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1 Introduction

The phase field crystal (PFC) model has been recently proposed to describe the elastic and plastic
deformations, multiple crystal orientations and many other observable phenomena, see, e.g., [5,6,11].
The PFC model is as follows:

by =V - (M(¢)Vu), (z,y)e€Q, 0<t<T, (1.1)
p=¢"+(1—)6+286+A2%, (z,y)€Q, 0<t<T, (1.2)
H(x,y,0) = (2, y), (z,y) €, (1.3)

where € is a positive constant assumed to be less than 1, V and A are the gradient and Laplacian operators,
respectively, M (¢) > 0 is a mobility, u is the chemical potential. Suppose that € = (0, L) x (0, L2) and
that ¢ and A¢ are defined on R? with the periodic box €. Let

E(¢(-,-,t)) = /Q [icﬁ“ i ! ; P2 — |Vl + ;(Aqb)Q dzdy.

Then, we have the following energy identity:

d

B, 1) + / M(9)(Va)?diedy = 0.
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This means that the energy is monotonically non-increasing in time for PFC model. It follows easily that

d

Gy E@C 1) <0, 0<t<T. (1.4)

The PFC equation is a higher order (sixth order) nonlinear partial differential equation. The numerical
methods play a very important rule since it is difficult to find the exact solution of the problem.
Wise et al. [14] presented the following difference scheme of first order in time,

1
O3 = 015) = Va - (M6 V™), (1:3)
ui = (0T + (L= ol + 20n07 + AFGLT (1.6)

They proved that the energy is always non-increasing in time, i.e.,

En(¢"th) < En(o"), (1.7)

and thus the scheme is unconditionally energy stable. They also showed that the difference scheme is
convergent with the order of one in time and of two in space in the Ly norm. Wang and Wise [13]
constructed a difference scheme with the convergence order one in time for the modified phase field
crystal equation.

Zhang et al. [15] established the following difference scheme of second order in time:

1
(95T = 0) = Vi (M6 V), (18)
n 1 n 1 ¢n+1 Zl 2 n n n
Mij+2 :¢z‘j+2 : : 2 + ) + (1 =€)y, . + 281005 T2 A2 L9 +27 (1.9)
b= v(iy), 1<, <M, (1.10)
where qbn—b = (qb”Jrl + o5 ;) and the unconditional energy stability of the scheme was shown, however

they did not analyze the solvability and the global convergence. Hu et al. [9] presented a fully second-order
nonlinear three level difference scheme:

1 n n

(05 = o) = Vi (M(6 ), (1.11)
n+3 n+3 (¢n+1) ( Z)Q n+2 n—1 n+2

Pij © =i " 5 + (1= o) 2 + 30005 — Mgl + Add 2, (L12)
b= v(iyy), oy =eY 1<i,j <M, (1.13)

which was proved energy bounded and uniquely solvable. The nonlinear difference scheme was solved
by nonlinear multigrid methods. Numerical simulations confirmed the stability, efficiency and accuracy
of the scheme. We can find the difference between the difference scheme (1.8)—(1.10) and the difference
scheme (1.11)—(1.13).

Gomez and Nogueira [8] also presented some unconditionally energy-stable method with the truncation
error of order two both in time and in space for PFC model, but did not discuss the global convergence.
Galenko et al. [7] and Baskaran et al. [3] provided some energy stable second order nonlinear difference
schemes without the convergence proof for the modified phase-field crystal (MPFC) equation. Baskaran et
al. [4] gave a detailed convergence analysis for the nonlinear difference scheme derived in [3]. The analysis
method in that paper can be easily modified to prove the convergence of the second-order scheme for the
PFC scheme in Hu et al. [9].

To our knowledge, much work has been done on the unconditionally energy stable finite difference
scheme for PFC and MPFC problem based on the convex splitting of a discrete energy. The established
difference schemes are nonlinear, which is not convenient for the practical computation. In this paper, we
will present a three-level second-order linearized difference scheme and prove its unconditional energy-
stability and convergence.
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This paper is organized as follows. Some discrete notations are introduced and two auxiliary lemmas are
presented in the next section. A three-level linearized finite difference scheme is established and analyzed
in Section 3. The energy stability, unique solvability and second order convergence are proved. Section 4
is devoted to the theoretical investigation of a two-level nonlinear finite difference scheme presented by
Zhang et al. [15]. In Section 5, some numerical results with comparisons are provided. The paper ends
with a brief conclusion in Section 6.

2 Some notation and lemmas

Throughout this article, we suppose that (1.1)—(1.3) is subject to periodic boundary conditions and has
a smooth solution u(z,y,t) € Cﬁif(@ x [0,T7).
Without loss of generality, we suppose € = [0, 27| x [0, 27]. For simplicity as in [14], we assume that

M(g) = 1.
Take two positive integers M and N. Let h = 2n/M, 7 = T/N, z; = ih, y; = jh, t, = nr, tpy1 =
(tn + tne1)/2. Denote

