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Abstract We explore recurrence properties arising from dynamical approach to the van der Waerden theorem

and similar combinatorial problems. We describe relations between these properties and study their consequences

for dynamics. In particular, we present a measure-theoretical analog of a result of Glasner on multi-transitivity

of topologically weakly mixing minimal maps. We also obtain a dynamical proof of the existence of a C-set with

zero Banach density.
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1 Introduction

We study multiple-recurrence properties of dynamical systems on compact metric spaces. We use topo-

logical dynamics to characterize selected classes of subsets of N (e.g., IP-sets, C-sets, etc.) and to gain a

better understanding of some classes of transitive systems. The idea goes back to the work of Furstenberg

in the 1970s.

Our starting point is the following result published in [35].

Van der Waerden theorem. If N is partitioned into finitely many subsets, then one of these sets

contains arithmetic progressions of arbitrary finite length.

In 1978, Furstenberg and Weiss [14] obtained a dynamical proof of the van der Waerden theorem.

They proved the topological multiple recurrence theorem and showed that it is equivalent to the van der

Waerden theorem. “Equivalent” means here that any of these results may be proved by assuming the

other is true.

Topological multiple recurrence theorem. Let (X,T ) be a compact dynamical system. Then there

exists a point x ∈ X such that for any d ∈ N there is a strictly increasing sequence {nk}∞k=1 in N with

T inkx→ x as k →∞ for every i = 1, 2, . . . , d.
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We call a point x ∈ X fulfilling the conclusion of the topological multiple recurrence theorem a multi-

recurrent point. In Section 3, we show that the set of all multi-recurrent points is a Gδ subset of X ; it

is a residual set if (X,T ) is minimal; and when (X,T ) is distal or uniformly rigid, then every point is

multi-recurrent. We also provide an example of a substitution subshift with minimal points which are not

multi-recurrent. Then we prove that multi-recurrent points can be lifted through a distal extension but

this does not need to hold for a proximal extension (we strongly believe that it cannot be lifted by weakly

mixing extension, but we do not have an example at this moment). Using ergodic theory, we show that

the collection of multi-recurrent points which return to any of their neighborhoods with positive upper

density has full measure for every invariant measure. If the invariant measure is weakly mixing and fully

supported then for almost every x ∈ X and every d � 1 the diagonal d-tuple (x, x, . . . , x) has a dense

orbit under the action of T × T 2 × · · · × T d, which can be viewed as a measure-theoretical version of a

result of Glasner on topological weakly mixing minimal maps [15].

Let us mention another equivalent version of the topological multiple recurrence theorem which shows

the relationship between these results and Furstenberg’s multiple recurrence theorem for measure pre-

serving systems (the so-called “ergodic Szemerédi theorem”). It also comes from [14, Theorem 1.5]. For

a short and elegant proof see [16, Theorem 1.56].

Topological multiple recurrence theorem II. If a dynamical system (X,T ) is minimal, then for

any d ∈ N and any non-empty open subset U of X, there exists a positive integer n � 1 with

U ∩ T−nU ∩ T−2nU ∩ · · · ∩ T−dnU �= ∅.

Inspired by this result, we introduce a new class of dynamical systems, which we call van der Waerden

systems. That is system (X,T ) such that for every non-empty open subset U of X and for every d ∈ N,

there exists an n ∈ N such that

U ∩ T−nU ∩ T−2nU ∩ · · · ∩ T−dnU �= ∅

and we will study their basic properties in Section 4. By the second variant of topological multiple

recurrence theorem every minimal system is a van der Waerden system and it is also not hard to see that

(X,T ) is a van der Waerden system if and only if its multi-recurrent points are dense in X .

A generalization of van der Waerden theorem is Szemerédi’s theorem [34], proved in 1975.

Szemerédi theorem. If F ⊂ N has positive upper density, then it contains arithmetic progressions

of arbitrary finite length.

Two years later, in 1977, Furstenberg [11] presented a new proof of Szemerédi theorem using dynamical

systems approach. Furstenberg’s proof is based on the equivalence of Szemerédi theorem and the following

multiple recurrence theorem.

