+1)− fn(xi) = η(ε) + ε

for any 0 � i � k − 1 with k > n|l|/3(η(ε) + ε) and ε0 � ε > 0.

Fix ε ∈ (0, ε0]. To show (3.2) it suffices to show that {(xi, 0) | 1 � i � k} is an (n, ε)-separated

set of (T2, T ). In fact, for any 1 � i < j � k, if xj − xi > ε, then ‖xi − xj‖ > ε which implies that

dn((xi, 0), (xj , 0)) > ε. Otherwise, by the definition of η(ε), we have

−η(ε) � f1(xj)− f1(xi) � η(ε),

and

fm(xj)− fm(xi) ∈ [fm−1(xj)− fm−1(xi)− η(ε), fm−1(xj)− fm−1(xi) + η(ε)]

for any 2 � m � n.

Since fn(xj)− fn(xi) � η(ε) + ε, we can define l := min{1 � k � n : fk(xj)− fk(xi) > ε}. This means

ε < fl(xj)− fl(xi) � η(ε) + ε.

Thus,

dn((xi, 0), (xj , 0)) � dl((xi, 0), (xj , 0)) � ‖fl(xi)− fl(xj)‖ > ε.

Summarizing up, we always have dn((xi, 0), (xj , 0)) > ε for any 1 � i < j � k. This completes

the proof.

Now we turn to prove Theorem A.

Proof of Theorem A. Since r(n, ε) � s(n, ε) � r(n, ε/2) for any ε > 0 and n ∈ N, we have

n|l|/3(2ε+ η(2ε)) � r(n, ε) � 20

( 1∨
0

(f) + 1

)
n/ε2

for ε > 0 small enough, where η(ε) comes from Lemma 3.2. Take

c1(ε) = |l|/3(2ε+ η(2ε)) and c2(ε) = 20

( 1∨
0

(f) + 1

)
/ε2,

then we get the result.
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We now translate Theorem A into the language of topological complexity using open covers. Let U be

an open cover of X , and for every integer n ∈ N, N (U , n) be the minimal cardinality of a subcover of∨n−1
j=0 T−jU . The complexity function of U is the map n �→ N (U , n).
We know that r(n, ε) � c(ε)n for every ε > 0 is equivalent to N (U , n) � C(U)n for every open cover

U of X ; r(n, ε) � c(ε)n for every ε > 0 is equivalent to N (U , n) � C(U)n for every open cover U of X

(see [10] for details).

4 Minimality and the maximal equicontinuous factor

Auslander [1, Chapter 5] presented a criterion for the minimality of a class of group extensions of minimal

systems, and applied the criterion to show the minimality of a class of skew products on Tk+1, the (k+1)

torus, namely

T (z, w1, w2, . . . , wk) = (αz, ϕ(z)w1, ϕ(βz)w2, . . . , ϕ(β
k−1z)wk),

where α, β ∈ T1 and ϕ is chosen appropriately. In this section, we will give another way to prove that

when f ∈ Fl(l �= 0), the system (T2, T ) defined as before is minimal and the regionally proximal relation

Q(T2, T ) = {((x, y1), (x, y2)) : x, y1, y2 ∈ T1}.

For this purpose, the following result is needed and very useful.

Lemma 4.1. Let f ∈ F0. Then there exist x1, x2 ∈ T1 such that

sup
n�1

(
fn(x1)− n

∫ 1

0

f(x)dx

)
� 2 (4.1)

and

inf
n�1

(
fn(x2)− n

∫ 1

0

f(x)dx

)
� −2, (4.2)

where fn(x) =
∑n−1

i=0 f(x+ iα). Moreover, the sets

A =

{
x ∈ T1 : there esixts M1(x) ∈ R such that sup

n�1

(
gn(x1)− n

∫ 1

0

g(x)dx

)
� M1(x)

}

and

B =

{
x ∈ T1 : there exists M2(x) ∈ R such that inf

n�1

(
gn(x2)− n

∫ 1

0

g(x)dx

)
� M2(x)

}

are dense in T1.