Q= {(2i,y;) | 0<i < M,0< j < M},
Q- ={t, |[0<n <

Vi ={u | v ="{ui} virr; = ij, vijynm = ui}.
For u € V},, denote

1
Ootipy ;= (Wirry = uig), Oytijiy =, (Uiger = uij),

1
2 2
Oy = 2 (Wiv1j — 2uij +ui—15), Oy uij = 2 (Wi j+1 — 2uij + Ui j—1),

Ahuij = 5%’111] + 55’(1,”‘.
It is obvious that

1
h

1
2 2, = _

For u € V}, and v € Vp,, define the inner product

M
(u,v) = h* Z Uij Vij

ij=1
and Sobolev norms
M M
lull = v/(u,u), | Vaull = \|h2 Y (6au;_y 412 +52 Y [8yu; 512,
3,7=1 3,7=1
M
lulloe = | max fuigl, Al = || 22 37 | Anug 2.
i,j=1
For the grid function v = (v°,v!,...,v") on Q,, denote
n4 3 1 n+1 n n 1 n+1 n—1
v 2:2(1) +0"), w :2(1) +0"7),
1 1
(51511"4'é = (" —o"), Ap"=_ ("t -t

T or 2T
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Lemma 2.1 (See [14]).  Suppose ¢ € Vi, and Ap¢ € Vi,. Then

1 2
180012 < o, 1912+ 5 198(A00)) 21)

is valid for arbitrary a > 0.

We shall use the following Brouwer fixed-point theorem to show the existence of solution of the two-level
nonlinear difference scheme.

Lemma 2.2 (See [1,2]).  Let (H,(-,)) be a finite dimensional inner product space, ||-|| be the associated
norm, and g : H — H be continuous. Assume moreover that

Ip>0, VzeH, |z|=8 (9(2),2)=0.

Then, there exists an element z* € H such that g(z*) =0 and ||z*]] < .
For the convenience, we present the simplified Gronwall’s inequality.

Lemma 2.3 (See [12]).  Let c¢1,¢0 and ag, k =1,2,3,..., be positive and satisfy
ar+1 < (L+em)ag +cor, k=1,2,3,...,
then

ag+1 < exp(crkT) <a1 + CQ), k=1,2,3,...
a1

3 The three-level linearized difference scheme

3.1 The derivation of the finite difference scheme
Define the grid functions ®™ and U™ on V), with
3 = d(zi,yj,tn), Uiy = p(@i, yj, tn).
Using the Taylor expansion, we have
Owiryjsty) = By 1) + o 6n(wi,yj t0) + O().

Denote -
¢1j:¢(xzay]7t0)+ 2¢t(l‘zay]7t0)7 O<Z7.7<M

Considering (1.1) and (1.2) at the points (xi,yj,té) and (x,y;,t,), then with the help of the Taylor
expansion, we have

1 1
0@ = ApUS + Ry, 1<, < M, (3.1)
1 A 1 1 1 1
Uz = (¢ij)?®F + (1 — B + 20,7 + AFDZ + 57y, 1<i,j <M, (3.2)
and

Ujj = (@)@} + (1= ) + 28,87 + AJO; + 57, 1<ij<M, 1<n<N-1,

and there exists a positive constant ¢y such that
IR < ei(m? +07), 1<i,j
151 < (T + 0%, 1<i,j

Noticing the initial conditions
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and omitting the small terms in the system (3.1)—(3.2) and the system (3.3)—(3.4), the difference scheme
is constructed for the system (1.1)—(1.3) as follows: Find ¢™ € Vj,,n =1,2,..., N such that

5t¢ Ahu”, 1<i,j g M, (3.8)
= (6)? 24 (1= e} +2Ah¢2 +ARGL, 1<i,j< M, (3.9)
At¢ = Ahuu, 1<4,j < M, 1<n<N-1, (3.10)
uly = (@55)200 + (1 — )l + 280005 + AR, 1<i,j<M, 1<n<N-1, (3.11)
b = v(i,yy), 1<, <M, (3.12)
or,
1
o = Anl(9:7)? 5+ (1 =)o +2Ah¢2 + Aj o2 -] 1<i,j< M, (3.13)
Al = Ap[(e]y)? ;“;»+(1 O + 20507 + ARGT], 1<i,j<M, 1<n<N-1,  (3.14)

At each time level, the difference scheme (3.13)—(3.14) is a linear system of algebraic equations with
respect to the wanted solution, which can be solved by the iterative methods.

3.2 The energy stable of the finite difference scheme

We consider the discrete energy stability of the difference scheme (3.13)—(3.15).
Theorem 3.1.  The finite difference scheme (3.13)—(3.15), or equivalently, (3.8)—(3.12), is energy sta-
ble. More precisely, define

n oty — Lomve mrnyy, L€ 9717+ o H?

nl|2 n+112 1 A nl||2 A n+11(2
B R e N TN T

2 2 2
we have
Gn(¢",¢"") S Gu(¢" 1 ¢"), 1<n<N-1. (3.16)
In addition, we have
L@@+ I8 = Va2 + e
UG At R 0 R /) R VN

or,
Loy (@92 +(01)%) | 1—¢ l¢°1> + [0
4<(¢)’ 2 )+ 2 2
_ IVl + Vet
2
< i((é)Q,(sﬁo)QH 5 ||¢°|\2—I\Vh¢°||2+2||Ah¢°|\2- (3.17)

(IIAWOII2 + 1At [1%)

Proof.  Taking the inner product of (3.10) with u", we obtain
(Aid™,u™) = (Apu™, u™) = —||Viu™|* < 0.

