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1 Introduction

The phase field crystal (PFC) model has been recently proposed to describe the elastic and plastic

deformations, multiple crystal orientations and many other observable phenomena, see, e.g., [5, 6, 11].

The PFC model is as follows:

φt = ∇ · (M(φ)∇μ), (x, y) ∈ Ω, 0 < t � T, (1.1)

μ = φ3 + (1− ε)φ+ 2Δφ+Δ2φ, (x, y) ∈ Ω, 0 < t � T, (1.2)

φ(x, y, 0) = ψ(x, y), (x, y) ∈ Ω, (1.3)

where ε is a positive constant assumed to be less than 1,∇ and Δ are the gradient and Laplacian operators,

respectively, M(φ) > 0 is a mobility, μ is the chemical potential. Suppose that Ω = (0, L1)× (0, L2) and

that φ and Δφ are defined on R2 with the periodic box Ω. Let

E(φ(·, ·, t)) =
∫
Ω

[
1

4
φ4 +

1− ε

2
φ2 − |∇φ|2 + 1

2
(Δφ)2

]
dxdy.

Then, we have the following energy identity:

d

dt
E(φ(·, ·, t)) +

∫
Ω

M(φ)(∇μ)2dxdy = 0.
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This means that the energy is monotonically non-increasing in time for PFC model. It follows easily that

d

dt
E(φ(·, ·, t)) � 0, 0 < t � T. (1.4)

The PFC equation is a higher order (sixth order) nonlinear partial differential equation. The numerical

methods play a very important rule since it is difficult to find the exact solution of the problem.

Wise et al. [14] presented the following difference scheme of first order in time,

1

τ
(φn+1

ij − φnij) = ∇h · (M(φnij)∇hμ
n+1
ij ), (1.5)

μn+1
ij = (φn+1

ij )3 + (1− ε)φn+1
ij + 2�hφ

n
ij +�2

hφ
n+1
ij . (1.6)

They proved that the energy is always non-increasing in time, i.e.,

Eh(φ
k+1) � Eh(φ

k), (1.7)

and thus the scheme is unconditionally energy stable. They also showed that the difference scheme is

convergent with the order of one in time and of two in space in the L2 norm. Wang and Wise [13]

constructed a difference scheme with the convergence order one in time for the modified phase field

crystal equation.

Zhang et al. [15] established the following difference scheme of second order in time:

1

τ
(φn+1

ij − φnij) = ∇h · (M(φ
n+ 1

2
ij )∇hμ

n+ 1
2

ij ), (1.8)

μ
n+ 1

2

ij = φ
n+ 1

2

ij · (φ
n+1
ij )2 + (φnij)

2

2
+ (1− ε)φ

n+ 1
2

ij + 2�hφ
n+ 1

2

ij +�2
hφ

n+ 1
2

ij , (1.9)

φ0ij = ψ(xi, yj), 1 � i, j �M, (1.10)

where φ
n+ 1

2
ij = 1

2 (φ
n+1
ij + φnij) and the unconditional energy stability of the scheme was shown, however

they did not analyze the solvability and the global convergence. Hu et al. [9] presented a fully second-order

nonlinear three level difference scheme:

1

τ
(φn+1

ij − φnij) = ∇h · (M(φ
n+ 1

2

ij )∇hμ
n+ 1

2

ij ), (1.11)

μ
n+ 1

2

ij = φ
n+ 1

2

ij · (φ
n+1
ij )2 + (φnij)

2

2
+ (1− ε)φ

n+ 1
2

ij + 3�hφ
n
ij −�hφ

n−1
ij +�2

hφ
n+ 1

2

ij , (1.12)

φ0ij = ψ(xi, yj), φ−1
ij = φ0ij 1 � i, j �M, (1.13)

which was proved energy bounded and uniquely solvable. The nonlinear difference scheme was solved

by nonlinear multigrid methods. Numerical simulations confirmed the stability, efficiency and accuracy

of the scheme. We can find the difference between the difference scheme (1.8)–(1.10) and the difference

scheme (1.11)–(1.13).

Gomez and Nogueira [8] also presented some unconditionally energy-stable method with the truncation

error of order two both in time and in space for PFC model, but did not discuss the global convergence.

Galenko et al. [7] and Baskaran et al. [3] provided some energy stable second order nonlinear difference

schemes without the convergence proof for the modified phase-field crystal (MPFC) equation. Baskaran et

al. [4] gave a detailed convergence analysis for the nonlinear difference scheme derived in [3]. The analysis

method in that paper can be easily modified to prove the convergence of the second-order scheme for the

PFC scheme in Hu et al. [9].

To our knowledge, much work has been done on the unconditionally energy stable finite difference

scheme for PFC and MPFC problem based on the convex splitting of a discrete energy. The established

difference schemes are nonlinear, which is not convenient for the practical computation. In this paper, we

will present a three-level second-order linearized difference scheme and prove its unconditional energy-

stability and convergence.
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This paper is organized as follows. Some discrete notations are introduced and two auxiliary lemmas are

presented in the next section. A three-level linearized finite difference scheme is established and analyzed

in Section 3. The energy stability, unique solvability and second order convergence are proved. Section 4

is devoted to the theoretical investigation of a two-level nonlinear finite difference scheme presented by

Zhang et al. [15]. In Section 5, some numerical results with comparisons are provided. The paper ends

with a brief conclusion in Section 6.

2 Some notation and lemmas

Throughout this article, we suppose that (1.1)–(1.3) is subject to periodic boundary conditions and has

a smooth solution u(x, y, t) ∈ C8,8,3
x,y,t (Ω̄× [0, T ]).

Without loss of generality, we suppose Ω = [0, 2π]× [0, 2π]. For simplicity as in [14], we assume that

M(φ) = 1.

Take two positive integers M and N. Let h = 2π/M , τ = T/N , xi = ih, yj = jh, tn = nτ , tn+ 1
2
=

(tn + tn+1)/2. Denote

Ωh = {(xi, yj) | 0 � i �M, 0 � j �M},
Ωτ = {tn | 0 � n � N},
Vh = {u | u = {uij}, ui+M,j = uij , ui,j+M = uij}.

For u ∈ Vh, denote

δxui+ 1
2 ,j

=
1

h
(ui+1,j − ui,j), δyui,j+ 1

2
=

1

h
(ui,j+1 − ui,j),

δ2xuij =
1

h2
(ui+1,j − 2uij + ui−1,j), δ2yuij =

1

h2
(ui,j+1 − 2uij + ui,j−1),

Δhuij = δ2xuij + δ2yuij .

It is obvious that

δ2xuij =
1

h
(δxui+ 1

2 ,j
− δxui− 1

2 ,j
), δ2yuij =

1

h
(δyui,j+ 1

2
− δyui,j− 1

2
).

For u ∈ Vh and v ∈ Vh, define the inner product

(u, v) = h2
M∑

i,j=1

uij vij

and Sobolev norms

‖u‖ =
√
(u, u), ‖∇hu‖ =

√√√√h2
M∑

i,j=1

|δxui− 1
2 ,j

|2 + h2
M∑

i,j=1

|δyui,j− 1
2
|2,

‖u‖∞ = max
1�i,j�M

|uij |, ‖Δhu‖ =

√√√√h2
M∑

i,j=1

|Δhuij |2 .

