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the saddle points more clearly, coupled forward-backward stochastic Volterra integral equations and stochastic

Fredholm-Volterra integral equations are introduced. Compared with deterministic game problems, some new

terms arising from the procedure of deriving the later equations reflect well the essential nature of stochastic

systems. Moreover, our representations and arguments are even new in the classical SDEs case.
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1 Introduction

Differential game is a classical problem, and there is a lot of literature in this field, see for example,

[2, 5, 6, 12]. Nonetheless there is little literature (except [23] for deterministic Volterra integral equations

(VIEs in short)) to demonstrate research on more general dynamic settings. In this paper, we will initiate

a study on zero-sum linear quadratic (LQ in short) stochastic integral games. More precisely, we consider

the state equation described by a controlled stochastic Volterra integral equation (SVIE in short),

Xu(t) = ϕ(t) +

∫ t

0

[A1(t, s)X
u(s) +B1(t, s)u1(s) + C1(t, s)u2(s)]ds

+

∫ t

0

[A2(t, s)X
u(s) +B2(t, s)u1(s) + C2(t, s)u2(s)]dW (s), (1.1)

where u(·) = (u1(·), u2(·))T are control variables for Players 1 and 2, Xu(·) is the corresponding state,

and {Wt}t∈[0,T ] is a scalar-valued Wiener process defined on a complete probability space (Ω,F , P ) with
F ≡ {Ft}t∈[0,T ] being the natural filtration of Brownian motion W (·). Under certain conditions (see (H1)

in Section 2), for any ui(·) ∈ L2
F [0, T ] by standard fixed point arguments (see [1]) one can obtain that
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Xu(·) ∈ L2
F [0, T ] and X

u(T ) ∈ L2
FT

(Ω). We also define the cost functional associated with (1.1) for the

players as follows:

J(u1(·), u2(·)) = E

∫ T

0

[Q(t)|Xu(t)|2 + 2Xu(t)S(t) · u(t) +R(t)u(t) · u(t)]dt+ EG|Xu(T )|2

= 〈QXu, Xu〉2 + 2 〈XuS, u〉2 + 〈Ru, u〉2 + 〈GXu(T ), Xu(T )〉1 , (1.2)

where 〈·, ·〉1 (or 〈·, ·〉2) is the inner product in L2(Ω) (or L2
F [0, T ]) which is the set of square integrable

random variables (or F-adapted processes), and

S(·) =
(
S1(·)
S2(·)

)
, R(·) =

[
R11(·) R12(·)
R21(·) R22(·)

]
.

The problem that we are interested in is to find a saddle point for this cost functional, i.e., a pair of control

(û1, û2) such that J(û1, u2) � J(û1, û2) � J(u1, û2) holds. Throughout this paper, we assume that Q,

Rij and Si (i, j = 1, 2) are bounded adapted processes and G is a bounded random variable. Later we

will show that some coefficients can be non-positive, even though the Itô’s formula and stochastic Riccati

equations, which are indispensable in the SDEs case, are absent under our general framework. Before

going further, let us give three important special cases of the state equation (1.1).

Example 1 (Stochastic delay equations). Given h > 0, suppose X
.
= Xu(t) = k(t) with t ∈ [−h, 0],

A′
j , B

′
i, C

′
i, D

′, F ′
i and k are bounded deterministic functions, C′

1(t) = C′
2(t) ≡ 0 with t < h. Let us

consider a stochastic delay equation as follows:

dX(t) =

[
A′

1(t)X(t) +A′
2(t)X(t− h) +

∫ t

t−h

A′
0(t, s)X(s)ds+ C ′

1(t)u1(t− h)

+B′
1(t)u1(t) +B′

2(t)u2(t) + C ′
2(t)u2(t− h)

]
dt

+ [D′(t) +A′
3(t)X(t) + F ′

1(t)u1(t) + F ′
2(t)u2(t)]dW (t). (1.3)

Note that X here can describe the amount of cash flow while u1 and u2 may represent consumption and

investment, respectively. It was shown in [10] that (1.3) can be transformed as,

X(t) = X0(t) +

∫ t

0

Φ(t, s)D′(s)dW (s) +

2∑
i=1

∫ t

0

Ki(t, s)ui(s)ds

+

∫ t

0

Φ(t, s)A′
3(s)X(s)dW (s) +

2∑
i=1

∫ t

0

Li(t, s)ui(s)dW (s), (1.4)

where Li(t, s) = Φ(t, s)F ′
i (s), Φ(s, s) = 1, Φ(t, s) = 0 with t < s, and

Ki(t, s) = Φ(t, s)B′
i(s) + Φ(t, s+ h)C ′

i(s+ h),

∂Φ

∂t
(t, s) = A′

1(t)Φ(t, s) +A′
2(t)Φ(t − h, s) +

∫ t

t−h

A′
0(t, u)Φ(u, s)du,

X0(t) = Φ(t, 0)k(0) +

∫ 0

−h

[
Φ(t, s+ h)A′

2(s+ h) +

∫ h

0

Φ(t, u)A′
0(u, s)du

]
k(s)ds.

Example 2 (Stochastic advertising model). Given deterministic functions l(·), h(·), h(·), f(·), f(·), ϕ(·),
suppose u1(·) represents the rate of advertising expenditures, u2(·) represents the demand of consumer

or the product price, see [8], and X(·) is the stock of goodwill. Let us consider the following stochastic

advertising model (see also [7]),

X(t) = ϕ(t) +

∫ t

0

l(t− r)g(u1(r))dr +

∫ t

0

l(t− r)g(u2(r))dr
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+

∫ t

0

h(t− r)f(u1(r))dW (r) +

∫ t

0

h(t− r)f (u2(r))dW (r), (1.5)

which is a generalization of classical dynamic advertising model in [7]. We also refer to [18] for some

related studies on such model. Note that we can also use (1.5) to describe stochastic capital replacement

model (see [8] for the deterministic case).

Example 3 (Stochastic input-output model). Let X(t) represent production outputs at time t, the

evolution of which satisfies (see [4])

Xv(t) = X(0) +

2∑
i=1

∫ t

0

hi(t, s)vi(s)ds+

2∑
i=1

∫ t

0

ki(t, s)vi(s)dW (s), (1.6)

where vi(s) (i = 1, 2) denote production inputs and labor force, respectively, at time s. We can consider

the drift term in (1.6) as the coefficient of productivity in terms of input v1 and labor v2, while the diffusion

term may reflect the random effects of depreciation and stochastic growth. Such kind of equation can

also describe some kind of investment or growth model, see [13, Example 3.1].