Inserting (3.11) into the inequality above, we have

(Aeg", (6")%¢" + (1 = €)9" + 280" + Aj¢") <
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or,
(D", (67)%6™) + (1 — (A", 67) + 200", Ape™) + (A", AZ6") <0, 1<n<N—1. (3.18)
Noticing that
(A", (626" = | 162 (6)) = (872, (6"
(Bug, ) = (I = ")
= 1™+ 19712 — ("1 + ™),
(806", 806") = = (1N = 936" )
= V0™ 2 + 1V06"1%) — (196" + [V )]
(0", 836" = - (1806 806" )
= 1882 + 1807 ) = (1806" 1 + 1 206" )]

it then follows from (3.18) that

1

1—c¢
4 4

(6 (D) + e 17 + 671P)
— VRG24 906" 1)+ (1806 2 + 1 2067)
<@ @)+ U+ P
TR+ 196 )+ (LA™ + 206" P), 1<n < N -1,
or,

Gu(¢", ") < Gr(¢"',9"), 1<n<N-1 (3.19)

Similarly, taking the inner product of (3.8) with w2, we can obtain (3.17). This completes the proof.
Remark 3.2. The discrete energy inequalities (3.16) and (3.17) are the counterpart of the energy
inequality (1.4) of (1.1)—(1.3). This energy stability is not enough to guarantee the uniform bounded-

ness of ||¢*||o since the appearance of the term  ((¢")2, (¢"*1)?). In this sense, the energy stability of
Theorem 3.1 is weaker than that for the two level nonlinear difference scheme in [15].

3.3 The unique solvability and convergence of the finite difference scheme
Define the error grid functions @, ¢, for 0 < n < N, on €, as follows:

o=@ — g,y =Ul —uly, 0<id,j <M.
For the solvability and convergence of the difference scheme, we have the following theorem.

Theorem 3.3.  Assume the solution to (1.1)—(1.3) is sufficiently smooth. The difference scheme (3.13)—
(3.15) is uniquely solvable and convergent with the convergence order of two both in time and in space
when 7% = o(h). In detail, let

= t
C2 ng,yg%@glwcvy, )l

and

1

—2Vd 32(ca + 1)* + 6 +2(2c2 + 1) T}, d=1
¢ = 2Vdrey exp{3[2(ca + 1)* + 6 + 2(2c2 + 1)°c3]T}, +2(C1+1)4+6+2(202+1)2637
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then if
ch Y (r* +h?) <1, (3.20)

we have
19" < e(* +h*), 0<n<N. (3.21)

Remark 3.4. If the solution to the difference scheme (3.13)—(3.15) is uniformly bounded, then the
condition 72 = o(h), or, equivalently, (3.20), is not needed and furthermore the proof can be simplified
greatly. However, we have not proved at the present that the solution of the difference scheme (3.13)—
(3.15) is uniformly bounded theoretically.

Proof of Theorem 3.3. Subtracting (3.8)—(3.12) from (3.1)-(3.4) and (3.7), we obtain the error system

5[2 Ahu +R”, 1<i,j <M, (3.22)
1
(¢U) ’L] (1 - 6) + 2Ah¢2 + A 2 + S?j) 1 < Z)j g M7 (323)
Atd) = Apuf; + Ry, 1<4,5 <M, 1<n N —1, (3.24)
ayy = ()20 — (¢1)°00 + (1 — €8l + 28,00 + ALY + SIb,
1<4,j<M, 1<n<N-1, (3.25)
70 ..
=0, 1<4,j<M. (3.26)
Denote
c3 = O&ggﬂl@(%wﬂ)l-
Then, when
1
203T< ].,
we have

|¢”| CQ+ 2 <eo+ 1.

Next, we will prove the theorem by the inductive method.

Step 1. The unique solvability of ¢'.
The {¢9; | 0 < 4,j < M} is given in (3.15). The equation (3.13) is a linear system about {¢j; | 1 <
i, < M}. Con&dermg its homogeneous system, we have

1
L 1 . .
TJ = Ah 2(¢ij)2¢'}j ¢’Lj + Ah(bz] + A ¢’Lj ) 1 < 1, < M. (327)

Taking the inner product of (3.27) with 2¢!, and using Lemma 2.1 with a = }, we arrive at

27

520" + (1 — €)p! + 280" + AZpt, Apol)

((¢
((9)%6" And") = (1= IV I + 2| A0 |I* = | Va(Ane") I
<2+ D00 - 1A || + 202" |2 = [ Va(Aneh)]?

1
= (2 DM + 312k |17 = [Vadne' |

2
[
-

— E(c2 +1)* + 4] o2

Thus, when 7 is small, [|¢!| = 0 and (3.13) determines ¢' uniquely.
Step 2. The convergence of ¢'.
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Taking the inner product of (3.22) with é2, we have
(0:62,62) = (Api2, $2) + (R, §2) = (2, Apd? ) + (R, 62).

