• ARTICLES •

Semisymmetric graphs admitting primitive groups of degree 9p

HAN Hua^{1,2} & LU ZaiPing^{2,*}

¹College of Science, Tianjin University of Technology, Tianjin 300384, China;
²Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, China Email: hh1204@mail.nankai.edu.cn, lu@nankai.edu.cn

Received December 27, 2013; accepted November 17, 2014; published online May 15, 2015

Abstract Let Γ be a connected regular bipartite graph of order 18p, where p is a prime. Assume that Γ admits a group acting primitively on one of the bipartition subsets of Γ . Then, in this paper, it is shown that either Γ is arc-transitive, or Γ is isomorphic to one of 17 semisymmetric graphs which are constructed from primitive groups of degree 9p.

Keywords edge-transitive graph, arc-transitive graph, semisymmetric graph, primitive permutation group, suborbit

MSC(2010) 05C25, 20B25

Citation: Han H, Lu Z P. Semisymmetric graphs admitting primitive groups of degree 9p. Sci China Math, 2015, 58: 2671–2682, doi: 10.1007/s11425-015-5022-4

1 Introduction

All graphs in this paper are assumed to be finite, simple and undirected.

For a graph Γ , we use $V\Gamma$, $E\Gamma$ and Aut Γ to denote its vertex set, edge set and automorphism group, respectively. A graph Γ is said to be *vertex-transitive* or *edge-transitive* if Aut Γ acts transitively on $V\Gamma$ or $E\Gamma$, respectively. A regular edge-transitive graph is called *semisymmetric* if it is not vertex-transitive. An *arc* in a graph Γ is an ordered pair of adjacent vertices. A graph Γ is said to be *arc-transitive* if Aut Γ acts transitively on the set of arcs in Γ .

The class of semisymmetric graphs was first systematically studied by Folkman [10]. Afterwards, many authors have done much work on this topic, see [1, 2, 4, 15, 24–26] for references. In particular, lots of interesting examples of such graphs were found. For example, the Folkman graph on 20 vertices, the smallest semisymmetric graph, was constructed by Folkman [10]; the Gray graph **S54**, a cubic graph of order 54, was first observed to be semisymmetric by Bouwer [1] and proved to be the smallest cubic semisymmetric graph by Malnič et al. [22]. In 1985, Iofinova and Ivanov [15] classified all bi-primitive cubic semisymmetric graphs, they proved that there are only five such graphs. Tutte's 12-cage **S126** is one of those graphs, which is the unique cubic semisymmetric graph on 126 vertices and is the fifth smallest cubic semisymmetric graph, see [4]. The reader may consult [7–9,12,16,21,23] for more examples of semisymmetric graphs.

A recent work of Han and Lu [13] suggested a feasible construction of semisymmetric graphs from primitive permutation groups. In practice, it is plausible to consider the semisymmetric graphs associated

^{*}Corresponding author

[©] Science China Press and Springer-Verlag Berlin Heidelberg 2015

with those primitive permutation groups of special types or degrees. Let p be a prime and let k be a positive integer less than p. Then all primitive permutation groups of degree kp are explicitly known, see [19]. This inspires us to consider the classification problem about semisymmetric graphs (of order 2kp) arising from primitive permutation groups of degree kp, where k is a composite number. (Note that a classification was given in [8] for the semisymmetric graphs of order 2pq, where p and q are distinct primes.) As an attempt towards the mentioned problem, we deal with in this paper the case where k = 9.

Let Γ be a connected regular bipartite graph of order 18*p*. Assume that Γ admits a group acting transitively on $E\Gamma$ and primitively on one of the bipartition subsets of Γ . We shall prove that either Γ is arc-transitive, or Γ is isomorphic to one of 17 semisymmetric graphs. These 17 semisymmetric graphs are either unworthy [30] or constructed from the distance partitions of several known graphs.

Let Γ be a connected graph with diameter d. For an integer $0 \leq i \leq d$, the distance i graph, denoted by $\partial_i(\Gamma)$, is defined as the graph on $V\Gamma$ such that two vertices are adjacent if and only if they are at distance i from each other in Γ .

Our main result is stated as follows.

Theorem 1.1. Let Γ be a connected regular graph of order 18p, where p is a prime. Assume that a subgroup $G \leq \operatorname{Aut}\Gamma$ acts transitively on $E\Gamma$ but not on $V\Gamma$. If G acts primitively on one of G-orbits on $V\Gamma$, then Γ is either arc-transitive or isomorphic to one of the following semisymmetric graphs:

(1) Six graphs of order 54: the Gray graph S54, $\partial_3(S54)$, $\partial_5(S54)$, the graph Γ_1 defined in Example 3.1, and the graphs $\Sigma_0^{1,3}$ and $\Sigma_1^{1,3}$ defined in Example 3.7.

(2) Three graphs of order 126: Tutte's 12-cage S126, $\partial_3(S126)$ and $\partial_5(S126)$.

(3) Eight graphs of order 342: the graphs $\Lambda_1^{1,9}$ and $\Lambda_2^{1,9}$ defined in Example 3.8, and the graphs $\Pi_i^{1,3}$ $(1 \leq i \leq 6)$ defined in Example 3.10.

2 Preliminaries

Let Γ be a graph and let $G \leq \text{Aut}\Gamma$. The graph Γ is called *G*-vertex-transitive, *G*-edge-transitive or *G*-arc-transitive if *G* acts transitively on its vertex set, edge set or arc set, respectively. The graph Γ is called a *G*-semisymmetric graph if it is regular, *G*-edge-transitive but not *G*-vertex-transitive.

Assume that Γ is a *G*-edge-transitive but not *G*-vertex-transitive graph, where $G \leq \operatorname{Aut}\Gamma$. Then Γ is a bipartite graph with bipartition subsets being the *G*-orbits on $V\Gamma$. It follows that the vertices in a same bipartition subset of Γ have the same valency. For convenience, we call Γ an $\{l, r\}$ -semiregular graph if the vertices in one of the bipartition subsets have valency l and the other vertices have valency r. For a given vertex $u \in V\Gamma$, denote by $\Gamma(u)$ the neighborhood of u, i.e., the set of vertices adjacent to u in Γ . Then the vertex-stabilizer G_u acts transitively on $\Gamma(u)$. Take $w \in \Gamma(u)$. Then each vertex of Γ can be written as u^g or w^h for some $g, h \in G$. Then, for two arbitrary vertices u^g and w^h , they are adjacent in Γ if and only if u and $w^{hg^{-1}}$ are adjacent, i.e., $hg^{-1} \in G_w G_u$. Moreover, it is well known and easily shown that Γ is connected if and only if $\langle G_u, G_w \rangle = G$.

Let Γ be a *G*-semisymmetric graph with bipartition $\{U, W\}$. Suppose that *G* has a subgroup *R* which is regular on both *U* and *W*. Take an edge $\{u, w\} \in E\Gamma$ with $u \in U$ and $w \in W$. Then each vertex in *U* (*W*, resp.) can be written uniquely as u^x (w^x , resp.) for some $x \in R$. Set $S = \{s \in R \mid w^s \in \Gamma(u)\}$. Then u^x and w^y are adjacent if and only if $yx^{-1} \in S$. If *R* is abelian, then it is easily shown that $u^x \mapsto w^{x^{-1}}, w^x \mapsto u^{x^{-1}}, \forall x \in R$ is an automorphism of Γ , which leads to the vertex-transitivity of Γ , refer to [8,20].

Lemma 2.1. Let Γ be a G-semisymmetric graph with bipartition $\{U, W\}$. Assume that G has an abelian subgroup which is regular on both U and W. Then Γ is arc-transitive.

Let Γ be a *G*-semisymmetric graph. Suppose that *G* has a normal subgroup *N* which acts intransitively on at least one of the bipartition subsets of Γ . Then we define the *quotient graph* Γ_N to have vertices the *N*-orbits on $V\Gamma$, and two *N*-orbits *B* and *B'* are adjacent in Γ_N if and only if some $v \in B$ and some $v' \in B'$ are adjacent in Γ . It is easy to see that *G* induces an edge-transitive subgroup of Aut Γ_N . Let Γ be a connected *G*-semisymmetric graph with $G \leq \operatorname{Aut}\Gamma$. Denote by $\operatorname{soc}(G)$ the subgroup generated by all minimal normal subgroups of *G*, which is called the *socle* of *G*. Take an edge $\{u, w\} \in E\Gamma$ and let $U = u^G$ and $W = w^G$ be the *G*-orbits on $V\Gamma$. Denote respectively by G^U and G^W the restrictions of *G* on *U* and on *W*. The next lemma is quoted from [13].

