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Abstract In this paper a hybridized weak Galerkin (HWG) finite element method for solving the Stokes

equations in the primary velocity-pressure formulation is introduced. The WG method uses weak functions

and their weak derivatives which are defined as distributions. Weak functions and weak derivatives can be

approximated by piecewise polynomials with various degrees. Different combination of polynomial spaces leads

to different WG finite element methods, which makes WG methods highly flexible and efficient in practical

computation. A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives

of the exact solution. With this new feature, the HWG method can be used to deal with jumps of the functions

and their flux easily. Optimal order error estimates are established for the corresponding HWG finite element

approximations for both primal variables and the Lagrange multiplier. A Schur complement formulation of the

HWG method is derived for implementation purpose. The validity of the theoretical results is demonstrated in

numerical tests.
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1 Introduction

Weak Galerkin (WG) refers to a general finite element technique for partial differential equations (PDEs)

in which differential operators are approximated by their weak forms as distributions. Since their intro-

duction, WG finite element methods have been applied successfully to the discretization of several classes

of partial differential equations, e.g., second order elliptic equations [6, 14, 15, 18, 22, 24], the biharmonic

equations [13, 17, 19, 25], the Stokes equations [23], and the Brinkman equations [16]. WG methods, by

design, make use of discontinuous piecewise polynomials on finite element partitions with arbitrary shape

of polygons and polyhedrons. Weak functions and weak derivatives can be approximated by piecewise

polynomials with various degrees. The flexibility of WG method on these aspects of approximating

polynomials makes it an excellent candidate for the numerical solution of incompressible flow problems.

Hybridization of finite element methods is a technique where Lagrange multipliers are introduced to

relax certain constraints such as some continuity requirements. The main feature of the HWG method

is that their approximate solutions can be expressed in an element-by-element fashion. Hybridization [1]

∗Corresponding author



2456 Zhai Q L et al. Sci China Math November 2015 Vol. 58 No. 11

can be employed to obtain an efficient implementation for solving PDEs. The generalization of this idea

to mixed finite elements has been investigated in [2–5, 7, 21]. The idea of hybridization was also used in

discontinuous Galerkin methods [11,12,20] to derive hybridizable discontinuous Galerkin (HDG) [8–10].

In this paper, the WG finite element formulation developed in [23] is hybridized to obtain our new

hybridized weak Galerkin finite element method for solving Stokes equations. This HWG formulation

can be modified easily to solve interface problems by adding two functionals arising from the jump

condition to the right-hand side. A Schur complement formulation of the HWG method is derived for

implementation purpose. By eliminating the interior unknowns and the Lagrange multipliers, the Schur

complement formulation yields a system with much smaller size. We shall show that hybridization is a

natural approach for the weak Galerkin finite element method of [23]. We shall also establish a theoretical

foundation to address critical issues such as stability and convergence for the HWG finite element method.

The paper is organized as follows. In Section 2, we briefly discuss the continuous Stokes problem

and recall some basic results for later reference. After presenting some standard notations in Sobolev

spaces in Section 3, we introduce two weakly-defined differential operators: weak gradient and weak

divergence. The HWG finite element scheme for the Stokes problem is developed in Section 4. In

Section 5, we shall study the stability and solvability of the HWG scheme. In particular, the usual inf-

sup condition is established for the HWG scheme. In Section 6, we shall derive an error equation for the

HWG approximations. Optimal-order error estimates for the WG finite element approximations are also

derived in this Section. The equivalence of HWG formulation and its Schur complement formulation is

proved in Section 7. Finally in Section 8, numerical experiments are conducted.

2 The model problem

Let Ω ⊂ Rd be a polygonal or polyhedral domain in Rd for d = 2, 3 respectively. As a model for the

flow of an incompressible viscous fluid confined in Ω, we consider the stationary Stokes problem with

nonhomogeneous Dirichlet boudary conditions, given by

−Δu+∇p = f , in Ω, (2.1)

∇ · u = 0, in Ω, (2.2)

u = g, on ∂Ω. (2.3)

Throughout the presentation, we assume that the unit external volumetric force acts on the fluid f ∈
[L2(Ω)]d.

The weak form in the primary velocity-pressure formulation for the Stokes problem (2.1)–(2.3) seeks

u ∈ [H1(Ω)]d and p ∈ L2
0(Ω) satisfying u = g on ∂Ω and

(∇u,∇v)− (∇ · v, p) = (f ,v), (2.4)

(∇ · u, q) = 0, (2.5)

for all v ∈ [H1
0 (Ω)]

d and q ∈ L2
0(Ω).

Recently a weak Galerkin finite element method has been developed for solving the Stokes equations

in [23]. The main idea of weak Galerkin finite element methods is the introduction of weak functions

and their corresponding weak derivatives in the algorithm design. With well-defined weak functions and

weak derivatives, a weak Galerkin finite element formulation for the Stokes equations is derived from

the variational form of the PDE (2.4)–(2.5) by replacing regular derivatives with weak derivatives and

possibly adding a parameter independent stabilizer: find uh and ph from properly-defined finite element

spaces satisfying

(∇wuh,∇wv)− (∇w · v, ph) + s(uh,v) = (f ,v), (2.6)

(∇w · uh, q) = 0, (2.7)
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for all test functions v and q in test spaces. In this paper, the WG finite element formulation developed

in [23] is hybridized to obtain our new hybridized weak Galerkin finite element method for solving Stokes

equation (2.1)–(2.3).

3 Weak differential operators and discrete weak gradient

Let D be any open bounded domain with Lipschitz continuous boundary in Rd, d = 2, 3. We use the

standard definition for the Sobolev space Hs(D) and its associated inner products (·, ·)s,D, norms ‖ ·‖s,D,
and seminorms | · |s,D for any s � 0. For example, for any integer s � 0, the seminorm | · |s,D is given by

|v|s,D =

( ∑
|α|=s

∫
D

|∂αv|2dD
) 1

2

with the usual notation

α = (α1, . . . , αd), |α| = α1 + · · ·+ αd, ∂α =

d∏
j=1

∂αj
xj
.

The Sobolev norm ‖ · ‖m,D is given by

‖v‖m,D =

( m∑
j=0

|v|2j,D
) 1

2

.

The space H0(D) coincides with L2(D), for which the norm and the inner product are denoted by

‖ · ‖D and (·, ·)D, respectively. When D = Ω, we shall drop the subscript D in the norm and in the inner

product notation.