Inserting (3.23) into the right-hand side of the equality above, we obtain

(6:0%,02) = ((8)%0%, And?) + (1 — €)($2, And?) + 2(And2, Apd2) + (A262, A, 6%)
+(S°, ARd?) + (R, 62)
<lle2 + D2+ 1162 - [And2[| + 2 And2 > — [Vi(2nd?)|
+ 1S ARG | + B - [l62 ]

]. ~1 ]_ ~1 ~1 ~1
< llea+ )2 1262112+, [|Ang2 1 + 20 Ang2 || = [ Va(Lno?)]*
Loz, 1 712 Lo Lo
A .
OISO LRGP+ IR+ ) 82
Using Lemma 2.1 with v = J and then using (3.5) and (3.6), we get
1 91, -1 1 1
5,02) < Gl + 1217+ pllgz |+ 15717 + IR
2 2 2 2
1 ~1
< {2[(02 +1)2+ 1%+ z}||¢2 12 + 4n2ci (% + h?)2.

Noticing d;?j = 0, we have

18 < Sl e 17 1 4 D 10t IP - an2hr? 40

or,
~ 1
15 < { Jllca + 12 12+ 5 Ll P+ 0mto( 4 127

When {[(c2 + 1) +1]2 +9}7 < 1,
[6'1? < 327237 (7% 4+ h?)? < An2c3 (72 + h?)?,
or,
6| < 2mer (72 + h2), (3.28)

i.e., the estimate (3.21) is valid for n = 1.

Step 3. The unique solvability of ¢ 1.
Now suppose that {¢™ | 1 <n < m} (m < N —1) has been determined and the estimate (3.21) is valid
for 1 < n < m. Noticing (3.20), we have

L <R < eh M2+ h?) <1, 1<ij<M, 1<n<m.
Consequently,
60 < |OE|+ o] <o+ 1, 1<i,j<M, 1<n<m, (3.29)

where ¢y is defined in the theorem.
(3.14) is a linear system with respect to the unknowns {¢m+1 | 1 < 4,5 < M}. Considering its
homogenous system, we have
1

1 1-—
0 5= Bn | (OO T Ol Ao+ A ROl 1< <M. (3.30)
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Taking the inner product of (3.30) with 2¢™*! and using (3.29), we obtain

1
™ EHE = ((@m)2¢™ T 4 (1= g™ 4 20800™ T 4 AGTH, Apg™ )
< e+ 1)? +1lle™ - [ Ane™ M| + 20| Ang™ H1? = [[Vi(Ane™ I
1
< Ll + 12+ 1™ 1% 4 3l Ang™ 1 — [ V(g™ 1%,

1
29

1 m+12 1
<
e < S

By Lemma 2.1 with oo = ;,, we have

(o +1)2 + 12 +4}|¢>m+1||2.
When
{i[(CQ + 12+ 1%+ 4}7 <1,

we get
lg™ ) = 0.

Consequently, (3.14) determines the ¢™ ! uniquely.

Step 4. The convergence of ¢™*1.
Now we prove that (3.21) is valid for n = m + 1.
Taking the inner product of (3.24) with ¢™, we obtain

(A", ") = (Bpd", §") + (R",6") = (", Apg") + (R, "), 1<n<N-1.
Inserting (3.25) into the equality above, we have

(Ad™, ¢") = ((B™)2@™ — (¢™)20"™, Apd") + (1 — €)(d", Apg™)
+2(AR0", Apg") + (AZG", Apd™) + (S™, Apg™) + (R™,¢"), 1<n<N-1. (3.31)

Noticing

(®7)2@7 — (o) 0 = (@)% — (o) 197 + (¢15) (D], — &)
[(®F; + o) 7 + (65)°](®]; — o)

and (3.29), we have
(@)2@F; — (0)°0] < [(2c2 + Dea + (2 + DO, 1 <n<m.
Then it follows from (3.31) that

(At(gn7(gﬁ)
< [2e2 + Dz 97| + (e2 +~1)2||¢>ﬁ||] NAne™| +{- )llo™| '~||Ah¢>ﬁ||
+2[[ 200" 12 = IVR(ARg™)II* + 1™ - |ARg™ || + IR - [| 6"

_ _ 1 _ _ 1 _
< 1262 + Va3 + o2 + DPUS I 4 1808712 + (1= ) 167112 + 180"
o - 1 1 ~ 1 1., -~
F2AAFR — V(AR + IS+ NG+ IR + 157 1< n<m,
or,
U1t - 1)
AT

- 3 - -
<2020 + 17|07+ |20ea + 1)+ ) — €| 071 + 3[|Ane" ||
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~= 1
~IVr(@nd™I* + L IS™1* + [R"[*), T<n<m.
Using Lemma 2.1 with v = J and then using (3.5)—(3.6), we get

1 Tn+12 n—1/2
P = 16m2)
< 2(2e2 + 12167 [1° + [2(c2 + 1)* + 6]|0"]|* + 4n?ci (72 + h?)?
~ 1 ~ .
< 2(205 +1)%6 16" |* + o [2(c2 + D +6](0" 11 + 1" HI%)
+4723 (2 + h?)?, 1<n<m.

Multiplying the inequality above by 47, we have

{1—22(ca + 1)* + 67} 6" H* < {1+ 22(c2 + 1)* + 6] }|¢" |
+8(2co + 1)23270" |2 + 167237 (r2 + h2)?, 1<n<m. (3.32)
Notice that if 0 < a < é, we have ig <14 3a and 1_1a < g Then,

1
2[2(c2 + 1)* + 6] < .