Multiple recurrence theorem. If (X,B, μ) is a probability space and T is a measure preserving

transformation of (X,B, μ), then for any d ∈ N and any set A ∈ B with μ(A) > 0, there exists an integer

n � 1 with

μ(A ∩ T−nA ∩ · · · ∩ T−2nA ∩ · · · ∩ T−dnA) > 0.

It follows that every compact dynamical system with a fully supported invariant measure is a van der

Waerden system. We examine whether the converse is true. It turns out that there exists a topologically

strongly mixing system which is a van der Waerden system, but the only invariant measure is a point

mass on a fixed point (see Remark 5.6). We also provide an example of a strongly mixing system which

is not a van der Waerden system.

While we were preparing this paper we found a work of Host et al. [20] which studies closely related

problems, but from a different point of view which emphasizes the connection between recurrence prop-

erties and associated sets of (multiple) recurrence (see [20, Definitions 2.1 and 2.9]). Here we focus on

recurrence of a single point in a concrete dynamical system, and this complements the approach of [20].

Our study of van der Waerden systems leads naturally to AP-recurrent points. We say that a point x

is AP-recurrent if for every neighborhood U of x the set of return times of x to U contains arithmetic
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progressions of arbitrary finite length. It is clear that every multi-recurrent point is AP-recurrent, but
the converse is not true. It is a consequence of the following characterization: a point is AP-recurrent if
and only if the closure of its orbit is a van der Waerden system. A nice property of AP-recurrent points
is that they can be lifted through factor maps.

In [12], Furstenberg defined central subsets of N in terms of some notions from topological dynamics.

He showed that any finite partition of N must contain a central set in one of its cells and proved the

following central sets theorem [12, Proposition 8.21].

Central sets theorem. Let C be a central set of N. Let d ∈ N and for each i ∈ {1, 2, . . . , d}, let

{p(i)n }∞n=1 be a sequence in Z. Then there exist a sequence {an}∞n=1 in N and a sequence {Hn}∞n=1 of finite

subsets of N such that

1. for every n ∈ N, maxHn < minHn+1 and

2. for every finite subset F of N and every i ∈ {1, 2, . . . , d},
∑
n∈F

(
an +

∑
j∈Hn

p
(i)
j

)
∈ C.

Central sets theorem has very strong combinatorial consequences, such as Rado’s theorem [32]. De

et al. [8] proved a stronger version of the central sets theorem valid for an arbitrary semigroup S and

proposed to call a subset of S a C-set if it satisfies the conclusion of this version of the central sets

theorem. A dynamical characterization of C-sets was obtained in [27] by introducing a class of dynamical

systems satisfying the multiple IP-recurrence property. Note that C-sets considered in [27] are subsets

of Z, however Hindman [19] pointed out to the second author of this paper that a similar characterization

also holds for C-sets in N
1) . A dynamical characterization of C-sets in an arbitrary semigroup S is

provided in [24] .

We study the multiple IP-recurrence property in Section 5. We show that every transitive system

with the multiple IP-recurrence property is either equicontinuous or sensitive. This result generalizes

theorems of Akin et al. [1] and Glasner and Weiss [17]. We also provide an example of a strongly mixing

system which is a van der Waerden system but does not have the multiple IP-recurrence property. We

characterize bounded density shifts with the multiple IP-recurrent property. Combining this result with

the dynamical characterization of C-sets we obtain a dynamical proof of the main result of [19]: there is

a C-set in N with zero Banach density.

As seen above, the notion of a multi-recurrent point, which is parallel to the notion of a recurrent point

provides some insight to the theory of dynamical systems. In the same spirit, we define the notion of

a multi-non-wandering point parallel to the classical notion of a non-wandering point. In Section 6, we

study the relations between multi-non-wandering points and the sets containing arithmetic progressions

of arbitrary finite length. In particular, we provide a link between multi-non-wandering sets and AP-
recurrence.

By what we said above, it is easy to see that a transitive van der Waerden system can be viewed

as a generalization of an E-system (transitive system with a full supported invariant measure). In a

transitive van der Waerden system each transitive point is AP-recurrent, and the set of multi-recurrent

points is dense. Note that for an E-system, the return time set of a transitive point to its neighborhood

has positive upper Banach density and at the same time, the set of recurrent points with positive lower

density of return time sets is dense. For an M -system (transitive system with a dense set of minimal

points), this can be explained using piecewise syndetic sets and syndetic sets.