Lemma 2.2. Let Γ be a connected G-semisymmetric graph with bipartition $\{U, W\}$, where $G \leq \operatorname{Aut}\Gamma$. Assume that G^U is quasiprimitive, i.e., each minimal normal subgroup of G^U is transitive on U. Then one of the following statements hold:

(1) Γ is isomorphic to the complete bipartite graph $K_{|U|,|U|}$;

(2) G is faithful on both U and W, and if G^U is of affine type then Γ is semisymmetric if and only if $\operatorname{soc}(G)$ is intransitive on W;

(3) G is faithful on W but not faithful on U, $G/K \cong G^U \cong G^{\overline{W}}$, and Γ is semisymmetric if further G^U is primitive, where K is the kernel of G acting on U and \overline{W} is the set of K-orbits on W.

Let G be a finite transitive permutation group on a set Ω . The orbits of G on the cartesian product $\Omega \times \Omega$ are the *orbitals* of G, and the diagonal orbital $\{(\alpha, \alpha)^g \mid g \in G\}$ is said to be *trivial*. For a G-orbital Δ and $\alpha \in \Omega$, the set $\Delta(\alpha) = \{\beta \mid (\alpha, \beta) \in \Delta\}$ is a G_α -orbit on Ω and called a *suborbit* of G at α . The rank of G on Ω is the number of G-orbitals, which equals to the number of G_α -orbits on Ω for any given $\alpha \in \Omega$. For a G-orbital Δ , the *paired orbital* Δ^* is defined as $\{(\beta, \alpha) \mid (\alpha, \beta) \in \Delta\}$, and Δ is said to be *self-paired* if $\Delta^* = \Delta$. For a self-paired G-orbital Δ , the suborbit $\Delta(\alpha)$ is called *self-paired*. For a non-trivial G-orbital Δ , the *orbital bipartite graph* $B(\Omega, \Delta)$ is the graph on two copies of Ω , say $\Omega \times \{1, 2\}$, such that $\{(\alpha, 1), (\beta, 2)\}$ is an edge if and only if $(\alpha, \beta) \in \Delta$. Then $B(\Omega, \Delta)$ is G-semisymmetric, where G acts on $\Omega \times \{1, 2\}$ as follows:

$$(\alpha, i)^g = (\alpha^g, i), \quad g \in G, \quad i = 1, 2.$$

If Δ is self-paired, then $(\alpha, 1) \leftrightarrow (\alpha, 2), \alpha \in \Omega$ gives an automorphism of $B(\Omega, \Delta)$, which yields that $B(\Omega, \Delta)$ is *G*-arc-transitive. Moreover, the next lemma is easily shown, see also [11].

Lemma 2.3. Assume that Γ is a connected G-semisymmetric graph of valency at least 2 with bipartition subsets U and W, and that, for an edge $\{u, w\} \in E\Gamma$, the two stabilizers G_u and G_w are conjugate in G. Then there is a bijection $\iota : U \leftrightarrow W$ such that $G_u = G_{\iota(u)}$ and $\{u, \iota(u)\} \notin E\Gamma$ for all $u \in U$. Moreover,

$$\Delta = \{ (u, \iota^{-1}(w)) \mid \{u, w\} \in E\Gamma, u \in U, w \in W \}$$

is a G-orbital on U. In particular, $\Gamma \cong B(U, \Delta)$, and ι extends to an automorphism of Γ if and only if Δ is self-paired.

Remark 2.4. Let Γ and $G \leq \operatorname{Aut}\Gamma$ be as in Lemma 2.3. Then $\{G_u \mid u \in U\} = \{G_w \mid w \in W\}$, and so $\bigcap_{u \in U} G_u = \bigcap_{w \in W} G_w = 1$ as $G \leq \operatorname{Aut}\Gamma$. Thus G is faithful on both parts of Γ . Take $u \in U$ and $w \in W$ with $G_u = G_w$. Then $u^g \leftrightarrow w^g$, $g \in G$ gives a bijection meeting the requirement of Lemma 2.3. Thus one can define l^2 bijections ι , where l is the number of the points in U fixed by a stabilizer G_u . By [6, Theorem 4.2A], $l = |N_G(G_u) : G_u|$.

Let G be a finite transitive permutation group on Ω and Δ be a G-orbital. If Δ is self-paired, then $B(\Omega, \Delta)$ is arc-transitive. The next lemma indicates it is possible that $B(\Omega, \Delta)$ is arc-transitive even if Δ is not self-paired.

Lemma 2.5. Let X be a permutation group on Ω and let G be a transitive subgroup of X with index |X:G| = 2. Let Δ be a G-orbital. If $\Delta \cup \Delta^*$ is an X-orbital, then $B(\Omega, \Delta)$ is arc-transitive.

Proof. Assume that $\Delta \cup \Delta^*$ is an X-orbital. To show $\Gamma := B(\Omega, \Delta)$ is arc-transitive, it suffices to find an automorphism of Γ which interchanges two bipartition subsets of Γ . Take $x \in X \setminus G$. It is easily shown that $\Delta^x = \Delta^*$ and $(\Delta^*)^x = \Delta$. Define $\hat{x} : \Omega \times \{1, 2\} \to \Omega \times \{1, 2\}, (\alpha, 1) \mapsto (\alpha^x, 2), (\beta, 2) \mapsto (\beta^x, 1)$. It is easy to check that $\hat{x} \in \operatorname{Aut}\Gamma$, and so the lemma follows.

The next result is a special version of [8, Lemma 2.6].

Lemma 2.6. Let Γ be a *G*-semisymmetric graph with bipartition $\{U, W\}$. Assume that *G* has an automorphism σ of order 2 such that $G_u^{\sigma} = G_w$ for some $u \in U$ and $w \in W$. If all G_u -orbits on *W* have distinct lengths, then Γ is arc-transitive.

3 Some semisymmetric graphs of order 18p

In this section, we construct the semisymmetric graphs involved in Theorem 1.1.

We first give several semisymmetric graphs arising from the distance partitions of **S54** and **S126**. In particular, we shall show that $\partial_3(\mathbf{S54})$, $\partial_5(\mathbf{S54})$, $\partial_3(\mathbf{S126})$ and $\partial_5(\mathbf{S126})$ are (non-isomorphic) semisymmetric graphs.

For a prime power q and a positive integer d, we denote respectively by \mathbb{F}_q and \mathbb{F}_q^d the field of order q and the d-dimensional vector space over \mathbb{F}_q .

Example 3.1. Let $U = \mathbb{F}_3^3$ and $\{e_1, e_2, e_3\}$ a basis of U. Let $W = \{y + \langle e_i \rangle \mid y \in U, 1 \leq i \leq 3\}$, which consists of 27 1-dimensional affine subspaces of U. Take 5 subsets of W as follows:

$$\begin{split} \Delta_0 &:= \{ \langle \boldsymbol{e}_i \rangle \mid 1 \leqslant i \leqslant 3 \}, \\ \Delta_1 &:= \{ \pm \boldsymbol{e}_2 + \langle \boldsymbol{e}_1 \rangle, \pm \boldsymbol{e}_3 + \langle \boldsymbol{e}_2 \rangle, \pm \boldsymbol{e}_1 + \langle \boldsymbol{e}_3 \rangle \}, \\ \Delta_2 &:= \{ \pm \boldsymbol{e}_3 + \langle \boldsymbol{e}_1 \rangle, \pm \boldsymbol{e}_1 + \langle \boldsymbol{e}_2 \rangle, \pm \boldsymbol{e}_2 + \langle \boldsymbol{e}_3 \rangle \}, \\ \Delta_3 &:= \{ \pm \boldsymbol{e}_i \pm \boldsymbol{e}_j + \langle \boldsymbol{e}_k \rangle \mid \{i, j, k\} = \{1, 2, 3\} \}, \\ \Delta_4 &:= \Delta_1 \cup \Delta_2. \end{split}$$

For each s with $0 \leq s \leq 4$, define a bipartite graph Γ_s with bipartition $\{U, W\}$ such that $x \in U$ and $y + \langle e_i \rangle \in W$ are adjacent in Γ_s if and only if $y - x + \langle e_i \rangle \in \Delta_s$. Clearly, these graphs have valency 3, 6, 6, 12 and 12, respectively. Moreover, Γ_4 is the edge-disjoint union of Γ_1 and Γ_2 , and it is easy to check that $\Gamma_3 = \partial_5(\Gamma_0)$ and $\Gamma_4 = \partial_3(\Gamma_0)$.