It follows from (3.32) that

6" 12 < {1+ 6[2(co + 1)* + 6]7}[[ 6" H|? + 12(2¢2 + 1)2c37|¢"|? + 247m%ciT(r? + h?)?
< {14 6[2(co + 1)* + 6]7 + 12(2¢2 + 1)* 5} max{[| " [|*(|6"(|*}
+ 24723 7(72 + h?)?, 1< n<m.
Consequently,

max{[[ "I, 167117} < {1+ [12(cz + 1)* + 36 + 12(2¢2 + 1)*c3]7} max{[|¢"|1%, [|6" |}
+247%37(r2 + %)%, 1< n<m.

The Gronwall’s inequality (see Lemma 2.3) yields

max{[[ "%, 67 ]°} < exp{[12(c2 + 1)* + 36 + 12(2¢2 + 1)*|T} {maX{Il(illlz, 16117}

+ dmtey (r? + h?)?
T .

2(ca +1)* 4+ 64 2(2¢c2 + 1)%c3

Combining with (3.28), we have

l6™ 4[> < exp{6[2(cz + 1)* + 6 +2(2c2 + 1)%c3]T}
472c?
2(ca + 1)* + 6 + 2(2¢2 + 1)2¢3
< exp{6[2(c2 + 1)* 4+ 6 + 2(2¢2 + 1)*c3] T}
1
2(ca +1)* + 6 + 2(2¢2 + 1)2¢3

X [4#2(:%(7'2 +h?)%+ (72 + h2)2]

x 4m%c? {1 + (72 + h?)?
< 02(72+h2)2,

or,
167 < el + 12),

i.e., the estimate (3.21) is valid for n = m + 1. This completes the proof.
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4 Analysis of a two-level nonlinear difference scheme

4.1 The difference scheme and the truncation errors

Considering (1.1) and (1.2) at the point (z;,y;, tn+;) and applying the Taylor expansion, we have

LR = AUITE 4P 1<ij <M, 0<n<N-1, (4.1)

Uij+é:q>”+ (®3)° 2( ij ) + (1= +2+2Ah‘1) +2+A2 +2+Q

1<i,j<M, 0<n<N-1, (4.2)

R

and there exists a constant ¢4 such that

|P| < ca(m® +0%), QY <ca(r®+h), 1<ij<M, 0<n<N-L (4.3)
Noticing

and omitting the small terms PJ;, Q7 in (4.1) and (4.2), we obtain the difference scheme: For 0 < n < N,
find ¢™ € V}, such that

5@”2 Ah”z, 1<i,j <M, 0<n<N -1, (4.5)

n )2 n+1\2
n+1 n + (955 n n n
upt = gt $(05)°F (0557 + (1= P12 + 20,002 + AZgT2,

1<i,j<M, 0<n<N-—1, o)
oY =(xi,y;), 1<i,j< M.

This is just (1.8)—(1.10).
Inserting (4.6) into (4.5), we get: For 0 < n < N, find ¢™ € V), such that

n+1 n 1(¢ZL 2+(¢;n+1 2
PR SN A ) i)

+2 +3
ij ) +(1_ )¢" : +2A ¢n 2 +A ¢’LJ )
1<i,j<M, 0<n<N-1, (4.8)

Zhang et al. [15] have proved the following energy stability.

Theorem 4.1 (Energy stability).  Let {¢];} be the solution to the difference scheme (4.8)—(4.9). Then
1t holds that

F'PE <P 0<n< N -1, (4.10)

where
1. ., 1—€, . n 1 n
= (@D P = IVaem I+ I Ane™

Using the idea in [14], we can prove the uniform pointwise boundedness of the discrete solution to the
PFC scheme.

Theorem 4.2.  Let ¢}; be the solution of the difference scheme (4.8)-(4.9). Then there exists a con-
stant cs independent of T or h such that

[¢"loo <5, 0<m<N. (4.11)
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4.2 The solvability of the difference scheme

In this section, we consider the unique solvability of the difference scheme.
Theorem 4.3.  The difference scheme (4.8)—(4.9) is solvable if (*}ci + 4)7 < 1.

Proof. Suppose that ¢™ has been determined. Then difference scheme (4.8) can be written as

¢"+é n

n4 3 2
i — o't +1(¢n)2+(2¢1 2 T.L,) +1 +1 41
J T/Q 13 :Ah|:¢:'; 2 \1g 2] 9 +(1_6)¢Z' 2 +2Ah¢?j 2 +Ai¢z 2 ,
1<e,7< M,
or
n \2 n \2
T 07 + (2w _¢i'
Wyj — Z 2Ah |:wij( j) ( 9 “ j) + (1 - E)Mij + 2Ahwij + A%w”] = 0,
1<i,j< M, (4.12)
with w;; = qb?;rz. If w;; is determined, then QSZ-H = 2w;j — ¢

Define the map g : V), — V}, by

)2 — )2
g(w)ij = wij — &5 — ;Ah |:wz]( B (2210” i) + (1 — ewij + 2Apw;5 + A,%wij},
1<i4,j< M.
Then
(9(w),w) = (w,w) — (¢", w) — ; (Ah [w (@) + (zw — (1—ew+ 20w + A}iw} w)
(¢")? + (2w — ¢™)?

— (w.u) = (6" ) = | (w

5 + (1 = w + 28w + Abw, Ahw> .