For the grid function v = (v0, v1, . . . , vN ) on Ωτ , denote

vn+
1
2 =

1

2
(vn+1 + vn), vn̄ =

1

2
(vn+1 + vn−1),

δtv
n+ 1

2 =
1

τ
(vn+1 − vn), Δtv

n =
1

2τ
(vn+1 − vn−1).
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Lemma 2.1 (See [14]). Suppose φ ∈ Vh and Δhφ ∈ Vh. Then

‖Δhφ‖2 � 1

3α2
‖φ‖2 + 2α

3
‖∇h(Δhφ)‖2 (2.1)

is valid for arbitrary α > 0.

We shall use the following Brouwer fixed-point theorem to show the existence of solution of the two-level

nonlinear difference scheme.

Lemma 2.2 (See [1,2]). Let (H, (·, ·)) be a finite dimensional inner product space, ‖·‖ be the associated

norm, and g : H → H be continuous. Assume moreover that

∃β > 0, ∀ z ∈ H, ‖z‖ = β, (g(z), z) � 0.

Then, there exists an element z� ∈ H such that g(z�) = 0 and ‖z�‖ � β.

For the convenience, we present the simplified Grönwall’s inequality.

Lemma 2.3 (See [12]). Let c1, c2 and ak, k = 1, 2, 3, . . . , be positive and satisfy

ak+1 � (1 + c1τ)ak + c2τ, k = 1, 2, 3, . . . ,

then

ak+1 � exp(c1kτ)

(
a1 +

c2
c1

)
, k = 1, 2, 3, . . .

3 The three-level linearized difference scheme

3.1 The derivation of the finite difference scheme

Define the grid functions Φn and Un on Vh with

Φn
ij = φ(xi, yj, tn), Un

ij = μ(xi, yj, tn).

Using the Taylor expansion, we have

φ(xi, yj , t 1
2
) = φ(xi, yj, t0) +

τ

2
φt(xi, yj, t0) +O(τ2).

Denote

φ̂ij = φ(xi, yj , t0) +
τ

2
φt(xi, yj , t0), 0 � i, j �M.

Considering (1.1) and (1.2) at the points (xi, yj, t 1
2
) and (xi, yj, tn), then with the help of the Taylor

expansion, we have

δtΦ
1
2
ij = ΔhU

1
2
ij +R0

ij , 1 � i, j �M, (3.1)

U
1
2

ij = (φ̂ij)
2Φ

1
2

ij + (1− ε)Φ
1
2

ij + 2ΔhΦ
1
2

ij +Δ2
hΦ

1
2

ij + S0
ij , 1 � i, j �M, (3.2)

and

ΔtΦ
n
ij = ΔhU

n
ij +Rn

ij , 1 � i, j �M, 1 � n � N − 1, (3.3)

Un
ij = (Φn

ij)
2Φn

ij + (1− ε)Φn
ij + 2ΔhΦ

n
ij +Δ2

hΦ
n
ij + Sn

ij , 1 � i, j �M, 1 � n � N − 1, (3.4)

and there exists a positive constant c1 such that

|Rn
ij | � c1(τ

2 + h2), 1 � i, j �M, 0 � n � N − 1, (3.5)

|Sn
ij | � c1(τ

2 + h2), 1 � i, j �M, 0 � n � N − 1. (3.6)

Noticing the initial conditions

Φ0
ij = ψ(xi, yj), 1 � i, j �M (3.7)
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and omitting the small terms in the system (3.1)–(3.2) and the system (3.3)–(3.4), the difference scheme

is constructed for the system (1.1)–(1.3) as follows: Find φn ∈ Vh, n = 1, 2, . . . , N such that

δtφ
1
2

ij = Δhu
1
2

ij , 1 � i, j �M, (3.8)

u
1
2

ij = (φ̂ij)
2φ

1
2

ij + (1 − ε)φ
1
2

ij + 2Δhφ
1
2

ij +Δ2
hφ

1
2

ij , 1 � i, j �M, (3.9)

Δtφ
n
ij = Δhu

n
ij , 1 � i, j �M, 1 � n � N − 1, (3.10)

unij = (φnij)
2φnij + (1 − ε)φnij + 2Δhφ

n
ij +Δ2

hφ
n
ij , 1 � i, j �M, 1 � n � N − 1, (3.11)

φ0ij = ψ(xi, yj), 1 � i, j �M, (3.12)

or,

δtφ
1
2

ij = Δh[(φ̂ij)
2φ

1
2

ij + (1 − ε)φ
1
2

ij + 2Δhφ
1
2

ij +Δ2
hφ

1
2

ij ], 1 � i, j �M, (3.13)

Δtφ
n
ij = Δh[(φ

n
ij)

2φnij + (1− ε)φnij + 2Δhφ
n
ij +Δ2

hφ
n
ij ], 1 � i, j �M, 1 � n � N − 1, (3.14)

φ0ij = ψ(xi, yj), 1 � i, j �M. (3.15)

At each time level, the difference scheme (3.13)–(3.14) is a linear system of algebraic equations with

respect to the wanted solution, which can be solved by the iterative methods.

3.2 The energy stable of the finite difference scheme

We consider the discrete energy stability of the difference scheme (3.13)–(3.15).

Theorem 3.1. The finite difference scheme (3.13)–(3.15), or equivalently, (3.8)–(3.12), is energy sta-

ble. More precisely, define

Gh(φ
n, φn+1) ≡ 1

4
((φn)2, (φn+1)2) +

1− ε

2
· ‖φ

n‖2 + ‖φn+1‖2
2

− ‖∇hφ
n‖2 + ‖∇hφ

n+1‖2
2

+
1

2
· ‖Δhφ

n‖2 + ‖Δhφ
n+1‖2

2
, 0 � n � N − 1,

we have

Gh(φ
n, φn+1) � Gh(φ

n−1, φn), 1 � n � N − 1. (3.16)

In addition, we have

1

4
((φ̂)2, (φ1)2) +

1− ε

2
‖φ1‖2 − ‖∇hφ

1‖2 + 1

2
‖�hφ

1‖2

� 1

4
((φ̂)2, (φ0)2) +

1− ε

2
‖φ0‖2 − ‖∇hφ

0‖2 + 1

2
‖�hφ

0‖2,

or,

1

4

(
(φ̂)2,

(φ0)2 + (φ1)2

2

)
+

1− ε

2
· ‖φ

0‖2 + ‖φ1‖2
2

− ‖∇hφ
0‖2 + ‖∇hφ

1‖2
2

+
1

4
(‖�hφ

0‖2 + ‖�hφ
1‖2)

� 1

4
((φ̂)2, (φ0)2) +

1− ε

2
‖φ0‖2 − ‖∇hφ

0‖2 + 1

2
‖�hφ

0‖2. (3.17)

Proof. Taking the inner product of (3.10) with un, we obtain

(Δtφ
n, un) = (Δhu

n, un) = −‖∇hu
n‖2 � 0.

