
SCIENCE CHINA
Mathematics

. ARTICLES . June 2015 Vol. 58 No. 6: 1265–1284

doi: 10.1007/s11425-015-4972-x

c© Science China Press and Springer-Verlag Berlin Heidelberg 2015 math.scichina.com link.springer.com

Maximum principle for optimal control of neutral
stochastic functional differential systems

WEI WenNing

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Email: wnwei@fudan.edu.cn

Received October 19, 2012; accepted October 3, 2014; published online January 23, 2015

Abstract This paper is concerned with optimal control of neutral stochastic functional differential equations

(NSFDEs). The Pontryagin maximum principle is proved for optimal control, where the adjoint equation

is a linear neutral backward stochastic functional equation of Volterra type (VNBSFE). The existence and

uniqueness of the solution are proved for the general nonlinear VNBSFEs. Under the convexity assumption of

the Hamiltonian function, a sufficient condition for the optimality is addressed as well.

Keywords neutral stochastic functional differential equation, neutral backward stochastic functional equation

of Volterra type, stochastic optimal control, Pontryagin maximum principle

MSC(2010) 93E20, 60H20

Citation: Wei W N. Maximum principle for optimal control of neutral stochastic functional differential systems.

Sci China Math, 2015, 58: 1265–1284, doi: 10.1007/s11425-015-4972-x

1 Introduction

In this paper, we consider the following stochastic optimal control problem:

min
u∈Uad

E

[ ∫ T

0

l(t,Xt, u(t))dt

]
, (1.1)

subject to the neutral stochastic functional differential equation (NSFDE),{
d[X(t)− g(t,Xt, u(t))] = b(t,Xt, u(t))dt+ σ(t,Xt, u(t))dW (t), t ∈ [0, T ],

X(t) = φ(t), t ∈ [−δ, 0], (1.2)

where δ � 0 is a constant, Xt denotes the restricted path of X on [t − δ, t], u(·) is the control process,

W is a d-dimensional Brownian motion, g, b and σ are suitable functionals on Ω× [0, T ]×C([−δ, 0],Rn)

× R
m, and φ is a continuous function on [−δ, 0]. We establish the Pontryagin maximum principle by

introducing the neutral backward stochastic functional equations of Volterra type (VNBSFEs) as the

adjoint equations.

The difficulty in establishing the maximum principle mainly relies on the construction and resolution

to the adjoint equation. The solution to NSFDE might not be a semi-martingale due to the part g(·, ·)
in the left-hand side. Therefore, the traditional method (see, e.g., [4–6]) for the optimal control problem

of stochastic differential equations (SDEs) would not work directly. To interpret the adjoint equations,



1266 Wei W N Sci China Math June 2015 Vol. 58 No. 6

we derive a class of neutral backward stochastic functional equations of Volterra type (VNBSFEs) which,

generally, is of the form⎧⎪⎨
⎪⎩
Y (t)−G(t, Yt) = Ψ(t) +

∫ T

t

f(t, s, Ys, Z(t, s), Z(s, t; δ))ds−
∫ T

t

Z(t, s)dW (s), t ∈ [0, T ],

Y (t) = ξ(t), t ∈ (T, T + δ],

(1.3)

where Yt represents the restricted path of Y on [t, t + δ], and Z(s, t; δ) denotes the restriction of Z on

[s, s + δ] × [t, t + δ]. To the best of our knowledge, such a VNBSFE (1.3) is new and we prove the

uniqueness and existence of the solution in Section 3. It is worth noting that Wei [34] considered a

special case when Ψ(t) ≡ Ψ and f(t, s, ·, ·, ·) = f(s, ·, ·, 0), proved the existence and uniqueness of the

solution and established a maximum principle for optimal control with state processes being driven by a

special class of NSFDEs. In addition, when G ≡ 0 and δ = 0, VNBSFE (1.3) reads

Y (t) = Ψ(t) +

∫ T

t

f(t, s, Y (s), Z(t, s), Z(s, t))ds−
∫ T

t

Z(t, s)dW (s),

which becomes the so-called backward stochastic Volterra integral equation (BSVIE, see Yong [35]).

With the fixed point method, we first prove the existence and uniqueness of the M -solution (see

Definition 3.1 below) to VNBSFE (1.3). On basis of the well-posedness of the linear VNBSFEs and

the dual analysis between linear NSFDEs and VNBSFEs, the maximum principle is then established

for the optimal control problem (1.1). A sufficient condition for optimal control is also derived under

the convexity assumption of Hamiltonian function. When the state equation is reduced to a stochastic

differential equation (SDE), the maximum principle herein is bridged to the traditional one by Bismut [6].

We compare these two maximum principles and show the explicit relations.

In NSFDE (1.2), the evolution rate of state depends not only on the present state, but also on the

past state and the past evolution rate of the state. This kind of equation models a large class of systems

with after-effect, which is widely used in biology, mechanics, physics, medicine and economics, such as

population sizes, commodity supply fluctuations and so on. See [9, 13, 14, 20–22] and reference therein.

Many research works on NSFDEs focus on the well-posedness and stability of the solutions, see [17, 23,

26,30,32,33] and reference therein. While the optimal control problem of deterministic neutral functional

differential equation has been extensively discussed (see [3, 15, 18, 19, 31]), the stochastic case has just

caused attentions recently (see [2, 25, 27]). A particular stochastic optimal control problem with time

delay was studied by Øksendal et al. [11, 27] where g(·, X ·, u(·)) ≡ γ(·) and as a nondecreasing process,

γ(·) is modeled as operations to change the fish population in agriculture or the value of an investment in

finance. As an infinite dimensional counterpart of (1.1), the linear quadratic stochastic optimal control

problem of neutral type was considered by Liu [25], where the diffusion coefficient σ(t,Xt, u(t)) is a

constant and is not controlled. Ahmed [2] considered the optimal control problems driven by a class of

second order stochastic neutral differential equations on Banach spaces with the drifts depending linearly

on the control variable and the diffusion term uncontrolled σ(t,Xt, u(t)) ≡ D(t) (see [2, (14) and (24)]).

It is worth noting that the (controlled) neutral stochastic differential equations of Ahmed [2] can be seen

as Hilbert space-valued SDEs, which are essentially different from NSFDE (1.2) and systems by Liu [25].

We also note that in [7,8,16,36], the maximum principle was established for controlled systems driven by

stochastic functional differential equations which are not of neutral type. In this work, we shall extend

the previous theory to study the stochastic optimal control problem for the general neutral stochastic

functional differential equations (1.2), which seems to be new and is quite important from both theoretic

and practical viewpoints.

The rest of this paper is organized as follows. In Section 2, we give some notations and introduce

the optimal control problem. In Section 3, we are concerned with the well-posedness of VNBSFE (1.3)

and prove the existence and uniqueness of the M -solution. Section 4 is devoted to the duality of linear

NSFDEs and VNBSFEs. In Section 5, we establish the maximum principle for controlled NSFDE (1.2)

with Lagrange type cost functional. Finally, in Section 6, two related topics are discussed: We first
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consider the particular case where the state equation is reduced to an SDE associated with g ≡ 0 and

δ = 0 in (1.2), and compare our maximum principle herein with the traditional one of [6], and address

the explicit relations between them; in the second subsection, we give a sufficient condition for optimal

control when Hamiltonian function is convex, and a simple linear quadratic (LQ) problem is studied as

an application.

2 Preliminaries

In this section, we shall give some notation and introduce the stochastic optimal control problem with

the state process driven by NSFDEs.

Throughout this work, δ � 0 and T > 0 are two universal constants. Let (Ω,F ,F, P ) be a complete

filtered probability space on which a d-dimensional Brownian motion W = {W (t) : t ∈ [0, T + δ]} is

defined. {Ft : t ∈ [0, T + δ]} is the natural filtration of W augmented by all P -null sets in F . Define

Ft := F0 for any t ∈ [−δ, 0]. Then F := {Ft : t ∈ [−δ, T + δ]} is a filtration satisfying the usual

conditions.

2.1 Notation

For each vector or matrix A, denote by A′ the transpose of A. Denote by H some Euclidean space, such

as Rn,Rn×d, etc., and by | · | and 〈·, ·〉 the norm and the inner product in H , respectively. In particular,

for any A,B ∈ R
n×d, 〈A,B〉 = tr(A′B). Define

L
2(Ω;H) := {η : Ω → H, FT -measurable | E[|η|2] < +∞}.