After obtaining the models above, it is then natural to introduce some suitable functional to minimize

the risk/operation efforts, as well as, to maximize owned total wealth/assets/utility, etc. Hence it fits the

framework of zero-sum games, the study of which constitutes the motivations for our paper. Now let us

introduce the main contributions of this paper as follows:

(1) We will give the necessary and sufficient conditions for existence of saddle points by means of

Hilbert operators and forward-backward stochastic Volterra integral equations (FBSVIEs in short) (the

corresponding study on backward stochastic Volterra integral equations (BSVIEs in short) or FBSVIEs

can be seen in [9,14–22]). We solve the open problems left by Chen and Yong [3] under the framework of

two-player games which demands more delicate manipulations of all the involved Hilbert operators. Our

result also covers [12] as a special case, see for example, Remarks 2.1 and 2.2 below.

(2) As forward-backward stochastic differential equations (FBSDEs in short) in the stochastic dif-

ferential games, the coupled FBSVIEs are also important in stochastic integral games. However, the

solvability of such equations is more challenging than FBSDEs’ case since many conventional and con-

venient approaches or conditions, such as Itô’s formula and monotonicity conditions, do not work here.

Therefore, in this paper we will provide new ideas and demonstrate some positive results on the solvability

of FBSVIEs.

(3) A new kind of stochastic Fredholm-Volterra integral equations is introduced to represent the saddle

points in a new way. Compared with deterministic Volterra games problem, some new terms appear which

reflect the deep nature of stochastic systems. Moreover, our representation for the saddle points here is

also new in the case of SDEs.

Note that one may also use maximum principle in [22] to study such games problem with GX2(T )

appearing in the cost functional. However, the next two points illustrate the differences between the

two approaches. Firstly, our way follows the basic ideas in [3, 12], which is obviously different from

the maximum principle method in [22]. Secondly, our method here allows the derivation of necessary

and sufficient conditions for the games problem while the maximum principle approach just shows the

necessary conditions. At last, it is also worthy to point out some comparisons with the results in [3].

Firstly, the framework here is a natural extension of the linear quadratic control problems in [3], where

more sophisticated arguments are demanded and new features can arise here. Secondly, the well-posedness

of coupled FBSVIEs is discussed here while it is untouched in [3]. Lastly, but not the least important, a

new class of stochastic Fredholm-Volterra integral equations is provided here which enables us to study

the games problem, or even particular control problem from another point of view.

The remainder of this paper is organized as follows. In Section 2, we will obtain the necessary and

sufficient conditions of the existence of saddle points in two different ways. In Section 3, by introduc-

ing forward-backward stochastic Volterra integral equations and stochastic Fredholm-Volterra integral

equations, we obtain two representations for the saddle points. Section 4 concludes this paper.



2408 Wang T X et al. Sci China Math November 2015 Vol. 58 No. 11

To conclude this section, let us give several notations for later use.

L2
F [0, T ]

.
=

{
X : [0, T ]× Ω → R

∣∣∣∣X(·) is F-adapted process such that E

∫ T

0

|X(s)|2ds <∞
}
,

L2(0, T ;L2
F [0, T ])

.
=

{
X : [0, T ]2 × Ω → R

∣∣∣∣X(t, ·) is F-adapted

for almost t ∈ [0, T ] such that E

∫ T

0

∫ T

0

|Z(t, s)|2dsdt <∞
}
,

L∞[0, T ]
.
=
{
X : [0, T ] → R

∣∣∣X is a deterministic function such that sup
t∈[0,T ]

|X(t)| <∞
}
,

L2(0, T ;L∞[0, T ])
.
=
{
X : [0, T ]2 → R

∣∣∣X is a deterministic function and

sup
s∈[0,T ]

|X(t, s)| <∞ for almost t ∈ [0, T ]
}
,

CF (0, T ;L2(Ω)) =
{
X : [0, T ] → L2(Ω)

∣∣∣X(·) is F-adapted and continuous in L2(Ω)

such that sup
r∈[0,T ]

E|X(r)|2 <∞
}
.

After this, one can define a new Hilbert space as

H2[0, T ] = L2
F [0, T ]× L2(0, T ;L2

F [0, T ]),

which is a crucial notation in treating BSVIEs later. As to L2
FT

(Ω), L∞
F [0, T ], L∞(0, T ;L2

F [0, T ]) and

L∞(0, T ;L∞
F [0, T ]), we can define them in a similar manner.

2 Necessary and sufficient conditions of existence of saddle points

In this section, we will give the necessary and sufficient conditions of existence of saddle points in two

different ways. At first, let us investigate these conditions by means of operators defined in suitable

Hilbert spaces. We need the following assumption:

(H1) Suppose ϕ(·) ∈ CF (0, T ;L2(Ω)), A1(·, ·), B1(·, ·), C1(·, ·) ∈ L∞(0, T ;L2
F [0, T ]), A2(·, ·), B2(·, ·),

C2(·, ·) ∈ L∞(0, T ;L∞
F [0, T ]). Moreover, there exists a modulus of continuity ρ : [0,∞) → [0,∞) (i.e.,

ρ(·) is continuous and strictly increasing with ρ(0) = 0) such that

|Ai(t, s)−Ai(t
′, s)|+ |Bi(t, s)−Bi(t

′, s)|+ |Ci(t, s)− Ci(t
′, s)| � ρ(|t− t′|), t, t′, s ∈ [0, T ].