2 Preliminaries

In this section, we present basic notation, definitions and results.

1) See also the review of [27] by Hindman in MathSciNet, MR2890544.
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2.1 Subsets of positive integers

Denote by N (Z+ and Z, respectively) the set of all positive integers (non-negative integers and integers,

respectively).

A Furstenberg family or simply a family on N is any collection F of subsets of N which is hereditary

upwards, i.e., if A ∈ F and A ⊂ B ⊂ N then B ∈ F . A dual family for F , denoted by F∗, consists of sets
that meet every element of F , i.e., A ∈ F∗ provided that N\A �∈ F . Clearly, F∗∗ = F .

Given a sequence {pi}∞i=1 in N, define the set of finite sums of {pi}∞i=1 as

FS{pi}∞i=1 =

{∑
i∈α

pi : α is a non-empty finite subset of N

}
.

We say that a subset F of N is

1. an IP-set if there exists a sequence {pi}∞i=1 ⊂ N such that FS{pi}∞i=1 ⊂ F ;

2. an AP-set if it contains arbitrarily long arithmetic progressions, i.e., for every d � 1, there are

a, n ∈ N such that {a, a+ n, . . . , a+ dn} ⊂ F . The family of all AP-sets is denoted by AP ;
3. thick if it contains arbitrarily long blocks of consecutive integers, i.e., for every d � 1 there is n ∈ N

such that {n, n+ 1, . . . , n+ d} ⊂ F ;

4. syndetic if it has bounded gaps, i.e., for some N ∈ N and every k ∈ N we have {k, k + 1, . . . , k

+N} ∩ F �= ∅;
5. co-finite if it has finite complement, i.e., N\F is finite;

6. an IP∗-set (AP∗-set, respectively) if it has non-empty intersection with every IP-set (AP-set, re-

spectively), i.e., it belongs to an appropriate dual family.

It is easy to see that a subset F of N is syndetic if and only if it has non-empty intersection with every

thick set, i.e., is in the family dual to all thick sets. Every thick set is an IP-set, hence every IP∗-set is
syndetic.

A family F has the Ramsey property if F ∈ F and F = F1 ∪F2 imply that Fi ∈ F for some i ∈ {1, 2}.
It is not hard to see that the van der Waerden theorem is equivalent to the fact that the family AP has

the Ramsey property.

Let F be a subset of Z+. Define the upper density d(F ) of F by

d(F ) = lim sup
n→∞

#(F ∩ [0, n− 1])

n
,

where #(·) is the number of elements of a set. Similarly, d(F ), the lower density of F , is defined by

d(F ) = lim inf
n→∞

#(F ∩ [0, n− 1])

n
.

The upper Banach density BD∗(F ) and lower Banach density BD∗(F ) are defined by

BD∗(F ) = lim sup
N−M→∞

#(F ∩ [M,N ])

N −M + 1
, BD∗(F ) = lim inf

N−M→∞
#(F ∩ [M,N ])

N −M + 1
.

2.2 Topological dynamics

By a (topological) dynamical system we mean a pair (X,T ) consisting of a compact metric space (X, ρ)

and a continuous map T : X → X . If X is a singleton, then we say that (X,T ) is trivial. If K ⊂ X

is a non-empty closed subset satisfying T (K) ⊂ K, then we say that (K,T ) is a subsystem of (X,T )

and (X,T ) is minimal if it has no proper subsystems. The (positive) orbit of x under T is the set

Orb(x, T ) = {T nx : n ∈ Z+}. Clearly, (Orb(x, T ), T ) is a subsystem of (X,T ) and (X,T ) is minimal if

Orb(x, T ) = X for every x ∈ X .

We say that a point x ∈ X is the following:

1. minimal, if x belongs to some minimal subsystem of (X,T );

2. recurrent, if lim infn→∞ ρ(T nx, x) = 0;
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3. transitive, if Orb(x, T ) = X .

For a point x ∈ X and subsets U, V ⊂ X , we define the following sets of transfer times :

N(U, V ) = {n ∈ N : T nU ∩ V �= ∅} = {n ∈ N : U ∩ T−nV �= ∅},
N(x, U) = {n ∈ N : T nx ∈ U}.