For r, s, τ, ν ∈ [−δ, T + δ], r � s and τ � ν, define

L 2
F
(r, s;H) :=

{
θ : [r, s]× Ω → H, F-adapted

∣∣∣∣ E
∫ s

r

|θ(u)|2du < +∞
}
,

S 2
F
([r, s];H) :=

{
θ : [r, s]× Ω → H, F-adapted, path-continuous

∣∣∣ E sup
r�u�s

|θ(u)|2 < +∞
}
,

L
2(r, s;L2(Ω;H)) :=

{
ψ : [r, s]× Ω → H, B([r, s]) × FT -measurable

∣∣∣∣ E
∫ s

r

|ψ(u)|2du < +∞
}
,

L
2(r, s;L2(τ, ν;H)) :=

{
v : [r, s]×[τ, ν] → H, jointly-measurable

∣∣∣∣
∫ s

r

∫ ν

τ

|v(t, s)|2dsdt < +∞
}
,

L
2(r, s;L 2

F
(τ, ν;H)) :=

{
ϑ : [r, s]× [τ, ν]× Ω → H is B([r, s] × [τ, ν])× FT -measurable,

ϑ(t, ·) is F-adapted for all t ∈ [r, s]

∣∣∣∣ E
∫ s

r

∫ ν

τ

|ϑ(t, s)|2dsdt < +∞
}
.

For simplicity, denote

H 2(r, s) := L 2
F
(r, s;Rn)× L

2(r, s;L 2
F
(r, s;Rn×d)),

equipped with norm

‖(θ, ϑ)‖2H 2(r,s) = E

[ ∫ s

r

|θ(u)|2du+

∫ s

r

∫ s

r

|ϑ(ν, u)|2dudν
]
.

Finally, for simplicity, we set

Es[·] = E[· |Fs], s ∈ [0, T ].
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2.2 The optimal control problem

Consider the following controlled NSFDE:{
d[X(t)− g(t,Xt)] = b(t,Xt, u(t))dt+ σ(t,Xt, u(t))dW (t), t ∈ [0, T ],

X(t) = φ(t), t ∈ [−δ, 0], (2.1)

where Xt denotes the restricted path of X on [t− δ, t], φ ∈ S 2
F
([−δ, 0];Rn),

g : [0, T ]× Ω× C([−δ, 0];Rn) → R
n,

b : [0, T ]× Ω× C([−δ, 0];Rn)× R
m → R

n,

σ : [0, T ]× Ω× C([−δ, 0];Rn)× R
m → R

n×d,

are jointly measurable, and g(·, ψ), b(·, ψ, u) and σ(·, ψ, u) are F-progressively measurable for any

(ψ, u) ∈ C([−δ, 0];Rn)× R
m.

For simplicity, we only discuss the case where g does not depend on the control u. For the case where g

depends on u, see Remark 5.1 below.

Let U ⊆ R
m be a nonempty convex set. Denote the admissible control set by

Uad :=

{
u(·) : [0, T ]× Ω → U, F-progressively measurable

∣∣∣∣ E
∫ T

0

|u(t)|2dt < +∞
}
.

For any u(·) ∈ Uad, we consider the following cost functional:

J(u(·)) = E

[ ∫ T

0

l(t,Xt, u(t))dt

]
,

where

l : [0, T ]× Ω× C([−δ, 0];Rn)× U → R

is jointly measurable, and l(·, ψ, u) is F-progressively measurable for any (ψ, u) ∈ C([−δ, 0];Rn) × U .

∀u(·) ∈ Uad, denote by X(·) the solution to NSFDE (2.1) associated with u(·), then (X(·), u(·)) is called
the admissible pair.

Our optimal control problem is to find a control ū(·) ∈ Uad, such that

J(ū(·)) = inf
u(·)∈Uad

J(u(·)).

Denote by X̄(·) the solution to NSFDE (2.1) associated with control ū(·). Then (X̄(·), ū(·)) is called the

optimal pair.

We introduce the following standing assumptions on the random coefficients.

(A1) For every (ω, t) ∈ Ω× [0, T ], g, b, σ, l are continuously Fréchet differentiable with respect to x, and

b, σ, l are continuously differentiable with respect to u, and further, the derivatives bx, bu, σx, σu and gx
are all bounded. The derivatives lx and lu satisfy the linear growth, i.e., there exists some positive

constant L such that for every (ω, t) ∈ Ω× [0, T ],

|lx(t, ψ, u)|+ |lu(t, ψ, u)| � L
(
1 + sup

s∈[−δ,0]

|ψ(s)|+ |u|
)
, ∀ (ψ, u) ∈ ([−δ, 0];Rn)× U.

(A2) b(·, 0, 0), σ(·, 0, 0), l(·, 0, 0) ∈ L 2
F
(0, T ;H), H = R

n,Rn×d,R, respectively. For every ω ∈ Ω, both g

and gx are continuous in t, and there is a constant 0 < κ < 1, such that ‖gx‖ � κ.

Remark 2.1. Here, κ < 1 is assumed to avoid the degenerate case like g(t,Xt) ≡ X(t) and to ensure

the existence and uniqueness of the solution to NSFDE (2.1) (see, e.g., [26]).
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By Assumption (A1), for each (ω, t, u) ∈ Ω× [0, T ]× U , (g, b, σ, l)(ω, t, ·, u) can be seen as some finite

dimensional space (denoted by H) valued functional of the form

M : C([−δ, 0];Rn) → H,

and the continuous Fréchet derivative Mx exists and is continuous. In fact, the Fréchet derivative Mx(·)
is a linear operator from C([−δ, 0];Rn) to H . By the Riesz representation theorem, we have the following

lemma.

Lemma 2.1. For each (ω, t,X, u) ∈ Ω× [0, T ]×C([−δ, 0];Rn)×U , there exist G̃(t,X, ·), B̃(t,X, u, ·),
ς̃i(t,X, u, ·) ∈ V0([−δ, 0];Rn×n) (i = 1, ·, d) and L̃(t,X, u, ·) ∈ V0([−δ, 0];R1×n), such that for all ψ

∈ C([−δ, 0];Rn),

gx(t,X)ψ =

∫ 0

−δ

G̃(t,X, dr)ψ(r), bx(t,X, u)ψ =

∫ 0

−δ

B̃(t,X, u, dr)ψ(r),

σi
x(t,X, u)ψ =

∫ 0

−δ

ς̃i(t,X, u, dr)ψ(r), lx(t,X, u)ψ =

∫ 0

−δ

L̃(t,X, u, dr)ψ(r),

where ω is omitted and

V0([−δ, 0];H) := {f : [−δ, 0] → H is bounded variational and left continuous on [−δ, 0)}.

Remark 2.2. Through standard arguments (for example, see [21, 26]), we conclude that under As-

sumptions (A1) and (A2), for any φ(·) ∈ S 2
F
([−δ, 0];Rn) and u(·) ∈ Uad, NSFDE (2.1) admits a unique

solution X(·) ∈ S 2
F
([−δ, T ];Rn). Thus the cost function J(u(·)) is well-defined. We note that each

element h ∈ S 2
F
([−δ, T ];Rn) can be seen as a C([−δ, 0];Rn)-valued process {h(t+ ·); t ∈ [0, T ]}. On the

other hand, if (φ, b, σ) ≡ 0 and g(t, ·) ≡ |Mt|α with α ∈ (0, 1/2), M0 = 0 and Mt being a continuous

martingale, then (2.1) admits a unique solution Xt = |Mt|α which is not a semimartingale unless M ≡ 0

(see [12, p. 7] and [29, Theorem 52]). Therefore, our controlled state processes can be beyond the scope

of semimartingales and is essentially different from that of [2].

On the basis of Assumptions (A1) and (A2), we assume further

(A3) There exist probability measures λi (i = 0, 1, 2, 3) on [−δ, 0], and continuous functions Ḡ(t,X, r),

B̄(t,X, u, r), ς̄(t,X, u, r), L̄(t,X, u, r), such that, for all ψ ∈ C([−δ, 0];Rn) and every (ω, t,X, u) ∈ Ω

× [0, T ]× C([−δ, 0];Rn)× U ,

gx(t,X)ψ =

∫ 0

−δ

Ḡ(t,X, r)ψ(r)λ0(dr), bx(t,X, u)ψ =

∫ 0

−δ

B̄(t,X, u, r)ψ(r)λ1(dr),

σx(t,X, u)ψ =

∫ 0

−δ

ς̄(t,X, u, r)ψ(r)λ2(dr), lx(t,X, u)ψ =

∫ 0

−δ

L̄(t,X, u, r)ψ(r)λ3(dr).