For the third term on the right-hand side, we have

Y (w<¢n>2+<2w—¢">2

n = 9 +(1-ew+2A,w+ Aiw, Ahw>

= (w (¢n)2 + (zw - ¢n)2 , Ahw> —+ (]_ — 5)(’(1)7 Ahw) + Q(Ahw, Ahw) + (A;%TU, Ahw)
n\2 _An\2 2
<o E sanl - - 1Tl - 190 AP

It follows from Theorem 4.2 that [¢}}| < ¢5 and |wjj| < ¢5. Consequently,

@+ Qo= o

Using Lemma 2.1 and taking o = ;, we have

2
1
A< + ol +20] Vi (Apw)]

4 2
= (1= lIVrwl* = [ Va(Apw)|?

25
< < 1 cg +4>|w||2.

25
( c§+4)7< 1,

Lo+ =

When

4
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it follows that

tw)) > [1= 3 (et a) Il = 1"

WV

1
o lwll® = ll¢™ Il

1

= o (lwll =2ll¢"[D]wll.
If ||w| = 2[|¢"|, we have (g(w),w) > 0. By Lemma 2.2, there is at last one solution w satisfying
[|w]] < 2||¢™||. This completes the proof.
Now we consider the uniqueness of the solution.
Theorem 4.4.  If }(121c2+16)7 < 1, then the difference scheme (4.8)—(4.9) has at most one solution.
Proof. Now suppose that (4.12) has an another solution z;;, which satisfies
(07)% + (2255 — 0Fy)°
2

1<4,j <M. (4.13)

n

’
Zij — @i — 2Ah Zij + (1 - E)Zij + 2Ahzij + A%Zij =0,

Let
Pij = Wij — Zij, 1<Z,j<M

Subtracting (4.13) from (4.12), we have

T [ (075)% + (2wij — ¢75)? (05)? + (225 — ¢}y)?
Pij — o An|wij — Zij
2 2 2

+ (1 —€)pij + 2Anpi5 + Aipij] =0, 1<i,j<M,

or,
T [ Qi = 05)° - 2 (2my = 05)° L (90)°
Pig = g 2h P Pii o
+ (1 = €)pij + 28npij + A%Pij} =0, 1<i,j<M. (4.14)

Taking the inner product of (4.14) with p, we have

v <w<2w — O (22 8 (6

loll? = 9 ) oy +(=ep+28np+ A} p, Ahp>. (4.15)

For the first term on the right-hand side, we have

w2w — ¢")? — 2(22 — ¢")?
= (w—2)2w - ¢")* + 2[(2w — ¢")* — (22 — ¢")?]
— (10— 2)(2w — ") + 42w + 2) (w - 2) — (w — 2)¢"]
= p2w — ¢")? + dpz(w + z — ¢").
Thus, we have
[w(2w — ¢")? — (22 — ¢")?| < 212 ).

Using the inequality above in (4.15), we get

-
loll* <, (elpll | Anpll = (1= OIIVapll* + 2] Anpll* = [V (Anp)lI?).
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Applying the Cauchy inequality and Lemma 2.1 with a = , we obtain

27

121¢
loll? < ( 5|p||2+3|Ahp||2—<1—e>||vhp||2—||vh<Ahp>||2)
T (1214
<5 (110l 3180012 -

T (121cd
< 4 2,
(20 4ol

When }(121¢2 + 16)7 < 1, it follows that |p|| = 0. Consequently, p;; = 0, 1 <4, j < M. This completes
the proof.

|Vh(AhP)||2)

Combining Theorems 4.3 and 4.4, we conclude that the difference scheme (4.8)—(4.9) has a unique
solution.

4.3 The convergence of the difference scheme
Define the error grid functions ¢™, @™, for 0 < n < N, on €, as follows:
quJ.:@;;—#j, iy = Ul —ujy, 0<1i,j <M.

Theorem 4.5.  Let ¢" = {¢}; | 0 < i,j < M} be the solution of the difference scheme (4.8)-(4.9), or
equivalently, (4.5)—(4.7). Then there exists a constant ¢ independent of the grid h and 7 such that

6"l < é(r* +h2), 1<n<N. (4.16)

Proof  Subtracting (4.5)—(4.7) from (4.1), (4.2) and (4.4), respectively, we obtain the error system:

ST = Apal A PL 1<i <M, 0<n<N-1, (4.17)
TR ISP s (@)% + (235)? gt L (05)° + (6)?
Ugj = = | P 2 " 2

= dTE £ 20,00 AZGITE QL 1< <M, 0<n<N -1, (418)
b, =0, 1<i,j<M. (4.19)
Taking the product of (4.17) with ¢"*2, we have
(8™ 2, @™ 2) = (Apa™+2, ¢ ) + (P, ¢ 2)
= ("2, ARt ) 4+ (P, "), 0<n< N -1 (4.20)
Inserting (4.18) into (4.20), we obtain

(5t¢~)n+§7d~)n+§) _ <(I)n+é ((I)n)z + ((I)n+1)2 B ¢n+é (¢n)2 + (¢n+1)2,Ahfi~)n+é>

2 2
(1= (@2, At 2) + 2 AR |2 + (ARG A"T)
+(P”,én+§)+(Qn,Ah<£n+;)7 0<n<N-I1. (421)