Lemma 3.2. The graphs given in Example 3.1 are all semisymmetric. Moreover, $\Gamma_1 \cong \Gamma_2$, $\Gamma_0 \cong S54$ and $\Gamma_3 \ncong \Gamma_4$.

Proof. We continue the notation used in Example 3.1. Take $h_0, h_1, h_2 \in GL(3,3)$ such that

$$\begin{aligned}
 e_1^{h_0} &= e_2, & e_2^{h_0} &= e_3, & e_3^{h_0} &= e_1, \\
 e_1^{h_1} &= -e_1, & e_2^{h_1} &= e_2, & e_3^{h_1} &= e_3, \\
 e_1^{h_2} &= e_1, & e_2^{h_2} &= e_3, & e_3^{h_2} &= e_2.
 \end{aligned}$$
(3.1)

Set $H = \langle h_1, h_2, h_0 \rangle$ and $H_1 = \langle h_1, h_0 \rangle$. Then both H and H_1 are irreducible subgroups of GL(3,3). Let N be the group consisting of all affine transformations of the form $\tau_{\boldsymbol{x}} : \mathbb{F}_3^3 \to \mathbb{F}_3^3, \boldsymbol{y} \mapsto \boldsymbol{y} + \boldsymbol{x}$. Then we get two primitive permutation groups $G = N \rtimes H$ and $G_1 = N \rtimes H_1$ (on U). Define an action of Gon W by

$$(\boldsymbol{y} + \langle \boldsymbol{e}_i \rangle)^{\tau_{\boldsymbol{x}}} = \boldsymbol{y} + \boldsymbol{x} + \langle \boldsymbol{e}_i \rangle, \quad (\boldsymbol{y} + \langle \boldsymbol{e}_i \rangle)^h = \boldsymbol{y}^h + \langle \boldsymbol{e}_i^h \rangle, \quad \boldsymbol{x}, \boldsymbol{y} \in U, \quad h \in H.$$
 (3.2)

It is easily shown that G is transitive on $E\Gamma_0$, $E\Gamma_3$ and $E\Gamma_4$, and that G_1 is transitive $E\Gamma_0$, $E\Gamma_1$, $E\Gamma_2$ and $E\Gamma_3$. Note that $\operatorname{soc}(G_1) = \operatorname{soc}(G) = N$ and N is intransitive on W. By Lemma 2.2(2), every graph Γ_s is semisymmetric. Moreover, it is easily shown that h_2 gives an isomorphism from Γ_1 to Γ_2 .

It is known that, up to isomorphism, the Gray graph **S54** is the unique cubic semisymmetric graph of order 54 (see [4]). Thus $\Gamma_0 \cong$ **S54**. Finally, since Γ_3 and Γ_4 have different diameters (confirmed by Magma), Γ_3 and Γ_4 are not isomorphic to each other. This completes bipartite the proof.

Remark 3.3. Let Γ_0 , Γ_1 , Γ_2 , Γ_3 and Γ_4 be defined as in Example 3.1.

(1) The graphs Γ_0 , Γ_1 , Γ_2 and Γ_3 give a factorization of complete graph $K_{27,27}$.

(2) By the argument given in Section 4, we conclude that $\operatorname{Aut}\Gamma_0 = \operatorname{Aut}\Gamma_3 = \operatorname{Aut}\Gamma_4 \cong \mathbb{Z}_3^2 \rtimes (\mathbb{Z}_2 \times S_4)$, and $\operatorname{Aut}\Gamma_1 \cong \mathbb{Z}_3^2 \rtimes (\mathbb{Z}_2 \times A_4)$. (Confirmed also by Magma.)

It is well know that Tutte's 12-cage **S126** is a cubic semisymmetric graph with automorphism group isomorphic to $P\Gamma U(3,3)$. In Example 3.4, we give a construction for **S126** based on the argument in [3, p. 383, Subsection 12.4].

Example 3.4. Equip $V = \mathbb{F}_9^3$ with the standard unitary inner product

$$(\boldsymbol{x}, \boldsymbol{y}) = x_1 y_1^3 + x_2 y_2^3 + x_3 y_3^3, \quad \boldsymbol{x}, \boldsymbol{y} \in V$$

A non-zero vector $\boldsymbol{x} \in V$ is called non-isotropic if $(\boldsymbol{x}, \boldsymbol{x}) \neq 0$. Then V has 504 non-isotropic vectors. These vectors span 63 1-dimensional subspaces (non-isotropic points in PG(2,3)). Let U be the set of these subspaces. Define a graph Φ on U such that $\langle \boldsymbol{x} \rangle, \langle \boldsymbol{y} \rangle \in U$ are adjacent if and only if $(\boldsymbol{x}, \boldsymbol{y}) = 0$. Then Aut $\Phi = \Pr U(3,3)$, and Φ is a distance-transitive graph with valency 6 and diameter 3. Moreover, Φ has exactly 63 triangles. Note that the vertex set of each triangle consists of three mutually orthogonal members in U, which is called an *orthogonal frame* of V. Let W be the set of these orthogonal frames. Then Tutte's 12-cage **S126** can be construct on $U \cup W$ such that $u \in U$ and $w \in W$ are adjacent if and only if $u \in w$.

Lemma 3.5. Let $\Sigma = \mathbf{S126}$ be constructed as in Example 3.4. Then $\partial_3(\Sigma)$ and $\partial_5(\Sigma)$ are semisymmetric graphs of valency 12 and 48, respectively. In particular, $\operatorname{Aut}\Sigma = \operatorname{Aut}\partial_3(\Sigma) = \operatorname{Aut}\partial_5(\Sigma) \cong \operatorname{PFU}(3,3)$.

Proof. We continue the notation used in Example 3.4 and, without loss of generality, write $\operatorname{Aut}\Sigma = \operatorname{P}\Gamma U(3,3)$. Note that Σ has valency 3, diameter 6 and girth 12. It is easily shown that for $1 \leq i \leq 5$ the distance *i* graph $\partial_i(\Sigma)$ has valency $3 \cdot 2^{i-1}$, and it is connected if and only if *i* is odd. Clearly, $\operatorname{Aut}\Sigma \leq \operatorname{Aut}\partial_i(\Sigma)$. Let $A = \operatorname{Aut}\Sigma$.

By the information given in [4] for the distance partitions of $\Sigma = \mathbf{S126}$, we know that Σ is locally distance transitive, i.e., for every $v \in V\Sigma$ and $1 \leq i \leq 6$, the stabilizer A_v acts transitively on the vertices at distance *i* from *v*. It follows that both $\partial_3(\Sigma)$ and $\partial_5(\Sigma)$ are *A*-edge-transitive.

Let $\Gamma = \partial_3(\Sigma)$ or $\partial_5(\Sigma)$, and let X be the subgroup of Aut Γ which preserves the bipartition of Γ . Then $X \ge A = \Pr U(3,3)$. Checking the subgroups of $\Pr U(3,3)$ (see [5]), we know that, for $u \in U$ and $w \in W$, the stabilizers A_u and A_w are non-conjugate maximal subgroups in A. In particular, A and hence X acts primitively on both U and W. Since Σ is not a complete bipartite graph, it is easily shown that X acts faithfully on both U and W. Note that all primitive permutation groups of degree 63 are listed in Table 1. It follows that X = A.

Suppose that $\operatorname{Aut}\Gamma \neq A$. Then $|\operatorname{Aut}\Gamma : A| = 2$, and so $\operatorname{Aut}\Gamma = A.\mathbb{Z}_2$. Note that $\operatorname{soc}(A) = \operatorname{PSU}(3,3)$ is a characteristic subgroup of A. It follows that $\operatorname{soc}(A)$ is normal in $\operatorname{Aut}\Gamma$. Then

$$\operatorname{Aut}\Gamma/\boldsymbol{C}_{\operatorname{Aut}\Gamma}(\operatorname{soc}(A)) = \boldsymbol{N}_{\operatorname{Aut}\Gamma}(\operatorname{soc}(A))/\boldsymbol{C}_{\operatorname{Aut}\Gamma}(\operatorname{soc}(A))$$

is isomorphic to a subgroup of Aut(soc(A)). Since Aut(soc(A)) \cong A by the Atlas [5], it follows that $C_{\text{Aut}\Gamma}(\text{soc}(A)) \neq 1$. Since soc(A) is a non-abelian simple group, we know that

$$C_{\operatorname{Aut}\Gamma}(\operatorname{soc}(A)) \cap \operatorname{soc}(A) = 1.$$

It implies that $C_{\operatorname{Aut}\Gamma}(\operatorname{soc}(A)) \cong \mathbb{Z}_2$ and $\operatorname{Aut}\Gamma = \operatorname{soc}(A) \times C_{\operatorname{Aut}\Gamma}(\operatorname{soc}(A))$. It follows that there is an involution $g \in \operatorname{Aut}\Gamma$ which centralizes A and interchanges U and W. For $u \in U$, we have that $w := u^g \in W$ and $A_w = (A_u)^g = A_u$, which is a contradiction.