Proof. Firstly, we prove (4.1). Suppose (4.1) dose not hold, then for any y ∈ T1, there exists ny � 1

such that fny (y) − ny

∫ 1

0 f(x)dx > 2. By the continuity of f , there exists an open neighborhood Uy

of y such that for any y′ ∈ Uy, fny (y
′) − ny

∫ 1

0
f(x)dx > 2. Since {Uy : y ∈ T1} is an open cover of

T1, there exists {y1, y2, . . . , yl} ⊂ T1 such that
⋃l

i=1 Uyi = T1. For y0 ∈ T1, we define {si}i∈N ⊂ N

and {ki}i∈N ⊂ {1, 2, . . . , l} by induction that s0 = 0 and si+1 = si + nyki
, where ki is taken such that

y0 + siα ∈ Uyki
. We claim that

fsi(y0)− si

∫ 1

0

f(x)dx � 2i for any i � 1. (4.3)

In fact, for i = 1, it is clear, and if we assume it is true for i = p, then it also holds for i = p+1 because

fsp+1(y0)− sp+1

∫ 1

0

f(x)dx = fsp(y0) + fnykp
(y0 + spα)− (sp + nykp

)

∫ 1

0

f(x)dx
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=

(
fnykp

(y0 + spα)− nykp

∫ 1

0

f(x)dx

)
+

(
fsp(y0)− sp

∫ 1

0

f(x)dx

)

� 2 +

(
fsp(y0)− sp

∫ 1

0

f(x)dx

)
(by the definition of {si})

� 2(p+ 1) (by the induction assumption).

Thus, by induction, (4.3) holds.

Let M = max{ny1 , ny2 , . . . , nyl
}, then i � si � Mi for any i � 1. On one hand, we have

lim sup
i→+∞

fsi(y0)

si
� lim sup

i→+∞

si
∫ 1

0 f(x)dx + 2i

si
�

∫ 1

0

f(x)dx +
2

M
. (4.4)

On the other hand, since τ : T1 → T1, x �→ x+ α is uniquely ergodic, by Lemma 2.3, we have

lim
n→+∞

fn(y0)

n
=

∫ 1

0

f(x)dx,

a contradiction with (4.4). This implies that (4.1) holds.

Now we show that the set A is dense in T1. For any m ∈ N,

sup
n�1

[
gn(x1 + (m+ 1)α)− n

∫ 1

0

g(x)dx

]

= sup
n�1

[
gn+1(x1 +mα)− g(x1 +mα)− n

∫ 1

0

g(x)dx

]

= sup
n�1

[
gn+1(x1 +mα)− (n+ 1)

∫ 1

0

g(x)dx

]
+

[∫ 1

0

g(x)dx − g(x1 +mα)

]
.

So we have {x1 +mα : m ∈ N} ⊂ A, hence A is dense in T1. By a similar argument, we obtain that (4.2)

holds and the set B is dense in T1.

Lemma 4.2. Let (T2, T ) be a t.d.s. defined in (1.2) such that f ∈ Fl, l �= 0 and α ∈ R \ Q. Then

(T2, T ) is minimal.

Proof. It is clear that (T2, T ) is distal. To show (T2, T ) is minimal, by Lemma 2.1, it suffices to

show that (T2, T ) is transitive. Consider non-empty open sets U1 × V1 and U2 × V2 of T2. There exist

x1, x2, y1, y2 ∈ (0, 1) and δ > 0 such that

(x1 − δ, x1 + δ)× (y1 − δ, y1 + δ) ⊂ U1 × V1

and

(x2 − δ, x2 + δ)× (y2 − δ, y2 + δ) ⊂ U2 × V2.

Let f(x) = g(x) + lx. Since f ∈ Fl, we have g ∈ F0.

In the following, we divide the proof into two cases.

Case 1. l > 0. By Lemma 4.1, there exist x′ ∈ (x1 + δ/4, x1 + δ/2), x′′ ∈ (x1 − δ/2, x1 − δ/4), and

M1, M2 ∈ R such that

inf
n�1

(
gn(x

′)− n

∫ 1

0

g(x)dx

)
� M1 and sup

n�1

(
gn(x

′′)− n

∫ 1

0

g(x)dx

)
� M2.