Under (H1), (1.1) admits a unique solution Xu(·) ∈ CF (0, T ;L2(Ω)), from which one can ensure that

Xu(T ) ∈ L2
FT

(Ω). For any x(·) ∈ L2
F [0, T ], let us define a bounded operator A from L2

F [0, T ] to itself,

(Ax)(t) =
∫ t

0

A1(t, s)x(s)ds+

∫ t

0

A2(t, s)x(s)dW (s), t ∈ [0, T ]. (2.1)

At this moment, one can show that (I −A)
−1

is bounded under (H1) (see [3]). Similarly, we can define

B1 (C1) with A1, A2 in (2.1) replaced by B1, B2 (C1, C2). Therefore the state equation can be rewritten

as,

Xu(·) = ϕ(·) + (AXu)(·) + (B1u1)(·) + (C1u2)(·). (2.2)

To treat the terminal term, we also need to define bounded and linear operator ΔT from L2
F [0, T ] to

L2(Ω), i.e., for any p(·) ∈ L2
F [0, T ],

ΔT p =

∫ T

0

A1(T, s)p(s)ds+

∫ T

0

A2(T, s)p(s)dW (s). (2.3)
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Similarly, we can also define ΛT , ΠT with A1, A2 in (2.3) replaced by B1, B2 (C1, C2). Hence like (2.2),

we have

Xu(T ) = ϕ(T ) + (ΔTX
u) + (ΛTu1) + (ΠTu2). (2.4)

In what follows, A∗ is denoted to be the adjoint operator of A, u(·) = (u1(·), u2(·)), and
(Uu) .= (B1u1) + (C1u2), ΓTu

.
= ΛTu1 +ΠTu2, (QX) = QX,

(Ri,jX) = Ri,jX, (SX) = SX, (SiX) = SiX, i = 1, 2.

Substituting (2.2) and (2.4) into the cost functional, we obtain that

J(u) = 〈Θu+ 2Θ1ϕ, , u〉2 + 〈Θ2ϕ, ϕ〉2
+2〈(I −A)−1ϕ,Δ∗

TGϕ(T )〉2 + 〈Gϕ(T ), ϕ(T )〉1,

where

Θ = (U∗(I −A∗)−1Q′ + S ′)(I −A)−1U + U∗(I −A∗)−1S ′∗ +R′,

Θ1ϕ = (U∗(I −A∗)−1Q′ + S ′)(I −A)−1ϕ

+U∗(I −A∗)−1Δ∗
TGϕ(T ) + Γ∗

TGϕ(T ),

Θ2 = (I −A∗)−1Q′(I −A)−1, (2.5)

and

Q′ .= Q+Δ∗
TGΔT , S ′ .= S + Γ∗

TGΔT , R′ .= R+ Γ∗
TGΓT .

Moreover, we can express Θ as

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
,

where

Θ11 = B∗
1(I −A∗)−1Q′(I −A)−1B1 + S1(I −A)−1B1 + Λ∗

TGΔT (I −A)−1B1

+B∗
1(I −A∗)−1(S∗

1 +Δ∗
TGΛT ) +R11 + Λ∗

TGΛT ,

Θ22 = C∗
1 (I −A∗)−1Q′(I −A)−1C1 + S2(I −A)−1C1 +Π∗

TGΔT (I −A)−1C1
+ C∗

1(I −A∗)−1(S∗
2 +Δ∗

TGΠT ) +R22 +Π∗
TGΠT . (2.6)

Now with the help of the results in [3] or [12], we state the first main result of this section.

Theorem 2.1. Let (H1) hold. For given ϕ(·) ∈ L2
F [0, T ], the open-loop game admits a saddle point

û ≡ (û1, û2) if and only if

Θ11 � 0, Θ22 � 0, Θ1ϕ ∈ R(Θ),

where R(Θ) is the range of Θ, Θ11 and Θ22 are defined by (2.6). In this case, any saddle point û is a

solution of equation Θû+Θ1ϕ = 0 with Θ1ϕ defined in (2.5).

Even though the above theorem gives one necessary and sufficient condition for the saddle point, it is

still a little implicit. To furthermore overcome this problem, we will make use of BSVIEs or FBSVIEs

aforementioned. Before that, let us recall one important notion for BSVIE

Y (t) = ψ(t) +

∫ T

t

g(t, s, Y (s), Z(t, s), Z(s, t))ds −
∫ T

t

Z(t, s)dW (s), t ∈ [0, T ]. (2.7)

Definition 2.2. A pair of (Y (·), Z(·, ·)) ∈ H2[0, T ] is called an adapted M -solution of BSVIE (2.7) on

[0, T ] if (2.7) holds in the usual Itô’s sense for almost all t ∈ [0, T ] and in addition, the following holds:

Y (t) = EY (t) +

∫ t

0

Z(t, s)dW (s), t ∈ [0, T ].
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The next lemma is concerned with the adjoint operators A∗ and Δ∗
T above.

Lemma 2.3. Let (H1) hold. Then for any ρ(·) ∈ L2
F [0, T ], ν(·, ·) ∈ L2(0, T ;L2

F [0, T ]) satisfying

ρ(t) = Eρ(t) +

∫ t

0

ν(t, s)dW (s), t ∈ [0, T ], (2.8)

and η ∈ L2(Ω), θ ∈ L2
F [0, T ] with

η = Eη +

∫ T

0

θ(s)dW (s), (2.9)

we have the following representation for A∗ and Δ∗
T as,

(A∗ρ)(t) = E
Ft

∫ T

t

[A1(s, t)ρ(s) +A2(s, t)ν(s, t)]ds, t ∈ [0, T ],

(Δ∗
T η)(t) = A1(T, t)E

Ftη +A2(T, t)θ(t), t ∈ [0, T ]. (2.10)

Proof. Since A is a bounded linear operator from L2
F [0, T ] to itself, the adjoint operator A∗ of A is

well-defined. For any X(·) ∈ L2
F [0, T ],

E

∫ T

0

(A∗ρ)(t)X(t)dt ≡ E

∫ T

0

ρ(t)(AX)(t)dt

= E

∫ T

0

ρ(t)dt

∫ t

0

A1(t, s)X(s)ds+ E

∫ T

0

ρ(t)dt

∫ t

0

A2(t, s)X(s)dW (s)

= E

∫ T

0

X(t)dt

∫ T

t

A1(s, t)ρ(s)ds+ E

∫ T

0

X(t)dt

∫ T

t

A2(s, t)ν(s, t)ds

= E

∫ T

0

X(t)dt · EFt

∫ T

t

[A1(s, t)ρ(s) +A2(s, t)ν(s, t)]ds.