Therefore, $A = \operatorname{Aut}\Gamma$, and hence Γ is semisymmetric. This completes the proof.

We remark that Tutte's 12-cage **S126**, ∂_3 (**S126**) and ∂_5 (**S126**) form a factorization of the complete bipartite graph $K_{63,63}$.

A graph is said to be worthy if no two vertices have the same neighborhood [30]. If Γ is a worthy connected bipartite graph, then it is easily shown that Aut Γ acts faithfully on both bipartition subsets of Γ . For the rest of this section, we shall construct several unworthy semisymmetric graphs.

Let Σ be a connected bipartite graph with bipartition $\{U, \overline{W}\}$. Let $\Omega = \{1, 2, ..., m\}$, where $m \ge 1$. Construct a bipartite graph $\Sigma^{1,m}$ with bipartition $\{U, \overline{W} \times \Omega\}$ such that $u \in U$ and $(\overline{w}, i) \in \overline{W} \times \Omega$ are

Line	Degree $9p$	$T := \operatorname{soc}(X)$	Actions of T	Remark
1	45	PSL(2,9)	cosets of D_8	$S_6 \not\cong X \leqslant T.\mathbb{Z}_2^2$
2	153	PSL(2, 17)	cosets of D_{16}	
3	$\frac{(c-1)c}{2}$	$oldsymbol{A}_{c}$	2-subsets	$c \in \{10, 18, 19\}$
4	27	PSU(4,2)	isotropic lines	$T \cong \mathcal{O}^-(6,2)$
5	45	PSU(4,2)	isotropic points	
6	63	$\operatorname{Sp}(6,2)$	points	
7	171	PSL(2, 19)	cosets of D_{20}	
8	369	$PSL(2, 3^4)$	cosets of $PGL(2,9)$	
9	117	PSL(3,3)	anti-flags of $PG(2,3)$	$X = T.\mathbb{Z}_2$
10	657	PSL(3,8)	flags of $PG(2, 8)$	$X = T.\mathbb{Z}_2, T.\mathbb{Z}_6$
11	63	PSU(3,3)	non-isotropic points;	
			bases	
12	117	$O^{+}(6,3)$	one of T -orbits on	$X = T, PGO^+(6, 3)$
			non-isotropic points	$T \cong \mathrm{PSL}(4,3)$
13	9p	$oldsymbol{A}_{9p}$	natural action	2-transitive
14	18	PSL(2, 17)	points	2-transitive
15	$2^{e} + 1$	$\mathrm{PSL}(2, 2^e)$	points	e = 3r, odd prime r
				2-transitive
16	63	PSL(6,2)	points	2-transitive
			hyperplanes	2-transitive

 Table 1
 Primitive permutation groups of degree 9p

adjacent if and only if $\{u, \bar{w}\} \in E\Sigma$. Such a construction was used in [8,28] to construct semisymmetric graphs. Let $q \in \operatorname{Aut}\Sigma$. Then q can be extended to an automorphism of $\Sigma^{1,m}$, which acts on U in the same way as g on U and acts on $\bar{W} \times \Omega$ as follows: $(\bar{w}, i)^g = (\bar{w}^g, i), \ \bar{w} \in \bar{W}, i \in \Omega$. For each $\sigma \in S_m$, we may define an automorphism of $\Sigma^{1,m}$, which acts on U trivially and acts on $\bar{W} \times \Omega$ as follows: $(\bar{w}, i) \mapsto (\bar{w}, i^{\sigma}), \ \bar{w} \in \bar{W}, i \in \Omega$. Then $\operatorname{Aut}\Sigma^{1,m}$ contains a subgroup $\operatorname{Aut}\Sigma \times S_m$ which acts on $U \cup (\overline{W} \times \Omega)$ by

$$u^{(g,\sigma)} = u^g, \quad (\bar{w}, i)^{(g,\sigma)} = (\bar{w}^g, i^\sigma), \quad g \in \operatorname{Aut}\Sigma, \quad \sigma \in S_m, \quad u \in U, \quad \bar{w} \in \bar{W}, \quad i \in \Omega.$$

Thus $\Sigma^{1,m}$ is edge-transitive provided that Σ is edge-transitive. Moreover, if Σ is worthy then it is easily shown that $\operatorname{Aut}\Sigma^{1,m} = \operatorname{Aut}\Sigma \times S_m$. Then we may formulate a result as follows from the observations made in [8, 28].

Let Σ be a connected bipartite graph with bipartition $\{U, \overline{W}\}$. Lemma 3.6.

- (1) If Σ is edge-transitive then $\Sigma^{1,m}$ is edge-transitive.
- (2) If m > 1 and no two vertices in U have the same neighborhood, then $\Sigma^{1,m}$ is not vertex-transitive. (3) If Σ is worthy then $\operatorname{Aut}\Sigma^{1,m} = \operatorname{Aut}\Sigma \times S_m$.

Example 3.7. Let U and $\{e_1, e_2, e_3\}$ be as in Example 3.1. Set $U_1 = \langle e_2, e_3 \rangle$, $U_2 = \langle e_1, e_3 \rangle$ and $U_3 = \langle \boldsymbol{e}_1, \boldsymbol{e}_2 \rangle$. Let

$$\bar{W} = \bigcup_{i=1}^{3} \{U_i, \boldsymbol{e}_i + U_i, -\boldsymbol{e}_i + U_i\}.$$

Define a bipartite graph Σ_0 with bipartition $\{U, \bar{W}\}$ such that $x \in U$ and $y + U_i \in \bar{W}$ are adjacent if and only if $y - x \in U_i$. Let Σ_1 be the complement graph of Σ_0 in the complete bipartite graph with bipartition $\{U, \overline{W}\}$. Then Σ_0 is $\{3, 9\}$ -semiregular and Σ_0 is $\{6, 18\}$ -semiregular.

By a similar argument as in the proof of Lemma 3.2, we know that both Σ_0 and Σ_1 admit an edgetransitive group isomorphic to $\mathbb{Z}_3^3 \rtimes (\mathbb{Z}_2 \times S_4)$, which acts primitively on U. Moreover,

(1) both Σ_0 and Σ_1 are worthy, and $\operatorname{Aut}\Sigma_0 = \operatorname{Aut}\Sigma_1 \cong \mathbb{Z}_3^3 \rtimes (\mathbb{Z}_2 \times S_4)$ (confirmed by Magma); and

(2) by Lemma 2.2 or Lemma 3.6, the graphs $\Sigma_0^{1,3}$ and $\Sigma_1^{1,3}$ are semisymmetric and of order 54, which have valency 9 and 18, respectively; and

(3) $\operatorname{Aut}\Sigma_0^{1,3} = \operatorname{Aut}\Sigma_1^{1,3} \cong \mathbb{Z}_3^3 \rtimes (\mathbb{Z}_2 \times S_4) \times S_3$ by Lemma 3.6.

Example 3.8. Let $\overline{W} = \{1, 2, ..., 19\}$, and let U be the set of 2-subsets of \overline{W} . Let $T = A_{19}$. Then T acts primitively on both U and \overline{W} . For $\{i, j\} \in U$, the stabilizer $T_{\{i, j\}}$ has exactly two orbits on \overline{W} , which are $\{i, j\}$ and $\overline{W} \setminus \{i, j\}$.

Define a bipartite graph Λ_1 with bipartition $\{U, \overline{W}\}$ such that $u \in U$ and $w \in \overline{W}$ are adjacent in Λ_1 if and only if $w \in u$. (Note that Λ_1 is just the vertex-edge incidence graph of the complete graph $K_{19.}$) Let Λ_2 be the complement graph of Λ_1 in the complete bipartite graph $K_{171,19}$. Then both Λ_1 and Λ_2 are worthy *T*-edge-transitive graphs. Moreover, the following statements hold.

(1) By Lemma 2.2 or Lemma 3.6, the graphs $\Lambda_1^{1,9}$ and $\Lambda_2^{1,9}$ are semisymmetric and of order 342, which have valency 18 and 153, respectively.

(2) Aut $\Lambda_1 = \operatorname{Aut}\Lambda_2 \cong \boldsymbol{S}_{19}$, and so Aut $\Lambda_1^{1,9} = \operatorname{Aut}\Lambda_2^{1,9} \cong \boldsymbol{S}_{19} \times \boldsymbol{S}_9$ by Lemma 3.6.