Thus,

fn(x
′)− fn(x

′′) = gn(x
′)− gn(x

′′) + nl(x′ − x′′) � M1 −M2 + nlδ/2 → +∞ (4.5)

as n → +∞. Since {nα | n ∈ Z+} is dense in T1, there are infinitely many ni ∈ N such that

(niα+ x1 − δ/2, niα+ x1 + δ/2) ⊂ (x2 − δ, x2 + δ).
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Therefore, for any x ∈ (x1 − δ/2, x1 + δ/2), we have x + niα ∈ (x2 − δ, x2 + δ). By (4.5), there

exists N1 ∈ {ni} such that fN1(x
′) − fN1(x

′′) > 1. By the continuity of f , there exists x0 ∈ (x′′, x′)
⊂ (x1 − δ/2, x1 + δ/2) such that

fN1(x0) + y1 ∈ (y2 − δ, y2 + δ) and x0 +N1α ∈ (x2 − δ, x2 + δ),

i.e.,

(x0, y1) ∈ (x1 − δ, x1 + δ)× (y1 − δ, y1 + δ) ⊂ U1 × V1

and

TN1(x0, y1) ∈ (x2 − δ, x2 + δ)× (y2 − δ, y2 + δ) ⊂ U2 × V2.

Therefore, (x0, y1) ∈ (U1×V1)∩T−N1(U2×V2). Since U1, U2, V1 and V2 are arbitrary, (T
2, T ) is transitive.

Case 2. l < 0. By Lemma 4.1, there exist z′ ∈ (x1 + δ/4, x1 + δ/2), z′′ ∈ (x1 − δ/2, x1 − δ/4) and

K1,K2 ∈ R such that

sup
n�1

(
gn(z

′)− n

∫ 1

0

g(x)dx

)
� K1 and inf

n�1

(
gn(z

′′)− n

∫ 1

0

g(x)dx

)
� K2.

Thus,

fn(z
′)− fn(z

′′) = gn(z
′)− gn(z

′′) + nl(z′ − z′′) � K1 −K2 + nlδ → −∞ (4.6)

as n → +∞. Since {nα | n ∈ Z+} is dense in T1, there are infinitely many mi ∈ N such that

(miα+ x1 − δ/2,miα+ x1 + δ/2) ⊂ (x2 − δ, x2 + δ).

Therefore, for any x ∈ (x1 − δ/2, x1 + δ/2), we have x + miα ∈ (x2 − δ, x2 + δ). By (4.6), there

exists N2 ∈ {mi} such that fN2(x
′) − fN2(x

′′) < −1. By the continuity of f , there exists z0 ∈ (z′′, z′)
⊂ (x1 − δ/2, x1 + δ/2) such that

fN2(z0) + y1 ∈ (y2 − δ, y2 + δ) and z0 +N2α ∈ (x2 − δ, x2 + δ),

i.e.,

(z0, y1) ∈ (x1 − δ, x1 + δ)× (y1 − δ, y1 + δ) ⊂ U1 × V1

and

TN2(z0, y1) ∈ (x2 − δ, x2 + δ)× (y2 − δ, y2 + δ) ⊂ U2 × V2.

Therefore, (z0, y1) ∈ (U1×V1)∩T−N2(U2×V2). Since U1, U2, V1 and V2 are arbitrary, (T2, T ) is transitive.

Summarizing up, we complete the proof.

Lemma 4.3. Let (T2, T ) be a t.d.s. defined in (1.2) such that f ∈ Fl, l �= 0 and α ∈ R \Q. Then

Q(T2, T ) = {((x, y1), (x, y2)) : x, y1, y2 ∈ T1}.

Proof. Firstly, we show that for any (x1, y1), (x2, y2) ∈ T2 with x1 �= x2, we have ((x, y1), (x, y2))

/∈ Q(T2, T ). Fix x1, x2, y1 , y2 ∈ T1 and let ε0 = ‖x1 − x2‖/4. Consider (x1 − ε0, x1 + ε0) × V1 and

(x2 − ε0, x2 + ε0) × V2, where V1, V2 are non-empty open neighborhoods of y1 and y2 respectively. For

any (x′, y′) ∈ (x1 − ε0, x1 + ε0)× V1 and (x′′, y′′) ∈ (x2 − ε0, x2 + ε0)× V2, we have

d(T n(x′, y′), T n(x′′, y′′)) � ‖(x′ + nα)− (x′′ + nα)‖ = ‖x′ − x′′‖ � 2ε0

for each n ∈ Z. So ((x1, y1), (x2, y2)) /∈ Q(T2, T ) whenever x1 �= x2.

It remains to show that ((x, y1), (x, y2)) ∈ Q(T2, T ) for any x, y1, y2 ∈ T1. Fix x, y1 y2 ∈ T1.