The space H(div;D) is defined as the set of vector-valued functions on D which, together with their

divergence, are square integrable, i.e.,

H(div;D) = {v : v ∈ [L2(D)]d,∇ · v ∈ L2(D)}.

Let T be a polygonal or polyhedral domain with boundary ∂T . A weak vector-valued function on the

region T refers to a vector-valued function v = {v0,vb} such that v0 ∈ [L2(T )]d and vb ∈ [H
1
2 (∂T )]d.

Let

V(T ) = {v = {v0,vb} : v0 ∈ [L2(T )]d,vb ∈ [H
1
2 (∂T )]d}. (3.1)

Recall that, for any v ∈ V(T ), the weak gradient of v is defined as a linear functional ∇wv in the dual

space of [H(div, T )]d whose action on each q ∈ [H(div, T )]d is given by

(∇wv, q)T = −(v0,∇ · q)T + 〈vb, q · n〉∂T , (3.2)

where n is the outer unit normal vector along ∂T , (·, ·)T stands for the L2-inner product in [L2(T )]d and

〈·, ·〉∂T is the inner product in [H
1
2 (∂T )]d.

A discrete version of the weak gradient operator ∇w is an approximation, denoted by ∇w,r,T in the

space of polynomials of degree r such that

(∇w,r,Tv, q)T = −(v0,∇ · q)T + 〈vb, q · n〉∂T , ∀ q ∈ [Pr(T )]
d×d. (3.3)

From the integration by parts, we have

(v0,∇q)T = −(∇v0, q)T + 〈v0, q · n〉∂T .

Substituting the above identity into (3.3) yields

(∇w,r,Tv, q)T − (∇v0, q)T = 〈vb − v0, q · n〉∂T , (3.4)
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for all q ∈ [Pr(T )]
d×d.

To define a weak divergence, we require weak function v = {v0,vb} to be such that v0 ∈ [L2(T )]d and

vb · n ∈ H− 1
2 (∂T ). Denote

V (T ) = {v = {v0,vb} : v0 ∈ [L2(T )]d,vb · n ∈ H− 1
2 (∂T )}. (3.5)

Recall that, for any v ∈ V(T ), the weak divergence of v is defined as a linear functional ∇w · v in the

dual space of H1(T ) whose action on each ϕ ∈ H1(T ) is given by

(∇w · v, ϕ)T = −(v0,∇ϕ)T + 〈vb · n, ϕ〉∂T , (3.6)

where n is the outer unit normal vector along ∂T , (·, ·)T stands for the L2-inner product in L2(T ) and

〈·, ·〉∂T is the inner product in H
1
2 (∂T ).

A discrete version of the weak divergence operator ∇w· is an approximation, denoted by (∇w,r,T ·) in
the space of polynomials of degree r such that

(∇w,r,T · v, ϕ)T = −(v0,∇ϕ)T + 〈vb · n, ϕ〉∂T , ∀ϕ ∈ Pr(T ). (3.7)

From the integration by parts, we have

(v0,∇ϕ)T = −(∇ · v0, ϕ)T + 〈v0 · n, ϕ〉∂T .

Substituting the above identity into (3.3) yields

(∇w,r,T · v, ϕ)T − (∇ · v0, ϕ)T = 〈(vb − v0) · n, ϕ〉∂T , (3.8)

for all ϕ ∈ Pr(T ).

4 A hybridized weak Galerkin formulation

The goal of this section is to introduce a hybridized formulation for the weak Galerkin finite element

algorithm that was first designed in [23].

4.1 Notation

Let Th be a partition of the domain Ω into polygons in 2D or polyhedra in 3D. Assume that Th is shape

regular in the sense as defined in [24]. Denote by Eh the set of all edges or flat faces in Th, and let

E0
h = Eh \ ∂Ω be the set of all interior edges or flat faces. Denote by hT the diameter of T ∈ Th and

h = maxT∈Th
hT the meshsize for the partition Th.

On each element T ∈ Th, there are spaces of weak functions V(T ) and V (T ) defined as in (3.1) and (3.5),

respectively. Denote by V and Λ the function space on Th and Eh given respectively by

V =
∏

T∈Th

V(T ), Λ =
∏

T∈Th

[H
1
2 (∂T )]d. (4.1)

Note that the values of functions in the spaces V(T1) and V(T2) are not related for any elements T1

and T2, even if T1 and T2 share an interior edge or flat face e ∈ E0
h. The jump of v = {v0,vb} on e is

given by

[[v]]e =

{
vb|∂T1 − vb|∂T2 , e ∈ E0

h,

vb, e ∈ ∂Ω,
(4.2)

where vb|∂Ti is the value of v on e as seen from the element Ti. The order of T1 and T2 is non-essential

as long as the difference is taken in a consistent way in all the formulas. Analogously, for any function

λ ∈ Λ, we define its similarity on e ∈ Eh by

〈〈λ〉〉e =

{
λ|∂T1 + λ|∂T2 , e ∈ E0

h,

0, e ∈ ∂Ω.
(4.3)
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Denote by 〈〈λ〉〉 the similarity of λ in Eh.
For any integer k � 1, denote by Wk(T ) the discrete function space as follows:

Wk(T ) = {q : q ∈ L2
0(Ω), q|T ∈ Pk−1(T )}.

Let Vk(T ) denote the discrete weak function space as follows:

Vk(T ) = {v = {v0,vb} : {v0,vb}|T ∈ [Pk(T )]
d × [Pk−1(e)]

d, e ⊂ ∂T }.

Let Λk(∂T ) denote

Λk(∂T ) = {λ : λ|e ∈ [Pk−1(e)]
d, e ⊂ ∂T }.

By patching Wk(T ), Vk(T ), and Λk(∂T ) over all the elements T ∈ Th, we obtain three weak Galerkin

finite element spaces Wh, Vh, and Λh given by

Wh =
∏

T∈Th

Wk(T ), Vh =
∏

T∈Th

Vk(T ), Λh =
∏

T∈Th

Λk(∂T ). (4.4)

Denote by V 0
h the subspace of Vh consisting of discrete weak functions with vanishing boundary value

V 0
h = {v = {v0,vb} ∈ Vh : vb = 0 on ∂Ω}.

Furthermore, let Vh be the subspace of Vh consisting of functions without jump on each interior edge or

flat face

Vh = {v ∈ Vh : [[v]]e = 0, e ∈ E0
h}.