Remark 2.3. In Assumption (A3), we ensure the existence of both the processes (Ḡ, B̄, ς̄, L̄) and the

probability measures on ([−δ, 0], B([−δ, 0])), such that the vector valued measures admit Radon-Nikodym

derivatives with respect to certain probability measures. This assumption will help us to give an explicit

dual analysis between NSFDEs and VNBSFEs in Sections 4 and 5 below. In this work, (A3) is necessary

to derive directly the adjoint system (4.3). One particular case for Assumption (A3) is of the linear form,

i.e., in NSFDE (2.1),

g(t,Xt) = ĝ

(
t,

∫ 0

−δ

α(t, r)X(t − r)λ0(dr)

)
,

and b, σ, l possess similar forms.

Remark 2.4. LetM be a continuous martingale with 0 < |Mt| < 1/2. For δ > 0 and α ∈ (0, 1/2), put

g(t,X) = |Mt|α
∫ 0

−δ

X(r) δ−1dr + |Mt|α, b(t,X, u) = |Mt|α
∫ 0

−δ

X(r) δ−1dr + c1u(t),
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σ(t,X, u) = |Mt|α
∫ 0

−δ

X(r) δ−1dr + c2u(t), l(t,X, u) = |Mt|α
∫ 0

−δ

X(r) δ−1dr + c3u(t)

with c1, c2 and c3 being positive constants. This is a simple but nontrivial example for the optimal control

problem above under Assumptions (A1)–(A3).

3 Well-posedness of VNBSFEs

This section is concerned with the well-posedness of neutral backward stochastic functional equations of

Volterra type (VNBSFEs), which, as the adjoint equations, arise naturally from the Pontryagin maximum

principle for the optimal control problem of NSFDEs (see Proposition 4.1 and Theorem 5.2 below).

Inspired by Yong [35] on backward stochastic Volterra integral equations (BSVIEs), we shall give the

definition of M -solution to VNBSFEs and prove the existence and uniqueness of the M -solutions to

NSFDEs. In a similar way to Remark 2.2, it follows that the solutions to VNBSFEs can be beyond

the scope of semimartingales. Moreover, VNBSFE is new and thus, our study herein is of independent

interests.

Consider the following VNBSFE:⎧⎪⎨
⎪⎩
Y (t)−G(t, Yt) = Ψ(t) +

∫ T

t

f(t, s, Ys, Z(t, s), Z(s, t; δ))ds+

∫ T

t

Z(t, s)dW (s), t ∈ [0, T ],

Y (t) = ξ(t), t ∈ (T, T + δ],

(3.1)

where Yt denotes the restriction of Y on [t, t + δ], Z(·, ·) is an unknown function defined on [0, T

+ δ]× [0, T + δ], Z(t, s) denotes the value of Z at (t, s), and Z(s, t; δ) denotes the restriction of Z(·, ·) on
[s, s+ δ]× [t, t+ δ].

For any 0 � R � S � T + δ, define

Δ[R,S] := {(t, s) ∈ [R,S]× [R,S] | R � t � s � S},
Δc[R,S] := [R,S]× [R,S] \Δ[R,S].

For simplicity, denote Δ := Δ[0, T ], Δc := Δc[0, T ], Δδ := Δ[0, T + δ] and Δc
δ := Δc[0, T + δ].

(G, f) in (3.1) is called the generator of VNBSFEs. For (G, f), there exist two functionals J and F ,

• J : [0, T ]×Ω×L
2(0, δ;Rn) → R

n is jointly measurable, and J(·, φ) is F-progressively measurable for

any φ ∈ L
2(0, δ;Rn);

• F : Δ×Ω×L
2(0, δ;Rn)×R

n×d×L
2(0, δ;L2(0, δ;Rn×d)) → R

n is jointly measurable, and F (t, ·, φ, z, ϕ)
is F-progressively measurable for all (t, φ, z, ϕ) fixed in corresponding space, and (J, F ) satisfies:

(H1) There are κ ∈ [0, 1) and �0 being a probability measure on [0, δ], such that for any φ, φ̄

∈ L
2(0, δ;Rn),

|J(t, φ) − J(t, φ̄)|2 � κ

∫ δ

0

|φ(u)− φ̄(u)|2�0(du). (3.2)

(H2) There are L > 0, �1 and �2 being probability measures on [0, δ], such that for all (φ, z, ϕ), (φ̄, z̄, ϕ̄)

in corresponding space and (t, s) ∈ Δ,

|F (t, s, φ, z, ϕ)− F (t, s, φ̄, z̄, ϕ̄)|

� L

[∫ δ

0

|φ(u) − φ̄(u)|�1(du) + |w − w̄|+
∫ δ

0

|ϕ(u, u)− ϕ̄(u, u)|�2(du)
]
. (3.3)

(H3) (G, f) are the functionals defined

G(t, yt) = Et[J(t, yt)], f(t, s, ys, z(t, s), z(s, t; δ)) = Es[F (t, s, ys, z(t, s), z(s, t; δ))],

for all (y(·), z(·)) ∈ H 2(0, T + δ), (t, s) ∈ Δ, |G(·, 0)| ∈ L 2
F
(0, T ;Rn), f0(·, ·) := f(·, ·, 0, 0, 0, 0) ∈ L

2(0, T ;

L 2
F
(0, T ;Rn)).
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Definition 3.1. A pair of process (Y, Z) ∈ H 2(0, T + δ) is called an M -solution to VNBSFE (3.1),

if (3.1) holds in Itô’s sense for almost all t ∈ [0, T + δ],

Y (t) = E[Y (t)] +

∫ t

0

Z(t, s)dW (s), a.e. t ∈ [0, T + δ], (3.4)

and Z(t, s) = 0 on (t, s) ∈ Δδ \Δ.

Remark 3.1. In VNBSFE (3.1), we only set the terminal condition Y (t) = ξ(t) on (T, T + δ]. The

value of Y at T is determined via

Y (T ) +G(T, YT ) = Ψ(T ).

Compared with the classical BSDE theory (see, e.g., [28]), Z(t, s) of Definition 3.1 is a two-parameter

process with (t, s) ∈ [0, T +δ]× [0, T +δ] and its value is separately determined on different time domains.

For (t, s) ∈ Δc
δ, Z(t, s) is defined by (3.4). For (t, s) ∈ Δ, Z(t, s) is endogenously determined together

with Yt such that (3.1) holds in Itô’s sense. Since f depends on Z(t, s) on Δ without anticipation, the

equality of (3.1) is independent of the value of Z on Δδ \ Δ, i.e., any value of Z on Δδ \ Δ equalizes

VNBSFE (3.1). For the uniqueness of solution, we define Z(t, s) = 0 in Definition 3.1 on Δδ \Δ.

For all τ ∈ [0, T + δ], define a subspace of H 2(0, τ),

M 2(0, τ) :=

{
(θ, ϑ) ∈ H 2(0, τ)

∣∣∣∣ θ(t) = E[θ(t)] +

∫ t

0

ϑ(t, s)dW (s), ∀ t ∈ [0, τ ]

}
equipped with norm

‖(θ, ϑ)‖2M2(0,τ) = E

[∫ τ

0

|θ(u)|2du +

∫ τ

0

∫ τ

s

|ϑ(s, u)|2duds
]
.

Then M 2(0, τ) is a closed subspace of H 2(0, τ) under the norm ‖ · ‖H 2(0,τ). In fact, it is also a

complete space under ‖ · ‖M2(0,τ), because ‖ · ‖H 2(0,τ) is equivalent to ‖ · ‖M2(0,τ) in M 2(0, τ). For

all (θ, ϑ) ∈ M 2(0, τ),

E

[ ∫ t

0

|ϑ(t, s)|2ds
]
= E[|θ(t)− E[θ(t)]|2] � 2E[|θ(t)|2].

Thus,

‖(θ, ϑ)‖2H 2(0,τ) = E

[ ∫ τ

0

|θ(t)|2dt+
∫ τ

0

∫ τ

0

|ϑ(t, s)|2dsdt
]

� 2E

[ ∫ τ

0

|θ(t)|2dt+
∫ τ

0

∫ τ

t

|ϑ(t, s)|2dsdt
]
= 2‖(θ, ϑ)‖2M2(0,τ)

� 2E

[ ∫ τ

0

|θ(t)|2dt+
∫ τ

0

∫ τ

0

|ϑ(t, s)|2dsdt
]
= 2‖(θ, ϑ)‖2H 2(0,τ).

Therefore, if (Y, Z) ∈ H 2(0, T + δ) is the M -solution to VNBSFE (3.1), it means (Y, Z) ∈ M 2(0, T + δ)

and Z(t, s) = 0 on Δδ \Δ.