For the left-hand side of (4.21), we have
~ol o~ 1 ~ -
(30" 2, 0" =) = (6" H]1* = [l6"]1%)-
T
For the first term on the right-hand side of (4.21), we have

((I)n—i- ((bn) +2((I>n+1) (bn—i- (¢n) 2(¢n+1)2,Ahén+;)
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2 + 2

n\2 n+1\2 _ L
_’_(q)n-i-é _(bn-i-;)((b ) +2(¢ ) ,Ah¢n+2)

(e [ @ (6]

RS
8

- <q>n+é '(anrl +¢n+1 _

O G |+ @ e

9 onte, Ahé"%)
< lles +ex)en + A1 + 1511206 |
< glles + ea)en + PG+ 18717+ Nandr3 .
For the second term of the right-hand side of (4.21), we have
(L= e)(@"2, 86" ) = (1 9| Vag™ 2%
For the forth term of the right-hand side of (4.21), we have
(ARG"™H2, Mg ) = —|Va(Ang™ )|
For the fifth term and the sixth term of the right-hand side of (4.21), we have
(@ A0 < QM+ |And"H P,
(P33 < PP+ 373

Inserting the expressions above to (4.21) and using Lemma 2.1 with o = %, we obtain

1, - -
5. (157112 = 137 )
< Les + extes + @FUF N+ 1577 + L1
— (1= )| Va2 |2 + 2| And™ 2 |2 — || Vi (And™ T 2)|?
T o R VN NV KR P T
< ;(CE + cseo + 32l + [|97])2 + ;||¢3n+5 E
+3|\Ah¢§n+é 12 - ||Vh(Ahd~)n+é)”2 T ;(”PnHQ QP
< 3 esea + BRUF T+ 1F71)7 + 1532 + 413312+ (1P + Q")

1 - - 1
<l +esea+c)? + 911"+ 10"11%) + , (1P 17 + 1Q"(1%).

4 [
Noticing (4.3), we have

1 -
{1- ot @2 vor o
1 -
< {1 + ) [(cg + c5co + 03)2 + 9]7'}||¢"||2 + 8#2037’(72 + h2)2.

When L .
Sl +eser+ )’ + 0l < o,

it follows that

- 3 -
||q§”"’1||2 < {1 + ) [(cg + c5co + 03)2 + 9]T}|qb"||2 + 120237 (rP +h%)?, 0<n<N-1.
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The Gronwall’s lemma (see Lemma 2.3) yields

8m2c3
(2 +c5e24+c3)2+9
0<n<N-—-1.

~ 3
1612 < exp {312+ cvea + P 9T} - (07 4122

The proof of the theorem is completed.

5 Numerical examples

Consider (1.1)-(1.3) with T' = 0.5,¢ = 0.025, Q@ = [0,32] x [0,32], and initial condition (x,y) =
0.5sin(*%") sin(Q;Qy) and the periodic boundary condition as in [15].
Firstly, we compute the numerical solutions to this problem by the difference scheme (3.13)—(3.15).

Denote the solution of the difference scheme (3.13)-(3.15) with the step sizes (h,7) by u;(h, 7). Let

Np, = {
Nl={

| Ipl + lg| < m},
| (pvq) € Nma(pvq) with q= _mv_m+17"'a_1a

b,

b,
or, (p,q) with —m <p<—1,¢=0},

N2 ={(»,9) | (p,q) € Npm; (p,q) with ¢ =1,2,...,m, or, (p,q) with 1 <p < m,q=0}.

—~

q)
q)

At each time level, the difference scheme (3.13)—(3.15) can be written as
Z Cp,qPitp,j+q = fij, 1< 1,5 <M.
(p,q)ENs

We solve the system of the above linear algebraic equation by the Gauss-Seidel iterative method: For
k=0,1,2,...,

k41 k41 k o
(bgvj )= {f@j a Z vaq¢l('+p,j)+q - Z CP7Q¢E+)p,j+q:| /Co,o, 1<4,j< M.
(p,9)EN3 (p.q)ENG

The tolerance of the Gauss Seidel iteration is set to be 107'2. The initial guess at each time step is taken
as the numerical solution at the previous time level.
Suppose h and 7 are sufficiently small. Denote

Hy(h,7) = max max
0<k<N 0<i,j<M

h T
o) = (5.5 )]

and Haoo(2h,27)
oo (2h, 2T
order = log, Ha(h7) -
Some numerical results are presented in Table 1. From this table, we see that the convergence order of
our scheme (3.13)—(3.15) is O(7% + h?).

Secondly, we plot the energy evolution pictures by different constant steps. Figure 1 shows the decrease
of the discrete energy G, (¢", ") defined as Theorem 3.1. This is accordance with Theorem 3.1. Next,
we show the solution contours at different time steps in Figure 2, where the horizontal axis and the
vertical axis represent x and y, respectively, and the mesh grid is set as 100 x 100.

Finally, we compare our scheme (3.13)—(3.15) with the scheme (1.8)—(1.10) (see [15]) and the scheme
(1.11)—(1.13) (see [9]).