Denote by V0
h a subspace of Vh consisting of functions with vanishing boundary values

V0
h = {v ∈ Vh : vb|e = 0, e ∈ ∂Ω}.

Let Ξh be the subspace of Λh consisting of functions with similarity zero across each edge or flat face

Ξh = {λ ∈ Λh : 〈〈λ〉〉e = 0, e ∈ Eh}.

The functions in the space Ξh serve as Lagrange multipliers in hybridization methods.

Denote by ∇w,k−1 and (∇w,k−1·) the discrete weak gradient and the discrete weak divergence on the

finite element space Vh. They can be computed by using (3.3) and (3.7) on each element T , respectively.

For each element T ∈ Th, denote by Q0 the L2 projection operator from [L2(T )]d onto [Pk(T )]
d. For

each edge or face e ∈ Eh, denote by Qb the L
2 projection from [L2(e)]d onto [Pk−1(e)]

d. We shall combine

Q0 with Qb by writing Qh = {Q0, Qb}.

4.2 Algorithm

On each element T ∈ Th, we introduce four bilinear forms given below:

sT (v,w) = h−1
T 〈Qbv0 − vb, Qbw0 −wb〉∂T , (4.5)

aT (v,w) = (∇wv,∇ww)T + sT (v,w), (4.6)

bT (v, q) = (∇w · v, q)T , (4.7)

cT (v,λ) = 〈vb,λ〉∂T , (4.8)

for v = {v0,vb} ∈ Vk(T ), w = {w0,wb} ∈ Vk(T ), q ∈ Wh(T ) and λ ∈ Λk(∂T ).

Their sums over all T ∈ Th yield four globally-defined bilinear forms:

s(v,w) =
∑
T∈Th

sT (v,w), v,w ∈ Vh, (4.9)

a(v,w) =
∑
T∈Th

aT (v,w), v,w ∈ Vh, (4.10)
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b(v, q) =
∑
T∈Th

bT (v, q), v ∈ Vh, q ∈ Wh, (4.11)

c(v,λ) =
∑
T∈Th

cT (v,λ), v ∈ Vh, λ ∈ Λh. (4.12)

The following weak Galerkin finite element scheme for the Stokes equation (2.1) was introduced and

analyzed in [23].

Weak Galerkin Algorithm 1. A numerical approximation for (2.1)–(2.3) can be obtained by seeking

ūh = {ū0, ūb} ∈ Vh and p̄h ∈ Wh such that ūb = Qbg on ∂Ω and

a(ūh,v)− b(v, p̄h) = (f ,v0), (4.13)

b(ūh, q) = 0, (4.14)

for all v = {v0,vb} ∈ V0
h and q ∈ Wh.

The weak Galerkin finite element algorithm 1 can be hybridized in the finite element space Vh by

using a Lagrange multiplier that shall enforce the continuity of the functions in Vh on interior element

boundaries. The corresponding formulation can be described as follows.

Hybridized Weak Galerkin (HWG) Algorithm 1. A numerical approximation for (2.1)–(2.3)

can be obtained by seeking (uh; ph;λh) ∈ Vh ×Wh × Ξh such that ub = Qbg on ∂Ω and

a(uh,v)− b(v, ph)− c(v,λh) = (f ,v0), (4.15)

b(uh, q) + c(uh,μ) = 0, (4.16)

for all v = {v0,vb} ∈ V 0
h , q ∈ Wh and μ ∈ Ξh.

Lemma 4.1. The WG finite element scheme (4.15)–(4.16) has a unique solution.

Proof. Let f = 0, we shall show that the solution to (4.15)–(4.16) is trivial. To this end, taking v = uh,

q = ph, and μ = λh and subtracting (4.16) from (4.15) we arrive at

a(uh,uh) = 0.

By the definition of a(·, ·), we know ∇wuh = 0 on each T ∈ Th, u0 = ub on each ∂T .

By (3.8) and the fact that ub = u0 on ∂T we have, for any τ ∈ [Pk−1(T )]
d×d,

0 = (∇wuh, τ)T = (∇u0, τ)T − 〈u0 − ub, τ · n〉∂T = (∇u0, τ)T ,

which implies ∇u0 = 0 on each T ∈ Th and thus u0 is a constant. Since u0 = ub on each ∂T , we have

b(uh, q) = −(u0,∇q) + 〈u0 · n, q〉 = (∇ · uh, q) = 0.

From (4.16), we obtain

c(uh,μ) = 0.

Let μ = [[ub]] in the above equation, then it follows that∑
T∈Th

h‖[[ub]]‖2e = 0.

Thus [[ub]] = 0, which implies that u0 is continuous and we arrive at uh = {0,0} in Ω.

Let vb = 0 in (4.15), then it follows from uh = {0,0} and f = 0 that

b(v, ph) = (∇w · v, ph) = −(v0,∇ph) = 0.

Hence, we have ∇ph = 0 on each T ∈ Th. Thus ph is a constant in T . Let vb|e = [[ph]]e,v0 = 0. Then

c(v,λh) = 0.
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Thus

0 = b(v, ph) =
∑
e∈Eh

‖[[ph]]‖2e.

Hence ph is continuous. From ph ∈ L2
0(Ω), we would obtain ph = 0 in Ω.

Finally, letting vb = λh, from uh = {0,0} and ph = 0 in Ω, we obtain

c(v,λh) = 0,

which means λh = 0.

This completes the proof of the lemma.

4.3 The relation between WG and HWG

The rest of this section will show that the above two schemes are equivalent in that the solutions ūh, p̄h
from (4.13)–(4.14) and uh, ph from (4.15)–(4.16) are identical, respectively.

For any v ∈ V0
h, let

|||v|||2 = a(v,v) =
∑
T∈Th

‖∇wv‖2T +
∑
T∈Th

h−1
T ‖Qbv0 − vb‖2∂T . (4.17)

It has been verified in [23] that (4.17) defines a norm in the vector space V0
h.

Theorem 4.2. Let uh ∈ Vh, ph ∈ Wh be the first two components of the solution of the hybridized

WG algorithm (4.15)–(4.16). Then, we have [[u]]e = 0 for all e ∈ E0
h; i.e., u ∈ Vh and ub = Qbg on ∂Ω.

Furthermore, we have that uh and ph satisfy the equation (4.13)–(4.14), i.e., uh = ūh and ph = p̄h.