Before showing the existence and uniqueness of M -solution to VNBSFE (3.1), we discuss some back-

ward equations. First, consider the following trivial backward SDE (BSDE),

Y (t) = ζ +

∫ T

t

f(s)ds−
∫ T

t

Z(s)dW (s), t ∈ [0, T ], (3.5)

where f ∈ L 2
F
(0, T ;Rn) and ζ ∈ L

2(Ω;Rn). The proof of the following Lemma 3.1 is standard (see

[10, 28]).

Lemma 3.1. BSDE (3.5) admits a unique pair of solution (Y, Z) ∈ S 2
F
([0, T ];Rn)× L 2

F
(0, T ;Rn×d),

and for any t ∈ [0, T ],

eβt|Y (t)|2 + E

[ ∫ T

t

eβs|Z(s)|2ds
∣∣∣∣ Ft

]
� E

[
2eβT |ζ|2 + α

∫ T

t

eβs|f(s)|2ds
∣∣∣∣ Ft

]
, (3.6)

where α and β are any two positive constants satisfying β � 2
α .
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Consider the following backward integral equation,

ρ(t, s) = Φ(t) +

∫ T

s

h(t, u)du−
∫ T

s

ν(t, u)dWu, t ∈ [0, T ], (3.7)

where Φ ∈ L
2(0, T ;L2(Ω;Rn)), and h ∈ L

2(0, T ;L 2
F
(0, T ;Rn)). Fixed t ∈ [0, T ], (3.7) is a BSDE with

generator h(t, ·) ∈ L 2
F
(0, T ;Rn) and terminal condition Φ(t) ∈ L

2(Ω;Rn). Thus (3.7) is a family of

BSDEs parameterized by t ∈ [0, T ]. Let s = t. Denote y(t) := ρ(t, t) and z(t, u) := ν(t, u) when u � t.

Then

y(t) = Φ(t) +

∫ T

t

h(t, u)du−
∫ T

t

z(t, u)dWu, t ∈ [0, T ]. (3.8)

It is not a BSDE, but a backward stochastic Volterra integral equation (BSVIE), which was studied

in [24, 35].

Remark 3.2. In (3.8), the equality is independent of z on Δc. Then any value of z on Δc equal-

izes (3.8), such as z(t, u) = ν(t, u) or z(t, u) = 0, (t, u) ∈ Δc. Therefore, the uniqueness of so-

lution does not hold. However, in the definition of M -solution, the value of z on Δc is settled by

y(t) = E[y(t)] +
∫ t

0
z(t, s)dW (s). This determines the uniqueness.

Directly from [35, Theorem 3.7] and estimate (3.6) of Lemma 3.1, we conclude the following lemma.

Lemma 3.2. BSVIE (3.8) admits a unique pair of solution (y(·), z(·, ·)) ∈ M 2(0, T ). In addition,

E

[
eβt|y(t)|2 +

∫ T

t

eβs|z(t, s)|2ds
]
� E

[
eβT |Φ(t)|2 + α

∫ T

t

eβs|h(t, s)|2ds
]
, (3.9)

where α > 0 and β � 2
α are any two positive constants.

Next theorem is devoted to the existence and uniqueness of the M -solution to VNBSFE (3.1).

Theorem 3.3. Suppose that (G, f) satisfies (H1)–(H3). Then for any Ψ(·) ∈ L
2(0, T ;L2(Ω;Rn)) and

ξ(·) ∈ L 2
F
(T, T + δ;Rn), VNBSFE (3.1) admits a unique pair of M -solution (Y, Z) ∈ M 2(0, T + δ).

Moreover, the following estimate holds:

E

[ ∫ T+δ

0

|Y (t)|2dt+
∫ T+δ

0

∫ T+δ

t

|Z(t, s)|2dsdt
]

� CE

[∫ T

0

|Ψ(t)|2dt+
∫ T+δ

T

|ξ(t)|2dt+
∫ T

0

|G(t, 0)|2dt+
∫ T

0

∫ T

t

|f0(t, s)|2dsdt
]
. (3.10)

Proof. Step 1. Define a subset of M 2(0, T + δ),

M 2
ξ (0, T ) := {(θ, ϑ) ∈ M 2(0, T + δ) | θ(t) = ξ(t), ∀ t ∈ (T, T + δ], and ϑ(t, s) = 0, ∀ (t, s) ∈ Δδ \Δ}

equipped with the norm

‖(θ, ϑ)‖2 = E

[ ∫ T

0

eβt|θ(t)|2dt+
∫ T

0

∫ T

t

eβs|ϑ(t, s)|2dsdt
]
,

where β is a positive constant waiting to be determined later. It is obvious that M 2
ξ (0, T ) is a closed

subset of M 2(0, T + δ).

For each (y(·), z(·, ·)) ∈ M 2
ξ (0, T ), consider⎧⎪⎨

⎪⎩
Y (t)−G(t, yt) = Ψ(t) +

∫ T

t

f(t, s, ys, z(t, s), z(s, t; δ))ds−
∫ T

t

Z(t, s)dWs, t ∈ [0, T ],

Y (t) = ξ(t), t ∈ (T, T + δ].

(3.11)

Denote Ỹ (t) := Y (t)−G(t, yt), then

Ỹ (t) = Ψ(t) +

∫ T

t

f(t, s, ys, z(t, s), z(s, t; δ))ds−
∫ T

t

Z(t, s)dWs, t ∈ [0, T ]. (3.12)
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Since (y, z) ∈ M 2
ξ (0, T ), f(t, s, ys, z(t, s), z(s, t; δ)) ∈ L

2(0, T ;L 2
F
(0, T ;Rn×m)) due to (H1) and (H2).

By Lemma 3.2, (3.12) admits a unique pair of solution (Ỹ , Z) ∈ M 2(0, T ). Define

Y (t) =

{
Ỹ (t)−G(t, yt), t ∈ [0, T ],

ξ(t), t ∈ (T, T + δ].

Then Y ∈ L 2
F
(0, T + δ;Rn). Define Z(t, s) = 0 on Δδ \Δ and modify the value of Z on Δδ such that

Y (t) = E[Y (t)] +

∫ t

0

Z(t, s)dWs, ∀ t ∈ [0, T + δ].

Then (Y, Z) ∈ M 2
ξ (0, T ) is an M -solution to (3.11).

Step 2. Consider the mapping Γ : (y(·), z(·, ·)) �→ (Y (·), Z(·, ·)) with (Y, Z) being defined associated

with (y, z) in Step 1. We shall prove that Γ is a contraction mapping on Banach space M 2
ξ (0, T ).

Take another pair (ȳ(·), z̄(·, ·)) ∈ M 2
ξ (0, T ), and denote (Ȳ (·), Z̄(·, ·)) ∈ M 2

ξ (0, T ) as the M -solution

to (3.11) with (y(·), z(·)) replaced by (ȳ(·), z̄(·)). Define ΔY (t) := Y (t)−Ȳ (t), ΔZ(t, s) := Z(t, s)−Z̄(t, s),
Δy(t) := y(t)− ȳ(t) and Δz(t) := z(t, s)− z̄(t, s). Then

ΔY (t)− [G(t, yt)−G(t, ȳt)]

=

∫ T

t

[f(t, s, ys, z(t, s), z(s, t; δ))− f(t, s, ȳs, z̄(t, s), z̄(s, t; δ))]ds+

∫ T

t

ΔZ(t, s)dW (s).

We shall denote by C a constant which may vary from line to line. In view of (3.9) in Lemma 3.2 and

choosing β � 2
α , we have

E

[
eβt|ΔY (t)− [G(t, yt)−G(t, ȳt)]|2 +

∫ T

t

eβs|ΔZ(t, s)|2ds
]

� αE

[ ∫ T

t

eβs|f(t, s, ys, z(t, s), z(s, t; δ))− f(t, s, ȳs, z̄(t, s), z̄(s, t; δ))|2ds
]

� αCE

{∫ T

t

eβs
[ ∫ δ

0

|Δy(s+ u)|2�1(du) + |Δz(t, s)|2 +
∫ δ

0

|Δz(s+u, t+u)|2�2(du)
]
ds

}
. (3.13)

Integrating (3.13) in t from 0 to T , and denoting ΔG(t) := G(t, yt)−G(t, ȳt), we have

E

[∫ T

0

eβt|ΔY (t)−ΔG(t)|2dt+
∫ T

0

∫ T

t

eβs|ΔZ(t, s)|2dsdt
]

� αCE

{∫ T

0

∫ T

t

eβs
[∫ δ

0

|Δy(s+u)|2�1(du) + |Δz(t, s)|2 +
∫ δ

0

|Δz(s+u, t+u)|2�2(du)
]
dsdt

}

� αCE

[ ∫ T

0

eβs|Δy(s)|2ds+
∫ T

0

∫ T

t

eβs(|Δz(t, s)|2 + |Δz(s, t)|2)dsdt
]

� αC E

[ ∫ T

0

eβs|Δy(s)|2ds+
∫ T

0

∫ T

t

eβs|Δz(t, s)|2dsdt
]
. (3.14)

The last inequality is due to the fact

E

[ ∫ T

0

∫ T

t

eβs|Δz(s, t)|2dsdt
]
= E

[ ∫ T

0

eβt
∫ t

0

|Δz(t, s)|2dsdt
]
� E

[ ∫ T

0

eβt|Δy(t)|2dt
]
.