Inserting (3.11) into the inequality above, we have

(Δtφ
n, (φn)2φn + (1 − ε)φn + 2Δhφ

n +Δ2
hφ

n) � 0,
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or,

(Δtφ
n, (φn)2φn) + (1− ε)(Δtφ

n, φn) + 2(Δtφ
n,Δhφ

n) + (Δtφ
n,Δ2

hφ
n) � 0, 1 � n � N − 1. (3.18)

Noticing that

(Δtφ
n, (φn)2φn) =

1

4τ
[((φn+1)2, (φn)2)− ((φn)2, (φn−1)2)],

(Δtφ
n, φn) =

1

4τ
(‖φn+1‖2 − ‖φn−1‖2)

=
1

4τ
[(‖φn+1‖2 + ‖φn‖2)− (‖φn‖2 + ‖φn−1‖2)],

(Δtφ
n,Δhφ

n) = − 1

4τ
(‖∇hφ

n+1‖2 − ‖∇hφ
n−1‖2)

= − 1

4τ
[(‖∇hφ

n+1‖2 + ‖∇hφ
n‖2)− (‖∇hφ

n‖2 + ‖∇hφ
n−1‖2)],

(Δtφ
n,Δ2

hφ
n) =

1

4τ
(‖�hφ

n+1‖2 − ‖�hφ
n−1‖2)

=
1

4τ
[(‖�hφ

n+1‖2 + ‖�hφ
n‖2)− (‖�hφ

n‖2 + ‖�hφ
n−1‖2)],

it then follows from (3.18) that

1

4
((φn+1)2, (φn)2) +

1− ε

4
(‖φn+1‖2 + ‖φn‖2)

− 1

2
(‖∇hφ

n+1‖2 + ‖∇hφ
n‖2) + 1

4
(‖�hφ

n+1‖2 + ‖�hφ
n‖2)

� 1

4
((φn)2, (φn−1)2) +

1− ε

4
(‖φn‖2 + ‖φn−1‖2)

− 1

2
(‖∇hφ

n‖2 + ‖∇hφ
n−1‖2) + 1

4
(‖�hφ

n‖2 + ‖�hφ
n−1‖2), 1 � n � N − 1,

or,

Gh(φ
n, φn+1) � Gh(φ

n−1, φn), 1 � n � N − 1. (3.19)

Similarly, taking the inner product of (3.8) with u
1
2 , we can obtain (3.17). This completes the proof.

Remark 3.2. The discrete energy inequalities (3.16) and (3.17) are the counterpart of the energy

inequality (1.4) of (1.1)–(1.3). This energy stability is not enough to guarantee the uniform bounded-

ness of ‖φk‖∞ since the appearance of the term 1
4 ((φ

n)2, (φn+1)2). In this sense, the energy stability of

Theorem 3.1 is weaker than that for the two level nonlinear difference scheme in [15].

3.3 The unique solvability and convergence of the finite difference scheme

Define the error grid functions ũn, φ̃n, for 0 � n � N, on Ωh as follows:

φ̃nij = Φn
ij − φnij , ũnij = Un

ij − unij , 0 � i, j �M.

For the solvability and convergence of the difference scheme, we have the following theorem.

Theorem 3.3. Assume the solution to (1.1)–(1.3) is sufficiently smooth. The difference scheme (3.13)–

(3.15) is uniquely solvable and convergent with the convergence order of two both in time and in space

when τ2 = o(h). In detail, let

c2 = max
0�x,y�2π,0�t�T

|φ(x, y, t)|

and

c = 2
√
dπc1 exp{3[2(c2 + 1)4 + 6 + 2(2c2 + 1)2c22]T }, d = 1 +

1

2(c1 + 1)4 + 6 + 2(2c2 + 1)2c22
,
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then if

ch−1(τ2 + h2) � 1, (3.20)

we have

‖φ̃n‖ � c(τ2 + h2), 0 � n � N. (3.21)

Remark 3.4. If the solution to the difference scheme (3.13)–(3.15) is uniformly bounded, then the

condition τ2 = o(h), or, equivalently, (3.20), is not needed and furthermore the proof can be simplified

greatly. However, we have not proved at the present that the solution of the difference scheme (3.13)–

(3.15) is uniformly bounded theoretically.

Proof of Theorem 3.3. Subtracting (3.8)–(3.12) from (3.1)–(3.4) and (3.7), we obtain the error system

δtφ̃
1
2

ij = Δhũ
1
2

ij +R0
ij , 1 � i, j �M, (3.22)

ũ
1
2

ij = (φ̂ij)
2φ̃

1
2

ij + (1− ε)φ̃
1
2

ij + 2Δhφ̃
1
2

ij +Δ2
hφ̃

1
2

ij + S0
ij , 1 � i, j �M, (3.23)

Δtφ̃
n
ij = Δhũ

n
ij + Rn

ij , 1 � i, j �M, 1 � n � N − 1, (3.24)

ũnij = (Φn
ij)

2Φn
ij − (φnij)

2φnij + (1− ε)φ̃nij + 2Δhφ̃
n
ij +Δ2

hφ̃
n
ij + Sn

ij ,

1 � i, j �M, 1 � n � N − 1, (3.25)

φ̃0ij = 0, 1 � i, j �M. (3.26)

Denote

c3 = max
0�x,y�2π

|φt(x, y, 0)|.

Then, when
1

2
c3τ � 1,

we have

|φ̂ij | � c2 +
τ

2
c3 � c2 + 1.

Next, we will prove the theorem by the inductive method.

Step 1. The unique solvability of φ1.

The {φ0ij | 0 � i, j � M} is given in (3.15). The equation (3.13) is a linear system about {φ1ij | 1 �
i, j �M}. Considering its homogeneous system, we have

φ1ij
τ

= Δh

[
1

2
(φ̂ij)

2φ1ij +
1− ε

2
φ1ij +Δhφ

1
ij +

1

2
Δ2

hφ
1
ij

]
, 1 � i, j �M. (3.27)

Taking the inner product of (3.27) with 2φ1, and using Lemma 2.1 with α = 1
2 , we arrive at

2

τ
‖φ1‖2 = ((φ̂)2φ1 + (1− ε)φ1 + 2Δhφ

1 +Δ2
hφ

1, Δhφ
1)

= ((φ̂)2φ1,Δhφ
1)− (1 − ε)‖∇hφ

1‖2 + 2‖Δhφ
1‖2 − ‖∇h(Δhφ

1)‖2
� (c2 + 1)2‖φ1‖ · ‖Δhφ

1‖+ 2‖Δhφ
1‖2 − ‖∇h(Δhφ

1)‖2

=
1

4
(c2 + 1)4‖φ1‖2 + 3‖Δhφ

1‖2 − ‖∇hΔhφ
1‖2

=

[
1

4
(c2 + 1)4 + 4

]
‖φ1‖2.

Thus, when τ is small, ‖φ1‖ = 0 and (3.13) determines φ1 uniquely.

Step 2. The convergence of φ1.
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Taking the inner product of (3.22) with φ̃
1
2 , we have

(δtφ̃
1
2 , φ̃

1
2 ) = (Δhũ

1
2 , φ̃

1
2 ) + (R0, φ̃

1
2 ) = (ũ

1
2 ,Δhφ̃

1
2 ) + (R0, φ̃

1
2 ).