Proof. Let e ∈ E0
h be an interior edge shared by T1 and T2. By letting q = 0, μ = [[uh]]e on e ∈ ∂T1,

μ = −[[uh]]e for e ∈ ∂T2, and μ = 0 otherwise in (4.16), we have from (4.12) that

0 = c(uh,μ) =
∑
T∈Th

〈uh,μ〉∂T =

∫
e

[[uh]]
2
eds,

which implies [[uh]]e = 0 for any e ∈ E0
h.

Next, by letting μ = 0, we obtain from (4.12) that

b(uh, q) = 0

for all q ∈ Wh.

For any v ∈ V 0
h , it follows from [[v]]e = 0 on any e ∈ E0

h and v = 0 on ∂Ω that

c(v,λh) =
∑
T∈Th

〈vb,λh〉∂T =
∑
T∈Th

〈[[v]],λ〉e = 0.

Thus, we arrive at

a(uh,v)− b(v, ph) = (f ,v0),

which is the same as (4.13). It implies that (uh; ph) is a solution of the WG scheme (4.13)–(4.14). It

follows from the uniqueness of solution of (4.13)–(4.14) that uh = ūh and ph = p̄h, which completes the

proof.

5 Stability conditions for HWG

It is easy to see that the following defines a norm in the finite element space Ξh,

‖λ‖Ξh
=

( ∑
e∈E0

h

he‖λ‖2e
) 1

2

. (5.1)
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As to V 0
h , for any v ∈ V 0

h , let

‖v‖V 0
h
=

(
|||v|||2 +

∑
e∈E0

h

h−1
e ‖[[v]]e‖2e

) 1
2

. (5.2)

We claim that ‖ · ‖V 0
h
defines a norm in V 0

h . In fact, if ‖v‖V 0
h
= 0, then [[v]]e = 0 on each interior edge or

flat face e ∈ E0
h, and hence v ∈ V0

h. Since ||| · ||| defines a norm in the vector space V0
h, then v = 0. This

verifies the positivity property of ‖ · ‖V 0
h
. The other properties for a norm can be checked trivially.

Remark 5.1. Similarly, for any φ = (p;λ) ∈ Mh, we can define

‖φ‖Mh
= ‖p‖+ ‖λ‖Ξh

. (5.3)

Lemma 5.2 (Trace inequality, see [24]). Let Th be a partition of the domain Ω into polygons in 2D

or polyhedra in 3D. Assume that the partition Th satisfies the assumptions A1–A3 as specified in [24].

Let p > 1 be any real number. Then, there exists a constant C such that for any T ∈ Th and edge/face

e ∈ ∂T , we have

‖θ‖pLp(e) � Ch−1
T (‖θ‖pLp(T ) + hp

T ‖∇θ‖pLp(T )), (5.4)

where θ ∈ W 1,p(T ) is any function.

Lemma 5.3 (Inverse inequality, see [24]). Let Th be a partition of the domain Ω into polygons or

polyhedra. Assume that Th satisfies all the assumptions A1–A4 in [24] and p � 1 be any real number.

Then, there exists a constant C(n) such that

‖∇ϕ‖T,p � C(n)h−1
T ‖ϕ‖T,p, ∀T ∈ Th (5.5)

for any piecewise polynomial ϕ of degree n on Th.
Lemma 5.4 (Boundedness). There exists a constant C > 0 such that

|a(w,v)| � C‖w‖V 0
h
‖v‖V 0

h
, ∀w,v ∈ V 0

h , (5.6)

|b(v, q)| � C‖v‖V 0
h
‖q‖, ∀v ∈ V 0

h , q ∈ Wh, (5.7)

|c(v,λ)| � C‖v‖V 0
h
‖λ‖Ξh

, ∀v ∈ V 0
h ,λ ∈ Ξh. (5.8)

Proof. To derive (5.6), we use the Cauchy-Schwarz inequality to obtain

|a(w,v)| =
∣∣∣∣ ∑
T∈Th

(∇ww,∇wv)T + h−1
T 〈Qbw0 −wb, Qbv0 − vb〉∂T

∣∣∣∣
�
( ∑

T∈Th

‖∇ww‖2T
) 1

2
( ∑

T∈Th

‖∇wv‖2T
) 1

2

+

( ∑
T∈Th

h−1
T ‖Qbw0 −wb‖2∂T

) 1
2
( ∑

T∈Th

h−1
T ‖Qbv0 − vb‖2∂T

) 1
2

� C‖w‖V 0
h
‖v‖V 0

h
.

As to (5.7), we use (3.6), trace inequality (5.4), and inverse inequality (5.5) to obtain

|b(v, q)| =
∣∣∣∣ ∑
T∈Th

(∇w · v, q)T
∣∣∣∣

= −
∑
T∈Th

(v0,∇p)T +
∑
T∈Th

〈vb, pn〉∂T

=
∑
T∈Th

(∇ · v0, p)T −
∑
T∈Th

〈v0 − vb, pn〉∂T



Zhai Q L et al. Sci China Math November 2015 Vol. 58 No. 11 2463

�
( ∑

T∈Th

‖∇ · v0‖T
) 1

2
( ∑

T∈Th

‖p‖2T
) 1

2

+

( ∑
T∈Th

‖v0 − vb‖∂T
) 1

2
( ∑

T∈Th

‖p‖2∂T
) 1

2

� C

( ∑
T∈Th

‖∇v0‖T
) 1

2

‖p‖+ Ch− 1
2

( ∑
T∈Th

‖v0 − vb‖∂T
) 1

2

(‖p‖+ h‖∇p‖)

� C‖v‖V 0
h
‖p‖.

As to (5.8), it follows from the Cauchy-Schwarz inequality that

|c(v,λ)| =
∣∣∣∣ ∑
T∈Th

〈vb,λ〉∂T
∣∣∣∣ = ∣∣∣∣ ∑

e∈E0
h

〈[[v]]e,λ〉e
∣∣∣∣

�
( ∑

e∈E0
h

h−1
e ‖[[v]]e‖2e

) 1
2
( ∑

e∈E0
h

he‖λ‖2e
) 1

2

� C‖v‖V 0
h
‖λ‖Ξh

,

which completes the proof.

Lemma 5.5 (Coercivity). For any v ∈ V0
h, we have

|a(v,v)| � C‖v‖2V 0
h
. (5.9)

Proof. For any v ∈ V0
h, we have ‖v‖2

V 0
h

= |||v|||, which means the estimate (5.9) holds true. This

completes the proof.

