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1 Introduction

All graphs in this paper are assumed to be finite, simple and undirected.

For a graph Γ, we use V Γ, EΓ and AutΓ to denote its vertex set, edge set and automorphism group,

respectively. A graph Γ is said to be vertex-transitive or edge-transitive if AutΓ acts transitively on V Γ

or EΓ, respectively. A regular edge-transitive graph is called semisymmetric if it is not vertex-transitive.

An arc in a graph Γ is an ordered pair of adjacent vertices. A graph Γ is said to be arc-transitive if AutΓ

acts transitively on the set of arcs in Γ.

The class of semisymmetric graphs was first systematically studied by Folkman [10]. Afterwards, many

authors have done much work on this topic, see [1, 2, 4, 15, 24–26] for references. In particular, lots of

interesting examples of such graphs were found. For example, the Folkman graph on 20 vertices, the

smallest semisymmetric graph, was constructed by Folkman [10]; the Gray graph S54, a cubic graph

of order 54, was first observed to be semisymmetric by Bouwer [1] and proved to be the smallest cubic

semisymmetric graph by Malnič et al. [22]. In 1985, Iofinova and Ivanov [15] classified all bi-primitive

cubic semisymmetric graphs, they proved that there are only five such graphs. Tutte’s 12-cage S126

is one of those graphs, which is the unique cubic semisymmetric graph on 126 vertices and is the fifth

smallest cubic semisymmetric graph, see [4]. The reader may consult [7–9,12,16,21,23] for more examples

of semisymmetric graphs.

A recent work of Han and Lu [13] suggested a feasible construction of semisymmetric graphs from

primitive permutation groups. In practice, it is plausible to consider the semisymmetric graphs associated
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with those primitive permutation groups of special types or degrees. Let p be a prime and let k be a

positive integer less than p. Then all primitive permutation groups of degree kp are explicitly known,

see [19]. This inspires us to consider the classification problem about semisymmetric graphs (of order

2kp) arising from primitive permutation groups of degree kp, where k is a composite number. (Note that

a classification was given in [8] for the semisymmetric graphs of order 2pq, where p and q are distinct

primes.) As an attempt towards the mentioned problem, we deal with in this paper the case where k = 9.

Let Γ be a connected regular bipartite graph of order 18p. Assume that Γ admits a group acting

transitively on EΓ and primitively on one of the bipartition subsets of Γ. We shall prove that either Γ

is arc-transitive, or Γ is isomorphic to one of 17 semisymmetric graphs. These 17 semisymmetric graphs

are either unworthy [30] or constructed from the distance partitions of several known graphs.

Let Γ be a connected graph with diameter d. For an integer 0 � i � d, the distance i graph, denoted

by ∂i(Γ), is defined as the graph on V Γ such that two vertices are adjacent if and only if they are at

distance i from each other in Γ.

Our main result is stated as follows.

Theorem 1.1. Let Γ be a connected regular graph of order 18p, where p is a prime. Assume that a

subgroup G � AutΓ acts transitively on EΓ but not on V Γ. If G acts primitively on one of G-orbits

on V Γ, then Γ is either arc-transitive or isomorphic to one of the following semisymmetric graphs:

(1) Six graphs of order 54: the Gray graph S54, ∂3(S54), ∂5(S54), the graph Γ1 defined in Example 3.1,

and the graphs Σ1,3
0 and Σ1,3

1 defined in Example 3.7.

(2) Three graphs of order 126: Tutte’s 12-cage S126, ∂3(S126) and ∂5(S126).

(3) Eight graphs of order 342: the graphs Λ1,9
1 and Λ1,9

2 defined in Example 3.8, and the graphs Π1,3
i

(1 � i � 6) defined in Example 3.10.

2 Preliminaries

Let Γ be a graph and let G � AutΓ. The graph Γ is called G-vertex-transitive, G-edge-transitive or

G-arc-transitive if G acts transitively on its vertex set, edge set or arc set, respectively. The graph Γ is

called a G-semisymmetric graph if it is regular, G-edge-transitive but not G-vertex-transitive.

Assume that Γ is a G-edge-transitive but not G-vertex-transitive graph, where G � AutΓ. Then Γ is a

bipartite graph with bipartition subsets being the G-orbits on V Γ. It follows that the vertices in a same

bipartition subset of Γ have the same valency. For convenience, we call Γ an {l, r}-semiregular graph if

the vertices in one of the bipartition subsets have valency l and the other vertices have valency r. For a

given vertex u ∈ V Γ, denote by Γ(u) the neighborhood of u, i.e., the set of vertices adjacent to u in Γ.

Then the vertex-stabilizer Gu acts transitively on Γ(u). Take w ∈ Γ(u). Then each vertex of Γ can be

written as ug or wh for some g, h ∈ G. Then, for two arbitrary vertices ug and wh, they are adjacent

in Γ if and only if u and whg−1

are adjacent, i.e., hg−1 ∈ GwGu. Moreover, it is well known and easily

shown that Γ is connected if and only if 〈Gu, Gw〉 = G.

Let Γ be a G-semisymmetric graph with bipartition {U,W}. Suppose that G has a subgroup R which

is regular on both U and W . Take an edge {u,w} ∈ EΓ with u ∈ U and w ∈ W . Then each vertex in

U (W , resp.) can be written uniquely as ux (wx, resp.) for some x ∈ R. Set S = {s ∈ R | ws ∈ Γ(u)}.
Then ux and wy are adjacent if and only if yx−1 ∈ S. If R is abelian, then it is easily shown that

ux �→ wx−1

, wx �→ ux−1

, ∀x ∈ R is an automorphism of Γ, which leads to the vertex-transitivity of Γ,

refer to [8, 20].

Lemma 2.1. Let Γ be a G-semisymmetric graph with bipartition {U,W}. Assume that G has an

abelian subgroup which is regular on both U and W . Then Γ is arc-transitive.