Thus by the arbitrariness of X(·), we get the first result in (2.10). As to the second one, for any η ∈ L2(Ω),

X ∈ L2
F [0, T ], we have

E

∫ T

0

(Δ∗
T η)(s)X(s)ds = 〈Δ∗

T η,X〉2 = 〈η,ΔTX〉1 = EηΔTX

= E

∫ T

0

A1(T, s)ηX(s)ds+ E

∫ T

0

A2(T, s)X(s)ηdW (s)

= E

∫ T

0

A1(T, s)ηX(s)ds+ E

∫ T

0

A2(T, s)θ(s)X(s)ds

= E

∫ T

0

[A1(T, s)η +A2(T, s)θ(s)]X(s)ds

= E

∫ T

0

[A1(T, s)E
Fsη +A2(T, s)θ(s)]X(s)ds. (2.11)

Therefore the conclusion for Δ∗
T holds naturally.

After this lemma, let us give another way to obtain the existence of saddle points. To this end, we

have the following theorem.

Theorem 2.4. Let (H1) hold. Then for i = 1, 2, and any ui(·) ∈ L2
F [0, T ], X

u1(·) is a solution to

(1.1) with ϕ(·) = 0, u2(·) = 0, and (Y u1(·), Zu1(·, ·), λu1(·)) is a solution to the following systems:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y u1(t) = Q(t)Xu1(t) + S1(t)u1(t) +A1(T, t)GX
u1(T ) +A2(T, t)θ1(t)

+

∫ T

t

[A1(s, t)Y
u1(s) +A2(s, t)Z

u1(s, t)]ds−
∫ T

t

Zu1(t, s)dW (s),

λu1(t) = E
Ft

∫ T

t

[B1(s, t)Y
u1(s) +B2(s, t)Z

u1(s, t)]ds,

(2.12)
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where GXu1(T ) and θ1(·) satisfy similar relations to (2.9). Then Θ11 � 0 is equivalent to

E

∫ T

0

[λu1 (s) + S1(s)X
u1(s) +R11(s)u1(s)]u1(s)ds

+E

∫ T

0

[B1(T, s)GX
u1(T ) +B2(T, s)θ1(s)]u1(s)ds � 0. (2.13)

Proof. It is clear that for any u1(t) ∈ L2
F [0, T ],

B∗
1(I −A∗)−1(Q′(I −A)−1B1u1 + S∗

1u1 +Δ∗
TGΛTu1)

= B∗
1(I −A∗)−1(QXu1 + S1u1 +Δ∗

TGX
u1(T )),

and

S1(I −A)−1B1u1 +R11u1 + Λ∗
TGΔT (I −A)−1B1u1 + Λ∗

TGΛTu1

= S1X
u1 +R11u1 + Λ∗

TGX
u1(T ),

whereXu1(t) andXu1(T ) are defined above. Substituting them into Θ11 of (2.6), together with Lemma 2.3,

we can obtain the conclusion naturally.

In a same way, we can get the corresponding equivalent condition for Θ22 � 0 as

E

∫ T

0

[λu2(s) + S2(s)X
u2(s) +R22(s)u2(s)]u2(s)ds

+E

∫ T

0

[C1(T, s)GX
u2(T ) + C2(T, s)θ2(s)]u2(s)ds � 0, (2.14)

with (Xu2 , Y u2 , λu2) satisfying similar FBSVIE as above. Note that both (2.13) and (2.14) hold if Q(·),
R11(·), R22(·), G are non-negative and S(·) = R12(·) = R21(·) = 0.

Remark 2.5. If (1.1) is a controlled linear SDE with two control variables, (2.13) degenerates into [12,

Proposition 4.4]. Actually, consider the simple BSDE of the form

Ŷ u1(t) = GXu1(T ) +

∫ T

t

Y u1(s)ds−
∫ T

t

Ẑu1(s)dW (s), t ∈ [0, T ].

After some basic calculations, it is easy to see that,

Ŷ u1(t) = E
Ft

{
GXu1(T ) +

∫ T

t

Y u1(s)ds

}
, Ẑu1(t) = E

Ft

{
θ1(t) +

∫ T

t

Zu1(s, t)ds

}
.

Putting these two expressions into (2.12), we get that

Y u1(·) = Q(·)Xu1(·) +A1(·)Ŷ u1(·) +A2(·)Ẑu1(·),

therefore we have the following BSDE satisfied by (Ŷ u1(·), Ẑu1(·)),

Ŷ u1(t) = GXu1(T ) +

∫ T

t

[Q(s)Xu1(s) +A1(s)Ŷ u1(s) +A2(s)Ẑu1(s)]ds

+

∫ T

t

S1(s)u1(s)ds−
∫ T

t

Ẑu1(s)dW (s), t ∈ [0, T ], a.e.

Moreover, (2.13) becomes

E

∫ T

0

[B1(s)Ŷ u1(s) + C1(s)Ẑu1(s) + S1(s)X
u1(s) +R11(s)u1(s)] · u1(s)ds � 0,

which covers the result in [12].
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The next theorem is concerned about the remaining part of the necessary and sufficient condition in

Theorem 2.1 via BSVIEs.

Theorem 2.6. Let (H1) hold, ϕ(·) ∈ L2
F [0, T ], X

u(·) be the unique solution to (1.1) and λu(·) be

defined as

λu(t) = E
Ft

∫ T

t

[UT
1 (s, t)Y u(s) + UT

2 (s, t)Zu(s, t)]ds, (2.15)

where (Y u(·), Zu(·)) is the adapted M-solution to

Y u(t) = Q(t)Xu(t) + S(t)Tu(t) +A1(T, t)GX
u(T ) +

∫ T

t

A1(s, t)Y
u(s)ds

+A2(T, t)θ
u(t) +

∫ T

t

A2(s, t)Z
u(s, t)ds−

∫ T

t

Zu(t, s)dW (s), t ∈ [0, T ], a.e. (2.16)

UT
1 (·, ·) and UT

2 (·, ·) are defined as

UT
1 (s, t) =

(
B1(s, t)

C1(s, t)

)
, UT

2 (s, t) =

(
B2(s, t)

C2(s, t)

)
, s, t ∈ [0, T ], a.e.

GXu(T ) and θu also satisfy similar relation as (2.9). Then for t ∈ [0, T ], a.e.

(Θu)(t) + (Θ1ϕ)(t) = λu(t) + (SXu)(t) + (Ru)(t) + UT
1 (T, t)EFtGXu(T ) + UT

2 (T, t)θu(t).