For any ε > 0, suppose U1 × V1 and U2 × V2 are non-empty open neighborhoods of (x, y1) and (x, y2)

respectively, then there exists δ > 0 (δ < ε) such that

(x − δ, x+ δ) ⊂ U1 ∩ U2, (y1 − δ, y1 + δ) ⊂ V1 and (y2 − δ, y2 + δ) ⊂ V2.
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In the following, we divide the proof into two cases.

Case 1. l > 0. By Lemma 4.1, there exist x′ ∈ (x1 + δ/4, x1 + δ/2), x′′ ∈ (x1 − δ/2, x1 − δ/4), and

M1, M2 ∈ R such that

inf
n�1

(
gn(x

′)− n

∫ 1

0

g(x)dx

)
� M1 and sup

n�1

(
gn(x

′′)− n

∫ 1

0

g(x)dx

)
� M2.

Thus,

fn(x
′)− fn(x

′′) = gn(x
′)− gn(x

′′) + nl(x′ − x′′) � M1 −M2 + nlδ/2 → +∞

as n → +∞. Therefore, there exists N1 ∈ N such that fN1(x
′) − fN1(x

′′) > 1. By the continuity of f ,

there exists x0 ∈ (x′′, x′) ⊂ (x1 − δ/2, x1 + δ/2) such that ‖fN1(x0) + y1 − fN1(x
′) − y2‖ < ε, i.e., there

exist (x0, y1) ∈ U1 × V1, (x
′, y2) ∈ U2 × V2 and N1 ∈ N such that d(TN1(x0, y1), T

N1(x′, y2)) < ε.

Case 2. l < 0. By Lemma 4.1, there exist z′ ∈ (x1 + δ/4, x1 + δ/2), z′′ ∈ (x1 − δ/2, x1 − δ/4) and

K1,K2 ∈ R such that

sup
n�1

(
gn(z

′)− n

∫ 1

0

g(x)dx

)
� K1 and inf

n�1

(
gn(z

′′)− n

∫ 1

0

g(x)dx

)
� K2.

Thus,

fn(z
′)− fn(z

′′) = gn(z
′)− gn(z

′′) + nl(z′ − z′′) � K1 −K2 + nlδ → −∞ (4.7)

as n → +∞. Therefore, there exists N2 ∈ N such that fN2(z
′) − fN2(z

′′) < −1. By the continuity of f ,

there exists z0 ∈ (z′′, z′) ⊂ (x1 − δ
2 , x1 +

δ
2 ) such that ‖fN2(z0) + y1 − fN2(z

′)− y2‖ < ε, i.e., there exist

(z0, y1) ∈ U1 × V1, (z
′, y2) ∈ U2 × V2 and N2 ∈ N such that d(TN2(z0, y1), T

N2(z′, y2)) < ε. Summarizing

up, we finish the proof.

The following result follows from Lemmas 2.2 and 4.3.

Lemma 4.4. Let (T2, T ) be a t.d.s. defined in (1.2) such that f ∈ Fl, l �= 0 and α ∈ R \Q. Suppose

π : (T2, T ) → (T1, τ), (x, y) �→ x,

where τ : T1 → T1, x �→ x+ α. Then (T1, τ) is the maximal equicontinuous factor of (T2, T ).

Now we prove Theorem B.

Proof of Theorem B. By Lemma 4.2, (T2, T ) is minimal. By Lemma 4.4, we know that (T1, τ) is the

maximal equicontinuous factor of (T2, T ), where

τ : T1 → T1, x �→ x+ α.

It is clear that (T2, T ) is an isometric extension of (T1, τ). We can easily get Theorem B by applying

Theorems 2.1 and 2.2.

5 An example

In this section, we will give a negative answer to the latter part of the open question raised by Host-Kra-

Maass mentioned in the introduction, i.e., we will construct a system whose topological complexity is low

but it is not a system of order 2. Precisely, we will find a bounded variation function f which belongs

to Fl with l �= 0, and at the same time, we define (T2, T ) in (1.2) such that f also satisfies that for any

ϕ ∈ F0 and c ∈ R, the equation f(x) = ϕ(x+ α)− ϕ(x) + lx+ c does not hold. To do this we start with

continued fractions and some related results.
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5.1 Continued fractions

A (simple) continued fraction is a formal expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4+...