Let Γ be a G-semisymmetric graph. Suppose that G has a normal subgroup N which acts intransitively

on at least one of the bipartition subsets of Γ. Then we define the quotient graph ΓN to have vertices

the N -orbits on V Γ, and two N -orbits B and B′ are adjacent in ΓN if and only if some v ∈ B and some

v′ ∈ B′ are adjacent in Γ. It is easy to see that G induces an edge-transitive subgroup of AutΓN .
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Let Γ be a connected G-semisymmetric graph with G � AutΓ. Denote by soc(G) the subgroup

generated by all minimal normal subgroups of G, which is called the socle of G. Take an edge {u,w} ∈ EΓ

and let U = uG and W = wG be the G-orbits on V Γ. Denote respectively by GU and GW the restrictions

of G on U and on W . The next lemma is quoted from [13].

Lemma 2.2. Let Γ be a connected G-semisymmetric graph with bipartition {U,W}, where G � AutΓ.

Assume that GU is quasiprimitive, i.e., each minimal normal subgroup of GU is transitive on U . Then

one of the following statements hold:

(1) Γ is isomorphic to the complete bipartite graph K|U|,|U|;
(2) G is faithful on both U and W , and if GU is of affine type then Γ is semisymmetric if and only if

soc(G) is intransitive on W ;

(3) G is faithful on W but not faithful on U , G/K ∼= GU ∼= GW̄ , and Γ is semisymmetric if further GU

is primitive, where K is the kernel of G acting on U and W̄ is the set of K-orbits on W .

Let G be a finite transitive permutation group on a set Ω. The orbits of G on the cartesian product

Ω×Ω are the orbitals of G, and the diagonal orbital {(α, α)g | g ∈ G} is said to be trivial. For a G-orbital

Δ and α ∈ Ω, the set Δ(α) = {β | (α, β) ∈ Δ} is a Gα-orbit on Ω and called a suborbit of G at α. The

rank of G on Ω is the number of G-orbitals, which equals to the number of Gα-orbits on Ω for any given

α ∈ Ω. For a G-orbital Δ, the paired orbital Δ∗ is defined as {(β, α) | (α, β) ∈ Δ}, and Δ is said to

be self-paired if Δ∗ = Δ. For a self-paired G-orbital Δ, the suborbit Δ(α) is called self-paired. For a

non-trivial G-orbital Δ, the orbital bipartite graph B(Ω,Δ) is the graph on two copies of Ω, say Ω×{1, 2},
such that {(α, 1), (β, 2)} is an edge if and only if (α, β) ∈ Δ. Then B(Ω,Δ) is G-semisymmetric, where G

acts on Ω×{1, 2} as follows:

(α, i)g = (αg , i), g ∈ G, i = 1, 2.

If Δ is self-paired, then (α, 1) ↔ (α, 2), α ∈ Ω gives an automorphism of B(Ω,Δ), which yields that

B(Ω,Δ) is G-arc-transitive. Moreover, the next lemma is easily shown, see also [11].

Lemma 2.3. Assume that Γ is a connected G-semisymmetric graph of valency at least 2 with bipartition

subsets U and W , and that, for an edge {u,w} ∈ EΓ, the two stabilizers Gu and Gw are conjugate in G.

Then there is a bijection ι : U ↔ W such that Gu = Gι(u) and {u, ι(u)} 
∈ EΓ for all u ∈ U . Moreover,

Δ = {(u, ι−1(w)) | {u,w} ∈ EΓ, u ∈ U,w ∈ W}

is a G-orbital on U . In particular, Γ ∼= B(U,Δ), and ι extends to an automorphism of Γ if and only if Δ

is self-paired.

Remark 2.4. Let Γ and G � AutΓ be as in Lemma 2.3. Then {Gu | u ∈ U} = {Gw | w ∈ W}, and
so

⋂
u∈U Gu =

⋂
w∈W Gw = 1 as G � AutΓ. Thus G is faithful on both parts of Γ. Take u ∈ U and

w ∈ W with Gu = Gw. Then ug ↔ wg, g ∈ G gives a bijection meeting the requirement of Lemma 2.3.

Thus one can define l2 bijections ι, where l is the number of the points in U fixed by a stabilizer Gu.

By [6, Theorem 4.2A], l = |NG(Gu) : Gu|.
Let G be a finite transitive permutation group on Ω and Δ be a G-orbital. If Δ is self-paired, then

B(Ω,Δ) is arc-transitive. The next lemma indicates it is possible that B(Ω,Δ) is arc-transitive even if

Δ is not self-paired.

Lemma 2.5. Let X be a permutation group on Ω and let G be a transitive subgroup of X with index

|X : G| = 2. Let Δ be a G-orbital. If Δ ∪Δ∗ is an X-orbital, then B(Ω,Δ) is arc-transitive.

Proof. Assume that Δ ∪Δ∗ is an X-orbital. To show Γ := B(Ω,Δ) is arc-transitive, it suffices to find

an automorphism of Γ which interchanges two bipartition subsets of Γ. Take x ∈ X \G. It is easily shown

that Δx = Δ∗ and (Δ∗)x = Δ. Define x̂ : Ω×{1, 2} → Ω×{1, 2}, (α, 1) �→ (αx, 2), (β, 2) �→ (βx, 1). It is

easy to check that x̂ ∈ AutΓ, and so the lemma follows.

The next result is a special version of [8, Lemma 2.6].
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Lemma 2.6. Let Γ be a G-semisymmetric graph with bipartition {U,W}. Assume that G has an

automorphism σ of order 2 such that Gσ
u = Gw for some u ∈ U and w ∈ W . If all Gu-orbits on W have

distinct lengths, then Γ is arc-transitive.

3 Some semisymmetric graphs of order 18p

In this section, we construct the semisymmetric graphs involved in Theorem 1.1.

We first give several semisymmetric graphs arising from the distance partitions of S54 and S126. In

particular, we shall show that ∂3(S54), ∂5(S54), ∂3(S126) and ∂5(S126) are (non-isomorphic) semisym-

metric graphs.

For a prime power q and a positive integer d, we denote respectively by Fq and F
d
q the field of order q

and the d-dimensional vector space over Fq.