Consequently, the condition Θ1ϕ ∈ R(Θ) holds if and only if there is a û(·) such that

λû(·) + (SX û)(·) + (Rû)(·) + UT
1 (T, ·)EF·GX û(T ) + UT

2 (T, ·)θû(·) = 0. (2.17)

Proof. It follows from (2.5) that

(Θ1ϕ)(·) = U∗T(I −A∗)−1[(QXϕ)(·) + (Δ∗
TGΔTX

ϕ)(·) + (Δ∗
TGϕ(T ))(·)]

+ (SXϕ)(·) + (Γ∗
TGΔTX

ϕ)(·) + (Γ∗
TGϕ(T ))(·),

where for t ∈ [0, T ], a.e.

Xϕ(t) = ϕ(t) +

∫ t

0

A1(t, s)X
ϕ(s)ds+

∫ t

0

A2(t, s)X
ϕ(s)dW (s).

So we have

(Θu)(t) + (Θ1ϕ)(t) = [U∗(I −A∗)−1(QXu + STu+Δ∗
TGX

u(T ))](t)

+ (SXu)(t) + (Ru)(t) + UT
1 (T, t)EFtGXu(T ) + UT

2 (T, t)θu(t)

= λu(t) + (SXu)(t) + (Ru)(t) + UT
1 (T, t)EFtGXu(T ) + UT

2 (T, t)θu(t),

where λu(·) is defined above. As to (2.17), it is obvious.

Remark 2.7. If (1.1) degenerates into a linear SDE, (2.17) becomes the result in [12, Proposition 4.3].

In fact, in this case, (2.17) becomes

Ξ1(t)Y û(t) + Ξ2(t)Z û(t) + (SX û)(t) + (Rû)(t) = 0,

where (Y û, Z û) defined as

Y û(t) = E
Ft

{
GX û(T ) +

∫ T

t

Y û(s)ds

}
, Z û(t) = E

Ft

{
θû(t) +

∫ T

t

Z û(s, t)ds

}
,

satisfy a BSDE of

Y û(t) = GX û(T ) +

∫ T

t

[Q(s)X û(s) +A1(s)Y û(s) +A2(s)Z û(s)]ds

+

∫ T

t

S1(s)û(s)ds−
∫ T

t

Z û(s)dW (s), t ∈ [0, T ].
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3 Some related stochastic equations to the games problem

In this section, let us introduce and discuss two different kinds of stochastic equations involved in our

games problem.

3.1 A class of coupled forward-backward stochastic Volterra equation

Suppose R−1(·) exists and is bounded, from (2.17) we then represent the saddle point as,

û(t) = −R−1(t)[S(t)X û(t) + λû(t) + UT
1 (T, t)EFt [GX û(T )] + UT

2 (T, t)θû(t)], t ∈ [0, T ]. (3.1)

In this case, the related forward-backward equation with t ∈ [0, T ] should be,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X û(t) = ϕ(t) +

∫ t

0

[(A1(t, s)− U1(t, s)R
−1(s)S(s))X û(s)− U1(t, s)R

−1(s)λû(s)]ds

−
∫ t

0

U1(t, s)R
−1(s)[UT

1 (T, s)EFs [GX û(T )] + UT
2 (T, s)θû(s)]ds

+

∫ t

0

[(A2(t, s)− U2(t, s)R
−1(s)S(s))X û(s)− U2(t, s)R

−1(s)λû(s)]dW (s)

−
∫ t

0

U2(t, s)R
−1(s)[UT

1 (T, s)EFs [GX û(T )] + UT
2 (T, s)θû(s)]dW (s),

Y û(t) = [Q(t)− ST(t)R−1(t)S(t)]X û(t)− ST(t)R−1(t)λû(t) +

∫ T

t

A1(s, t)Y
û(s)ds

−ST(t)R−1(t)[UT
1 (T, t)EFt [GX û(T )] + UT

2 (T, t)θû(t)]

+

∫ T

t

A2(s, t)Z
û(s, t)ds−

∫ T

t

Z û(t, s)dW (s),

λû(t) = E
Ft

∫ T

t

[UT
1 (s, t)Y û(s) + UT

2 (s, t)Z û(s, t)]ds, t ∈ [0, T ],

(3.2)

where Y û(t), Z û(s, t) and GX û(T ), θû satisfy the following relationships:

Y û(t) = EY û(t) +

∫ t

0

Z û(t, s)dW (s), GX û(T ) = EGX û(T ) +

∫ T

0

θû(s)dW (s). (3.3)

Inspired by Definition 2.1, we call (X û(·), Y û(·), Z û(·, ·), λû(·)) anM -solution to (3.2) if they satisfy (3.2)

under the constraints of (3.3). Next let us discuss the solvability ofM -solution to (3.2), which is important

in providing the existence of saddle point û(·) above. To begin with, let us first consider the case with

G = 0. In this case, (3.2) can be simplified as,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X û(t) = ϕ(t) +

∫ t

0

[(A1(t, s)− U1(t, s)R
−1(s)S(s))X û(s)− U1(t, s)R

−1(s)λû(s)]ds

+

∫ t

0

[(A2(t, s)− U2(t, s)R
−1(s)S(s))X û(s)− U2(t, s)R

−1(s)λû(s)]dW (s),

Y û(t) = [Q(t)− ST(t)R−1(t)S(t)]X û(t)− ST(t)R−1(t)λû(t) +

∫ T

t

A1(s, t)Y
û(s)ds

+

∫ T

t

A2(s, t)Z
û(s, t)ds−

∫ T

t

Z û(t, s)dW (s),

λû(t) = E
Ft

∫ T

t

[UT
1 (s, t)Y û(s) + UT

2 (s, t)Z û(s, t)]ds, t ∈ [0, T ].