Since for all γ ∈ (0, 1) and a, b ∈ R
n, |a− b|2 � (1 − γ)|a|2 − ( 1γ − 1)|b|2, then

|ΔY (t)−ΔG(t)|2 � (1− γ)|ΔY (t)|2 −
(
1

γ
− 1

)
|ΔG(t)|2.
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(3.14) is reduced to

E

[
(1− γ)

∫ T

0

eβt|ΔY (t)|2dt+
∫ T

0

∫ T

t

eβs|ΔZ(t, s)|2dsdt
]

�
(
1

γ
− 1

)
E

[∫ T

0

eβt|ΔG(t)|2dt
]
+ αC E

[∫ T

0

eβt|Δy(t)|2dt+
∫ T

0

∫ T

t

eβs|Δz(t, s)|2dsdt
]

�
[(

1

γ
−1

)
κ+αC

]
E

[ ∫ T

0

eβt|Δy(t)|2ds
]
+ αC E

[ ∫ T

0

∫ T

t

eβs|Δz(t, s)|2dsdt
]
.

To prove Γ is a contraction mapping, it suffices to show: For all κ ∈ (0, 1), there is γ ∈ (0, 1) such that(
1

γ
− 1

)
κ+ αC < 1− γ and αC < 1,

which hold true by choosing α to be small sufficiently. Therefore, Γ admits a unique fixed point (Y, Z)

∈ M 2
ξ (0, T ), which proves to be the unique M -solution to VNBSFE (3.1).

Step 3. Similar to the proof in Step 2, we have for all α ∈ (0, 1) and M > 0,

E

[
(1− γ)

∫ T

0

eβt|Y (t)|2dt+
∫ T

0

∫ T

t

eβs|Z(t, s)|2dsdt
]

� E

[
eβT

∫ T

0

|Ψ(t)|2dt+
(
1

γ
− 1

)∫ T

0

eβt|G(t, Yt)|2dt+ αC

∫ T

0

∫ T

t

eβs|f0(t, s)|2dsdt
]

+ αC E

[ ∫ T+δ

0

eβt|Y (t)|2dt+
∫ T

0

∫ T

t

eβs|Z(t, s)|2dsdt
]

� E

[
eβT

∫ T

0

|Ψ(t)|2dt+
(
1

γ
−1

)
(1+M)

∫ T

0

eβt|G(t, 0)|2dt+ αC

∫ T

0

∫ T

t

eβs|f0(t, s)|2dsdt

+

[(
1

γ
−1

)(
1+

1

M

)
κ+αC

]∫ T

0

eβt|Y (t)|2dt+ αC

∫ T

0

∫ T

t

eβs|Z(t, s)|2dsdt
]
.

It is easy to prove that there are γ ∈ (0, 1) and M > 0, such that the following two inequalities hold for

any κ ∈ (0, 1) by choosing α small sufficiently,(
1

γ
− 1

)(
1 +

1

M

)
κ+ αC < 1− γ and αC < 1.

Then the estimate (3.10) holds.

4 Dual analysis

In this section, we are concerned with the dual analysis between linear NSFDEs and VNBSFEs which is

crucial in the Pontryagin maximum principle. To comprehend further the roles of the duality, the readers

can skip to the next section. In fact, the dual analysis herein can be extended to the infinite dimensional

cases without any essential difficulties.

Denote (X̄(·), ū(·)) ∈ S 2
F
([−δ, T ];Rn)×Uad as an optimal pair, and v ∈ L 2

F
(0, T ;Rm). Let χ(·) be the

solution to the following linear NSFDE:{
d[χ(t)− ḡx(t)χ

t] = [b̄x(t)χ
t + b̄u(t)v(t)]dt + [σ̄x(t)χ

t + σ̄u(t)v(t)]dW (t), t ∈ [0, T ],

χ(t) = 0, t ∈ [−δ, 0]. (4.1)

We note that, linear NSFDE of the form (4.1) comes from the first order variation of the controlled

NSFDE (1.2) (see also Lemma 5.1 below). Consider the linear functional

I(χ(·)) = E

∫ T

0

l̄x(t)χ
tdt.
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Here, ḡx(t) := gx(t, X̄
t), (b̄x, b̄u, σ̄x, σ̄u, l̄x)(t) := (bx, bu, σx, σu, lx)(t, X̄

t, ū(t)).

Under Assumptions (A1)–(A3), (4.1) is well-posed and we have

χ(t)−
∫ 0

−δ

Ḡ(t, r)χ(t+ r)λ0(dr) =

∫ t

0

[∫ 0

−δ

B̄(s, r)χ(s+ r)λ1(dr) + b̄u(s)v(s)

]
ds

+

∫ t

0

[ ∫ 0

−δ

ς̄(s, r)χ(s+ r)λ2(dr) + σ̄u(s)v(s)

]
dW (s), (4.2)

and

I(χ(·)) = E

∫ T

0

∫ 0

−δ

L̄(t, r)χ(t + r)λ3(dr)dt,

where, for simplicity, we set

(B̄, ς̄, L̄)(t, r) := (B̄, ς̄ , L̄)(t, X̄t, ū(t), r) and Ḡ(t, r) := Ḡ(t, X̄t, r).

Denote

ρ(t) :=

∫ t

0

b̄u(s)v(s)ds+

∫ t

0

σ̄u(s)v(s)dW (s).

We have the following duality:

Proposition 4.1. Let χ ∈ S 2
F
([−δ, T ];Rn) be the solution to NSFDE (4.2), and (Y, Z) ∈ M 2(0, T+δ)

be the M -solution to the following linear VNBSFE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y (t)− Et

[∫ 0

−δ

Ḡ′(t−r, r)Y (t−r)λ0(dr)
]

=

∫ 0

−δ

L̄(t− r, r)λ3(dr) +

∫ T

t

Es

[ ∫ 0

−δ

B̄′(t−r, r)Y (s−r)λ1(dr)

+

∫ 0

−δ

〈ς̄(t−r, r), Z(s−r, t−r)〉λ2(dr)
]
ds−

∫ T

t

Z(t, s)dW (s), t ∈ [0, T ],

Y (t) = 0, t ∈ (T, T + δ],

(4.3)

where we set (Ḡ, B̄, ς̄, L̄)(t, ·) = 0, ∀ t ∈ (T, T + δ]. Then the following relation holds:

I(χ(·)) = E

[∫ T

0

l̄x(t)χ
tdt

]
= E

[∫ T

0

〈ρ(t), Y (t)〉dt
]
.

Note that the well-posedness of VNBSFE (4.3) is ensured by Theorem 3.3.

Proof. In view of (4.2), we have

ρ(t) = χ(t)−
∫ 0

−δ

Ḡ(t, r)χ(t+r)λ0(dr) −
∫ t

0

∫ 0

−δ

B̄(s, r)χ(s+r)λ1(dr)ds

−
∫ t

0

∫ 0

−δ

ς̄(s, r)χ(s+r)λ2(dr)dW (s).