By [5], the simple group PSL(2, 19) has two conjugacy classes of maximal subgroups isomorphic to A_5 . Take \overline{W} as one of these two conjugacy classes. Define a graph on \overline{W} by letting $\overline{w}_1, \overline{w}_2 \in \overline{W}$ be adjacent whenever $\overline{w}_1 \cap \overline{w}_2 \cong D_{10}$. Then this graph, called the Perkel graph, is a distance-transitive graph with automorphism group PSL(2, 19), order 57 and intersection array $\{6, 5, 2; 1, 1, 3\}$, refer to [3, p. 401, Subsection 13.3].

Lemma 3.9. Assume that Σ is the Perkel graph constructed as above. Let $G = \operatorname{Aut}\Sigma$ and $\overline{w} \in V\Sigma$. Then $G_{\overline{w}}$ has exactly 6 orbits on $E\Sigma$: one has length 6, one has length 15, three have length 30 and one has length 60.

Proof. For $1 \leq i \leq 3$, denote by $\Sigma_i(\bar{w})$ the set of vertices at distance *i* from \bar{w} . Then $|\Sigma_1(\bar{w})| = 6$, $|\Sigma_2(\bar{w})| = 30$ and $|\Sigma_3(\bar{w})| = 20$. For $1 \leq i \leq 3$ and j = i or i-1, denote by $\Sigma_{j,i}$ the subgraph of Σ induced by $\Sigma_j(\bar{w}) \cup \Sigma_i(\bar{w})$, where $\Sigma_0(\bar{w}) = \{\bar{w}\}$. Let $E_{j,i}$ be the edge set of $\Sigma_{j,i}$. Then $E_{0,1}, E_{1,2}, E_{2,2}, E_{2,3}$ and $E_{3,3}$ form a partition of $E\Sigma$. It is easily shown that $|E_{0,1}| = 6$, $|E_{1,2}| = 30$, $|E_{2,2}| = 45$, $|E_{2,3}| = 60$ and $|E_{3,3}| = 30$.

Let $H = G_{\bar{w}}$. Then $H \cong \mathbf{A}_5$. Since Σ is distance-transitive, H acts transitively on each $\Sigma_i(\bar{w})$, where $1 \leq i \leq 3$. In particular, H is transitive on $E_{0,1}$. Note that H is 2-transitive on $\Sigma_1(\bar{w})$. It follows that G acts transitively on the directed 2-paths of Σ . Then H is transitive on those 2-paths from \bar{w} , and hence H is transitive on $E_{1,2}$. By the construction of Σ , we know that, for an edge $\{\bar{w}_1, \bar{w}_2\}$ of Σ , the arc-stabilizer $G_{\bar{w}_1\bar{w}_2}$ is isomorphic to D_{10} . Thus, for an element $h \in H$ of order 3, if $h \in G_{\bar{w}_1}$ then h does not fix \bar{w}_2 . Using such an observation, it is easily shown that H is transitive on each of $E_{2,3}$ and $E_{3,3}$. Then we get 4 H-orbits on $E\Sigma$, which have length 6, 30, 60 and 30, respectively.

Consider that action of H on $E_{2,2}$. Take $\bar{v} \in \Sigma_2(\bar{w})$. Since H is transitive on $\Sigma_2(\bar{w})$, we know that $|H_{\bar{v}}| = \frac{|H|}{|\Sigma_2(\bar{w})|} = 2$. Note that $\Sigma_1(\bar{w})$ contains a unique vertex, say \bar{u} , adjacent to \bar{v} . Then $H_{\bar{v}}$ fixes \bar{u} , and so $H_{\bar{v}} < G_{\bar{u}\bar{v}} \cong D_{10}$. Set $H_{\bar{v}} = \langle k \rangle$. Then $G_{\bar{u}\bar{v}} = \langle h, k \rangle$ for some h of order 5, and $khk = h^{-1}$. Since $G_{\bar{v}}$ is faithful on $\Sigma_1(\bar{v})$, writing h and k as permutations on $\Sigma_1(\bar{v})$, we know that h is a 5-cycle and k is a product of two disjoint transpositions. It follows that k interchanges two of the three vertices contained in $\Sigma_1(\bar{v}) \cap \Sigma_2(\bar{w})$. It implies that one of the H-orbits on $E_{2,2}$ has length at least 30. Since 45 is not a divisor of |H|, we know that H has at least two orbits on $E_{2,2}$. Note that a vertex-transitive non-empty graph of order 30 has at least 15 edges. It follows that H has exactly two orbits on $E_{2,2}$, which have length 30 and 15, respectively. This completes the proof.

Example 3.10. Let Σ be the Perkel graph. Set $G = \operatorname{Aut}\Sigma$ and take $\bar{w} \in V\Sigma$. Then, for an edge $\{\bar{w}, \bar{v}\}$, the edge-stabilizer $G_{\{\bar{w}, \bar{v}\}} \cong G_{\bar{w}\bar{v}}$. $\mathbb{Z}_2 \cong D_{20}$, which is a maximal subgroup of $G = \operatorname{PSL}(2, 19)$. Thus G acts primitively on $E\Sigma$. Assume that $\Delta_i(\bar{w}), 1 \leq i \leq 6$, are the six $G_{\bar{w}}$ -orbits on $E\Sigma$. Without loss of generality, let $|\Delta_1(\bar{w})| = 6$, $|\Delta_2(\bar{w})| = 15$, $|\Delta_3(\bar{w})| = |\Delta_4(\bar{w})| = |\Delta_5(\bar{w})| = 30$ and $|\Delta_6(\bar{w})| = 60$.

Let $U = E\Sigma$ and $\overline{W} = V\Sigma$. Then $\overline{W} = \{\overline{w}^g \mid g \in G\}$. For each *i* with $1 \leq i \leq 6$, define a worthy bipartite graph Π_i with bipartition $\{U, \overline{W}\}$ such $u \in U$ and $\overline{w}^g \in \overline{W}$ are adjacent if and only if $u^{g^{-1}} \in \Delta_i(\overline{w})$. Then every graph Π_i is *G*-edge-transitive. The graph Π_1 is the vertex-edge incidence

graph of the Perkel graph, which has girth 10 and diameter 8. Two of the three $\{10, 30\}$ -semiregular graphs, say Π_4 and Π_5 , are respectively the distance 3 and distance 7 graphs of Π_1 , and the graphs Π_2 , Π_3 and Π_6 form a factorization of the distance 5 graph of Π_1 . Moreover, we have the following statements.

(1) The three $\{10, 30\}$ -semiregular graphs Π_3 , Π_4 and Π_5 are not isomorphic to every other (confirmed by Magma); and

(2) By Lemma 2.2 or 3.6, the six graphs $\Pi_i^{1,3}$ are semisymmetric and of order 342, which have valency 6, 15, 30, 30 and 60, respectively; and

(3) Aut $\Pi_i = \text{PSL}(2,9)$, and so Aut $\Pi_1^{1,3} = \text{PSL}(2,9) \times S_3$ by Lemma 3.6, where $1 \leq i \leq 6$.

4 The proof of Theorem 1.1

In this section, we give a proof Theorem 1.1. Our argument is based on analyzing the primitive permutation groups of degrees 9p and 3p.

For a positive integer k < p, all primitive permutation groups of degree kp are explicitly known by [18,19]. Let X be a primitive permutation group of degree 9p or 3p. Combining with [6, Appendix B], either p = 3 and X is of affine type, or X is one of almost simple groups listed in Tables 1 and 2.

In the following, we assume that Γ is a connected *G*-semisymmetric graph of order 18*p*, where $G \leq \operatorname{Aut}\Gamma$ and *p* is a prime. Let *U* and *W* be the orbits of *G* acting on *V* Γ . Assume that one of G^U and G^W is primitive. Without loss of generality, we assume further that G^U is primitive and that Γ is not a complete bipartite graph. By Lemma 2.2, *G* is faithful on *W*, i.e., $G^W \cong G$.

Lemma 4.1 says that Theorem 1.1 holds while G^U is of affine type.

Lemma 4.1. Assume that G^U is an affine primitive group. Then Γ is either arc-transitive or isomorphic to one of the graphs given in Examples 3.1 and 3.7.