To emphasize that we are calculating the above sets using transformation T we will sometimes write

NT (x, U) and NT (U, V ).

We say that a dynamical system (X,T ) is the following:

1. transitive if N(U, V ) �= ∅ for every two non-empty open subsets U and V of X ;

2. totally transitive if (X,T n) is transitive for every n ∈ N;

3. (topologically) weakly mixing if the product system (X ×X,T × T ) is transitive;

4. (topologically) strongly mixing if for every two non-empty open subsets U and V of X , the set of

transfer times N(U, V ) is cofinite.

Denote by Tran(X,T ) the set of all transitive points of (X,T ). It is easy to see that if a dynamical

system (X,T ) is transitive then Tran(X,T ) is a dense Gδ subset of X . It is also clear that a dynamical

system (X,T ) is minimal if and only if Tran(X,T ) = X , and a point x ∈ X is minimal if and only if

(Orb(x, T ), T ) is a minimal system.

The following characterizations of recurrent points and minimal points are well-known (see, e.g., [12]).

Lemma 2.1. Let (X,T ) be a dynamical system. A point x ∈ X is the following:

1. recurrent if and only if for every open neighborhood U of x the set N(x, U) contains an IP-set;

2. minimal if and only if for every open neighborhood U of x the set N(x, U) is syndetic.

A dynamical system (X,T ) is equicontinuous if for every ε > 0 there is a δ > 0 such that if x, y ∈ X

with ρ(x, y) < δ then ρ(T nx, T ny) < ε for n = 0, 1, 2, . . . A point x ∈ X is equicontinuous if for every

ε > 0 there is a δ > 0 such that for every y ∈ X with ρ(x, y) < δ, ρ(T nx, T ny) < ε for all n ∈ Z+. By

compactness, (X,T ) is equicontinuous if and only if every point in X is equicontinuous.

We say that a dynamical system (X,T ) has sensitive dependence on initial condition or briefly (X,T )

is sensitive if there exists a δ > 0 such that for every x ∈ X and every neighborhood U of x there exist

y ∈ U and n ∈ N such that ρ(T nx, T ny) > δ.

A transitive system is almost equicontinuous if there is at least one equicontinuous point. It is known

that if (X,T ) is almost equicontinuous then the set of equicontinuous points coincides with the set of all

transitive points and additionally (X,T ) is uniformly rigid, i.e., for every ε > 0 there exists an n ∈ N such

that ρ(T nx, x) < ε for all x ∈ X . We also have the following dichotomy: if a dynamical system (X,T ) is

transitive, then it is either almost equicontinuous or sensitive. See [1, 17] for proofs and more details.

A pair (x, y) ∈ X2 is proximal if lim infn→∞ ρ(T nx, T ny) = 0, and distal if it is not proximal, i.e.,

lim infn→∞ ρ(T nx, T ny) > 0. A point x is distal if (x, y) is distal for any y ∈ Orb(x, T ) with y �= x. If

every point in X is distal then we say that (X,T ) is distal.

Let (X,T ) and (Y, S) be two dynamical systems. If there is a continuous surjection π : X → Y with

π ◦ T = S ◦ π, then we say that π is a factor map and the system (Y, S) is a factor of (X,T ) or (X,T ) is

an extension of (Y, S).

A factor map π : X → Y is

1. proximal if (x1, x2) ∈ X2 is proximal provided π(x1) = π(x2);

2. distal if (x1, x2) ∈ X2 is distal provided π(x1) = π(x2) with x1 �= x2;

3. almost one-to-one if there exists a residual subset G of X such that π−1(π(x)) = {x} for any x ∈ G.

Let M(X) be the set of Borel probability measures on X . We are interested in those members of M(X)

that are invariant measures for T . Therefore, denote by M(X,T ) the set consisting of all μ ∈ M(X)

making T a measure-preserving transformation of (X,B(X), μ), where B(X) is the Borel σ-algebra of X .

By the Krylov-Bogolyubov theorem, M(X,T ) is non-empty .

The support of a measure μ ∈ M(X), denoted by supp(μ), is the smallest closed subset C of X such

that μ(C) = 1. We say that a measure has full support or is fully supported if supp(μ) = X . We say
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that (X,T ) is an E-system if it is transitive and admits a T -invariant Borel probability measure with

full support.