Inserting (3.23) into the right-hand side of the equality above, we obtain

(δtφ̃
1
2 , φ̃

1
2 ) = ((φ̂)2φ̃

1
2 ,Δhφ̃

1
2 ) + (1− ε)(φ̃

1
2 ,Δhφ̃

1
2 ) + 2(Δhφ̃

1
2 ,Δhφ̃

1
2 ) + (Δ2

hφ̃
1
2 ,Δhφ̃

1
2 )

+ (S0,Δhφ̃
1
2 ) + (R0, φ̃

1
2 )

� [(c2 + 1)2 + 1]‖φ̃ 1
2 ‖ · ‖Δhφ̃

1
2 ‖+ 2‖Δhφ̃

1
2 ‖2 − ‖∇h(�hφ̃

1
2 )‖

+ ‖S0‖ · ‖Δhφ̃
1
2 ‖+ ‖R0‖ · ‖φ̃ 1

2 ‖
� 1

2
[(c2 + 1)2 + 1]2‖φ̃ 1

2 ‖2 + 1

2
‖Δhφ̃

1
2 ‖2 + 2‖Δhφ̃

1
2 ‖2 − ‖∇h(�hφ̃

1
2 )‖2

+
1

2
‖S0‖2 + 1

2
‖Δhφ̃

1
2 ‖2 + 1

2
‖R0‖2 + 1

2
‖φ̃ 1

2 ‖2.

Using Lemma 2.1 with α = 1
2 and then using (3.5) and (3.6), we get

(δtφ̃
1
2 , φ̃

1
2 ) �

{
1

2
[(c2 + 1)2 + 1]2 +

9

2

}
‖φ̃ 1

2 ‖2 + 1

2
‖S0‖2 + 1

2
‖R0‖2

�
{
1

2
[(c2 + 1)2 + 1]2 +

9

2

}
‖φ̃ 1

2 ‖2 + 4π2c21(τ
2 + h2)2.

Noticing φ̃0ij = 0, we have

1

4τ
‖φ̃1‖2 � 1

4

{
1

2
[(c2 + 1)2 + 1]2 +

9

2

}
‖φ1‖2 + 4π2c21(τ

2 + h2)2,

or,

‖φ̃1‖2 �
{
1

2
[(c2 + 1)2 + 1]2 +

9

2

}
τ‖φ1‖2 + 16π2c21τ(τ

2 + h2)2.

When {[(c2 + 1)2 + 1]2 + 9}τ � 1,

‖φ̃1‖2 � 32π2c21τ(τ
2 + h2)2 � 4π2c21(τ

2 + h2)2,

or,

‖φ̃1‖ � 2πc1(τ
2 + h2), (3.28)

i.e., the estimate (3.21) is valid for n = 1.

Step 3. The unique solvability of φm+1.

Now suppose that {φn | 1 � n � m} (m � N −1) has been determined and the estimate (3.21) is valid

for 1 � n � m. Noticing (3.20), we have

|φ̃nij | � h−1‖φ̃n‖ � ch−1(τ2 + h2) � 1, 1 � i, j �M, 1 � n � m.

Consequently,

|φnij | � |Φn
ij |+ |φ̃nij | � c2 + 1, 1 � i, j �M, 1 � n � m, (3.29)

where c2 is defined in the theorem.

(3.14) is a linear system with respect to the unknowns {φm+1
ij | 1 � i, j � M}. Considering its

homogenous system, we have

1

2τ
φm+1
ij = Δh

[
1

2
(φmij )

2φm+1
ij +

1− ε

2
φm+1
ij +Δhφ

m+1
ij +

1

2
Δ2

hφ
m+1
ij

]
, 1 � i, j �M. (3.30)
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Taking the inner product of (3.30) with 2φm+1 and using (3.29), we obtain

1

τ
‖φm+1‖2 = ((φm)2φm+1 + (1− ε)φm+1 + 2Δhφ

m+1 +Δ2
hφ

m+1,Δhφ
m+1)

� [(c2 + 1)2 + 1]‖φm+1‖ · ‖Δhφ
m+1‖+ 2‖Δhφ

m+1‖2 − ‖∇h(Δhφ
m+1)‖2

� 1

4
[(c2 + 1)2 + 1]2‖φm+1‖2 + 3‖Δhφ

m+1‖2 − ‖∇h(Δhφ
m+1)‖2.

By Lemma 2.1 with α = 1
2 , we have

1

τ
‖φm+1‖2 �

{
1

4
[(c2 + 1)2 + 1]2 + 4

}
‖φm+1‖2.

When {
1

4
[(c2 + 1)2 + 1]2 + 4

}
τ < 1,

we get

‖φm+1‖ = 0.

Consequently, (3.14) determines the φm+1 uniquely.

Step 4. The convergence of φm+1.

Now we prove that (3.21) is valid for n = m+ 1.

Taking the inner product of (3.24) with φ̃n, we obtain

(Δtφ̃
n, φ̃n) = (Δhũ

n, φ̃n) + (Rn, φ̃n) = (ũn,Δhφ̃
n) + (Rn, φ̃n), 1 � n � N − 1.

Inserting (3.25) into the equality above, we have

(Δtφ̃
n, φ̃n) = ((Φn)2Φn − (φn)2φn,Δhφ̃

n) + (1− ε)(φ̃n,Δhφ̃
n)

+ 2(Δhφ̃
n,Δhφ̃

n) + (Δ2
hφ̃

n,Δhφ̃
n) + (Sn,Δhφ̃

n) + (Rn, φ̃n), 1 � n � N − 1. (3.31)

Noticing

(Φn
ij)

2Φn̄
ij − (φnij)

2φn̄ij = [(Φn
ij)

2 − (φnij)
2]Φn̄

ij + (φnij)
2(Φn̄

ij − φn̄ij)

= [(Φn
ij + φnij)Φ

n̄
ij + (φnij)

2](Φn̄
ij − φn̄ij)

and (3.29), we have

|(Φn
ij)

2Φn̄
ij − (φnij)

2φn̄ij | � [(2c2 + 1)c2 + (c2 + 1)2]|φ̃n̄ij |, 1 � n � m.

Then it follows from (3.31) that

(Δtφ̃
n, φ̃n̄)

� [(2c2 + 1)c2‖φ̃n‖+ (c2 + 1)2‖φ̃n̄‖] · ‖Δhφ̃
n̄‖+ (1− ε)‖φ̃n̄‖ · ‖Δhφ̃

n̄‖
+2‖Δhφ̃

n̄‖2 − ‖∇h(Δhφ̃
n̄)‖2 + ‖Sn‖ · ‖Δhφ̃

n̄‖+ ‖Rn‖ · ‖φ̃n̄‖
� [(2c2 + 1)c2‖φ̃n‖+ (c2 + 1)2‖φ̃n̄‖]2 + 1

4
‖Δhφ̃

n̄‖2 + (1− ε)

[
‖φ̃n̄‖2 + 1

4
‖Δhφ̃

n̄‖2
]

+2‖Δhφ̃
n̄‖2 − ‖∇h(Δhφ̃

n̄)‖2 + 1

2
‖Sn‖2 + 1

2
‖Δhφ̃

n̄‖2 + 1

2
‖Rn‖2 + 1

2
‖φ̃n̄‖2, 1 � n � m,

or,

1

4τ
(‖φ̃n+1‖2 − ‖φ̃n−1‖2)

� 2(2c2 + 1)2c22‖φ̃n‖2 +
[
2(c2 + 1)4 +

3

2
− ε

]
‖φ̃n̄‖2 + 3‖Δhφ̃

n̄‖2
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−‖∇h(Δhφ̃
n̄)‖2 + 1

2
(‖Sn‖2 + ‖Rn‖2), 1 � n � m.