Proof. Since G^U is of affine type, $\operatorname{soc}(G^U) \cong \mathbb{Z}_3^3$. Identify U with the 3-dimensional vector space over \mathbb{F}_3 . Write $G^U = N \rtimes H$, where H is an irreducible subgroup of $\operatorname{GL}(3,3)$, and $N = \operatorname{soc}(G^U)$ consists of the affine transformations of the form $\tau_{\boldsymbol{x}} : \mathbb{F}_3^3 \to \mathbb{F}_3^3$, $\boldsymbol{y} \mapsto \boldsymbol{y} + \boldsymbol{x}$. Let u be the vertex corresponding to the zero vector. Then $H = (G^U)_u$.

Let K be the kernel of G acting on U. Then K is faithful on W. Consider the quotient graph $\Sigma := \Gamma_K$ with respect to K. Identifying G^U with a subgroup of $\operatorname{Aut}\Sigma$, the graph Σ is G^U -edge-transitive. Since G is transitive on W and K is normal in G, all K-orbits on W have the same length, say m. Then either K = 1 or $\Gamma \cong \Sigma^{1,m}$.

Let \overline{W} be the set of K-orbits on W. Since Γ is not a complete bipartite graph, G^U is faithful on \overline{W} by Lemma 2.2. Suppose that N is transitive on \overline{W} . It is easily shown that N is regular on \overline{W} , and hence K = 1. By Lemma 2.1, $\Gamma \cong \Sigma$ is arc-transitive. Thus we assume further that N is intransitive on \overline{W} ; in this case, Γ must be semisymmetric by Lemma 2.2.

Degree $3p$	Х	Action or Remark	
6	$oldsymbol{A}_5,oldsymbol{S}_5$	cosets of D_{10} in A_5	
15	$oldsymbol{A}_6,oldsymbol{S}_6$	2-subsets	
21	$oldsymbol{A}_7,oldsymbol{S}_7$	2-subsets	
21	$PSL(3,2).\mathbb{Z}_2$	point-line incedent pairs	
57	PSL(2, 19)	cosets of A_5 (two actions)	
15	$oldsymbol{A}_7$	cosets of $PSL(2,7)$ (two actions)	
3p	$oldsymbol{A}_{3p},oldsymbol{S}_{3p}$		
15	PSL(4,2)	4,2) points, hyperplanes	
$2^{e} + 1$	$PSL(2,2^e), P\Gamma L(2,2^e)$	points; odd prime e	
q^2+q+1	PSL(3,q).O	points, hyperplanes; $q \equiv 1 \pmod{3}$,	
		$q = r^e$, prime $r, O 3e$	

Table 2 Primitive permutation groups of degree 3p (refer to [12])

Let l be the number of N-orbits on \overline{W} . Then l is a proper divisor of $|\overline{W}| = \frac{27}{m}$ as N is intransitive on \overline{W} . Let p be an arbitrary prime divisor of H and let $h \in H$ be of order p. Since G^U acts faithfully on \overline{W} , we know that either $\langle h \rangle$ is faithful on the set of N-orbits on \overline{W} , or $\langle h \rangle$ fixes every N-orbit set-wise and acts faithfully on at least one of N-orbits. It follows that p is a divisor of l! or $(\frac{27}{lm})!$, and hence p < 9. Since $H \leq \text{GL}(3,3) \cong \mathbb{Z}_2 \times \text{PSL}(3,3)$, checking the subgroups of PSL(3,3) in the Atlas [5], we conclude that H is isomorphic to a subgroup of $\mathbb{Z}_2 \times S_4$.

Since G^U acts transitively on \overline{W} , we know that H acts transitively on the l orbits of N acting on \overline{W} . Recall that l is a proper divisor of $\frac{27}{m}$. Then l = 3 or 9. Since |H| is not divisible by 9, we know that l = 3. Let \overline{W}_1 , \overline{W}_2 and \overline{W}_3 be the N-orbits on \overline{W} . Then $|\overline{W}_1| = |\overline{W}_2| = |\overline{W}_3| = \frac{9}{m}$, and m = 1 or 3. For each i with $1 \leq i \leq 3$, considering the action of N on \overline{W}_i , there is a subspace U_i of U such that $\langle \tau_x | x \in U_i \rangle$ is the kernel of N acting on \overline{W}_i . Recall that H is transitive on $\{\overline{W}_1, \overline{W}_2, \overline{W}_3\}$. It is easily shown that $U_i \neq U_j$ for all $i \neq j$ as N is faithful on \overline{W} , and that H acts transitively on $\{U_1, U_2, U_3\}$. Noting that $|\overline{W}_i| = |U: U_i|$, we have $|U_i| = 3m$.

Case 1. Let m = 1. Then K = 1, $\Gamma \cong \Sigma$ and $|U_i| = 3$ for $1 \leq i \leq 3$. In particular, each U_i is a 1-dimensional subspace of U, and so we may let $U_i = \langle e_i \rangle$ for a non-zero vector $e_i \in U$. Recall that H is transitive on $\{\langle e_1 \rangle, \langle e_2 \rangle, \langle e_3 \rangle\}$. Then, since H is an irreducible subgroup of GL(3,3), we know that $\{e_1, e_2, e_3\}$ is a basis of U. Identifying W with the set $\{y + \langle e_i \rangle \mid y \in U, 1 \leq i \leq 3\}$ of 27 1-dimensional affine subspaces of U, the action of G on W is given by

$$(\boldsymbol{y} + \langle \boldsymbol{e}_i \rangle)^{\tau_{\boldsymbol{x}}} = \boldsymbol{y} + \boldsymbol{x} + \langle \boldsymbol{e}_i \rangle, \quad (\boldsymbol{y} + \langle \boldsymbol{e}_i \rangle)^h = \boldsymbol{y}^h + \langle \boldsymbol{e}_i^h \rangle, \quad \boldsymbol{x}, \boldsymbol{y} \in U, \quad h \in H_{\mathcal{X}}$$

Take $h_0, h_1, h_2 \in GL(3,3)$ satisfying (3.1). Then $\langle h_1, h_2, h_0 \rangle \cong \mathbb{Z}_2 \times S_4$. Without of generality, we assume that H contains h_0 . Since H fixes $\{\langle e_1 \rangle, \langle e_2 \rangle, \langle e_3 \rangle\}$ set-wise, it is easily shown that $H \leq \langle h_1, h_2, h_0 \rangle$. Analyzing the irreducible subgroups of $\langle h_1, h_2, h_0 \rangle$, we conclude that H is one of the following groups:

 $\langle h_1, h_0 \rangle, \langle h_1 h_1^{h_0}, h_0 \rangle, \langle h_1, h_2, h_0 \rangle, \langle h_1 h_1^{h_0}, h_2, h_0 \rangle, \langle h_1 h_1^{h_0}, h_1 h_1^{h_0} h_1^{h_0^2} h_2, h_0 \rangle.$

Consider the orbits of H on W. If $H = \langle h_1, h_0 \rangle$ or $\langle h_1 h_1^{h_0}, h_0 \rangle$ then H has 4 orbits on W, which are

$$\begin{split} \Delta_0 &:= \{ \langle \boldsymbol{e}_i \rangle \mid 1 \leqslant i \leqslant 3 \}, \\ \Delta_1 &:= \{ \pm \boldsymbol{e}_2 + \langle \boldsymbol{e}_1 \rangle, \pm \boldsymbol{e}_3 + \langle \boldsymbol{e}_2 \rangle, \pm \boldsymbol{e}_1 + \langle \boldsymbol{e}_3 \rangle \}, \\ \Delta_2 &:= \{ \pm \boldsymbol{e}_3 + \langle \boldsymbol{e}_1 \rangle, \pm \boldsymbol{e}_1 + \langle \boldsymbol{e}_2 \rangle, \pm \boldsymbol{e}_2 + \langle \boldsymbol{e}_3 \rangle \}, \\ \Delta_3 &:= \{ \pm \boldsymbol{e}_i \pm \boldsymbol{e}_j + \langle \boldsymbol{e}_k \rangle \mid \{i, j, k\} = \{1, 2, 3\} \}. \end{split}$$

If *H* is one of $\langle h_1, h_2, h_0 \rangle$, $\langle h_1 h_1^{h_0}, h_2, h_0 \rangle$ and $\langle h_1 h_1^{h_0}, h_1 h_1^{h_0} h_1^{h_0^2} h_2, h_0 \rangle$ then *H* has 3 orbits on *W*, which are Δ_0 , Δ_3 and $\Delta_4 := \Delta_1 \cup \Delta_2$. It follows that Γ is isomorphic to one of the semisymmetric graphs given in Example 3.1.