Lemma 5.6 (See [23]). There exists a positive constant β independent of h such that

sup
v∈V0

h

b(v, ρ)

|||v||| � β‖ρ‖, (5.10)

for all ρ ∈ Wh.

Lemma 5.7. For any given ρ ∈ Wh, there exist a positive constant β independent of h and a v ∈ V 0
h

such that

b(v, ρ)

‖v‖V 0
h

� β‖ρ‖. (5.11)

Proof. From V0
h ⊂ V 0

h and Lemma 5.6, we have, for any ρ ∈ Wh, there exists a v ∈ V0
h,

b(v, ρ)

‖v‖V 0
h

=
b(v, ρ)

|||v||| � β‖ρ‖, (5.12)

which completes the proof of the lemma.

Lemma 5.8. For any given τ ∈ Ξh, there exist a v ∈ V 0
h with v0 = 0 and a constant C > 0 such that

c(v, τ )

‖v‖V 0
h

� C‖τ‖Ξh
. (5.13)

Proof. For any τ ∈ Ξh, we have 〈〈τ 〉〉e = 0 or equivalently τ 1 + τ 2 = 0 on each interior edge e ∈ E0
h

and τ = 0 on all boundary edges. By letting v = {0, heτ} ∈ V 0
h in c(v, τ ) and s(v,v), we obtain

c(v, τ ) =
∑
e∈E0

h

〈v1
b , τ

1〉e + 〈v2
b , τ

2〉e = 2
∑
e∈E0

h

he‖τ‖2e, (5.14)

and

s(v,v) =2
∑
e∈E0

h

h−1
T h2

e(‖τ 1‖2e + ‖τ 2‖2e) � 2
∑
e∈E0

h

he‖τ‖2e. (5.15)
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It follows from (3.3), Cauchy-Schwarz inequality, the trace inequality (5.4), and the inverse inequality (5.5)

that

(∇wv,∇wv)T =
∑
e∈∂T

〈v∗
b ,∇wv〉e �

∑
e∈∂T

he‖τ ∗‖e‖∇wv‖e � C
∑
e∈∂T

h
1
2
e ‖τ ∗‖e‖∇wv‖T , (5.16)

where v∗
b is chosen to be v1

b or v2
b according to the relative position of vb and e, which implies that

‖∇wv‖T � C
∑
e∈∂T

h
1
2
e ‖τ ∗‖e. (5.17)

By summing over all elements, we obtain

(∇wv,∇wv)h � C
∑
e∈E0

h

he‖τ ∗‖2e. (5.18)

It follows from (5.15) and (5.18) that

|||v|||2 � C
∑
e∈E0

h

he‖τ ∗‖2e = C‖τ‖2Ξh
. (5.19)

By combining (5.14) and (5.19), we obtain that there exists a constant C > 0 such that

c(v, τ )

‖v‖V 0
h

� C‖τ‖Ξh
, (5.20)

which completes the proof.

6 Error estimates

The goal of this section is to derive an error equation for the HWG finite element solution obtained from

(4.15)–(4.16). This error equation is critical in convergence analysis.

In addition to the projection Qh = {Q0, Qb} defined in the previous section, let Qh and Qh be two

local L2 projections onto Pk−1(T ) and [Pk−1(T )]
d×d, respectively.

Lemma 6.1 (See [23]). The projection operators Qh, Qh, and Qh satisfy the following commutative

properties

∇w(Qhv) = Qh(∇v), ∀v ∈ [H1(Ω)]d, (6.1)

∇w · (Qhv) = Qh(∇ · v), ∀v ∈ H(div,Ω). (6.2)

Denote by (u; p) the exact solution of (2.1)–(2.3). Let (uh; ph;λh) ∈ Vh ×Wh ×Ξh be the solutions to

(4.15)–(4.16). Let λ = ∇u · n− pn. Define error functions as follows:

eh = {Q0u− u0, Qbu− ub}, εh = Qhp− ph, δh = Qbλ− λh. (6.3)

Lemma 6.2. Let (u; p) be the exact solution to (2.1)–(2.3), and (uh; ph;λh) ∈ Vh ×Wh × Ξh be the

solutions of (4.15)–(4.16). Then, the error functions eh, εh, and δh satisfy the following equations:

a(eh,v)− b(v, εh)− c(v, δh) = �u,p(v), ∀v ∈ V 0
h , (6.4)

b(eh, q) + c(eh,μ) = 0, ∀ q ∈ Wh,μ ∈ Ξh, (6.5)

where

�u,p(v) =
∑
T∈Th

〈v0 − vb, (∇u −Qh(∇u)) · n〉∂T

−
∑
T∈Th

〈v0 − vb, (p−Qhp)n〉∂T + s(Qhu,v). (6.6)
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Proof. First, applying (3.2), Lemma 6.1, and the integration by parts, we have

(∇w(Qhu),∇wv)T = (Qh(∇u),∇wv)T

= −(v0,∇ ·Qh(∇u))T + 〈vb,Qh(∇u) · n〉∂T
= (∇v0,Qh(∇u))T − 〈v0 − vb,Qh(∇u) · n〉∂T
= (∇v0,∇u)T − 〈v0 − vb,Qh(∇u) · n〉∂T
= −(Δu,v0)T + 〈v0 − vb, (∇u −Qh(∇u)) · n〉∂T + 〈vb,∇u · n〉∂T .

Summing over all T ∈ Th reaches

−(Δu,v0) = (∇w(Qhu),∇wv)−
∑
T∈Th

〈v0 − vb, (∇u−Qh(∇u)) · n〉∂T −
∑
T∈Th

〈vb,∇u · n〉∂T . (6.7)

Similarly, by using (3.6) and the integration by parts, we have

(∇w · v,Qhp)T = −(v0,∇(Qhp))T + 〈vb, (Qhp)n〉∂T
= (∇ · v0,Qhp)T − 〈v0 − vb, (Qhp)n〉∂T
= (∇ · v0, p)T − 〈v0 − vb, (Qhp)n〉∂T
= −(v0,∇p)T + 〈v0, pn〉∂T − 〈v0 − vb, (Qhp)n〉∂T
= −(v0,∇p)T + 〈v0 − vb, (p−Qhp)n〉∂T + 〈vb,∇u · n〉∂T .