Example 3.1. Let U = F
3
3 and {e1, e2, e3} a basis of U . Let W = {y+ 〈ei〉 | y ∈ U, 1 � i � 3}, which

consists of 27 1-dimensional affine subspaces of U . Take 5 subsets of W as follows:

Δ0 := {〈ei〉 | 1 � i � 3},
Δ1 := {± e2 + 〈e1〉,± e3 + 〈e2〉,± e1 + 〈e3〉},
Δ2 := {± e3 + 〈e1〉,± e1 + 〈e2〉,± e2 + 〈e3〉},
Δ3 := {± ei ± ej + 〈ek〉 | {i, j, k} = {1, 2, 3}},
Δ4 := Δ1 ∪Δ2.

For each s with 0 � s � 4, define a bipartite graph Γs with bipartition {U,W} such that x ∈ U and

y+ 〈ei〉 ∈ W are adjacent in Γs if and only if y−x+ 〈ei〉 ∈ Δs. Clearly, these graphs have valency 3, 6,

6, 12 and 12, respectively. Moreover, Γ4 is the edge-disjoint union of Γ1 and Γ2, and it is easy to check

that Γ3 = ∂5(Γ0) and Γ4 = ∂3(Γ0).

Lemma 3.2. The graphs given in Example 3.1 are all semisymmetric. Moreover, Γ1
∼= Γ2, Γ0

∼= S54

and Γ3 
∼= Γ4.

Proof. We continue the notation used in Example 3.1. Take h0, h1, h2 ∈ GL(3, 3) such that

eh0
1 = e2, eh0

2 = e3, eh0
3 = e1,

eh1

1 = −e1, eh1

2 = e2, eh1

3 = e3,

eh2
1 = e1, eh2

2 = e3, eh2
3 = e2.

(3.1)

Set H = 〈h1, h2, h0〉 and H1 = 〈h1, h0〉. Then both H and H1 are irreducible subgroups of GL(3, 3).

Let N be the group consisting of all affine transformations of the form τx : F3
3 → F

3
3, y �→ y + x. Then

we get two primitive permutation groups G = N�H and G1 = N�H1 (on U). Define an action of G

on W by

(y + 〈ei〉)τx = y + x+ 〈ei〉, (y + 〈ei〉)h = yh + 〈ehi 〉, x,y ∈ U, h ∈ H. (3.2)

It is easily shown that G is transitive on EΓ0, EΓ3 and EΓ4, and that G1 is transitive EΓ0, EΓ1, EΓ2

and EΓ3. Note that soc(G1) = soc(G) = N and N is intransitive on W . By Lemma 2.2(2), every graph

Γs is semisymmetric. Moreover, it is easily shown that h2 gives an isomorphism from Γ1 to Γ2.

It is known that, up to isomorphism, the Gray graph S54 is the unique cubic semisymmetirc graph

of order 54 (see [4]). Thus Γ0
∼= S54. Finally, since Γ3 and Γ4 have different diameters (confirmed by

Magma), Γ3 and Γ4 are not isomorphic to each other. This completes bipartite the proof.

Remark 3.3. Let Γ0, Γ1, Γ2, Γ3 and Γ4 be defined as in Example 3.1.

(1) The graphs Γ0, Γ1, Γ2 and Γ3 give a factorization of complete graph K27,27.

(2) By the argument given in Section 4, we conclude that AutΓ0 = AutΓ3 = AutΓ4
∼= Z

2
3 � (Z2×S4),

and AutΓ1
∼= Z

2
3 � (Z2×A4). (Confirmed also by Magma.)
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It is well know that Tutte’s 12-cage S126 is a cubic semisymmetric graph with automorphism group

isomorphic to PΓU(3, 3). In Example 3.4, we give a construction for S126 based on the argument

in [3, p. 383, Subsection 12.4].

Example 3.4. Equip V = F
3
9 with the standard unitary inner product

(x,y) = x1y
3
1 + x2y

3
2 + x3y

3
3 , x,y ∈ V.

A non-zero vector x ∈ V is called non-isotropic if (x,x) 
= 0. Then V has 504 non-isotropic vectors.

These vectors span 63 1-dimensional subspaces (non-isotropic points in PG(2, 3)). Let U be the set of

these subspaces. Define a graph Φ on U such that 〈x〉, 〈y〉 ∈ U are adjacent if and only if (x,y) = 0.

Then AutΦ = PΓU(3, 3), and Φ is a distance-transitive graph with valency 6 and diameter 3. Moreover,

Φ has exactly 63 triangles. Note that the vertex set of each triangle consists of three mutually orthogonal

members in U , which is called an orthogonal frame of V . Let W be the set of these orthogonal frames.

Then Tutte’s 12-cage S126 can be construct on U ∪W such that u ∈ U and w ∈ W are adjacent if and

only if u ∈ w.

Lemma 3.5. Let Σ = S126 be constructed as in Example 3.4. Then ∂3(Σ) and ∂5(Σ) are semisymmet-

ric graphs of valency 12 and 48, respectively. In particular, AutΣ = Aut∂3(Σ) = Aut∂5(Σ) ∼= PΓU(3, 3).

Proof. We continue the notation used in Example 3.4 and, without loss of generality, write AutΣ =

PΓU(3, 3). Note that Σ has valency 3, diameter 6 and girth 12. It is easily shown that for 1 � i � 5

the distance i graph ∂i(Σ) has valency 3 · 2i−1, and it is connected if and only if i is odd. Clearly,

AutΣ � Aut∂i(Σ). Let A = AutΣ.

By the information given in [4] for the distance partitions of Σ = S126, we know that Σ is locally

distance transitive, i.e., for every v ∈ V Σ and 1 � i � 6, the stabilizer Av acts transitively on the vertices

at distance i from v. It follows that both ∂3(Σ) and ∂5(Σ) are A-edge-transitive.

Let Γ = ∂3(Σ) or ∂5(Σ), and let X be the subgroup of AutΓ which preserves the bipartition of Γ. Then

X � A = PΓU(3, 3). Checking the subgroups of PΓU(3, 3) (see [5]), we know that, for u ∈ U and w ∈ W ,

the stabilizers Au and Aw are non-conjugate maximal subgroups in A. In particular, A and hence X

acts primitively on both U and W . Since Σ is not a complete bipartite graph, it is easily shown that X

acts faithfully on both U and W . Note that all primitive permutation groups of degree 63 are listed in

Table 1. It follows that X = A.