2.3 Symbolic dynamics

Below we have collected some basic facts from symbolic dynamics. The standard reference here is the

book of Lind and Marcus [29].

Let {0, 1}Z+ be the space of infinite sequence of symbols in {0, 1} indexed by the non-negative integers.

Equip {0, 1} with the discrete topology and {0, 1}Z+ with the product topology. The space {0, 1}Z+ is

compact and metrizable. A compatible metric ρ is given by

ρ(x, y) =

{
0, x = y,

2−J(x,y), x �= y,

where J(x, y) = min{i ∈ Z+ : xi �= yi}.
A word of length n is a sequence w = w1w2 · · ·wn ∈ {0, 1}n and its length is denoted by |w| = n. The

concatenation of words w = w1w2 · · ·wn and v = v1v2 · · · vm is the word wv = w1w2 · · ·wnv1v2 · · · vm.

If u is a word and n ∈ N, then un is the concatenation of n copies of u and u∞ is the sequence in

{0, 1}Z+ obtained by infinite concatenation of the word u. We say that a word u = u1u2 · · ·uk appears in

x = (xi) ∈ {0, 1}Z+ at position t if xt+j−1 = uj for j = 1, 2, . . . , k. For x ∈ {0, 1}Z+ and i, j ∈ Z+, i � j

write x[i,j] = xixi+1 · · ·xj . Words x[i,j), x(i,j] and x(i,j) are defined in the same way.

The shift map σ : {0, 1}Z+ → {0, 1}Z+ is defined by σ(x)n = xn+1 for n ∈ Z+. It is clear that σ is

a continuous surjection. The dynamical system ({0, 1}Z+, σ) is called the full shift. If X is non-empty,

closed and σ-invariant (i.e., σ(X) ⊂ X), then (X, σ) is called a subshift.

Given any collection F of words over {0, 1}, we define a subshift specified by F , denoted by XF , as the
set of all sequences from {0, 1}Z+ which do not contain any words from F . We say that F is a collection

of forbidden words for XF as words from F are forbidden to occur in XF .
A cylinder in {0, 1}Z+ is any set [u] = {x ∈ X : x0x1 · · ·xn−1 = u}, where u is a word of length n.

Note that the family of cylinders in {0, 1}Z+ is a base of the topology of {0, 1}Z+. Let X be a subshift

of {0, 1}Z+. The language of X , denoted by L(X), consists of all words that can appear in some x ∈ X ,

i.e., L(X) = {x[i,j] : x ∈ X, i � j}.
For every word u ∈ L(X), let [u]X = X ∩ [u]. Then {[u]X : u ∈ L(X)} forms a base of the topology

of X . Let F = {0, 1}∗\L(X), where {0, 1}∗ is the collection of all finite words over {0, 1}. Then X = XF ,
i.e., F is the set of forbidden words for X .

Remark 2.2. In some examples, we will consider sequences indexed by positive integers N instead

of Z+, i.e., we identify {0, 1}N with {0, 1}Z+ . It will simplify some calculations.

3 Multi-recurrent points

3.1 Definition and basic properties

Definition 3.1. Let (X,T ) be a dynamical system. A point x ∈ X is called multi-recurrent if for

every d � 1, there exists a strictly increasing sequence {nk}∞k=1 in N such that for each i = 1, 2, . . . , d we

have T inkx→ x as k →∞.

In other words, a point x ∈ X is multi-recurrent if and only if for every d � 1 the point (x, . . . , x) ∈ Xd

is recurrent for T × T 2 × · · · × T d. Equivalently, x is multi-recurrent if and only if for every d � 1 and

every neighborhood U of x there exists k ∈ N such that k, 2k, . . . , dk ∈ N(x, U).

While we do not need such generality in the present paper, observe that Definition 3.1 can be stated

for Zd-actions in a similar manner. A proof of the following observation is straightforward, thus we leave

it to the reader.
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Lemma 3.2. Let (X,T ) be a dynamical system and x ∈ X. Then the following conditions are equivalent:

1. x is a multi-recurrent point of (X,T );

2. x is a multi-recurrent point of (X,T n) for some n ∈ N;

3. x is a multi-recurrent point of (X,T n) for any n ∈ N.