Summing over all T leads to

(∇p,v0) = (∇w · v,Qhp) +
∑
T∈Th

〈v0 − vb, (p−Qhp)n〉∂T +
∑
T∈Th

〈vb, pn〉∂T . (6.8)

By using the identity −(Δu,v0) + (∇p,v0) = (f ,v0) and noticing that∑
T∈Th

〈vb,∇u · n− pn〉∂T = c(v,λ),

we obtain

a(v,Qhu)− b(v,Qhp)− c(v,λ) = (f ,v0) + �u,p(v). (6.9)

Combining with the scheme (4.15) as follows:

a(v,uh)− b(v, ph)− c(v,λh) = (f ,v0),

we obtain a(eh,v)− b(v, εh)− c(v, δh) = �u,p(v).

As to (6.5), from Theorem 4.2 we know that [[eh]] = 0, which leads to

c(eh,μ) = 0, ∀μ ∈ Ξh.

Moreover, for any q ∈ Wh, we have

b(eh, q) = b(Qhu, q) =
∑
T∈Th

(∇w · (Qhu), q)T =
∑
T∈Th

(Qh(∇ · u), q)T = (∇ · u, q) = 0.

This completes the proof.

Next, we shall establish some error estimates for the hybridized WG finite element solution (uh; ph;λh)

arising from (4.15)–(4.16). The error equations (6.4)–(6.5) imply

a(Qhu− uh,v)− b(v,Qhp− ph)− c(v, Qbλ− λh) = �u,p(v), ∀v ∈ V 0
h ,

b(Qhu− uh, q) + c(Qhu− uh,μ) = 0, ∀ q ∈ Wh,μ ∈ Ξh,

where �u,p(v) is given by (6.6). The above is a saddle point problem for which the Brezzi’s theorem [4]

can be applied for an analysis on its stability and solvability. Note that all the conditions of Brezzi’s

theorem have been verified in Section 5 (see Lemmas 5.4, 5.5 and 5.8). The following error estimate can

be proved similarly with [23, Theorem 7.1].
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Theorem 6.3. Let (u; p) be the exact solution to (2.1)–(2.3) and (uh; ph;λh) ∈ Vh ×Wh × Ξh be the

solutions to (4.15)–(4.16). Then, there exists a constant C such that

‖Qhu− uh‖V 0
h
+ ‖Qhp− ph‖+ ‖Qbλ− λh‖Ξh

� Chk(‖u‖k+1 + ‖p‖k). (6.10)

Theorem 6.4. Let (u; p) be the exact solution to (2.1)–(2.3) and λh ∈ Ξh be the last component of

the solution to (4.15)–(4.16). On the set of interior edges E0
h, let λ = ∇u · n− pn. Then, there exists a

constant C such that

‖λ− λh‖Ξh
� Chk(‖u‖k+1 + ‖p‖k). (6.11)

Proof. From the triangle inequality and Theorem 6.3, we have

‖λ− λh‖Ξh
� ‖λ−Qbλ‖Ξh

+ ‖Qbλ− λh‖Ξh
,

‖Qbλ− λh‖Ξh
� Chk(‖u‖k+1 + ‖p‖k).

Thus we just need to concentrate on ‖λ−Qbλ‖Ξh
.

Applying the definition of Lagrange multiplier, trace inequality, and the property of L2 projection,

yields

‖λ−Qbλ‖2Ξh
=
∑
e∈E0

h

he‖λ−Qbλ‖2e

�
∑
e∈E0

h

h‖∇u−Qh∇u‖2e +
∑
e∈E0

h

h‖p−Qhp‖2e

� C
∑
T∈Th

(‖∇u−Qh∇u‖2T + h2‖∇u−Qh∇u‖21,T )

+ C
∑
T∈Th

(‖p−Qhp‖2T + h2‖p−Qhp‖21,T )

� Ch2k(‖u‖k+1 + ‖p‖k)2,

which completes the proof.

The following L2-error estimate for Q0u− u0 follows from Theorem 4.2 and [23, Theorem 7.2].

Theorem 6.5 (See [23]). Let (u; p) with k � 1 and (uh; ph;λh) ∈ Vh ×Wh ×Ξh be the exact solution

to (2.1)–(2.3) and be the solutions to (4.15)–(4.16), respectively. Then, the following optimal order error

estimate holds true

‖Q0u− u0‖ � Chk+1(‖u‖k+1 + ‖p‖k). (6.12)

7 Efficient implementation via variable reduction

The degrees of freedom in the WG algorithm (4.13)–(4.14) can be divided into two classes: (1) the interior

variables representing u0, and (2) the interface variables for ub. For the HWG algorithm (4.15)–(4.16),

more unknowns must be added to the picture from the Lagrange multiplier λh. Thus, the size of the

discrete system arising from either (4.13)–(4.14) or (4.15)–(4.16) is enormously large.

The goal of this section is to present a Schur complement formulation for the WG algorithm (4.13)–

(4.14) based on the hybridized formulation (4.15)–(4.16). The method shall eliminate all the interior

unknowns associated with u0 and the interface unknow λh, and produce a much reduced system of linear

equations involving only the unknowns representing the interface variables ub.

7.1 Theory of variable reduction

Denote by Bh the interface finite element space defined as the restriction of Vh on the set of edges Eh;
i.e.,

Bh = {v = {μ; p} : μ ∈ [Pk−1(e)]
d, p|e ∈ Pk−1(e), e ∈ Eh}.
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Bh is a Hilbert space with the following inner product

〈wb, qb〉Eh
=
∑
e∈Eh

〈wb, qb〉e, ∀wb, qb ∈ Bh.

Let B0
h be the subspace of Bh consisting of functions with vanishing boundary value on ∂Ω. It is not hard

to see that the interface finite element space Bh is isomorphic to the space of Lagrange multiplier Ξh.

The Schur complement through an elimination of the Lagrange multiplier λh and the interior unknown

u0 can be implemented through a map, denoted by Sf .

We define the map Sf : Bh → B0
h as follows: for a fixed ph and any given function wb ∈ Bh, the image

Sf (wb; ph) can be obtained by

Step 1. On each element T ∈ Th, solve for w0 in term of wb and ph from the following local problem:

aT (wh,v)− bT (v, ph) = (f ,v0)T , ∀v = {v0,0} ∈ Vk(T ), (7.1)

where wh = {w0,wb} ∈ Vk(T ), ph ∈ Wk(T ). Denote w0 = Df (wb; ph).

Step 2. On each element T ∈ Th, solve for ζh,T ∈ Λk(∂T ) in term of wh = {w0,wb} and ph from the

following local problem:

cT (v, ζh,T ) = aT (wh,v)− bT (v, ph), ∀v = {0,vb} ∈ Vk(T ). (7.2)

Thus we obtain a function ζh,T ∈ Λh. Denote ζh,T = Lf (wb; ph).