Suppose that AutΓ 
= A. Then |AutΓ : A| = 2, and so AutΓ = A.Z2. Note that soc(A) = PSU(3, 3) is

a characteristic subgroup of A. It follows that soc(A) is normal in AutΓ. Then

AutΓ/CAutΓ(soc(A)) = NAutΓ(soc(A))/CAutΓ(soc(A))

is isomorphic to a subgroup of Aut(soc(A)). Since Aut(soc(A)) ∼= A by the Atlas [5], it follows that

CAutΓ(soc(A)) 
= 1. Since soc(A) is a non-abelian simple group, we know that

CAutΓ(soc(A)) ∩ soc(A) = 1.

It implies that CAutΓ(soc(A)) ∼= Z2 and AutΓ = soc(A)×CAutΓ(soc(A)). It follows that there is an

involution g ∈ AutΓ which centralizes A and interchanges U and W . For u ∈ U , we have that w := ug

∈ W and Aw = (Au)
g = Au, which is a contradiction.

Therefore, A = AutΓ, and hence Γ is semisymmetric. This completes the proof.

We remark that Tutte’s 12-cage S126, ∂3(S126) and ∂5(S126) form a factorization of the complete

bipartite graph K63,63.

A graph is said to be worthy if no two vertices have the same neighborhood [30]. If Γ is a worthy

connected bipartite graph, then it is easily shown that AutΓ acts faithfully on both bipartition subsets

of Γ. For the rest of this section, we shall construct several unworthy semisymmetric graphs.

Let Σ be a connected bipartite graph with bipartition {U, W̄}. Let Ω = {1, 2, . . . ,m}, where m � 1.

Construct a bipartite graph Σ1,m with bipartition {U, W̄×Ω} such that u ∈ U and (w̄, i) ∈ W̄×Ω are
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Table 1 Primitive permutation groups of degree 9p

Line Degree 9p T := soc(X) Actions of T Remark

1 45 PSL(2, 9) cosets of D8 S6 �∼= X � T.Z2
2

2 153 PSL(2, 17) cosets of D16

3
(c−1)c

2
Ac 2-subsets c ∈ {10, 18, 19}

4 27 PSU(4, 2) isotropic lines T ∼= O−(6, 2)

5 45 PSU(4, 2) isotropic points

6 63 Sp(6, 2) points

7 171 PSL(2, 19) cosets of D20

8 369 PSL(2, 34) cosets of PGL(2, 9)

9 117 PSL(3, 3) anti-flags of PG(2, 3) X = T.Z2

10 657 PSL(3, 8) flags of PG(2, 8) X = T.Z2, T.Z6

11 63 PSU(3, 3) non-isotropic points;

bases

12 117 O+(6, 3) one of T -orbits on X = T,PGO+(6, 3)

non-isotropic points T ∼= PSL(4, 3)

13 9p A9p natural action 2-transitive

14 18 PSL(2, 17) points 2-transitive

15 2e + 1 PSL(2, 2e) points e = 3r, odd prime r

2-transitive

16 63 PSL(6,2) points 2-transitive

hyperplanes 2-transitive

adjacent if and only if {u, w̄} ∈ EΣ. Such a construction was used in [8, 28] to construct semisymmetric

graphs. Let g ∈ AutΣ. Then g can be extended to an automorphism of Σ1,m, which acts on U in

the same way as g on U and acts on W̄×Ω as follows: (w̄, i)g = (w̄g, i), w̄ ∈ W̄ , i ∈ Ω. For each

σ ∈ Sm, we may define an automorphism of Σ1,m, which acts on U trivially and acts on W̄×Ω as

follows: (w̄, i) �→ (w̄, iσ), w̄ ∈ W̄ , i ∈ Ω. Then AutΣ1,m contains a subgroup AutΣ×Sm which acts on

U ∪ (W̄×Ω) by

u(g,σ) = ug, (w̄, i)(g,σ) = (w̄g , iσ), g ∈ AutΣ, σ ∈ Sm, u ∈ U, w̄ ∈ W̄ , i ∈ Ω.

Thus Σ1,m is edge-transitive provided that Σ is edge-transitive. Moreover, if Σ is worthy then it is easily

shown that AutΣ1,m = AutΣ×Sm. Then we may formulate a result as follows from the observations

made in [8, 28].

Lemma 3.6. Let Σ be a connected bipartite graph with bipartition {U, W̄}.
(1) If Σ is edge-transitive then Σ1,m is edge-transitive.

(2) If m > 1 and no two vertices in U have the same neighborhood, then Σ1,m is not vertex-transitive.

(3) If Σ is worthy then AutΣ1,m = AutΣ×Sm.

Example 3.7. Let U and {e1, e2, e3} be as in Example 3.1. Set U1 = 〈e2, e3〉, U2 = 〈e1, e3〉 and

U3 = 〈e1, e2〉. Let
W̄ =

3⋃

i=1

{Ui, ei + Ui,−ei + Ui}.

Define a bipartite graph Σ0 with bipartition {U, W̄} such that x ∈ U and y + Ui ∈ W̄ are adjacent

if and only if y − x ∈ Ui. Let Σ1 be the complement graph of Σ0 in the complete bipartite graph with

bipartition {U, W̄}. Then Σ0 is {3, 9}-semiregular and Σ0 is {6, 18}-semiregular.

By a similar argument as in the proof of Lemma 3.2, we know that both Σ0 and Σ1 admit an edge-

transitive group isomorphic to Z
3
3�(Z2×S4), which acts primitively on U . Moreover,

(1) both Σ0 and Σ1 are worthy, and AutΣ0 = AutΣ1
∼= Z

3
3�(Z2×S4) (confirmed by Magma); and



Han H et al. Sci China Math December 2015 Vol. 58 No. 12 2677

(2) by Lemma 2.2 or Lemma 3.6, the graphs Σ1,3
0 and Σ1,3

1 are semisymmetric and of order 54, which

have valency 9 and 18, respectively; and

(3) AutΣ1,3
0 = AutΣ1,3

1
∼= Z

3
3�(Z2×S4)×S3 by Lemma 3.6.