The following fact implies that every dynamical system contains a multi-recurrent point, because every

dynamical system has a minimal subsystem. Note that Lemma 3.3 can also be deduced from properties

of sets of multiple recurrence provided by [20, Lemma 2.5]. Results in [20] allow further analysis of return

times of multi-recurrent points.

Lemma 3.3. Let (X,T ) be a dynamical system.

(1) The set of all multi-recurrent points of (X,T ) is a Gδ subset of X.

(2) If (X,T ) is minimal, then the set of all multi-recurrent points is residual in X.

Proof. (1) Given d � 1, let

Rd =

{
y ∈ X : ∃n � 1 such that ρ(y, T iny) <

1

d
for i = 0, 1, . . . , d

}
.

It is clear that every Rd is open, hence R =
⋂∞

d=1 Rd is a Gδ subset of X . It is easy to see that

R =
⋂∞

d=1Rd is the set of all multi-recurrent points.

(2) If (X,T ) is minimal, then it follows from the topological multiple recurrence theorem II that Rd is

dense in X for every d � 1. Thus R =
⋂∞

d=1 Rd is residual in X .

Lemma 3.4. If a dynamical system (X,T ) is uniformly rigid, then every point in X is multi-recurrent.

Proof. Fix d � 1. Since (X,T ) is uniformly rigid, for every ε > 0 there exists n ∈ N such that

ρ(T nx, x) < ε/d for all x ∈ X . Then

ρ(x, T nx) < ε/d, ρ(T nx, T 2nx) < ε/d, . . . , ρ(T (d−1)nx, T dnx) < ε/d,

which shows that the diameter of {x, T nx, T 2nx, . . . , T dnx} is less than ε. It follows that (x, . . . , x) ∈ Xd

is recurrent for T × T 2 × · · · × T d. But d is arbitrary, hence x is multi-recurrent.

Remark 3.5. It is shown in [12, Proposition 9.16] that if a point is distal then it is multi-recurrent.

In particular, in a distal system every point is multi-recurrent.

Remark 3.6. Notice that there exist minimal as well as non-minimal weakly mixing and uniformly

rigid systems (see, respectively, [18] and [10]). By Lemma 3.4, every point in those systems is multi-

recurrent. None of these examples can be a subshift. Furthermore, a non-trivial strongly mixing dynam-

ical system can never be uniformly rigid by Glasner and Maon [18].

One of the referees of this paper, motivated by the above remark, suggested the following problem.

Question 3.7. Is there a non-trivial weakly mixing subshift or any mixing dynamical system for which

each point is multi-recurrent? Can such a system be minimal?

In [36], it is proved that if each pair in a dynamical (X,T ) is positively recurrent under T × T , then it

has zero topological entropy (it is also a consequence of a result in [6]). Distal or uniformly rigid systems

are examples of pointwise multi-recurrent systems which have zero topological entropy. But pointwise

multi-recurrence does not imply zero topological entropy in general as shown below.

Remark 3.8. A dynamical system (X,T ) is multi-minimal if for every d � 1 (Xd, T × T 2× · · · × T d)

is minimal [30]. Clearly, every point in a multi-minimal system is multi-recurrent. Note that by the proof

of [23, Proposition 3.5] there exists a multi-minimal system with positive topological entropy.

The existence of a system constructed in the following theorem is probably a folklore, but we were

unable to find it in the literature.

Theorem 3.9. For every d � 1, there is a minimal point x in the full shift ({0, 1}Z+, σ) such that

(x, x, . . . , x) ∈ Xd is recurrent under σ × σ2 × · · · × σd and (x, x, . . . , x) ∈ Xd+1 is not recurrent under

σ × σ2 × · · · × σd × σd+1.
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Proof. First, we consider the case d = 1 and then the general case. For d = 1, we define the local rule

of a substitution by

τ : 1→ 1101,

0→ 0101,

and then extend it to all finite words over {0, 1} putting inductively τ(uv) = τ(u)τ(v). Let

x = (xi)
∞
i=0 = lim

k→∞
τk(1)0∞

be a fixed point of τ . It is easy to check that x ∈ {0, 1}Z+ is a minimal point.