Step 3. Define Sf (wb; ph) by the similarity of ζh on interior edges and zero on boundary edges, i.e.,

Sf (wb; ph) = 〈〈ζh〉〉. (7.3)

It follows from (7.3) that Sf (wb; ph) ∈ B0
h. The following are two properties regarding the operator

Sf and the related terms.

(1) The sum of (7.1) and (7.2) yields

cT (v, ζh,T ) = aT (wh,v)− bT (v, ph)− (f ,v0)T , ∀v = {v0,vb} ∈ Vk(T ). (7.4)

(2) It follows from the superposition principle that

Sf (wb; ph) = S0(wb; ph) + Sf (0; 0), ∀wb ∈ Bh, ph ∈ Wh, (7.5)

where S0 is the operator with respect to f = 0.

Lemma 7.1. The following identity holds true for the operator S0:

〈S0(wb; ph), qb〉Eh
= a(wh, qh)− b(qh, ph), ∀wb, qb ∈ B0

h, (7.6)

where wh = {D0(wb; ph),wb} and qh = {D0(qb; ph), qb}.

Proof. For any wb, qb ∈ B0
h, from the definition of the operator Sf we obtain

wh = {D0(wb; ph),wb}, ζh = L0(wb; ph), qh = {D0(qb; ph), qb}.

Letting f = 0 in (7.4) yields

〈S0(wb; ph), qb〉Eh
=
∑
e∈E0

h

〈〈〈ζh〉〉e, qb〉e =
∑
T∈Th

〈ζh,T , qb〉∂T

=
∑
T∈Th

cT (qh, ζh,T ) =
∑
T∈Th

aT (wh, qh)− bT (qh, ph).

This completes the identity (7.6).
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Lemma 7.2. Let uh = {u0,ub} ∈ Vh, ph ∈ Wh, and λh ∈ Ξh be the unique solution of the hy-

bridized WG algorithm (4.15)–(4.16). Then, we have uh ∈ Vh and ub ∈ Bh is a well-defined function.

Furthermore, it satisfies the following equation

Sf (ub; ph) = 〈〈ζh〉〉 = 0. (7.7)

Proof. Since (uh; ph;λh) is the unique solution to the HWG scheme (4.15)–(4.16), then from Theo-

rem 4.2 we have [[uh]]e = 0 on each interior edge or flat face e ∈ E0
h and ub = Qbg on ∂Ω. Thus, uh ∈ Vh

and its restriction on Eh is a well-defined function in Bh.

In order to verify (7.7), we take v = {v0,0} ∈ Vk(T ) on T and zero elsewhere in (4.15), it follows

that uh satisfies the local equation

aT (uh,v)− bT (v, ph) = (f ,v0)T , ∀v = {v0,0} ∈ Vk(T ).

Next, taking v = {0,vb} ∈ Vk(T ) on T and zero elsewhere in (4.15), yields that λh satisfies the local

equation

cT (v,λh,T ) = aT (wh,v)− bT (v, ph), ∀v = {0,vb} ∈ Vk(T ),

where λh,T is the restriction of λh on ∂T . Thus, from the definition of the operator Sf , we obtain

Sf (ub; ph) = 〈〈λh〉〉.

Combining with the fact that λh ∈ Ξh, we have 〈〈ζh〉〉 = 0, which completes the proof of the lemma.

Lemma 7.3. Let ūb ∈ Bh be a function satisfying ūb = Qbg on ∂Ω, ūb and ph satisfy the following

operator equation:

Sf (ūb; ph) = 0. (7.8)

Then, (ūh; ph) ∈ Vh ×Wh is the solution to the WG finite element solution arising from (4.13)–(4.14).

Here ū0 is the solution to the following local problems on each element T ∈ Th,

aT (ūh,v)− bT (v, ph) = (f ,v0)T , ∀v = {v0,0} ∈ Vk(T ), (7.9)

with ūh = {ū0, ūb}.
Proof. For each T ∈ Th, we solve for λ̄h,T ∈ Λk(∂T ) from the local problem

cT (v, λ̄h,T ) = aT (ūh,v)− bT (v, ph), ∀v = {0,vb} ∈ Vk(T ). (7.10)

Define a function λ̄h ∈ Λh by λ̄h|∂T = λ̄h,T . Since (ūb; ph) ∈ Bh×Wh satisfies the operator equation (7.8),

ūb satisfies the boundary condition, and ū0 is given by (7.9), it follows from the definition of the operator

Sf that

〈〈λ̄h〉〉 = Sf (ūb; ph) = 0, (7.11)

which implies λ̄h ∈ Ξh.

By subtracting (7.10) from (7.9), we have

aT (ūh,v)− bT (v, ph)− cT (v, λ̄h,T ) = (f ,v0)T , ∀v = {v0,vb} ∈ Vk(T ). (7.12)

By summing up the above equations over all T ∈ Th, we obtain

a(ūh,v)− b(v, ph)− c(v, λ̄h) = (f ,v0), ∀v = {v0,vb} ∈ Vh. (7.13)

By restricting v to the weak finite element space V 0
h and using (7.11) we arrive at

c(v, λ̄h) =
∑
e∈E0

h

〈〈〈λ̄h〉〉e,vb〉e = 0.

Thus we obtain

a(ūh,v)− b(v, ph) = (f ,v0), ∀v = {v0,vb} ∈ V 0
h .

Recalling the assumption ūb = Qbg on ∂Ω and Theorem 4.2, we have ūh is the WG finite element solution

to (4.13)–(4.14). This completes the proof of the lemma.
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Combining the above two lemmas yields the following result.

Theorem 7.4. Let ūb ∈ Bh be any function such that ūb = Qbg on ∂Ω. Let ū0 be the solution to (7.9).

Then (ūh; ph) is the solution to (4.13)–(4.14) if and only if ūb satisfies the following operator equation:

Sf (ūb; ph) = 0. (7.14)

7.2 Computational algorithm with reduced variables

Together with the equation (7.5), (7.14) gives rise to

S0(ūb; ph) = −Sf (0; 0). (7.15)

Let Gb ∈ Bh be a finite element function such that Gb = Qbg on the boundary of Ω and zero elsewhere.

From the linearity of operator S0, we have

S0(ūb; ph) = S0(ūb −Gb; ph) + S0(Gb; ph).