Example 3.8. Let W̄ = {1, 2, . . . , 19}, and let U be the set of 2-subsets of W̄ . Let T = A19. Then T

acts primitively on both U and W̄ . For {i, j} ∈ U , the stabilizer T{i,j} has exactly two orbits on W̄ ,

which are {i, j} and W̄ \ {i, j}.
Define a bipartite graph Λ1 with bipartition {U, W̄} such that u ∈ U and w ∈ W̄ are adjacent in Λ1

if and only if w ∈ u. (Note that Λ1 is just the vertex-edge incidence graph of the complete graph K19.)

Let Λ2 be the complement graph of Λ1 in the complete bipartite graph K171,19. Then both Λ1 and Λ2

are worthy T -edge-transitive graphs. Moreover, the following statements hold.

(1) By Lemma 2.2 or Lemma 3.6, the graphs Λ1,9
1 and Λ1,9

2 are semisymmetric and of order 342, whcih

have valency 18 and 153, respectively.

(2) AutΛ1 = AutΛ2
∼= S19, and so AutΛ1,9

1 = AutΛ1,9
2

∼= S19×S9 by Lemma 3.6.

By [5], the simple group PSL(2, 19) has two conjugacy classes of maximal subgroups isomorphic to A5.

Take W̄ as one of these two conjugacy classes. Define a graph on W̄ by letting w̄1, w̄2 ∈ W̄ be adjacent

whenever w̄1 ∩ w̄2
∼= D10. Then this graph, called the Perkel graph, is a distance-transitive graph

with automorphism group PSL(2, 19), order 57 and intersection array {6, 5, 2; 1, 1, 3}, refer to [3, p. 401,

Subsection 13.3].

Lemma 3.9. Assume that Σ is the Perkel graph constructed as above. Let G = AutΣ and w̄ ∈ V Σ.

Then Gw̄ has exactly 6 orbits on EΣ: one has length 6, one has length 15, three have length 30 and one

has length 60.

Proof. For 1 � i � 3, denote by Σi(w̄) the set of vertices at distance i from w̄. Then |Σ1(w̄)| = 6,

|Σ2(w̄)| = 30 and |Σ3(w̄)| = 20. For 1 � i � 3 and j = i or i−1, denote by Σj,i the subgraph of Σ induced

by Σj(w̄) ∪ Σi(w̄), where Σ0(w̄) = {w̄}. Let Ej,i be the edge set of Σj,i. Then E0,1, E1,2, E2,2, E2,3 and

E3,3 form a partition of EΣ. It is easily shown that |E0,1| = 6, |E1,2| = 30, |E2,2| = 45, |E2,3| = 60 and

|E3,3| = 30.

Let H = Gw̄. Then H ∼= A5. Since Σ is distance-transitive, H acts transitively on each Σi(w̄), where

1 � i � 3. In particular, H is transitive on E0,1. Note that H is 2-transitive on Σ1(w̄). It follows

that G acts transitively on the directed 2-paths of Σ. Then H is transitive on those 2-paths from w̄, and

hence H is transitive on E1,2. By the construction of Σ, we know that, for an edge {w̄1, w̄2} of Σ, the

arc-stabilizer Gw̄1w̄2 is isomorphic to D10. Thus, for an element h ∈ H of order 3, if h ∈ Gw̄1 then h does

not fix w̄2. Using such an observation, it is easily shown that H is transitive on each of E2,3 and E3,3.

Then we get 4 H-orbits on EΣ, which have length 6, 30, 60 and 30, respectively.

Consider that action of H on E2,2. Take v̄ ∈ Σ2(w̄). Since H is transitive on Σ2(w̄), we know that

|Hv̄| = |H|
|Σ2(w̄)| = 2. Note that Σ1(w̄) contains a unique vertex, say ū, adjacent to v̄. Then Hv̄ fixes ū,

and so Hv̄ < Gūv̄
∼= D10. Set Hv̄ = 〈k〉. Then Gūv̄ = 〈h, k〉 for some h of order 5, and khk = h−1. Since

Gv̄ is faithful on Σ1(v̄), writing h and k as permutations on Σ1(v̄), we know that h is a 5-cycle and k is a

product of two disjoint transpositions. It follows that k interchanges two of the three vertices contained

in Σ1(v̄) ∩ Σ2(w̄). It implies that one of the H-orbits on E2,2 has length at least 30. Since 45 is not a

divisor of |H |, we know that H has at least two orbits on E2,2. Note that a vertex-transitive non-empty

graph of order 30 has at least 15 edges. It follows that H has exactly two orbits on E2,2, which have

length 30 and 15, respectively. This completes the proof.

Example 3.10. Let Σ be the Perkel graph. Set G = AutΣ and take w̄ ∈ V Σ. Then, for an edge

{w̄, v̄}, the edge-stabilizer G{w̄,v̄} ∼= Gw̄v̄. Z2
∼= D20, which is a maximal subgroup of G = PSL(2, 19).

Thus G acts primitively on EΣ. Assume that Δi(w̄), 1 � i � 6, are the six Gw̄-orbits on EΣ. Without

loss of generality, let |Δ1(w̄)| = 6, |Δ2(w̄)| = 15, |Δ3(w̄)| = |Δ4(w̄)| = |Δ5(w̄)| = 30 and |Δ6(w̄)| = 60.

Let U = EΣ and W̄ = V Σ. Then W̄ = {w̄g | g ∈ G}. For each i with 1 � i � 6, define a

worthy bipartite graph Πi with bipartition {U, W̄} such u ∈ U and w̄g ∈ W̄ are adjacent if and only

if ug−1 ∈ Δi(w̄). Then every graph Πi is G-edge-transitive. The graph Π1 is the vertex-edge incidence
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graph of the Perkel graph, which has girth 10 and diameter 8. Two of the three {10, 30}-semiregular

graphs, say Π4 and Π5, are respectively the distance 3 and distance 7 graphs of Π1, and the graphs Π2, Π3

and Π6 form a factorization of the distance 5 graph of Π1. Moreover, we have the following statements.