Using Lemma 2.1 with α = 1
2 and then using (3.5)–(3.6), we get

1

4τ
(‖φ̃n+1‖2 − ‖φ̃n−1‖2)
� 2(2c2 + 1)2c22‖φ̃n‖2 + [2(c2 + 1)4 + 6]‖φ̃n̄‖2 + 4π2c21(τ

2 + h2)2

� 2(2c2 + 1)2c22‖φ̃n‖2 +
1

2
[2(c2 + 1)4 + 6](‖φ̃n+1‖2 + ‖φ̃n−1‖2)

+ 4π2c21(τ
2 + h2)2, 1 � n � m.

Multiplying the inequality above by 4τ, we have

{1− 2[2(c2 + 1)4 + 6]τ}‖φ̃n+1‖2 � {1 + 2[2(c2 + 1)4 + 6]τ}‖φ̃n−1‖2
+ 8(2c2 + 1)2c22τ‖φ̃n‖2 + 16π2c21τ(τ

2 + h2)2, 1 � n � m. (3.32)

Notice that if 0 < α � 1
3 , we have 1+α

1−α � 1 + 3α and 1
1−α � 3

2 . Then,

2[2(c2 + 1)4 + 6]τ � 1

3
.

It follows from (3.32) that

‖φ̃n+1‖2 � {1 + 6[2(c2 + 1)4 + 6]τ}‖φ̃n−1‖2 + 12(2c2 + 1)2c22τ‖φ̃n‖2 + 24π2c21τ(τ
2 + h2)2

� {1 + 6[2(c2 + 1)4 + 6]τ + 12(2c2 + 1)2c22τ}max{‖φ̃n−1‖2‖φ̃n‖2}
+ 24π2c21τ(τ

2 + h2)2, 1 � n � m.

Consequently,

max{‖φ̃n+1‖2, ‖φ̃n‖2} � {1 + [12(c2 + 1)4 + 36 + 12(2c2 + 1)2c22]τ}max{‖φ̃n‖2, ‖φ̃n−1‖2}
+ 24π2c21τ(τ

2 + h2)2, 1 � n � m.

The Grönwall’s inequality (see Lemma 2.3) yields

max{‖φ̃m+1‖2, ‖φ̃m‖2} � exp{[12(c2 + 1)4 + 36 + 12(2c2 + 1)2c22]T }
[
max{‖φ̃1‖2, ‖φ̃0‖2}

+
4π2c21

2(c2 + 1)4 + 6 + 2(2c2 + 1)2c22
(τ2 + h2)2

]
.

Combining with (3.28), we have

‖φ̃m+1‖2 � exp{6[2(c2 + 1)4 + 6 + 2(2c2 + 1)2c22]T }

×
[
4π2c21(τ

2 + h2)2 +
4π2c21

2(c2 + 1)4 + 6 + 2(2c2 + 1)2c22
(τ2 + h2)2

]

� exp{6[2(c2 + 1)4 + 6 + 2(2c2 + 1)2c22]T }

× 4π2c21

[
1 +

1

2(c2 + 1)4 + 6 + 2(2c2 + 1)2c22

]
(τ2 + h2)2

� c2(τ2 + h2)2,

or,

‖φ̃m+1‖ � c(τ2 + h2),

i.e., the estimate (3.21) is valid for n = m+ 1. This completes the proof.
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4 Analysis of a two-level nonlinear difference scheme

4.1 The difference scheme and the truncation errors

Considering (1.1) and (1.2) at the point (xi, yj , tn+ 1
2
) and applying the Taylor expansion, we have

δtΦ
n+ 1

2
ij = ΔhU

n+ 1
2

ij + Pn
ij , 1 � i, j �M, 0 � n � N − 1, (4.1)

U
n+ 1

2

ij = Φ
n+ 1

2

ij

(Φn
ij)

2 + (Φn+1
ij )2

2
+ (1− ε)Φ

n+ 1
2

ij + 2ΔhΦ
n+ 1

2

ij +Δ2
hΦ

n+ 1
2

ij +Qn
ij ,

1 � i, j �M, 0 � n � N − 1, (4.2)

and there exists a constant c4 such that

|Pn
ij | � c4(τ

2 + h2), |Qn
ij | � c4(τ

2 + h2), 1 � i, j �M, 0 � n � N − 1. (4.3)

Noticing

Φ0
ij = ψ(xi, yj), 1 � i, j �M, (4.4)

and omitting the small terms Pn
ij , Q

n
ij in (4.1) and (4.2), we obtain the difference scheme: For 0 � n � N,

find φn ∈ Vh such that

δtφ
n+ 1

2

ij = Δhu
n+ 1

2

ij , 1 � i, j �M, 0 � n � N − 1, (4.5)

u
n+ 1

2

ij = φ
n+ 1

2

ij

(φnij)
2 + (φn+1

ij )2

2
+ (1 − ε)φ

n+ 1
2

ij + 2Δhφ
n+ 1

2

ij +Δ2
hφ

n+ 1
2

ij ,

1 � i, j �M, 0 � n � N − 1, (4.6)

φ0ij = ψ(xi, yj), 1 � i, j �M. (4.7)

This is just (1.8)–(1.10).

Inserting (4.6) into (4.5), we get: For 0 � n � N, find φn ∈ Vh such that

δtφ
n+ 1

2

ij = Δh

[
φ
n+ 1

2

ij

(φnij)
2 + (φn+1

ij )2

2
+ (1 − ε)φ

n+ 1
2

ij + 2Δhφ
n+ 1

2

ij +Δ2
hφ

n+ 1
2

ij

]
,

1 � i, j �M, 0 � n � N − 1, (4.8)

φ0ij = ψ(xi, yj), 1 � i, j �M. (4.9)

Zhang et al. [15] have proved the following energy stability.

Theorem 4.1 (Energy stability). Let {φnij} be the solution to the difference scheme (4.8)–(4.9). Then

it holds that

Fn+1 � Fn, 0 � n � N − 1, (4.10)

where

Fn =
1

4
((φn)4, 1) +

1− ε

2
‖φn‖2 − ‖∇hφ

n‖2 + 1

2
‖Δhφ

n‖2.

Using the idea in [14], we can prove the uniform pointwise boundedness of the discrete solution to the

PFC scheme.

Theorem 4.2. Let φnij be the solution of the difference scheme (4.8)–(4.9). Then there exists a con-

stant c5 independent of τ or h such that

‖φn‖∞ � c5, 0 � n � N. (4.11)
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4.2 The solvability of the difference scheme

In this section, we consider the unique solvability of the difference scheme.

Theorem 4.3. The difference scheme (4.8)–(4.9) is solvable if (254 c
4
5 + 4)τ � 1.