(3.4)

Since the generator in the second equation of (3.4) is independent of Z û(t, s) with t � s, we can drop the

last stochastic integral by taking conditional expectation. Due to the ad hoc relation between λû(·) and
(X û(·), Y û(·), Z û(·, ·)), by substituting λû(·) into the equation for (Y û(·), Z û(·, ·)) we can also transform
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(3.4) into a new form which is easier to be treated,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(t) = ϕ(t) +

∫ t

0

A′
1(t, s)X(s)ds+

∫ t

0

A′
2(t, s)X(s)dW (s)

+

∫ t

0

B′
1(t, s)

(
E
Fs

∫ T

s

[D′
1(u, s)Y (u)du+D′

2(u, s)Z(u, s)]du

)
ds

+

∫ t

0

B′
2(t, s)

(
E
Fs

∫ T

s

[D′
1(u, s)Y (u)du+D′

2(u, s)Z(u, s)]du

)
dW (s),

Y (t) = φ′1(t)X(t) + E
Ft

∫ T

t

C′
1(s, t)Y (s)ds + E

Ft

∫ T

t

C′
2(s, t)Z(s, t)ds, t ∈ [0, T ],

(3.5)

where A′
i, C

′
i, and φ

′
1 are scalars, B′

i and φ
′
2 are 1× 2 matrices, D′

i (i = 1, 2) are 2× 1 matrices, and

A′
1(t, s) = A1(t, s)− U1(t, s)R

−1(s)S(s), A′
2(t, s) = A2(t, s)− U2(t, s)R

−1(s)S(s),

B′
1(t, s) = −U1(t, s)R

−1(s), B′
2(t, s) = −U2(t, s)R

−1(s), D′
1(t, s) = UT

1 (t, s),

D′
2(t, s) = UT

2 (t, s), φ′1(t) = Q(t)− ST(t)R−1(t)S(t), φ′2(t) = −ST(t)R−1(t),

C′
1(t, s) = A1(t, s) + φ′2(s)D

′
1(t, s), C ′

2(t, s) = A2(t, s) + φ2(s)D
′
2(t, s).

The next result is concerned with the solvability for (3.5) under a general framework.

Theorem 3.1. For i = 1, 2, let A′
i, B

′
i, C

′
i, D

′
i belong to L∞(0, T ;L∞

F [0, T ]) with K being the upper

bound, φ′i(·) be adapted processes such that

|φ′2(·)| < K, |φ′1(t)| �
1

2
e−βt,

with β > 1 being a constant depending on K and T . Then FBSVIE (3.5) admits a unique M-solution.

Proof. The basic idea here is to introduce a new equivalent norm with parameter β and use the fixed

point theorem. Such skills have been used to treat BSVIEs in [15, 17], hence we just give a sketch for

readers’ convenience.

LetM2[0, T ] be one closed subspace of H2[0, T ], the element of which satisfies (2.8). Given one element

(x(·), y(·), z(·, ·)) in L2
F [0, T ]×M2[0, T ], let us define a mapping as

Θ(x(·), y(·), z(·, ·)) = (X(·), Y (·), Z(·, ·)),

where (X,Y, Z) is the M -solution of FBSVIE⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(t) = ϕ(t) +

∫ t

0

A′
1(t, s)x(s)ds +

∫ t

0

A′
2(t, s)x(s)dW (s)

+

∫ t

0

B′
1(t, s)

(
E
Fs

∫ T

s

[D′
1(u, s)y(u)du+D′

2(u, s)z(u, s)]du

)
ds

+

∫ t

0

B′
2(t, s)

(
E
Fs

∫ T

s

[D′
1(u, s)y(u)du+D′

2(u, s)z(u, s)]du

)
dW (s),

Y (t) = φ′1(t)x(t) + E
Ft

∫ T

t

C′
1(s, t)y(s)ds + E

Ft

∫ T

t

C′
2(s, t)z(s, t)ds.

(3.6)

Similarly, one can also obtain (X(·), Y (·), Z(·, ·)) corresponding to (x(·), y(·), z(·, ·)). Next, we will prove

that Θ is contractive. For later convenience, let us make the convention of

f̂ = f − f, f = X, x, Y, y, Z, z.

As to the forward equation in (3.6),

E

∫ T

0

e−βt|X̂(t)|2dt � 8K

β
E

∫ T

0

e−βs|x̂(s)|2ds+ 8K

β
E

∫ T

0

eβs|p̂(s)|2ds,
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where for s ∈ [0, T ], a.e.

p̂(s) := p(s)− p(s) = E
Fs

∫ T

s

D′
1(u, s)ŷ(u)du + E

Fs

∫ T

s

D′
2(u, s)ẑ(u, s)du.

As to p̂(·), we can obtain the following estimates:

E

∫ T

0

eβt|p̂(t)|2dt � 2K

β
E

∫ T

0

eβs|ŷ(s)|2ds+ 2KE

∫ T

0

eβs|ŷ(s)|2ds,

which leads to the fact that,

E

∫ T

0

e−βt|X̂(t)|2dt � 8K

β
E

∫ T

0

e−βs|x̂(s)|2ds+ 32K2

β
E

∫ T

0

eβs|ŷ(s)|2ds. (3.7)

As to the backward equation in (3.6), we can obtain,

E

∫ T

0

eβt|Ŷ (t)|2dt � 2E

∫ T

0

eβt|φ′1(t)x̂(t)|2dt+ 4K2(1 +K)2E

∫ T

0

eβt
∣∣∣∣ ∫ T

t

|ŷ(s)|ds
∣∣∣∣2dt

+4K2(1 +K)2E

∫ T

0

eβt
∣∣∣∣ ∫ T

t

|ẑ(s, t)|ds
∣∣∣∣2dt

� 4K2(1 +K)2[T + 1]

β
E

∫ T

0

eβs|ŷ(s)|2ds+ 1

2
E

∫ T

0

e−βt|x̂(t)|2dt, (3.8)

where we use stochastic Fubini’s theorem and the following inequality:

eβt
[∫ T

t

|f(s)|ds
]2

� 1

β

∫ T

t

eβs|f(s)|2ds, t ∈ [0, T ],

with f being a square integrable process. By (3.7) and (3.8), we obtain

E

∫ T

0

e−βt|X̂(t)|2dt+ E

∫ T

0

eβt|Ŷ (t)|2dt

�
[
8K

β
+

1

2

]
E

∫ T

0

|x̂(s)|2e−βsds+
4K2(1 +K)2[T + 1] + 32K2

β
E

∫ T

0

eβs|ŷ(s)|2ds.

So by choosing a suitable β we know that Θ is contractive, and the desired result follows.