(1) The three {10, 30}-semiregular graphs Π3, Π4 and Π5 are not isomorphic to every other (confirmed

by Magma); and

(2) By Lemma 2.2 or 3.6, the six graphs Π1,3
i are semisymmetric and of order 342, which have valency

6, 15, 30, 30, 30 and 60, respectively; and

(3) AutΠi = PSL(2, 9), and so AutΠ1,3
1 = PSL(2, 9)×S3 by Lemma 3.6, where 1 � i � 6.

4 The proof of Theorem 1.1

In this section, we give a proof Theorem 1.1. Our argument is based on analyzing the primitive permu-

tation groups of degrees 9p and 3p.

For a positive integer k < p, all primitive permutation groups of degree kp are explicitly known

by [18,19]. Let X be a primitive permutation group of degree 9p or 3p. Combining with [6, Appendix B],

either p = 3 and X is of affine type, or X is one of almost simple groups listed in Tables 1 and 2.

In the following, we assume that Γ is a connectedG-semisymmetric graph of order 18p, whereG � AutΓ

and p is a prime. Let U and W be the orbits of G acting on V Γ. Assume that one of GU and GW is

primitive. Without loss of generality, we assume further that GU is primitive and that Γ is not a complete

bipartite graph. By Lemma 2.2, G is faithful on W , i.e., GW ∼= G.

Lemma 4.1 says that Theorem 1.1 holds while GU is of affine type.

Lemma 4.1. Assume that GU is an affine primitive group. Then Γ is either arc-transitive or isomor-

phic to one of the graphs given in Examples 3.1 and 3.7.

Proof. Since GU is of affine type, soc(GU ) ∼= Z
3
3. Identify U with the 3-dimensional vector space

over F3. Write GU = N�H , where H is an irreducible subgroup of GL(3, 3), and N = soc(GU ) consists

of the affine transformations of the form τx : F3
3 → F

3
3, y �→ y + x. Let u be the vertex corresponding to

the zero vector. Then H = (GU )u.

Let K be the kernel of G acting on U . Then K is faithful on W . Consider the quotient graph Σ := ΓK

with respect to K. Identifying GU with a subgroup of AutΣ, the graph Σ is GU -edge-transitive. Since G

is transitive on W and K is normal in G, all K-orbits on W have the same length, say m. Then either

K = 1 or Γ ∼= Σ1,m.

Let W̄ be the set of K-orbits on W . Since Γ is not a complete bipartite graph, GU is faithful on W̄ by

Lemma 2.2. Suppose that N is transitive on W̄ . It is easily shown that N is regular on W̄ , and hence

K = 1. By Lemma 2.1, Γ ∼= Σ is arc-transitive. Thus we assume further that N is intransitive on W̄ ; in

this case, Γ must be semisymmetric by Lemma 2.2.

Table 2 Primitive permutation groups of degree 3p (refer to [12])

Degree 3p X Action or Remark

6 A5,S5 cosets of D10 in A5

15 A6,S6 2-subsets

21 A7,S7 2-subsets

21 PSL(3, 2).Z2 point-line incedent pairs

57 PSL(2, 19) cosets of A5 (two actions)

15 A7 cosets of PSL(2, 7) (two actions)

3p A3p,S3p

15 PSL(4, 2) points, hyperplanes

2e + 1 PSL(2, 2e), PΓL(2, 2e) points; odd prime e

q2 + q + 1 PSL(3, q).O points, hyperplanes; q ≡ 1 (mod 3),

q = re, prime r, |O| | 3e
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Let l be the number of N -orbits on W̄ . Then l is a proper divisor of |W̄ | = 27
m as N is intransitive

on W̄ . Let p be an arbitrary prime divisor of H and let h ∈ H be of order p. Since GU acts faithfully

on W̄ , we know that either 〈h〉 is faithful on the set of N -orbits on W̄ , or 〈h〉 fixes every N -orbit set-wise

and acts faithfully on at least one of N -orbits. It follows that p is a divisor of l! or ( 27
lm )!, and hence p < 9.

Since H � GL(3, 3) ∼= Z2×PSL(3, 3), checking the subgroups of PSL(3, 3) in the Atlas [5], we conclude

that H is isomorphic to a subgroup of Z2×S4.

Since GU acts transitively on W̄ , we know that H acts transitively on the l orbits of N acting on W̄ .

Recall that l is a proper divisor of 27
m . Then l = 3 or 9. Since |H | is not divisible by 9, we know that

l = 3. Let W̄1, W̄2 and W̄3 be the N -orbits on W̄ . Then |W̄1| = |W̄2| = |W̄3| = 9
m , and m = 1 or 3.

For each i with 1 � i � 3, considering the action of N on W̄i, there is a subspace Ui of U such that

〈τx | x ∈ Ui〉 is the kernel of N acting on W̄i. Recall that H is transitive on {W̄1, W̄2, W̄3}. It is easily

shown that Ui 
= Uj for all i 
= j as N is faithful on W̄ , and that H acts transitively on {U1, U2, U3}.
Noting that |W̄i| = |U : Ui|, we have |Ui| = 3m.

Case 1. Let m = 1. Then K = 1, Γ ∼= Σ and |Ui| = 3 for 1 � i � 3. In particular, each Ui is a

1-dimensional subspace of U , and so we may let Ui = 〈ei〉 for a non-zero vector ei ∈ U . Recall that H

is transitive on {〈e1〉, 〈e2〉, 〈e3〉}. Then, since H is an irreducible subgroup of GL(3, 3), we know that

{e1, e2, e3} is a basis of U . Identifying W with the set {y + 〈ei〉 | y ∈ U, 1 � i � 3} of 27 1-dimensional

affine subspaces of U , the action of G on W is given by

(y + 〈ei〉)τx = y + x+ 〈ei〉, (y + 〈ei〉)h = yh + 〈ehi 〉, x,y ∈ U, h ∈ H.