Since Y ∈ L 2
F
(0, T ;Rn), we get

E

[ ∫ T

0

〈Y (t), ρ(t)〉dt
]
=E

[ ∫ T

0

〈Y (t), χ(t)〉dt
]
− E

[∫ T

0

〈
Y (t),

∫ 0

−δ

Ḡ(t, r)χ(t+r)λ0(dr)

〉
dt

]

− E

[ ∫ T

0

〈
Y (t),

∫ t

0

∫ 0

−δ

B̄(s, r)χ(s+ r)λ1(dr)ds

〉
dt

]

− E

[ ∫ T

0

〈
Y (t),

∫ t

0

∫ 0

−δ

ς̄(s, r)χ(s+r)λ2(dr)dW (s)

〉
dt

]

=E

[ ∫ T

0

〈Y (t), χ(t)〉dt
]
− I1 − I2 − I3.
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By Fubini’s theorem, we have

I1 =

∫ 0

−δ

∫ T

0

〈Y (t), Ḡ(t, r)χ(t + r)〉dt λ0(dr)

=

∫ 0

−δ

∫ T+r

r

〈Ḡ′(t− r, r)Y (t− r), χ(t)〉dt λ0(dr)

(Noting that χ(t)1[−δ,0](t) = 0 and Y (t)1(T,T+δ](t) = 0)

=

∫ 0

−δ

∫ T

0

〈Ḡ′(t− r, r)Y (t− r), χ(t)〉dt λ0(dr)

=

∫ T

0

〈∫ 0

−δ

Ḡ′(t− r, r)Y (t− r)λ0(dr), χ(t)

〉
dt (4.4)

and

I2 =

∫ 0

−δ

∫ T

0

〈
B̄′(t, r)

∫ T

t

Y (s)ds, χ(t+ r)

〉
dt λ1(dr)

=

∫ 0

−δ

∫ T+r

r

〈
B̄′(t− r, r)

∫ T

t

Y (s− r)ds, χ(t)

〉
dt λ1(dr)

=

∫ T

0

〈∫ T

t

∫ 0

−δ

B̄′(t− r, r)Y (s− r)λ1(dr)ds, χ(t)

〉
dt. (4.5)

In view of (Y, Z) ∈ M 2(0, T + δ), and Y (t) = E[Y (t)] +
∫ t

0 Z(t, s)dW (s), we further have

I3 =

∫ T

0

〈∫ t

0

Z(t, s)dW (s),

∫ t

0

∫ 0

−δ

ς̄(s, r)χ(s + r)λ2(dr)dW (s)

〉
dt

=

∫ T

0

∫ t

0

〈
Z(t, s),

∫ 0

−δ

ς̄(s, r)χ(s + r)λ2(dr)

〉
dsdt

=

∫ 0

−δ

∫ T

0

〈∫ T

t

〈ς̄(t, r), Z(s, t)〉ds, χ(t+ r)

〉
dt λ2(dr)

=

∫ 0

−δ

∫ T+r

r

〈∫ T

t

〈ς̄(t− r, r), Z(s− r, t− r)〉ds, χ(t)
〉
dt λ2(dr)

=

∫ T

0

〈∫ T

t

∫ 0

−δ

〈ς̄(t− r, r), Z(s− r, t− r)〉λ2(dr)ds, χ(t)
〉
dt. (4.6)

Combining (4.4)–(4.6), we obtain

E

[∫ T

0

〈Y (t), ρ(t)〉dt
]
=E

[ ∫ T

0

〈∫ 0

−δ

L̄(t−r, r)λ3(dr) −
∫ T

t

Z(t, s)dW (s), χ(t)

〉
dt

]

=E

[ ∫ T

0

〈∫ 0

−δ

L̄(t−r, r)λ3(dr), χ(t)
〉
dt

]

=E

[ ∫ 0

−δ

∫ T−r

−r

〈L̄(t, r), χ(t+ r)〉dt λ3(dr)
]

=E

[ ∫ T

0

∫ 0

−δ

L̄(t, r)χ(t + r)λ3(dr)dt

]
= I(χ(·)).

5 Maximum principle

In this section, we shall establish the Pontryagin maximum principle for the optimal control problem in

Section 2.
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Suppose that (X̄(·), ū(·)) is an optimal pair. For any u(·) ∈ Uad, denote v(·) := u(·)− ū(·) and

uε(·) := ū(·) + εv(·) ∈ Uad, ∀ ε ∈ [0, 1].

Denote by Xε(·) the solution to NSFDE (2.1) associated with control uε.

Before constructing the maximum principle, we need the following estimate of the first order expansion.

Lemma 5.1. Suppose that assumptions (A1) and (A2) hold. Then we have the following first order

expansion:

Xε(t) = X̄(t) + εχ(t) +Rε(t), t ∈ [0, T ]

with

lim
ε→0+

1

ε2
E
[

sup
0�t�T

|Rε(t)|2
]
= 0.

Here, χ satisfies the following linear NSFDE:{
d[χ(t)− ḡx(t)χ

t] = [b̄x(t)χ
t + b̄u(t)v(t)]dt + [σ̄x(t)χ

t + σ̄u(t)v(t)]dW (t), t ∈ [0, T ],

χ(t) = 0, t ∈ [−δ, 0] (5.1)

with ḡx(t) := gx(t, X̄
t) and (b̄x, b̄u, σ̄x, σ̄u)(t) := (bx, bu, σx, σu)(t, X̄

t, ū(t)).

Proof. Setting zε(t) :=
Xε(t)−X̄(t)

ε , ∀ t ∈ [−δ, T ], we have Rε(t) = ε(zε − χ)(t) and

zε(t)−
∫ 1

0

gx(t, X̄
s+θεztε) z

t
εdθ

=

∫ t

0

[ ∫ 1

0

bx(s, X̄
s+θεztε, uε(s))z

s
εdθ +

∫ 1

0

bu(s, X̄
s, ū(s)+εθv̄(s)) v̄(s)dθ

]
ds

+

∫ t

0

[∫ 1

0

σx(s, X̄
s+θεztε, uε(s)) z

s
εdθ +

∫ 1

0

σu(s, X̄
s, ū(s)+εθv̄(s)) v̄(s)dθ

]
dW (s).

Thus, by Assumptions (A1) and (A2),

(1− κ)E sup
s∈[−δ,t]

|zε(s)|2

� E

[
sup

s∈[−δ,t]

∣∣∣∣zε(t)−
∫ 1

0

gx(t, X̄
s+θεztε) z

t
εdθ

∣∣∣∣
2]

= E

[
sup

s∈[−δ,t]

∣∣∣∣
∫ t

0

[ ∫ 1

0

bx(s, X̄
s+θεztε, uε(s))z

s
εdθ +

∫ 1

0

bu(s, X̄
s, ū(s)+εθv̄(s)) v̄(s)dθ

]
ds

+

∫ t

0

[∫ 1

0

σx(s, X̄
s+θεztε, uε(s)) z

s
εdθ +

∫ 1

0

σu(s, X̄
s, ū(s)+εθv̄(s)) v̄(s)dθ

]
dW (s)

∣∣∣∣
2]

� C E

[ ∫ t

0

sup
r∈[−δ,s]

|zε(r)|2ds+
∫ t

0

|v̄(s)|2ds
]
, (5.2)

which, by Gronwall’s inequality, implies

E sup
s∈[−δ,T ]

|zε(s)|2 � CE

∫ T

0

|v̄(s)|2ds. (5.3)

Define

yε =
Rε

ε
, gεx(s) =

∫ 1

0

gx(t, X̄
s+θεztε)dθ − gx(t, X̄

s)

and

(bεx, σ
ε
x)(s) =

∫ 1

0

(bx, σx)(s, X̄
s+θεztε, uε(s))dθ − (b̄x, σ̄x)(s),
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(bεu, σ
ε
u)(s) =

∫ 1

0

(bu, σu)(s, X̄
s, ū(s)+εθv̄(s))dθ − (b̄u, σ̄u)(s).

It follows that

yε(t)− ḡx y
t
ε − gεx(t)z

t
ε

=

∫ t

0

[b̄xy
s
ε + bεx(s)z

s
ε + bεu(s)v̄(s)]ds+

∫ t

0

[σ̄xy
s
ε + σε

x(s)z
s
ε + σε

u(s)v̄(s)]dW (s).

In a similar way to (5.2) and (5.3), we obtain

E sup
s∈[−δ,T ]

|yε(s)|2

� CE

[ ∫ T

0

(|bεx(s)zsε |2 + |σε
x(s)z

s
ε |2 + |bεu(s)v̄(s)|2 + |σε

u(s)v̄(s)|2)ds+ sup
s∈[0,T ]

|gεx(s)zsε |2
]

→ 0, as ε→ 0+ (by Lebesgue domination convergence theorem).

Hence,

lim
ε→0+

1

ε2
E
[

sup
0�t�T

|Rε(t)|2
]
= 0.

We complete the proof.