At each time level, both schemes (1.8)—(1.10) and (1.11)—(1.13) are systems of nonlinear equations,
which can be written as

2 3 .
Z Cp,qPitp.ite T Z [dp,q¢i+p,j+q + ep,q¢i+p,j+q] = fij, 1<4,j<M.
(p,q)€EN3 (p,q) EN1
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Table 1 The maximum norm errors and convergence orders of our scheme (3.13)—(3.15)

h T Hoo(h,T) order
1/10 1/10 1.2329e—3 *
1/20 1/20 3.3400e—4 1.8842
1/40 1/40 8.5491e—5 1.9660
1/80 1/80 2.1755e—5 1.9744

45 . . . . . . .

— 7=1,h=1
—— 7=05,h=05

t

<

=

<)

>

)

g

&5

0 10 20 30 40 50 60 70 80

Time

Figure 1 The discrete energy of the numerical solution obtained by the scheme (3.13)—(3.15) with different constant

time-space steps

We adopt the following quasi-Gauss Seidel iteration method (QGS): For £ =0,1,2,...,

k+1 E+1 k+1
Cp,qd’g,j )"‘dO,O( E_] ))2 +6p,q(¢§,j ))3

= fij — Z Cp,q(‘ﬁz(‘i;,lj)ﬂ)_ Z Cp,q(®

(p,9)ENS (p,q)ENZ

k+1 k+1
= D [ )+ ena (@)l

(p,@)ENT

k k
= > [dpg (6 L) H e (8 .

(p,9)ENE

k)
i+p,J+q

The tolerance of the quasi-Gauss Seidel iteration is set to be 10712, and the initial guess at each time
step is also taken as the numerical solution at the previous time level. We use the Newton iteration
method to solve d)(k*l), with the tolerance of 107!2. It needs lots of CPU time. Thus, we propose the

4]

following modified quasi-Gauss Seidel iteration (MQGS) to solve the systems of nonlinear equations of

the schemes (1.8)—(1.10) and (1.11)—(1.13):
For k=0,1,2,...,

(k4+1) (k41) (k)
vaq@,j = fij — E : CPvQ¢i+p,j+q - E : Cp7q¢i+p,j+q

(p,9)EN] (p,q)ENZ

k+1 kil
N Z [dp,q(d)z(‘+p,j)+q)2+epxq(¢§+p7j)+q

(p,9)ENT

-2

(p,q)€ENFUNo

[dpg (63 ) + epa(6) L V). (5.1)

)*]
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Figure 2 The contours of the numerical solutions at different time with the same temporal grid numbers N = 100
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Table 2 The maximum norm errors and convergence orders of the difference scheme (1.8)—(1.10)

h
1/10
1/20
1/40
1/80

-
1/10
1/20
1/40
1/80

Hoo (h, T) with QGS

1.2329e—3
3.3399e—4
8.5483e—5
2.1408e—5

order
*
1.8842
1.9661
1.9975

Hoo (h, 7) with MQGS order
1.2329e—3 *
3.3399e—4 1.8842
8.5483e—5 1.9661
2.1408e—5 1.9975

However, the modified quasi-Gauss Seidel iteration is also time-consuming.

From Tables 2 and 3, we see that the convergence orders of those schemes are nearly O(7% + h?). From

Table 4, we see that those schemes need more CPU time compared with our scheme.
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Table 3 The maximum norm errors and convergence orders of the (1.11)—(1.13)

h T Hoo(h, 7) with QGS order Hoo(h, ) with MQGS order
/10 1/10 3.6044e—4 * 3.6044e—4 *
1/20 1/20 9.3916e—5 1.9403 9.3916e—5 1.9403
1/40 1/40 2.4769e—5 1.9228 2.4769e—5 1.9228
1/80 1/80 6.4775e—6 1.9350 6.4775e—6 1.9350

Table 4 CPU time of (3.13)—(3.15), (1.8)—(1.10) with QGS, (1.8)—(1.10) with MQGS,
(1.11)—(1.13) with QGS and (1.11)~(1.13) with MQGS

h T (3.13)=(3.15)  (1.8)—(1.10)  (1.8)—(1.10)  (L.11)—(1.13)  (1.11)—(1.13)
with QGS  with MQGS  with QGS  with MQGS
1/10  1/10  1.9753e—1 3.9588e—1  3.130le—1 3.4651e—1 3.0890e—1
1/20 1/20  3.5283e+0 1.1034e+1  1.0483e+1 8.2384e+0 7.2819¢+0
1/40  1/40  4.9852c+2 1.6544e+3  1.5770e+3 1.1379¢+3 1.0092¢+3
1/80 1/80  5.5163e+4  3.1962e+5  3.0499e+5 2.0593e+5 2.0571e+5

6 Conclusion

In this paper, we have developed a three-level linearized difference scheme for the phase crystal equation.
The energy stability, unique solvability and second order global convergence both in time and in space
in Ly norm were strictly proved. In the second part of this work, we theoretically analyzed a two-level
nonlinear difference scheme for the phase crystal equation, which was developed by Zhang et al. [15]. Tt
was proved that the difference scheme is uniquely solvable by the Brouwer fixed-point theorem and second
order global convergent in Lo norm by the energy method. Our analysis method may be applicable to
the modified phase field crystal model.

Li et al. [10] proposed a three-level linearized difference scheme for the Cahn-Hilliard equation and
showed that the difference scheme converges in maximum norm. The phase crystal equation is a sixth
order nonlinear partial differential equation. We only proved that the developed difference scheme is
convergent in Ly norm. It is our future work to prove that the difference scheme converges in maximum
norm.
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