,

which we will also denote by [a0; a1, a2, , a3, . . .] with an ∈ N for n � 1 and a0 ∈ N0 := {0} ∪ N. The

numbers an are the partial quotients of the continued fraction. We also write [a0; a1, a2, . . . , an] for the

finite fraction

a0 +
1

a1 +
1

a2+...+
1

an−1 +
1

an

.

We state some basic properties about continued fractions for convenience (see for example [5] for

details):

(1) The infinite continued fraction converges to a real number, namely, there exists a real number α

such that

α = [a0; a1, a2, . . .] = lim
n→∞[a0; a1, a2, . . . , an].

We say that [a0; a1, a2, . . .] is the continued fraction expansion for α.

(2) Let an ∈ N for all n � 0. Then [a0; a1, a2, . . .] is irrational.

(3) The map that sends the sequence (a0, a1, a2, . . .) ∈ N0 × NN to [a0; a1, a2, . . .] is injective.

(4) For any irrational number α ∈ (0, 1), there exists a continued fraction expansion for α.

A real number α = [a0; a1, a2, . . .] ∈ (0, 1) is called badly approximable if there is some M such that

an � M for all n � 1. The following result is well known (see for example [5, p. 87]).

Lemma 5.1. A real number α ∈ (0, 1) is badly approximable if and only if there exists some constant

c = c(α) > 0 such that ∣∣∣∣α− p

q

∣∣∣∣ > c

q2

for every rational number p
q .

We define v(α) = lim infn→+∞ n‖nα‖. It is clear that v(α) > 0 if and only if α is badly approximable.

It is well known that the set of all badly approximable numbers in (0, 1) is a null set with respect to

Lebesgue measure (see, e.g., [5, p. 87]). Hence, the Lebesgue measure of the set {α ∈ (0, 1) : v(α) = 0} is

one.

Now we prove Theorem C.

Proof of Theorem C. By the definition of v(2πα), we know that

lim inf
n→+∞ n|e2πinα − 1| = 0.

So there exists an increasing sequence {nk}+∞
k=1 of positive integers such that nk|e2πinkα − 1| < 1/k2 for

every k ∈ N. Take a function

f(x) = lx+

+∞∑
n=−∞

ane
2πinx,

where

an =

{
e2πinkα − 1, if n = ±nk, k ∈ N,

0, otherwise.
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Since f(x) = f(x), f is a real valued function. Since

f ′(x) = l +

+∞∑
n=−∞

2πinane
2πinx and |f ′(x)| � 4π

+∞∑
k=1

1/k2 + |l|,

we know that f is a continuous function with a bounded variation. By Theorem A, we know that (1.1)

holds.

By the construction of f and Lemma 4.2, we know that (T2, T ) is minimal. It is clear that (T2, T ) is

distal.

Next, we show that for the function f defined above, the system (T2, T ) is not a system of order 2.

Suppose (T2, T ) is a system of order 2, by Theorem B, we can assume that there exist ϕ ∈ F0 and c ∈ R

such that f(x) = ϕ(x + α)− ϕ(x) + lx+ c for any x ∈ R.

Let ϕ(x) =
∑+∞

n=−∞ bne
2πinx be the Fourier series of periodic function ϕ. Comparing the Fourier

coefficients of the equation f(x)− lx = ϕ(x + α)− ϕ(x) + c, we have

an =

{
bn(e

2πinα − 1), n �= 0,

c, n = 0.

This implies that
∑+∞

n=−∞ |bn|2 = +∞, a contradiction with
∑+∞

n=−∞ |bn|2 =
∫ 1

0 |ϕ(x)|2dx < +∞. Thus,

by Theorem B, we conclude that (T2, T ) is not a system of order 2.

Remark 5.1. Let m be the Lebesgue measure on R,

A = {α ∈ R \Q : v(α) = 0} and B = {α ∈ R \Q : v(2πα) = 0}.

Since m({α ∈ (0, 1) : v(α) = 0}) = 1, we have m(A ∩ (0, 2π)) = 2π, which implies that

m

(
A

2π
∩ (0, 1)

)
= 1,

i.e., m(B ∩ (0, 1)) = 1. Therefore, for almost all α ∈ (0, 1) in the sense of Lebesgue measure, there exists

f ∈ Fl such that Theorem C holds for the system (T2, T ).
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