Take h0, h1, h2 ∈ GL(3, 3) satisfying (3.1). Then 〈h1, h2, h0〉 ∼= Z2×S4. Without of generality, we as-

sume thatH contains h0. Since H fixes {〈e1〉, 〈e2〉, 〈e3〉} set-wise, it is easily shown that H � 〈h1, h2, h0〉.
Analyzing the irreducible subgroups of 〈h1, h2, h0〉, we conclude that H is one of the following groups:

〈h1, h0〉, 〈h1h
h0
1 , h0〉, 〈h1, h2, h0〉, 〈h1h

h0
1 , h2, h0〉, 〈h1h

h0
1 , h1h

h0
1 h

h2
0

1 h2, h0〉.
Consider the orbits of H on W . If H = 〈h1, h0〉 or 〈h1h

h0
1 , h0〉 then H has 4 orbits on W , which are

Δ0 := {〈ei〉 | 1 � i � 3},
Δ1 := {± e2 + 〈e1〉,± e3 + 〈e2〉,± e1 + 〈e3〉},
Δ2 := {± e3 + 〈e1〉,± e1 + 〈e2〉,± e2 + 〈e3〉},
Δ3 := {± ei ± ej + 〈ek〉 | {i, j, k} = {1, 2, 3}}.

If H is one of 〈h1, h2, h0〉, 〈h1h
h0
1 , h2, h0〉 and 〈h1h

h0
1 , h1h

h0
1 h

h2
0

1 h2, h0〉 then H has 3 orbits on W , which

are Δ0, Δ3 and Δ4 := Δ1 ∪Δ2. It follows that Γ is isomorphic to one of the semisymmetric graphs given

in Example 3.1.

Case 2. Let m = 3. Then Γ ∼= Σ1,3. In this case, every Ui is a 2-dimensional subspace of U , and

hence for i 
= j the intersection Ui ∩ Uj is 1-dimensional. Set 〈e1〉 = U2 ∩ U3, 〈e2〉 = U1 ∩ U3 and 〈e3〉 =
U1 ∩ U2. Then 〈ei〉 
= 〈ej〉 for all i 
= j; otherwise, 〈e1〉 = 〈e2〉 = 〈e3〉 is H-invariant, a contradiction.

Noting that H is transitive on {U1, U2, U3}, it follows that H acts transitively on {〈e1〉, 〈e2〉, 〈e3〉}. Thus
{e1, e2, e3} is a basis of U . To determine Σ, we identify W̄ with the set {y + Ui | y ∈ U, 1 � i � 3}.
Then |W̄ | = 9 and the action of GU on W is given by

(y + Ui)
τx = y + x+ Ui, (y + Ui)

h = yh + Uh
i , x,y ∈ U, h ∈ H.

A similar argument as in Case 1 yields that H is one of

〈h1, h0〉, 〈h1h
h0
1 , h0〉, 〈h1, h2, h0〉, 〈h1h

h0
1 , h2, h0〉, 〈h1h

h0
1 , h1h

h0
1 h

h2
0

1 h2, h0〉,
where h0, h1, h2 ∈ GL(3, 3) satisfying (3.1). It is easy to check that H has exactly 2 orbits on W̄ , say

{Ui | 1 � i � 3} and {± ei+Ui | 1 � i � 3}. It follows that Σ is isomorphic one of the graphs Σ0 and Σ1

described as in Example 3.7. This completes the proof.
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Next, we deal with the case where GU is almost simple, and then finish the proof of Theorem 1.1.

Lemma 4.2. Assume that GU is almost simple. Then Γ is either arc-transitive or isomorphic to one

of Tutte’s 12-cage S126, ∂3(S126), ∂5(S126) and the graphs defined in Examples 3.8(1) and 3.10(2).

Proof. Recall that G is faithful on W . We shall discuss in two cases according to whether or not G

acts faithfully on U .

Case 1. Assume that G is faithful on U . Then T := soc(G) is listed in Table 1.

Assume that G is described as in lines 13–16 of Table 1. Then G is 2-transitive on U . Moreover, G

has no faithful permutation representations of degree less than 9p (refer to [17, p. 175]). Thus G is also

2-transitive on W . It follows that either one of Γ and its complement in K9p,9p is the point-hyperplane

incidence graph of the projective geometry PG(5, 2), or Γ is the standard double cover of the complete

graph K9p. Therefore, Γ is arc-transitive.

Assume that G is described as in line 3 of Table 1. Then T = soc(G) = Ac with c ∈ {10, 18, 19}.
Note that G has no faithful permutation representations of degree less than c (see [17, p. 175]). Suppose

that G is imprimitive on W . Let B be a maximal block of G acting on W . Then |B| = 3 or 9, and G

acts faithfully and primitively on Ω := {Bg | g ∈ G}. Note that Table 2 gives all primitive permutation

group of degree 3p. It follows that |Ω| = p, and hence T = A19 and p = 19. Then TB
∼= A18. It is easily

shown that T is transitive on W . Then for u ∈ B we have |TB : Tu| = 9; however, A18 has no subgroups

of index 9, a contradiction. Thus G is primitive on W . Moreover, the actions of G on U and W are

equivalent, i.e., Gu and Gw are conjugate in G for u ∈ U and w ∈ W . Then Γ ∼= B(U,Δ) by Lemma 2.3,

where Δ is an orbital of G on U . It is easy to check that G has exactly three orbitals on U , which are

self-paired. It follows Γ is arc-transitive.

Now let G be one of the groups described as in lines 1, 2, 4–12 of Table 1.

Suppose that the actions of G on U and W are equivalent. Then Γ ∼= B(U,Δ) by Lemma 2.3, where

Δ is an orbital of G on U . Checking one by one the possible participants of G, the lengths of suborbits

|Δ(u)| (for a given u ∈ U) are listed in Table 3, where the non-self-paired suborbits are marked by ∗.
(Note that, for line 1, the action of G on U is equivalent to that on the edge set of Tutte’s 8-cage.)