Before going further, we will make several points here. Firstly, the parameter β is a finite constant

which can be determined completely by T and the upper bound K. Secondly, one can relax the bounded

assumption by imposing certain integrable conditions (see [22]). Thirdly, as to the LQ games problem

for SDEs with G �= 0, in some cases it can be transformed into another new, yet equivalent case with

G = 0. Actually, the state equation becomes an SDE of

Xu(t) = x0 +

∫ t

0

[A1(s)X
u(s) + U1(s)u(s)]ds+

∫ t

0

[A2(s)X
u(s) + U2(s)u(s)]dW (s), (3.9)

while the cost functional (1.2) keeps the same. Note that Ui(·) = (Bi(·), Ci(·)). Firstly, given G ∈ L2
FT

(Ω)

being bounded such that the following BSDE admits a unique bounded solution (P (·),Λ(·)),

P (t) = G−
∫ T

t

Λ(s)dW (s), t ∈ [0, T ], (3.10)

by using Itô’s formula to P (·)|Xu(·)|2 one can obtain that

EG|Xu(T )|2 − P (0)|x0|2 = E

∫ T

0

[K1(t)|Xu(t)|2 + 2K2(t)u(t)X
u(t) + 〈K3(t)u(t), u(t)〉]dt, (3.11)
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where for t ∈ [0, T ], a.e.

K1(t) = 2P (t)A1(t) + 2Λ(t)A2(t) + |A2(t)|2P (t),
K2(t) = P (t)U1(t) + Λ(t)U2(t) +A2(t)P (t)U2(t), K3(t) = UT

2 (t)P (t)U2(t).
(3.12)

Therefore, we can rewrite cost functional (1.2) above as

J(u1(·), u2(·)) =
〈
Q̄Xu, Xu

〉
2
+ 2

〈
XuS̄, u

〉
2
+
〈
R̄u, u

〉
2
+ P (0)|x0|2, (3.13)

with

Q̄(·) = Q(·) +K1(·), S̄(·) = S(·) +K2(·), R̄(·) = R(·) +K3(·).
Therefore under this new cost functional (3.13), one can use the above fixed point arguments to discuss

the related forward-backward system. Returning to the SVIEs case with G �= 0, the case becomes much

complicated. On one hand, the above procedures from (3.9) to (3.13) may not work well under SVIEs

framework due to the dependence on t for Ai(t, ·), Bi(t, ·), Ci(t, ·). On the other hand, if we try to extend

the ideas in Theorem 3.1 into the general case with G �= 0, additional sophisticated conditions like T

or the upper bound for the coefficients to be small enough are needed. In other words, such a situation

prompts us to look at the LQ games problem from another way which in some sense shows the necessity

of Subsection 3.2 next. At last we claim that due to the complicated form of (3.2), it is quite challenging

to adapt the four-step method in [11] or monotonicity condition in [20] to our framework here, which

explains the reason of introducing the above method. It is observed that one cost of our approach is

the strict requirement on φ′1(·) which leads to weak coupling between forward and backward equations.

However, in our games problem such a strong requirement can be transformed into certain constraint

among related coefficients.

Theorem 3.2. For i = 1, 2, suppose the coefficients of (3.2), Ai(·), Bi(·), Ci(·), Q(·), S(·) and R−1(·)
are bounded by K,

[Q(t)− ST(t)R−1(t)S(t)] <
1

2
e−βt, t ∈ [0, T ], (3.14)

where β is a constant determined by T and K. Then there exists a unique M -solution to (3.2). Moreover,

(2.13) and (2.14) hold. Consequently, the quadratic integral game admits an open-loop saddle point as

û(t) = −R(t)−1[S(t)X û(t) + λû(t) + UT
1 (T, t)EFt [GX û(T )] + UT

2 (T, t)θû(t)], t ∈ [0, T ].

3.2 Some stochastic equations of Fredholm-Volterra type

In this subsection, let us introduce another kind of stochastic equations of Fredholm-Volterra type to

show some open-loop representations for the saddle point. At first let us make the following assumption.

(H2) All the coefficients in the state equation (1.1) and cost functional (1.2) are deterministic, Ai(t, s)

= 0 with t, s ∈ [0, T ], a.e.

Within such a framework, the optimal state equation becomes, for t ∈ [0, T ],

X û(t) = ϕ(t) +

∫ t

0

U1(t, s)û(s)ds+

∫ t

0

U2(t, s)û(s)dW (s). (3.15)

As to the backward equation in (3.2),

Y û(t) = Q(t)X û(t) + ST(t)û(t), Z û(t, s) = 0, 0 � t � s � T. (3.16)

Given û(·) and X û(·), similarly to (3.3), there exist two processes Kû(·, ·) and Kx̂(·, ·) such that

û(t) = Eû(t) +

∫ t

0

Kû(t, s)dW (s), X û(t) = EX û(t) +

∫ t

0

Kx̂(t, s)dW (s), (3.17)



Wang T X et al. Sci China Math November 2015 Vol. 58 No. 11 2417

with t ∈ [0, T ]. Under (H2), one can express Z û(t, s) with t � s by

Z û(t, s) = Q(t)Kx̂(t, s) + ST(t)Kû(t, s). (3.18)

On the other hand, as to GX û(T ) given by

GX û(T ) = Gϕ(T ) +

∫ T

0

GU1(T, s)û(s)ds+

∫ T

0

GU2(T, s)û(s)dW (s), (3.19)

we obtain the expression for θû(·) with the help of stochastic Fubini’s theorem as follows:

θû(s) =

∫ T

s

GU1(T, u)Kû(r, s)dr +GU2(T, s)û(s), (3.20)

with s ∈ [0, T ]. Similar ideas also hold for Kx̂(·, ·) in (3.17),

Kx̂(t, s) =

∫ t

s

U1(t, u)Kû(r, s)dr + U2(t, s)û(s), t � s.