Case 2. Let m = 3. Then $\Gamma \cong \Sigma^{1,3}$. In this case, every U_i is a 2-dimensional subspace of U, and hence for $i \neq j$ the intersection $U_i \cap U_j$ is 1-dimensional. Set $\langle \mathbf{e}_1 \rangle = U_2 \cap U_3$, $\langle \mathbf{e}_2 \rangle = U_1 \cap U_3$ and $\langle \mathbf{e}_3 \rangle = U_1 \cap U_2$. Then $\langle \mathbf{e}_i \rangle \neq \langle \mathbf{e}_j \rangle$ for all $i \neq j$; otherwise, $\langle \mathbf{e}_1 \rangle = \langle \mathbf{e}_2 \rangle = \langle \mathbf{e}_3 \rangle$ is *H*-invariant, a contradiction. Noting that *H* is transitive on $\{U_1, U_2, U_3\}$, it follows that *H* acts transitively on $\{\langle \mathbf{e}_1 \rangle, \langle \mathbf{e}_2 \rangle, \langle \mathbf{e}_3 \rangle\}$. Thus $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a basis of *U*. To determine Σ , we identify \overline{W} with the set $\{\mathbf{y} + U_i \mid \mathbf{y} \in U, 1 \leq i \leq 3\}$. Then $|\overline{W}| = 9$ and the action of G^U on *W* is given by

$$(\boldsymbol{y}+U_i)^{\tau_{\boldsymbol{x}}} = \boldsymbol{y}+\boldsymbol{x}+U_i, \quad (\boldsymbol{y}+U_i)^h = \boldsymbol{y}^h + U_i^h, \quad \boldsymbol{x}, \boldsymbol{y} \in U, \quad h \in H$$

A similar argument as in Case 1 yields that H is one of

$$\langle h_1, h_0 \rangle, \ \langle h_1 h_1^{h_0}, h_0 \rangle, \ \langle h_1, h_2, h_0 \rangle, \ \langle h_1 h_1^{h_0}, h_2, h_0 \rangle, \ \langle h_1 h_1^{h_0}, h_1 h_1^{h_0} h_1^{h_0^2} h_2, h_0 \rangle,$$

where $h_0, h_1, h_2 \in \text{GL}(3,3)$ satisfying (3.1). It is easy to check that H has exactly 2 orbits on \overline{W} , say $\{U_i \mid 1 \leq i \leq 3\}$ and $\{\pm e_i + U_i \mid 1 \leq i \leq 3\}$. It follows that Σ is isomorphic one of the graphs Σ_0 and Σ_1 described as in Example 3.7. This completes the proof.

Next, we deal with the case where G^U is almost simple, and then finish the proof of Theorem 1.1.

Lemma 4.2. Assume that G^U is almost simple. Then Γ is either arc-transitive or isomorphic to one of Tutte's 12-cage **S126**, ∂_3 (**S126**), ∂_5 (**S126**) and the graphs defined in Examples 3.8(1) and 3.10(2).

Proof. Recall that G is faithful on W. We shall discuss in two cases according to whether or not G acts faithfully on U.

Case 1. Assume that G is faithful on U. Then T := soc(G) is listed in Table 1.

Assume that G is described as in lines 13–16 of Table 1. Then G is 2-transitive on U. Moreover, G has no faithful permutation representations of degree less than 9p (refer to [17, p. 175]). Thus G is also 2-transitive on W. It follows that either one of Γ and its complement in $\mathbf{K}_{9p,9p}$ is the point-hyperplane incidence graph of the projective geometry PG(5,2), or Γ is the standard double cover of the complete graph \mathbf{K}_{9p} . Therefore, Γ is arc-transitive.

Assume that G is described as in line 3 of Table 1. Then $T = \operatorname{soc}(G) = A_c$ with $c \in \{10, 18, 19\}$. Note that G has no faithful permutation representations of degree less than c (see [17, p. 175]). Suppose that G is imprimitive on W. Let B be a maximal block of G acting on W. Then |B| = 3 or 9, and G acts faithfully and primitively on $\Omega := \{B^g \mid g \in G\}$. Note that Table 2 gives all primitive permutation group of degree 3p. It follows that $|\Omega| = p$, and hence $T = A_{19}$ and p = 19. Then $T_B \cong A_{18}$. It is easily shown that T is transitive on W. Then for $u \in B$ we have $|T_B : T_u| = 9$; however, A_{18} has no subgroups of index 9, a contradiction. Thus G is primitive on W. Moreover, the actions of G on U and W are equivalent, i.e., G_u and G_w are conjugate in G for $u \in U$ and $w \in W$. Then $\Gamma \cong B(U, \Delta)$ by Lemma 2.3, where Δ is an orbital of G on U. It is easy to check that G has exactly three orbitals on U, which are self-paired. It follows Γ is arc-transitive.

Now let G be one of the groups described as in lines 1, 2, 4-12 of Table 1.

Suppose that the actions of G on U and W are equivalent. Then $\Gamma \cong B(U, \Delta)$ by Lemma 2.3, where Δ is an orbital of G on U. Checking one by one the possible participants of G, the lengths of suborbits $|\Delta(u)|$ (for a given $u \in U$) are listed in Table 3, where the non-self-paired suborbits are marked by *. (Note that, for line 1, the action of G on U is equivalent to that on the edge set of Tutte's 8-cage.)

If Δ is self-paired, then Γ is arc-transitive. Thus we assume that G = PSL(2, p) with p = 17 or 19. It is easily shown that any two paired suborbits of G^U are merged into some self-paired suborbit of PGL(2, p)(acting on U), we know that $\Gamma \cong B(U, \Delta)$ is arc-transitive by Lemma 2.5.

Line	Degree	$T = \operatorname{soc}(G)$	Suborbits $ \Delta(u) $	Remark	references
1	45	PSL(2,9)	4, 8, 16 (two)		
2	153	PSL(2, 17)	$4 (two), 8^* (two)$		
			8 (four), 16 (six),	G = PSL(2, 17)	[27, Subsection 4.4]
			8, 16 (seven), 32	G = PGL(2, 17)	
4	27	PSU(4,2)	10, 16		[29]
5	45	PSU(4,2)	12, 32		[29]
6	63	$\operatorname{Sp}(6,2)$	30, 32		[29]
7	171	PSL(2, 19)	5^* (two), 10 (four),	G = PSL(2, 19)	[27, Subsection 4.4]
			10^* (four), 20 (four)		
	171		10, 20 (eight)	G = PGL(2, 19)	
8	369	$PSL(2, 3^4)$	36, 72, 80, 90 (two)		[27, Subsection 4.1]
9	117	PSL(3,3)	12, 16 (two), 24, 48		[18, Subsection 2.3]
10	657	PSL(3,8)	16, 128, 512		[18, Subsection 2.2]
11	63	PSU(3,3)	6, 16 (two), 24	bases	[29]
			6, 24, 32	non-isotropic points	
12	117	$O^{+}(6,3)$	36, 80		[18, Subsection $2.12]$

Table 3Suborbits of some primitive groups of degree 9p

Suppose that the actions of G on U and W are not equivalent. Check the subgroups of G (see [14, Chapter II, Theorem 8.27] for $\operatorname{soc}(G) = \operatorname{PSL}(2, 3^4)$ and to [5] for others). Then we conclude that every subgroup of index 9p is maximal in G. In particular, G_w is maximal in G, where $w \in W$. Thus G acts primitively on W. Then G has two inequivalent faithful primitive permutation representations. Checking Table 1, we have $T = \operatorname{soc}(G) = O^+(6,3)$ or $\operatorname{PSU}(3,3)$.

Assume that T = PSU(3,3). Let V be a non-degenerate 3-dimensional unitary space over \mathbb{F}_9 . Identify U with the set of 63 non-isotropic 1-dimensional subspaces of V and W with the set of 63 orthogonal frames of V. By Example 3.4 and Lemma 3.5, Γ is isomorphic to one of Tutte's 12-cage and its distance 3 and distance 5 graphs.