Now, it is the stage to establish the Pontryagin maximum principle. Define the Hamiltonian function

H(t, ψ, u;P,Q) = l(t, ψ, u) + b′(t, ψ, u)Et

[∫ T

t

P (s)ds

]
+

〈
σ(t, ψ, u),

∫ T

t

Q(s, t)ds

〉
, (5.4)

ψ ∈ C([−δ, 0],Rn), (P,Q) ∈ H 2(0, T ). For simplicity, denote

(B̄, ς̄ , L̄)(t, r) := (B̄, ς̄, L̄)(t, X̄t, ū(t), r), Ḡ(t, r) := Ḡ(t, X̄t, r), ∀ (t, r) ∈ [0, T ]× [−δ, 0],

and set (Ḡ, B̄, ς̄, L̄)(t, ·) = 0, ∀ t ∈ (T, T + δ]. Then we have the following theorem.

Theorem 5.2. Suppose that assumptions (A1)–(A3) hold. Let (X̄(·), ū(·)) be an optimal pair. Then

there exists (Y, Z) ∈ M 2(0, T + δ) being the M -solution to the following linear VNBSFE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y (t)− Et

[∫ 0

−δ

Ḡ′(t−r, r)Y (t−r)λ0(dr)
]

=

∫ 0

−δ

L̄(t− r, r)λ3(dr) +

∫ T

t

Es

[ ∫ 0

−δ

B̄′(t−r, r)Y (s−r)λ1(dr)

+

∫ 0

−δ

〈ς̄(t−r, r), Z(s−r, t−r)〉λ2(dr)
]
ds−

∫ T

t

Z(t, s)dW (s), t ∈ [0, T ],

Y (t) = 0, t ∈ (T, T + δ],

(5.5)

such that the following maximum condition holds:

〈Hu(t, X̄
t, ū(t);Y, Z), u− ū(t)〉 � 0,

i.e.,

〈
l̄u(t) + b̄′u(t)Et

[∫ T

t

Y (s)ds

]
+

∫ T

t

〈σ̄u(t), Z(s, t)〉ds, u− ū(t)

〉
� 0, dP (ω)⊗ dt-a.e., ∀u ∈ U,

where l̄u(t) := l(t, X̄t, ū(t)).
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Proof. In view of assumptions (A1)–(A3) and Theorem 3.3, VNBSFE (5.5) admits a unique pair of

M -solution (Y, Z) ∈ M 2(0, T + δ). Then,

0 � J(uε(·))− J(ū(·))
ε

= E

∫ T

0

l(t,Xt
ε, uε(t))− l(t, X̄t, ū(t))

ε
dt

=E

∫ T

0

∫ 1

0

lu(t,X
t
ε, ū(t)+θεv(t))v(t)dθdt + E

∫ T

0

∫ 1

0

lx(t, X̄
t+θ(Xt

ε−X̄t), ū(t))
Xt

ε−X̄t

ε
dθdt

=E

∫ T

0

[l̄u(t)v(t) + l̄x(t)χ
t]dt+ E

∫ T

0

∫ 1

0

[lu(t,X
t
ε, ū(t)+θεv(t))− l̄u(t)]v(t)dθdt

+ E

∫ T

0

[ ∫ 1

0

lx(t, X̄
t+θ(Xt

ε−X̄t), ū(t))
Xt

ε − X̄t

ε
dθ − l̄x(t)χ

t

]
dt,

which, together with Lemma 5.1, implies

E

∫ T

0

[l̄u(t)v(t) + l̄x(t)χ
t]dt � 0.

Applying assumption (A3) and Proposition 4.1, we obtain

0 �E

∫ T

0

[ ∫ 0

−δ

L̄(t, r)χ(t + r)λ3(dr) + 〈l̄u(t), v(t)〉
]
dt

=E

∫ T

0

[〈Y (t), ρ(t)〉 + 〈l̄u(t), v(t)〉]dt

=E

[ ∫ T

0

〈l̄u(t), v(t)〉dt+
∫ T

0

〈
Y (t),

∫ t

0

b̄u(s)v(s)ds

〉
dt

]

+ E

∫ T

0

〈
Y (t),

∫ t

0

σ̄u(s)v(s)dW (s)

〉
dt

=E

∫ T

0

〈
l̄u(t) + b̄′u(t)

∫ T

t

Y (s)ds+

∫ T

t

〈σ̄′
u(t), Z(s, t)〉ds, u(t)−ū(t)

〉
dt.

The last equality is due to

E

∫ T

0

〈
Y (t),

∫ t

0

σ̄u(s)v(s)dW (s)

〉
dt

= E

∫ T

0

〈∫ t

0

Z(t, s)dW (s),

∫ t

0

σ̄u(s)v(s)dW (s)

〉
dt

= E

∫ T

0

∫ t

0

〈Z(t, s), σ̄u(s)v(s)〉dsdt = E

∫ T

0

〈∫ T

t

〈σ̄u(t), Z(s, t)〉ds, v(t)
〉
dt.

Therefore, for all u ∈ U , there holds〈
l̄u(t) + b̄′u(t)Et

[∫ T

t

Y (s)ds

]
+

∫ T

t

〈σ̄u(t), Z(s, t)〉ds, u− ū(t)

〉
� 0, dP (ω)⊗ dt-a.e..

We complete the proof.

Remark 5.1. In this work, for simplicity we consider the stochastic optimal control problem (1.1) with

the cost functional of Lagrange type and the controlled NSFDE with uncontrolled g. As a matter of fact,

without any significant mathematical challenges, we can extend the discussions in Theorem 5.2 to the case

with controlled g and general cost functionals, while the arguments will become cumbersome. Indeed, in

a similar way to [35, Section 5], we are allowed to extend our results herein without essential difficulties

to the optimal control problems with the general cost functional of Bolza type (see [35, (5.2)]). If g

depends on u, assume that g is continuously differentiable in u with bounded and continuous derivative,

and ḡu(t) := gu(t, X̄
t, ū(t)) is continuously in t. Define the admissible control set as follow:

Uad := {u : [0, T ]× Ω → U, path-continuous and bounded, F-progressively measurable},



1280 Wei W N Sci China Math June 2015 Vol. 58 No. 6

where the path-continuity and boundedness are assumed for simplicity. The maximum principle can be

derived similarly, i.e., for all u ∈ U and almost all t ∈ [0, T ],〈
ḡ′u(t)Y (t) + l̄u(t) + b̄′u(t)Et

[ ∫ T

t

Y (s)ds

]
+

∫ T

t

〈σ̄u(t), Z(s, t)〉ds, u− ū(t)

〉
� 0,

and 〈
ḡ′u(0)E

∫ T

0

Y (t)dt, u(0)− ū(0)

〉
� 0.

Remark 5.2. In Theorem 5.2, we assume the differentiability of the coefficients g, b, σ and l, and the

control takes values in a convex set U ⊂ R
m. By using the spike variational arguments, we may allow the

control to be valued in a non-convex set U ⊂ R
m and it is possible to use the relaxed controls avoiding

differentiability assumption with respect to the control variable (see [1, Theorem 8.3.5 and Corollary 8.3.7,

p. 276]). For the general cases with general cost functional and non-convex control set, the optimal control

problem in this paper should be discussed further in the future.

6 Two related topics

6.1 Connections with Bismut’s method for a particular example

Maximum principle for controlled stochastic differential equations (SDEs) was first discussed by Bis-

mut [4–6], in which the adjoint equation is a linear backward stochastic differential equations (BSDEs).

We compare the maximum principle herein with that in [6], and show the explicit relations between them.

When g ≡ 0 and δ = 0, the controlled NSFDE (1.2) is reduced to the following controlled SDE,{
dX(t) = b(t,X(t), u(t))dt+ σ(t,X(t), u(t))dW (t), t ∈ [0, T ],

X(0) = x,

and the cost functional is reduced to

J(u(·)) = E

[ ∫ T

0

l(t,X(t), u(t))dt

]
.

Suppose that (A1) and (A2) still hold. Assumption (A3) holds naturally in this case. The admissible

control set and the optimal control problem are the same as in Section 2.

As a corollary of Theorem 5.2, we have the maximum principle.

Corollary 6.1. Let (X̄(·), ū(·)) be the optimal pair. Then there is (Y, Z) ∈ M 2(0, T ) being the unique

M -solution to the following equation:

Y (t) = l̄x(t) +

∫ T

t

(b̄′x(t)Y (s) + 〈σ̄x(t), Z(s, t)〉)ds+
∫ T

t

Z(t, s)dW (s), (6.1)

such that the following maximum condition holds:〈
l̄u(t) + b̄′u(t)Et

[∫ T

t

Y (s)ds

]
+

∫ T

t

〈σ̄u(t), Z(s, t)〉ds, u− ū(t)

〉
� 0, ∀u ∈ U, dP (ω)⊗ dt-a.e..