Proof. Suppose that φn has been determined. Then difference scheme (4.8) can be written as

φ
n+ 1

2
ij − φnij
τ/2

= Δh

[
φ
n+ 1

2

ij

(φnij)
2 + (2φ

n+ 1
2

ij − φnij)
2

2
+ (1− ε)φ

n+ 1
2

ij + 2Δhφ
n+ 1

2

ij +Δ2
hφ

n+ 1
2

ij

]
,

1 � i, j �M,

or

wij − φnij −
τ

2
Δh

[
wij

(φnij)
2 + (2wij − φnij)

2

2
+ (1− ε)wij + 2Δhwij +Δ2

hwij

]
= 0,

1 � i, j �M, (4.12)

with wij = φ
n+ 1

2
ij . If wij is determined, then φn+1

ij = 2wij − φnij .

Define the map g : Vh → Vh by

g(w)ij = wij − φnij −
τ

2
Δh

[
wij

(φnij)
2 + (2wij − φnij)

2

2
+ (1 − ε)wij + 2Δhwij +Δ2

hwij

]
,

1 � i, j �M.

Then

(g(w), w) = (w,w) − (φn, w)− τ

2

(
Δh

[
w
(φn)2 + (2w − φn)2

2
+ (1− ε)w + 2Δhw +Δ2

hw

]
, w

)

= (w,w) − (φn, w)− τ

2

(
w
(φn)2 + (2w − φn)2

2
+ (1− ε)w + 2Δhw +Δ2

hw,Δhw

)
.

For the third term on the right-hand side, we have

An ≡
(
w
(φn)2 + (2w − φn)2

2
+ (1− ε)w + 2Δhw +Δ2

hw,Δhw

)

=

(
w
(φn)2 + (2w − φn)2

2
,Δhw

)
+ (1− ε)(w,Δhw) + 2(Δhw,Δhw) + (Δ2

hw,Δhw)

� 1

4

∥∥∥∥w (φn)2 + (2w − φn)2

2

∥∥∥∥
2

+ 3‖Δhw‖2 − (1− ε)‖∇hw‖2 − ‖∇h(Δhw)‖2.

It follows from Theorem 4.2 that |φnij | � c5 and |wij | � c5. Consequently,

(φn)2 + (2w − φn)2

2
� 5c25.

Using Lemma 2.1 and taking α = 1
2 , we have

An � 1

4

∥∥∥∥w (φn)2 + (2w − φn)2

2

∥∥∥∥
2

+
1

α2
‖w‖2 + 2α‖∇h(Δhw)‖2

− (1− ε)‖∇hw‖2 − ‖∇h(Δhw)‖2

�
(
25

4
c45 + 4

)
‖w‖2.

When (
25

4
c45 + 4

)
τ � 1,
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it follows that

(g(w), w) �
[
1− τ

2

(
25

4
c45 + 4

)]
‖w‖2 − ‖φn‖‖w‖

� 1

2
‖w‖2 − ‖φn‖‖w‖

=
1

2
(‖w‖ − 2‖φn‖)‖w‖.

If ‖w‖ = 2‖φn‖, we have (g(w), w) � 0. By Lemma 2.2, there is at last one solution w satisfying

‖w‖ � 2‖φn‖. This completes the proof.

Now we consider the uniqueness of the solution.

Theorem 4.4. If 1
8 (121c

4
5+16)τ < 1, then the difference scheme (4.8)–(4.9) has at most one solution.

Proof. Now suppose that (4.12) has an another solution zij , which satisfies

zij − φnij −
τ

2
Δh

[
zij

(φnij)
2 + (2zij − φnij)

2

2
+ (1− ε)zij + 2Δhzij +Δ2

hzij

]
= 0,

1 � i, j �M. (4.13)

Let

ρij = wij − zij , 1 � i, j �M.

Subtracting (4.13) from (4.12), we have

ρij − τ

2
Δh

[
wij

(φnij)
2 + (2wij − φnij)

2

2
− zij

(φnij)
2 + (2zij − φnij)

2

2

+ (1 − ε)ρij + 2Δhρij +Δ2
hρij

]
= 0, 1 � i, j �M,

or,

ρij − τ

2
Δh

[
wij(2wij − φnij)

2 − zij(2zij − φnij)
2

2
+ ρij

(φnij)
2

2

+ (1 − ε)ρij + 2Δhρij +Δ2
hρij

]
= 0, 1 � i, j �M. (4.14)

Taking the inner product of (4.14) with ρ, we have

‖ρ‖2 = τ

2

(
w(2w − φn)2 − z(2z − φn)2

2
+ ρ

(φn)2

2
+ (1− ε)ρ+ 2Δhρ+Δ2

hρ,Δhρ

)
. (4.15)

For the first term on the right-hand side, we have

w(2w − φn)2 − z(2z − φn)2

= (w − z)(2w − φn)2 + z[(2w − φn)2 − (2z − φn)2]

= (w − z)(2w − φn)2 + 4z[(w + z)(w − z)− (w − z)φn]

= ρ(2w − φn)2 + 4ρz(w + z − φn).

Thus, we have

|w(2w − φn)2 − z(2z − φn)2| � 21c25|ρ|.
Using the inequality above in (4.15), we get

‖ρ‖2 � τ

2
(11c25‖ρ‖‖Δhρ‖ − (1− ε)‖∇hρ‖2 + 2‖Δhρ‖2 − ‖∇h(Δhρ)‖2).
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Applying the Cauchy inequality and Lemma 2.1 with α = 1
2 , we obtain

‖ρ‖2 � τ

2

(
121c45
4

‖ρ‖2 + 3‖Δhρ‖2 − (1− ε)‖∇hρ‖2 − ‖∇h(Δhρ)‖2
)

� τ

2

(
121c45
4

‖ρ‖2 + 3‖Δhρ‖2 − ‖∇h(Δhρ)‖2
)

� τ

2

(
121c45
4

+ 4

)
‖ρ‖2.

When 1
8 (121c

4
5 + 16)τ < 1, it follows that ‖ρ‖ = 0. Consequently, ρij = 0, 1 � i, j � M. This completes

the proof.

Combining Theorems 4.3 and 4.4, we conclude that the difference scheme (4.8)–(4.9) has a unique

solution.

4.3 The convergence of the difference scheme

Define the error grid functions φ̃n, ũn, for 0 � n � N, on Ωh as follows:

φ̃nij = Φn
ij − φnij , ũnij = Un

ij − unij , 0 � i, j �M.

Theorem 4.5. Let φn = {φnij | 0 � i, j �M} be the solution of the difference scheme (4.8)–(4.9), or,

equivalently, (4.5)–(4.7). Then there exists a constant ĉ independent of the grid h and τ such that

‖φ̃n‖ � ĉ(τ2 + h2), 1 � n � N. (4.16)

Proof Subtracting (4.5)–(4.7) from (4.1), (4.2) and (4.4), respectively, we obtain the error system:

δtφ̃
n+ 1

2

ij = Δhũ
n+ 1

2

ij + Pn
ij , 1 � i, j �M, 0 � n � N − 1, (4.17)

ũ
n+ 1

2

ij =

[
Φ

n+ 1
2

ij

(Φn
ij)

2 + (Φn+1
ij )2

2
− φ

n+ 1
2

ij

(φnij)
2 + (φn+1

ij )2

2

]

+(1− ε)φ̃
n+ 1

2
ij + 2Δhφ̃

n+ 1
2

ij +Δ2
hφ̃

n+ 1
2

ij +Qn
ij , 1 � i, j �M, 0 � n � N − 1, (4.18)

φ̃0ij = 0, 1 � i, j �M. (4.19)