Let $T = O^+(6,3)$. Then G = T or $PGO^+(6,3)$. Consider a non-degenerate 6-dimensional orthogonal space V over \mathbb{F}_3 . Identify U and W respectively with two T-orbits on the 234 non-isotropic 1-dimensional subspaces of V:

$$U = \{ \langle \boldsymbol{x}
angle \mid \boldsymbol{x} \in V, Q(\boldsymbol{x}) = 1 \}, \quad W = \{ \langle \boldsymbol{x}
angle \mid \boldsymbol{x} \in V, Q(\boldsymbol{x}) = -1 \},$$

where Q is the associated quadratic form. Write

$$V = \langle \boldsymbol{e}_1, \boldsymbol{f}_1 \rangle \perp \langle \boldsymbol{e}_2, \boldsymbol{f}_2 \rangle \perp \langle \boldsymbol{e}_3, \boldsymbol{f}_3 \rangle,$$

where $\{e_i, f_i\}$ are hyperbolic pairs. Set

$$e = e_1 + f_1, f = e_1 - f_1$$
 and $V_1 = \langle e_2, f_2 \rangle \perp \langle e_3, f_3 \rangle.$

Then $\langle e \rangle \in U$ and $e^{\perp} = \langle f \rangle \perp V_1$. Moreover, $G_{\langle e \rangle} \cong O(5,3)$ or GO(5,3), which has exactly two orbits on the 162 non-isotropic vectors of e^{\perp} :

$$S_1 = \{ \boldsymbol{x} \mid \boldsymbol{x} \in \boldsymbol{e}^{\perp}, Q(\boldsymbol{x}) = -1 \}$$
 and $S_2 = \{ \boldsymbol{x} \mid \boldsymbol{x} \in \boldsymbol{e}^{\perp}, Q(\boldsymbol{x}) = 1 \}.$

An easy calculation implies that

$$S_1 = \{ \boldsymbol{x} \mid \boldsymbol{x} \in V_1, Q(\boldsymbol{x}) = -1 \} \cup \{ \pm \boldsymbol{f} + \boldsymbol{x} \mid \boldsymbol{x} \in V_1, Q(\boldsymbol{x}) = 0 \},$$

$$S_2 = \{ \boldsymbol{x} \mid \boldsymbol{x} \in V_1, Q(\boldsymbol{x}) = 1 \} \cup \{ \pm \boldsymbol{f} + \boldsymbol{x} \mid \boldsymbol{x} \in V_1, Q(\boldsymbol{x}) = -1 \},$$

which have size 90 and 72, respectively. Thus $G_{\langle e \rangle}$ has exactly two orbits on W,

 $\{\langle \boldsymbol{x} \rangle \mid \boldsymbol{x} \in S_1\}$ and $\{\langle \boldsymbol{e} + \boldsymbol{x} \rangle \mid \boldsymbol{x} \in S_2\}$

with size 45 and 72, respectively. By the information about $T = O^+(6,3)$ given in the Atlas [5], we conclude that G has an automorphism σ of order 2 such that $G^{\sigma}_{\langle e \rangle} = G_{\langle f \rangle}$. It follows from Lemma 2.6 that Γ is arc-transitive.

Case 2. Assume that G is unfaithful on U. Then Γ is semisymmetric by Lemma 2.2(3). Let K be the kernel of G acting on U. Set $\Sigma = \Gamma_K$. Then $\Gamma \cong \Sigma^{1,m}$, where m is the length of a K-orbit on W. Thus it suffices to determine m and Σ .

Let \overline{W} be the set of K-orbits on W. Then G^U is faithful on \overline{W} and, since $K \neq 1$ is faithful on W, the size of \overline{W} is a proper divisor of |W| = 9p. This observation helps us to determine G^U as follows.

The groups in lines 13–16 of Table 1 are excluded as each of them has no faithful permutation representations of degree less than 9p (see [17, p. 175]). If G^U is described as in line 3 of Table 1 then a similar argument as in Case 1 implies that $soc(G^U) = \mathbf{A}_{19}$ and $|\overline{W}| = p = 19$. For the groups in lines 1,2 and 4–12 of Table 1, checking the subgroups of G (see [5] and [14, Chapter II, Theorem 8.27]), the only possible case is that $G^U = PSL(2, 19)$ and $G^{\overline{W}}$ is described as in Table 2.

Let $\operatorname{soc}(G^U) = A_{19}$. We may identify \overline{W} with the set of positive integers no more than 19 and U with the set of 2-subsets of \overline{W} . Then m = 9, and $\Sigma = \Gamma_K$ is isomorphic to one of the graphs Λ_1 and Λ_2 defined in Example 3.8. Thus $\Gamma \cong \Lambda_1^{1,9}$ or $\Lambda_2^{1,9}$.

Let $G^U = \text{PSL}(2, 19)$. We may identify \overline{W} and U respectively with the vertex set and edge set of the Perkel graph. Then m = 3, and Σ is isomorphic to one of the six graphs Π_i defined in Example 3.10, and so $\Gamma \cong \Pi_i^{1,3}$, where $1 \leq i \leq 6$. Thus our lemma follows.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 11271267 and 11371204). The authors thank the referees for helpful comments.

References

- 1 Bouwer I Z. An edge but not vertex transitive cubic graphs. Canad Math Bull, 1968, 11: 533–535
- 2 Bouwer I Z. On edge but not vertex transitive graphs. J Combin Theory Ser B, 1972, 12: 32–40
- 3 Brouwer A E, Cohen A M, Neumaier A. Distance-Regular Graphs. Berlin-Heidelberg: Springer-Verlag, 1989
- 4 Conder M, Malnič A, Marušič D, et al. A census of semisymmetric cubic graphs on up to 768 vertices. J Algebraic Combin, 2006, 23: 255–294
- 5 Conway J H, Curtis R T, Norton S P, et al. Atlas of Finite Groups. Oxford: Clarendon Press, 1985
- 6 Dixon J D, Mortimer B. Permutation Groups. New York: Springer-Verlag, 1996
- 7 Du S F, Marušič D. Biprimitive graphs of smallest order. J Algebraic Combin, 1999, 9: 151–156
- 8 Du S F, Xu M Y. A classification of semisymmetric graphs of order 2pq. Comm Algebra, 2000, 28: 2685–2714
- 9 Feng Y Q, Ghasemi M, Wang C Q. Cubic semisymmetric graphs of order 6p³. Discrete Math, 2010, 310: 2345–2355
- 10 Folkman J. Regular line-symmetric graphs. J Combin Theory Ser B, 1967, 3: 215–232
- 11 Giudici M, Li C H, Praeger C E. Analysing finite locally s-arc transitive graphs. Trans Amer Math Soc, 2004, 365: 291–317
- 12 Han H, Lu Z P. Semisymmetric graphs of order $6p^2$ and prime valency. Sci China Math, 2012, 55: 2579–2592
- 13 Han H, Lu Z P. Affine primitive permutation groups and semisymmetric graphs. Electronic J Combin, 2013, 20: Paper 39, 9pp
- 14 Huppert H. Endliche Gruppen I. Berlin: Springer-Verlag, 1967
- 15 Iofinova M E, Ivanov A A. Biprimitive cubic graphs (in Russian). In: Investigation in Algebraic Theory of Combinatorial Objects. Moscow: Institute for System Studies, 1985, 124–134
- 16 Ivanov A V. On edge but not vertex transitive regular graphs. Ann Discrete Math, 1987, 34: 273-286
- 17 Kleidman P, Liebeck M. The Subgroup Structure of the Finite Classical Groups. Cambridge: Cambridge University Press, 1990
- 18 Li H L, Wang J, Wang L Y, et al. Vertex primitive graphs of order containing a large prime factor. Comm Algebra, 1994, 22: 3449–3477
- 19 Liebeck M, Saxl J. Primitive permutation groups containing an element of large prime order. J London Math Soc, 1985, 31: 237-249
- 20 Lu Z P. On the automorphism groups of bi-Cayley graphs. Beijing Daxue Xuebao, 2003, 39: 1–5
- 21 Lu Z P, Wang C Q, Xu M Y. On semisymmetric cubic graphs of order $6p^2$. Sci China Ser A, 2004, 47: 1–17
- 22 Malnič A, Marušič D, Potočnik P, et al. An infinite family of Cubic edge- but not vertex-transitive graphs. Discrete Math, 2002, 280: 133–148
- 23 Malnič A, Marušič D, Wang C Q. Cubic edge-transitive graphs of order 2p³. Discrete Math, 2004, 274: 187–198
- 24 Marušič M, Potočnik P. Semisymmetry of generalized Folkman graphs. European J Combin, 2001, 22: 333–349
- 25 Monson B, Pisanski T, Schulte E, et al. Semisymmetric graphs from polytopes. J Combin Theory Ser A, 2007, 114: 421–435
- 26 Parker C W. Semisymmetric cubic graphs of twice odd order. European J Combin, 2007, 28: 572–591
- 27 Praeger C E, Xu M Y. Symmetric graphs of order a product of two distinct primes. J Combin Theory Ser B, 1993, 59: 245–266
- 28 Wang L, Du S F, Li X W. A class of semisymmetric graphs. Ars Math Contemp, 2014, 7: 40–53
- 29 Wilson R, Walsh P, Tripp J, et al. Atlas of finite group representation. http://brauer.maths.qmul.ac.uk/Atlas/v3
- 30 Wilson S. A worthy family of semisymmetric graphs. Discrete Math, 2003, 271: 283–94