Substituting this equation into (7.15), one obtains

S0(ūb −Gb; ph) = −Sf (0; 0)− S0(Gb; ph).

Note that the function Hb = ūb −Gb has vanishing boundary value. Letting

rb = −Sf (0; 0)− S0(Gb; ph),

we have

S0(Hb; ph) = rb. (7.16)

The reduced system of linear equations (7.16) is actually a Schur complement formulation for the WG

finite element scheme (4.13)–(4.14). Note that (7.16) involves only the variables representing the value

of the function on E0
h. This is clearly a significant reduction on the size of the linear system that has to

be solved in the WG finite element method.

Variable Reduction Algorithm 1. The solution (uh; ph) to the WG algorithm (4.13)–(4.14) can be

obtained in the following steps:

Step 1. On each element T ∈ Th, solve for rb from the following equation:

rb = −Sf (0; 0)− S0(Gb; ph).

This step requires the inversion of local stiffness matrices and can be accomplished in parallel. The

computational complexity is linear with respect to the number of unknowns.

Step 2. Solve for {Hb, ph} by means of the operator equation (7.16).

Step 3. Compute ub = Gb +Hb to get the solution on element boundaries. Then on each element T ,

compute u0 = Df (ub; ph) by solving the local problem (7.1). This task can also be implemented in

parallel, and the computational complexity is proportional to the number of unknowns.

Note that, Step 2 in the Variable Reduction Algorithm 1 is the primary computational part of the

implementation.

8 Numerical experiments

The goal of this section is to report some numerical results for the hybridization weak Galerkin finite

element method proposed and analyzed in previous sections.

A Schur complement technique of the HWG method is utilized to decrease the degree of freedom. For

example, if Ω = (0, 1)2 and the uniform triangulation is used with mesh size
√
2/n, the number of elements
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is NT = 2n2 and the number of edges is NE = 3n2 + 2n. If k = 1, then the degree of freedom for usual

weak Galerkin method is 7NT + 2NE = 20n2 + 4n, the degree of freedom for hybridized weak Galerkin

method is 13NT +2NE = 32n2+4n, while the degree of freedom can be reduced to 2NE+NT = 8n2+4n

by using the Schur complement.

Let (u; p) be the exact solution to (2.1)–(2.3) and (uh; ph) be the numerical solution to (4.13)–(4.14).

Denote eh = Qhu−uh and εh = Q̃hp− ph. The error for the weak Galerkin solution is measured in four

norms defined as follows:

|||eh|||2 =
∑
T∈Th

(∫
T

|∇weh|2dT + h−1
T

∫
∂T

(e0 − eb)
2ds

)
,

‖eh‖2 =
∑
T∈Th

∫
T

|eh|2dT,

‖εh‖2 =
∑
T∈Th

∫
T

|εh|2dT,

‖Qbλ− λh‖2 =
∑
e∈Eh

he

∫
e

|Qbλ− λh|2ds.

Example 8.1. Consider the problem (2.1)–(2.3) in the square domain Ω = (0, 1)2. The HWG finite

element space k = 1 is employed in the numerical discretization. It has the analytic solution

u =

(
sin(2πx) cos(2πy)

− cos(2πx) sin(2πy)

)
and p = x2y2 − 1

9
.

The right-hand side function f in (2.1) is computed to match the exact solution. The mesh size is denoted

by h.

Table 1 shows that the errors and convergence rates of Example 8.1 in ||| · |||-norm and L2-norm for the

HWG-FEM solution u are of order O(h) and O(h2) when k = 1, respectively.

Table 2 shows that the errors and orders of Example 8.1 in L2-norm for pressure and λ . The numerical

results are also consistent with theory for these two cases.

Table 1 Numerical errors and orders for u of Example 8.1

h |||eh||| order ‖eh‖ order

1/4 5.8950e+00 1.3555e+00

1/8 2.9253e+00 1.0109 2.3750e−01 2.5128

1/16 1.4552e+00 1.0074 4.9049e−02 2.2756

1/32 7.2651e−01 1.0022 1.1500e−02 2.0926

1/64 3.6312e−01 1.0006 2.8254e−03 2.0251

1/128 1.8154e−01 1.0001 7.0325e−04 2.0063

Table 2 Numerical errors and orders for p and λ of Example 8.1

h ‖εh‖ order ‖Qbλ − λh‖ order

1/4 5.1609e−01 8.6908e−01

1/8 2.9426e−01 0.8105 3.2951e−01 1.3992

1/16 1.4706e−01 1.0007 9.8958e−02 1.7354

1/32 7.2990e−02 1.0107 2.6698e−02 1.8901

1/64 3.6391e−02 1.0041 6.9159e−03 1.9487

1/128 1.8180e−02 1.0012 1.7681e−03 1.9677
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Table 3 Numerical errors and orders for u of Example 8.2

h |||eh||| order ‖eh‖ order

1/4 2.8805e−01 4.2555e−02

1/8 1.4913e−01 0.9498 1.0184e−02 2.0630

1/16 7.5883e−02 0.9747 2.5894e−03 1.9756

1/32 3.8233e−02 0.9890 6.5809e−04 1.9762

1/64 1.9173e−02 0.9957 1.6598e−04 1.9872

1/128 9.5963e−03 0.9985 4.1663e−05 1.9942

Table 4 Numerical errors and orders for p and λ of Example 8.2

h ‖εh‖ order ‖Qbλ − λh‖ order

1/4 7.7802e−02 1.8028e−01

1/8 3.7184e−02 1.0651 8.2876e−02 1.1212

1/16 1.4725e−02 1.3364 3.2275e−02 1.3605

1/32 5.1629e−03 1.5121 1.1179e−02 1.5297

1/64 1.6890e−03 1.6120 3.5619e−03 1.6500

1/128 5.4636e−04 1.6282 1.0720e−03 1.7324

Example 8.2. Consider the problem (2.1)–(2.3) in the square domain Ω = (0, 1)2. The HWG finite

element space k = 1 is employed in the numerical discretization. It has the analytic solution

u =

(
−2xy(x− 1)(y − 1)x(x− 1)(2y − 1)

2xy(x− 1)(y − 1)y(y − 1)(2x− 1)

)

and

p = x4 + y4 − 2

5
.

The right-hand side function f in (2.1) is computed to match the exact solution. The mesh size is denoted

by h.

The numerical results are presented in Tables 3 and 4 which confirm the theory developed in previous

sections.
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