Recall the maximum principle in Bismut [6].

Proposition 6.2. Let (X̄(·), ū(·)) be the optimal pair. Then there exists (P,Q) ∈ S 2
F
([0, T ];Rn)

× L 2
F
(0, T ;Rn×d) being the unique solution to the following BSDE:

P (t) =

∫ T

t

[b̄′x(s)P (s) + 〈σ̄x(s), Q(s)〉+ l̄′x(s)]ds−
∫ T

t

Q(s)dW (s), (6.2)

such that

〈l̄u(t) + b̄′u(t)P (t) + 〈σ̄u(t), Q(t)〉, u− ū(t)〉 � 0, ∀u ∈ U, dP (ω)⊗ dt-a.e..
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In fact, the two maximum principles possess the following relationship.

Theorem 6.3. Let (Y, Z) and (P,Q) be as above, then

P (t) = Et

[ ∫ T

t

Y (s)ds

]
, and Q(t) =

∫ T

t

Z(s, t)ds.

Moreover, the maximum principles in Corollary 6.1 and Proposition 6.2 are equivalent.

Proof. Similar to the proof in Theorem 5.2, we have Xε(·)−X̄(·)
ε converges to χ(·) in S 2

F
([0, T ];Rn),

where χ(·) satisfies

χ(t) =

∫ t

0

[b̄x(s)χ(s) + b̄u(s)v̄(s)]ds+

∫ t

0

[σ̄x(s)χ(s) + σ̄u(s)v̄(s)]dW (s).

Denote

ρ(t) :=

∫ t

0

b̄u(s)v̄(s)ds+

∫ t

0

σ̄u(s)v̄(s)dW (s).

The duality between linear SDE and BSDE (6.2) shows

E

∫ T

0

〈χ(t), l̄x(t)〉dt = E

∫ T

0

[〈P (t), b̄u(t)v̄(t)〉 + 〈Q(t), σ̄u(t)v̄(t)〉]dt, (6.3)

and the duality between linear SDE and VNBSFE (6.1) shows

E

∫ T

0

〈χ(t), l̄x(t)〉dt = E

∫ T

0

〈ρ(t), Y (t)〉dt

= E

∫ T

0

〈∫ t

0

b̄u(s)v̄(s)ds, Y (t)

〉
dt+ E

∫ T

0

〈∫ t

0

σ̄u(s)v̄(s)dW (s), Y (t)

〉
dt

= E

∫ T

0

〈
b̄u(t)v̄(t),

∫ T

t

Y (s)ds

〉
dt+ E

∫ T

0

〈
σ̄u(t)v̄(t),

∫ T

t

Z(s, t)ds

〉
dt. (6.4)

Comparing (6.3) and (6.4), we prove the conclusion.

Remark 6.1. From the foregoing discussion, the method in this paper dealing with the optimal control

problem of NSFDEs is consistent with the traditional one dealing with SDEs. However, when the state

equation of the optimal problem behaves more generally than semi-martingales, the traditional one is no

longer applicable and for control problem (1.1) driven by NSFDEs (1.2), we have to appeal to the dual

analysis of Section 4.

6.2 A sufficient condition and the application to an LQ problem

First, we have the following sufficient condition for optimal control with convex Hamiltonian functions.

Theorem 6.4. Under Assumptions (A1)–(A3), suppose that H(t, ·, ·;P,Q) is convex and that g(t, ·)
is a linear functional. Let (X̄(·), ū(·)) be an admissible pair. If for any u ∈ U ,

H(t, X̄ t, u;Y, Z) � H(t, X̄t, ū(t);Y, Z), dP (ω)⊗ dt-a.e.,

where (Y, Z) is the M -solution to VNBSFE (5.5) associated with(X̄(·), ū(·)), then (X̄(·), ū(·)) is an op-

timal pair.

Sketched proof. In view of the convexity of U , we have for any u ∈ U ,

H(t, X̄ t, ū(t) + λ(u − ū(t));Y, Z) � H(t, X̄t, ū(t);Y, Z).

Then

lim
λ↓0

H(t, X̄t, ū(t) + λ(u − ū(t));Y, Z)−H(t, X̄t, ū(t);Y, Z)

λ
� 0,
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i.e., 〈
l̄u(t) + b̄′u(t)Et

[∫ T

t

Y (s)ds

]
+

∫ T

t

〈σ̄u(t), Z(s, t)〉ds, u− ū(t)

〉
� 0, dP (ω)⊗ dt-a.e.. (6.5)

For any admissible pair (X(·), u(·)), by convexity of H , we have

H(t,X t, u(t);Y, Z) � H(t, X̄t, ū(t);Y, Z) + H̄x(t)(X
t − X̄t) + H̄u(t)(u(t)− ū(t)), (6.6)

where H̄x(t) = Hx(t, X̄
t, ū(t);Y, Z), H̄u(t) = Hu(t, X̄

t, ū(t);Y, Z).

Note that, by (6.5) we have H̄u(t)(u(t)− ū(t)) � 0. Integrating (6.6) on both sides, we obtain

E

∫ T

0

l(t,Xt, u(t)) � E

∫ T

0

l(t, X̄t, ū(t)) + Γ1 + Γ2, (6.7)

where

Γ1 = E

[∫ T

0

(b′(t, X̄t, ū(t))−b′(t,Xt, u(t)))Et

[∫ T

t

Y (s)ds

]
dt

]

+ E

[∫ T

0

〈
σ(t, X̄t, ū(t))− σ(t,Xt, u(t)),

∫ T

t

Z(s, t)ds

〉
dt

]
,

Γ2 = E

∫ T

0

{
l̄x(t) + b̄′x(t)Et

[∫ T

t

Y (s)ds

]
+

〈
σ̄x(t),

∫ T

t

Z(s, t)ds

〉}
(Xt − X̄t)dt.

From the relation

Y (t) = E[Y (t)] +

∫ t

0

Z(t, s)dW (s),

it follows that

Γ1 = −E
∫ T

0

〈Y (t), X(t)−X̄(t)−[g(t,Xt)−g(t, X̄t)]〉dt.

Directly substituting VNBSFE (5.5) into Γ2, we get

Γ2 = E

∫ T

0

〈
Y (t), X(t)−X̄(t)−

∫ 0

−δ

Ḡ(t, r)[X(t+r)−X̄(t+r)]dr

〉
dt.

Since g(t, ·) is linear, in view of Lemma 2.1 and Assumption (A3), we have Γ1 + Γ2 = 0, which together

with ralation (6.7) implies the optimality of (X̄(·), ū(·)).
An immediate application of the sufficient condition of Theorem 6.4 and the maximum principle of

Theorem 5.2 is the following LQ problem.

Example 6.5. Consider the following LQ problem:

min
u(·)∈Uad

E

∫ T

0

(Q|u(t)|2 + S|X(t)|2)dt

subject to⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d

[
X(t)− A

δ

∫ 0

−δ

X(t+ r) dr −Mt

]

=

(
B1

δ

∫ 0

−δ

X(t+ r)dr +D1u(t)

)
dt+

(
B2

δ

∫ 0

−δ

X(t+ r)dr +D2u(t)

)
dW (t), t ∈ [0, T ],

X(t) = φ(t), t ∈ [−δ, 0].

(6.8)

For simplicity we take the dimension d = m = n = 1 and the admissible control set U = R. Here,

we assume that Q ∈ (0,∞), S ∈ [0,∞], A ∈ [0, 1), B1, B2, D1, D2 ∈ R, and (Mt)t∈[0,T ] is a bounded
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continuous process unnecessarily being a semimartingale. From Theorems 5.2 and 6.4, it follows that

there exists a unique optimal pair (X̄(·), ū(·)) with

ū(t) = −(2Q)
−1

(
D1Et

[∫ T

t

Y (s)ds

]
+D2

∫ T

t

Z(s, t)ds

)
, dP (ω)⊗ dt-a.e.,

X̄ being the solution to NSFDE (6.8) associated with ū and (Y, Z) satisfying VNBSFE:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Y (t)− AEt

[
1

δ

∫ 0

−δ

Y (t−r)dr
]
=

∫ T

t

Es

[
1

δ

∫ 0

−δ

B1Y (s−r)dr + 1

δ

∫ 0

−δ

B2Z(s−r, t−r)dr
]
ds

−
∫ T

t

Z(t, s)dW (s) + 2SX̄(t), t ∈ [0, T ],

Y (t) = 0, t ∈ (T, T + δ].

(6.9)
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