If Δ is self-paired, then Γ is arc-transitive. Thus we assume that G = PSL(2, p) with p = 17 or 19. It is

easily shown that any two paired suborbits of GU are merged into some self-paired suborbit of PGL(2, p)

(acting on U), we know that Γ ∼= B(U,Δ) is arc-transitive by Lemma 2.5.

Table 3 Suborbits of some primitive groups of degree 9p

Line Degree T = soc(G) Suborbits |Δ(u)| Remark references

1 45 PSL(2, 9) 4, 8, 16 (two)

2 153 PSL(2, 17) 4 (two), 8∗ (two)

8 (four), 16 (six), G = PSL(2, 17) [27, Subsection 4.4]

8, 16 (seven), 32 G = PGL(2, 17)

4 27 PSU(4, 2) 10, 16 [29]

5 45 PSU(4, 2) 12, 32 [29]

6 63 Sp(6, 2) 30, 32 [29]

7 171 PSL(2, 19) 5∗ (two), 10 (four), G = PSL(2, 19) [27, Subsection 4.4]

10∗ (four), 20 (four)

171 10, 20 (eight) G = PGL(2, 19)

8 369 PSL(2, 34) 36, 72, 80, 90 (two) [27, Subsection 4.1]

9 117 PSL(3, 3) 12, 16 (two), 24, 48 [18, Subsection 2.3]

10 657 PSL(3, 8) 16, 128, 512 [18, Subsection 2.2]

11 63 PSU(3, 3) 6, 16 (two), 24 bases [29]

6, 24, 32 non-isotropic points

12 117 O+(6, 3) 36, 80 [18, Subsection 2.12]
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Suppose that the actions of G on U and W are not equivalent. Check the subgroups of G (see [14,

Chapter II, Theorem 8.27] for soc(G) = PSL(2, 34) and to [5] for others). Then we conclude that every

subgroup of index 9p is maximal in G. In particular, Gw is maximal in G, where w ∈ W . Thus G acts

primitively on W . Then G has two inequivalent faithful primitive permutation representations. Checking

Table 1, we have T = soc(G) = O+(6, 3) or PSU(3, 3).

Assume that T = PSU(3, 3). Let V be a non-degenerate 3-dimensional unitary space over F9. Iden-

tify U with the set of 63 non-isotropic 1-dimensional subspaces of V and W with the set of 63 orthogonal

frames of V . By Example 3.4 and Lemma 3.5, Γ is isomorphic to one of Tutte’s 12-cage and its distance 3

and distance 5 graphs.

Let T = O+(6, 3). Then G = T or PGO+(6, 3). Consider a non-degenerate 6-dimensional orthogonal

space V over F3. Identify U and W respectively with two T-orbits on the 234 non-isotropic 1-dimensional

subspaces of V :

U = {〈x〉 | x ∈ V,Q(x) = 1}, W = {〈x〉 | x ∈ V,Q(x) = −1},
where Q is the associated quadratic form. Write

V = 〈e1,f1〉 ⊥ 〈e2,f2〉 ⊥ 〈e3,f3〉,
where {ei,fi} are hyperbolic pairs. Set

e = e1 + f1, f = e1 − f1 and V1 = 〈e2,f2〉 ⊥ 〈e3,f3〉.
Then 〈e〉 ∈ U and e⊥ = 〈f〉 ⊥ V1. Moreover, G〈e〉 ∼= O(5, 3) or GO(5, 3), which has exactly two orbits

on the 162 non-isotropic vectors of e⊥:

S1 = {x | x ∈ e⊥, Q(x) = −1} and S2 = {x | x ∈ e⊥, Q(x) = 1}.
An easy calculation implies that

S1 = {x | x ∈ V1, Q(x) = −1} ∪ {± f + x | x ∈ V1, Q(x) = 0},
S2 = {x | x ∈ V1, Q(x) = 1} ∪ {± f + x | x ∈ V1, Q(x) = −1},

which have size 90 and 72, respectively. Thus G〈e〉 has exactly two orbits on W ,

{〈x〉 | x ∈ S1} and {〈e+ x〉 | x ∈ S2}
with size 45 and 72, respectively. By the information about T = O+(6, 3) given in the Atlas [5], we

conclude that G has an automorphism σ of order 2 such that Gσ
〈e〉 = G〈f〉. It follows from Lemma 2.6

that Γ is arc-transitive.

Case 2. Assume that G is unfaithful on U . Then Γ is semisymmetric by Lemma 2.2(3). Let K be the

kernel of G acting on U . Set Σ = ΓK . Then Γ ∼= Σ1,m, where m is the length of a K-orbit on W . Thus

it suffices to determine m and Σ.

Let W̄ be the set of K-orbits on W . Then GU is faithful on W̄ and, since K 
= 1 is faithful on W , the

size of W̄ is a proper divisor of |W | = 9p. This observation helps us to determine GU as follows.

The groups in lines 13–16 of Table 1 are excluded as each of them has no faithful permutation rep-

resentations of degree less than 9p (see [17, p. 175]). If GU is described as in line 3 of Table 1 then a

similar argument as in Case 1 implies that soc(GU ) = A19 and |W̄ | = p = 19. For the groups in lines 1,2

and 4–12 of Table 1, checking the subgroups of G (see [5] and [14, Chapter II, Theorem 8.27]), the only

possible case is that GU = PSL(2, 19) and GW̄ is described as in Table 2.

Let soc(GU ) = A19. We may identify W̄ with the set of positive integers no more than 19 and U with

the set of 2-subsets of W̄ . Then m = 9, and Σ = ΓK is isomorphic to one of the graphs Λ1 and Λ2 defined

in Example 3.8. Thus Γ ∼= Λ1,9
1 or Λ1,9

2 .

Let GU = PSL(2, 19). We may identify W̄ and U respectively with the vertex set and edge set of the

Perkel graph. Then m = 3, and Σ is isomorphic to one of the six graphs Πi defined in Example 3.10, and

so Γ ∼= Π1,3
i , where 1 � i � 6. Thus our lemma follows.
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