Taking the product of (4.17) with φ̃n+
1
2 , we have

(δtφ̃
n+ 1

2 , φ̃n+
1
2 ) = (Δhũ

n+ 1
2 , φ̃n+

1
2 ) + (Pn, φ̃n+

1
2 )

= (ũn+
1
2 ,Δhφ̃

n+ 1
2 ) + (Pn, φ̃n+

1
2 ), 0 � n � N − 1. (4.20)

Inserting (4.18) into (4.20), we obtain

(δtφ̃
n+ 1

2 , φ̃n+
1
2 ) =

(
Φn+ 1

2
(Φn)2 + (Φn+1)2

2
− φn+

1
2
(φn)2 + (φn+1)2

2
,Δhφ̃

n+ 1
2

)

+ (1− ε)(φ̃n+
1
2 ,Δhφ̃

n+ 1
2 ) + 2‖Δhφ̃

n+ 1
2 ‖2 + (Δ2

hφ̃
n+ 1

2 ,Δhφ̃
n+ 1

2 )

+ (Pn, φ̃n+
1
2 ) + (Qn,Δhφ̃

n+ 1
2 ), 0 � n � N − 1. (4.21)

For the left-hand side of (4.21), we have

(δtφ̃
n+ 1

2 , φ̃n+
1
2 ) =

1

2τ
(‖φ̃n+1‖2 − ‖φ̃n‖2).

For the first term on the right-hand side of (4.21), we have

(
Φn+ 1

2
(Φn)2 + (Φn+1)2

2
− φn+

1
2
(φn)2 + (φn+1)2

2
,Δhφ̃

n+ 1
2

)
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=

(
Φn+ 1

2

[
(Φn+1)2 − (φn+1)2

2
+

(Φn)2 − (φn)2

2

]

+(Φn+ 1
2 − φn+

1
2 )

(φn)2 + (φn+1)2

2
,Δhφ̃

n+ 1
2

)

=

(
Φn+ 1

2

[
Φn+1 + φn+1

2
φ̃n+1 +

Φn + φn

2
φ̃n

]
+

(φn)2 + (φn+1)2

2
φ̃n+

1
2 ,Δhφ̃

n+ 1
2

)

� 1

2
[(c5 + c2)c2 + c25](‖φ̃n+1‖+ ‖φ̃n‖)‖Δhφ̃

n+ 1
2 ‖

� 1

8
[(c5 + c2)c2 + c25]

2(‖φ̃n+1‖+ ‖φ̃n‖)2 + 1

2
‖Δhφ̃

n+ 1
2 ‖2.

For the second term of the right-hand side of (4.21), we have

(1− ε)(φ̃n+
1
2 ,Δhφ̃

n+ 1
2 ) = −(1− ε)‖∇hφ̃

n+ 1
2 ‖2.

For the forth term of the right-hand side of (4.21), we have

(Δ2
hφ̃

n+ 1
2 ,Δhφ̃

n+ 1
2 ) = −‖∇h(Δhφ̃

n+ 1
2 )‖2.

For the fifth term and the sixth term of the right-hand side of (4.21), we have

(Qn,Δhφ̃
n+ 1

2 ) � 1

2
‖Qn‖2 + 1

2
‖Δhφ̃

n+ 1
2 ‖2,

(Pn, φ̃n+
1
2 ) � 1

2
‖Pn‖2 + 1

2
‖φ̃n+ 1

2 ‖2.

Inserting the expressions above to (4.21) and using Lemma 2.1 with α = 1
2 , we obtain

1

2τ
(‖φ̃n+1‖2 − ‖φ̃n‖2)

� 1

8
[(c5 + c2)c2 + c25]

2(‖φ̃n+1‖+ ‖φ̃n‖)2 + 1

2
‖Δhφ̃

n+ 1
2 ‖2

− (1− ε)‖∇hφ̃
n+ 1

2 ‖2 + 2‖Δhφ̃
n+ 1

2 ‖2 − ‖∇h(Δhφ̃
n+ 1

2 )‖2

+
1

2
‖Qn‖2 + 1

2
‖Δhφ̃

n+ 1
2 ‖2 + 1

2
‖Pn‖2 + 1

2
‖φ̃n+ 1

2 ‖2

� 1

8
(c25 + c5c2 + c22)

2(‖φ̃n+1‖+ ‖φ̃n‖)2 + 1

2
‖φ̃n+ 1

2 ‖2

+3‖Δhφ̃
n+ 1

2 ‖2 − ‖∇h(Δhφ̃
n+ 1

2 )‖2 + 1

2
(‖Pn‖2 + ‖Qn‖2)

� 1

8
(c25 + c5c2 + c22)

2(‖φ̃n+1‖+ ‖φ̃n‖)2 + 1

2
‖φ̃n+ 1

2 ‖2 + 4‖φ̃n+ 1
2 ‖2 + 1

2
(‖Pn‖2 + ‖Qn‖2)

� 1

4
[(c25 + c5c2 + c22)

2 + 9](‖φ̃n+1‖2 + ‖φ̃n‖2) + 1

2
(‖Pn‖2 + ‖Qn‖2).

Noticing (4.3), we have

{
1− 1

2
[(c25 + c5c2 + c22)

2 + 9]τ

}
‖φ̃n+1‖2

�
{
1 +

1

2
[(c25 + c5c2 + c22)

2 + 9]τ

}
‖φ̃n‖2 + 8π2c24τ(τ

2 + h2)2.

When
1

2
[(c25 + c5c2 + c22)

2 + 9]τ � 1

3
,

it follows that

‖φ̃n+1‖2 �
{
1 +

3

2
[(c25 + c5c2 + c22)

2 + 9]τ

}
‖φ̃n‖2 + 12π2c24τ(τ

2 + h2)2, 0 � n � N − 1.
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The Grönwall’s lemma (see Lemma 2.3) yields

‖φ̃n+1‖2 � 8π2c24
(c25 + c5c2 + c22)

2 + 9
exp

{
3

2

[
(c25 + c5c2 + c22)

2 + 9
]
T

}
· (τ2 + h2)2,

0 � n � N − 1.

The proof of the theorem is completed.

5 Numerical examples

Consider (1.1)–(1.3) with T = 0.5, ε = 0.025, Ω = [0, 32] × [0, 32], and initial condition ψ(x, y) =

0.5 sin(2πx32 ) sin(2πy32 ) and the periodic boundary condition as in [15].

Firstly, we compute the numerical solutions to this problem by the difference scheme (3.13)–(3.15).

Denote the solution of the difference scheme (3.13)–(3.15) with the step sizes (h, τ) by unij(h, τ). Let

Nm = {(p, q) | |p|+ |q| � m},
N1

m = {(p, q) | (p, q) ∈ Nm; (p, q) with q = −m,−m+ 1, . . . ,−1,

or, (p, q) with −m � p � −1, q = 0},
N2

m = {(p, q) | (p, q) ∈ Nm; (p, q) with q = 1, 2, . . . ,m, or, (p, q) with 1 � p � m, q = 0}.

At each time level, the difference scheme (3.13)–(3.15) can be written as

∑
(p,q)∈N3

cp,qφi+p,j+q = fij , 1 � i, j �M.