Plugging Kx̂ into (3.18), we then obtain

Z û(t, s) = Q(t)

∫ t

s

U1(t, u)Kû(r, s)dr +Q(t)U2(t, s)û(s) + ST(t)Kû(t, s), t � s. (3.21)

In the following, for the sake of clarity, let us make the convention of

fij(r, t, s) = UT
i (r, t)Uj(r, s), r, t, s ∈ [0, T ], i, j = 1, 2,

where

Ui(t, s) = (Bi(t, s), Ci(t, s)), fij(r, t, s), i, j = 1, 2,

are 2× 2 matrices. Substituting (3.15), (3.16) and (3.19)–(3.21) into the following equality:

0 = R(t)û(t) + UT
1 (T, t)GEFtX û(T ) + UT

2 (T, t)θû(t) + S(t)X û(t)

+E
Ft

∫ T

t

[UT
1 (s, t)Y û(s) + UT

2 (s, t)Z û(s, t)]ds, (3.22)

together with some necessary calculations, one has

0 = R(t)û(t) + Σ1(t) + E
Ft

∫ T

0

Σ′
2(t, s)û(s)ds+

∫ t

0

Σ′
3(t, s)û(s)dW (s)

+E
Ft

∫ T

t

Σ4(t, s)Kû(s, t)ds+Σ7(t)û(t), t ∈ [0, T ], (3.23)

where for any t, s ∈ [0, T ],

Σ′
2(t, s) = Σ2(t, s) + Σ9(t, s) · I[0,t](s) + Σ5(t, s) · I[t,T ](s), Σ′

3(t, s) = Σ3(t, s) + Σ8(t, s),

and all the other coefficients can be shown explicitly as follows:

Σ1(t) =

∫ T

t

UT
1 (s, t)Q(s)ϕ(s)ds + UT

1 (T, t)Gϕ(T ) + S(t)ϕ(t),

Σ2(t, s) = Gf11(T, t, s), Σ3(t, s) = Gf12(T, t, s),

Σ4(t, s) =

∫ T

s

f21(u, t, s)Q(u)du+Gf21(T, t, s) + UT
2 (s, t)ST(s),

Σ5(t, s) =

∫ T

s

f11(u, t, s)Q(u)du+ UT
1 (s, t)S(s),



2418 Wang T X et al. Sci China Math November 2015 Vol. 58 No. 11

Σ7(t) =

∫ T

t

f22(s, t, t)Q(s)ds+ f22(T, t, t)G,

Σ8(t, s) =

∫ T

t

f12(u, t, s)Q(u)du+ S(t)U2(t, s),

Σ9(t, s) =

∫ T

t

f11(u, t, s)Q(u)du+ S(t)U1(t, s), t, s ∈ [0, T ].

Note that Q(·) and S(·) are scalars, R(·) is a 2 × 2 matrix, and S(·) is a 2 × 1 vector. Due to the

appearance of Σ7(·) in (3.23), we need to reorganize it in a new way. More precisely, firstly let us

introduce two notations of λ̂(·) and π̂(·, ·) satisfying

λ̂(t) = −(R(t) + Σ7(t))û(t), λ̂(t) = Eλ̂(t) +

∫ t

0

π̂(t, s)dW (s), t ∈ [0, T ]. (3.24)

Since R(·) and Σ7(·) are deterministic, we can deduce from (3.24) the following relation between π̂(·) and
Kû(·, ·),

π̂(t, s) = −(R(t) + Σ7(t))Kû(t, s), t � s.

As a result, (3.23) can be rewritten as

λ̂(t) = Σ1(t)− E
Ft

∫ T

0

Σ̂2(t, s)λ̂(s)ds

−
∫ t

0

Σ̂3(t, s)λ̂(s)dW (s) − E
Ft

∫ T

t

Σ̂4(t, s)π̂(s, t)ds, (3.25)

where the coefficients are defined as

Σ̂2(t, s) = Σ′
2(t, s)(R(s) + Σ7(s))

−1, Σ̂3(t, s) = Σ′
3(t, s)(R(s) + Σ7(s))

−1,

Σ̂4(t, s) = Σ4(t, s)(R(s) + Σ7(s))
−1, t, s ∈ [0, T ].

(3.25) also yields a new expression for saddle point û(·) as

û(t) = −(R(t) + Σ7(t))
−1λ̂(t), t ∈ [0, T ]. (3.26)

Since the equation (3.25) has both the character of Volterra and Fredholm equations, we call it a linear

stochastic Fredholm-Volterra integral equation. As to the solvability of (3.25), like Theorem 3.1 above, we

can use the contraction method by imposing some requirement on T . To sum up, we have the following

theorem.

Theorem 3.3. Let (H2), (2.13) and (2.14) hold. If (3.25) admits a solution λ̂(·), then there exists a

saddle point û, and the open-loop representation can be given in (3.26).

To conclude this section let us make several comments here. Firstly following the above arguments,

one can relax the deterministic assumption on ϕ(·) by allowing, for example,

ϕ(t) = a1(t) +

∫ t

0

a2(t, s)dW (s)

with t ∈ [0, T ], ai(·) being deterministic functions. Secondly, as to coefficient Σ7(·) in (3.23), it only

depends on B2(·) and C2(·) and vanishes if the control variables do not enter the diffusion term. Therefore,

compared with the games or control problems for deterministic Volterra equation, such a new term can

character well the deep nature in stochastic case. Thirdly, it seems like (3.26) is more suitable than (3.1)

above. On the one hand, the assumption of R−1(·) being bounded is replaced with the boundedness of

1

R(t) + Σ7(t)
=

[
R(t) +

∫ T

t

UT
2 (s, t)U2(s, t)Q(s)ds+GUT

2 (T, t)U2(T, t)

]−1

, t ∈ [0, T ], a.e. (3.27)
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Taking into account of non-negativeness of Q(·) and G, this later requirement is slightly weak which

allows R(·) = 0. On the other hand, inspired by (3.27), we believe that the assumption of 2 × 2 matrix

R(·) being definite could be relaxed in some cases due to the non-negativeness of Q(·) and G. Fourthly,

it is remarkable to see that the representation (3.26) is still new in the literature if the state equation is a

classical controlled SDE. Since some more related discussions along this, such as the exploration of closed-

loop representation via certain stochastic Fredholm-Volterra equation, require more things involved, we

hope to demonstrate more results in the forthcoming papers.

4 Concluding remarks

In this paper, the linear quadratic stochastic integral game problem for linear SVIEs is discussed for the

first time where the necessary and sufficient conditions of existence of saddle points are derived in two

different ways. Some open problems left by Chen and Yong [3] are solved here as well, which can cover

the SDEs case in [12]. Two new descriptions for the saddle points are represented via coupled FBSVIEs

and certain stochastic equations of Fredholm-Volterra type. To the best of our knowledge, both kinds of

equations are new in the literature.
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