We solve the system of the above linear algebraic equation by the Gauss-Seidel iterative method: For

k = 0, 1, 2, . . . ,

φ
(k+1)
i,j =

[
fi,j −

∑
(p,q)∈N1

3

cp,qφ
(k+1)
i+p,j+q −

∑
(p,q)∈N2

3

cp,qφ
(k)
i+p,j+q

]/
c0,0, 1 � i, j �M.

The tolerance of the Gauss Seidel iteration is set to be 10−12. The initial guess at each time step is taken

as the numerical solution at the previous time level.

Suppose h and τ are sufficiently small. Denote

H∞(h, τ) = max
0�k�N

max
0�i,j�M

∣∣∣∣uki,j(h, τ) − u2k2i,2j

(
h

2
,
τ

2

)∣∣∣∣,
and

order = log2
H∞(2h, 2τ)

H∞(h, τ)
.

Some numerical results are presented in Table 1. From this table, we see that the convergence order of

our scheme (3.13)–(3.15) is O(τ2 + h2).

Secondly, we plot the energy evolution pictures by different constant steps. Figure 1 shows the decrease

of the discrete energy Gh(φ
n, φn+1) defined as Theorem 3.1. This is accordance with Theorem 3.1. Next,

we show the solution contours at different time steps in Figure 2, where the horizontal axis and the

vertical axis represent x and y, respectively, and the mesh grid is set as 100× 100.

Finally, we compare our scheme (3.13)–(3.15) with the scheme (1.8)–(1.10) (see [15]) and the scheme

(1.11)–(1.13) (see [9]).

At each time level, both schemes (1.8)–(1.10) and (1.11)–(1.13) are systems of nonlinear equations,

which can be written as

∑
(p,q)∈N3

cp,qφi+p,j+q +
∑

(p,q)∈N1

[dp,qφ
2
i+p,j+q + ep,qφ

3
i+p,j+q ] = fij , 1 � i, j �M.
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Table 1 The maximum norm errors and convergence orders of our scheme (3.13)–(3.15)

h τ H∞(h, τ) order

1/10 1/10 1.2329e−3 *

1/20 1/20 3.3400e−4 1.8842

1/40 1/40 8.5491e−5 1.9660

1/80 1/80 2.1755e−5 1.9744
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Figure 1 The discrete energy of the numerical solution obtained by the scheme (3.13)–(3.15) with different constant

time-space steps

We adopt the following quasi-Gauss Seidel iteration method (QGS): For k = 0, 1, 2, . . . ,

cp,qφ
(k+1)
i,j + d0,0(φ

(k+1)
i,j )2 + ep,q(φ

(k+1)
i,j )3

= fij −
∑

(p,q)∈N1
3

cp,q(φ
(k+1)
i+p,j+q)−

∑
(p,q)∈N2

3

cp,q(φ
(k)
i+p,j+q)

−
∑

(p,q)∈N1
1

[dp,q(φ
(k+1)
i+p,j+q)

2 + ep,q(φ
(k+1)
i+p,j+q)

3]

−
∑

(p,q)∈N2
1

[dp,q(φ
(k)
i+p,j+q)

2 + ep,q(φ
(k)
i+p,j+q)

3].

The tolerance of the quasi-Gauss Seidel iteration is set to be 10−12, and the initial guess at each time

step is also taken as the numerical solution at the previous time level. We use the Newton iteration

method to solve φ
(k+1)
i,j , with the tolerance of 10−12. It needs lots of CPU time. Thus, we propose the

following modified quasi-Gauss Seidel iteration (MQGS) to solve the systems of nonlinear equations of

the schemes (1.8)–(1.10) and (1.11)–(1.13):

For k = 0, 1, 2, . . . ,

cp,qφ
(k+1)
i,j = fij −

∑
(p,q)∈N1

3

cp,qφ
(k+1)
i+p,j+q −

∑
(p,q)∈N2

3

cp,qφ
(k)
i+p,j+q

−
∑

(p,q)∈N1
1

[dp,q(φ
(k+1)
i+p,j+q)

2 + ep,q(φ
(k+1)
i+p,j+q)

3]

−
∑

(p,q)∈N2
1∪N0

[dp,q(φ
(k)
i+p,j+q)

2 + ep,q(φ
(k)
i+p,j+q)

3]. (5.1)
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Figure 2 The contours of the numerical solutions at different time with the same temporal grid numbers N = 100

Table 2 The maximum norm errors and convergence orders of the difference scheme (1.8)–(1.10)

h τ H∞(h, τ) with QGS order H∞(h, τ) with MQGS order

1/10 1/10 1.2329e−3 * 1.2329e−3 *

1/20 1/20 3.3399e−4 1.8842 3.3399e−4 1.8842

1/40 1/40 8.5483e−5 1.9661 8.5483e−5 1.9661

1/80 1/80 2.1408e−5 1.9975 2.1408e−5 1.9975

However, the modified quasi-Gauss Seidel iteration is also time-consuming.

From Tables 2 and 3, we see that the convergence orders of those schemes are nearly O(τ2 +h2). From

Table 4, we see that those schemes need more CPU time compared with our scheme.
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Table 3 The maximum norm errors and convergence orders of the (1.11)–(1.13)

h τ H∞(h, τ) with QGS order H∞(h, τ) with MQGS order

1/10 1/10 3.6044e−4 * 3.6044e−4 *

1/20 1/20 9.3916e−5 1.9403 9.3916e−5 1.9403

1/40 1/40 2.4769e−5 1.9228 2.4769e−5 1.9228

1/80 1/80 6.4775e−6 1.9350 6.4775e−6 1.9350

Table 4 CPU time of (3.13)–(3.15), (1.8)–(1.10) with QGS, (1.8)–(1.10) with MQGS,

(1.11)–(1.13) with QGS and (1.11)–(1.13) with MQGS

h τ (3.13)–(3.15) (1.8)–(1.10) (1.8)–(1.10) (1.11)–(1.13) (1.11)–(1.13)

with QGS with MQGS with QGS with MQGS

1/10 1/10 1.9753e−1 3.9588e−1 3.1301e−1 3.4651e−1 3.0890e−1

1/20 1/20 3.5283e+0 1.1034e+1 1.0483e+1 8.2384e+0 7.2819e+0

1/40 1/40 4.9852e+2 1.6544e+3 1.5770e+3 1.1379e+3 1.0092e+3

1/80 1/80 5.5163e+4 3.1962e+5 3.0499e+5 2.0593e+5 2.0571e+5

6 Conclusion

In this paper, we have developed a three-level linearized difference scheme for the phase crystal equation.

The energy stability, unique solvability and second order global convergence both in time and in space

in L2 norm were strictly proved. In the second part of this work, we theoretically analyzed a two-level

nonlinear difference scheme for the phase crystal equation, which was developed by Zhang et al. [15]. It

was proved that the difference scheme is uniquely solvable by the Brouwer fixed-point theorem and second

order global convergent in L2 norm by the energy method. Our analysis method may be applicable to

the modified phase field crystal model.

Li et al. [10] proposed a three-level linearized difference scheme for the Cahn-Hilliard equation and

showed that the difference scheme converges in maximum norm. The phase crystal equation is a sixth

order nonlinear partial differential equation. We only proved that the developed difference scheme is

convergent in L2 norm. It is our future work to prove that the difference scheme converges in maximum

norm.
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