We claim that xi = 1 if and only if i = 0 or i = 4m(2n + 1) for some n,m ∈ Z+. It will follow that

xi = 0 if and only if i = 2 · 4m(2n+ 1) for some n,m ∈ Z+.

These conditions are clearly true for i = 0, 1, 2, 3. Now fix any i � 0 and assume that our claim holds

for i. We will show that the claim also holds for 4i, 4i+ 1, 4i+ 2, 4i+ 3. We have two cases to consider.

If xi = 1, then by the claim i = 4m(2n + 1) for some m,n ∈ Z+. By the definition of substitution

x[4i,4i+3] = τ(xi) = τ(1), so

• x4i = 1 and 4i = 4m+1(2n+ 1);

• x4i+1 = 1 and 4i+ 1 = 4m+1(2n+ 1) + 1 = 2(2 · 4m(2n+ 1)) + 1;

• x4i+2 = 0 and 4i+ 2 = 4m+1(2n+ 1) + 2 = 2(2 · 4m(2n+ 1) + 1);

• x4i+3 = 1 and 4i+ 3 = 4m+1(2n+ 1) + 3 = 2(2 · 4m(2n+ 1) + 1) + 1.

If xi = 0, then i = 2 · 4m · n for some m,n ∈ Z+. Then x[4i,4i+3] = τ(0) and we have

• x4i = 0 and 4i = 2 · 4m+1 · n;
• x4i+1 = 1 and 4i+ 1 = 2 · 4m+1 · n+ 1 = 2(4m+1 · n) + 1;

• x4i+2 = 0 and 4i+ 2 = 2 · 4m+1 · n+ 2 = 2(4m+1 · n+ 1);

• x4i+3 = 1 and 4i+ 3 = 2 · 4m+1 · n+ 3 = 2(4m+1 · n+ 1) + 1.

This ends the proof of the claim.

The point x is minimal, hence it is recurrent under σ. By the claim, it is clear that if i ∈ N and xi = 1

then x2i = 0. So (x, x) is not recurrent under σ × σ2, because it will never return to [1]× [1].

For the case d � 2, we extend the above idea. We define a local rule of a substitution by

τ : 1→ 1a1 · · · a(d+1)2−1,

0→ 0a1 · · · a(d+1)2−1,

where aj = 0 for j ≡ 0 mod (d+1) and aj = 1 otherwise. Let x = limk→∞ τk(1)0∞ be a fixed point of τ .

As above, x is a minimal point.

For every k ∈ N, x can be expressed as x = [τk(1)]d+1τk(0) · · · , so (x, x, . . . , x) ∈ Xd is recurrent under

σ×σ2×· · ·×σd. Analogously to the case d = 1, we prove that if j ∈ N and xj = 1 then x(d+1)j = 0. The

details are left to the reader. So (x, x, . . . , x) ∈ Xd+1 is not recurrent under σ×σ2× · · ·×σd×σd+1.

3.2 Multi-recurrent points and factor maps

Let π : (X,T ) → (Y, S) be a factor map. It is well known that if y ∈ Y is a recurrent point of S, then

there is a recurrent point x ∈ X of T with π(x) = y. In this subsection, we investigate if this result

holds for multi-recurrent points. It turns out that it is still the case for distal extensions but may fail for

proximal extensions.

Proposition 3.10. Let π : (X,T )→ (Y, S) be a factor map.

(1) If x ∈ X is multi-recurrent, then so is π(x).

(2) If y ∈ Y is multi-recurrent and π−1(y) consists of a single point x, then x is also multi-recurrent.

Proof. (1) It is a direct consequence of continuity of π.

(2) Since π−1(y) = {x}, for every neighborhood U of x there exists a neighborhood V of y such that

π−1(V ) ⊂ U . Therefore N(y, V ) ⊂ N(x, U). It follows that if y is multi-recurrent, then so is x.
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By Remark 3.5 every distal system is multi-recurrent. In particular, every equicontinuous system is

multi-recurrent. Therefore, the projection of minimal dynamical system onto its maximal equicontinuous

factor maps every point onto a multi-recurrent point. It turns out that the system presented in Theo-

rem 3.9 is a proximal extension of its maximal equicontinuous factor and there is a fiber not containing

any multi-recurrent points.

Proposition 3.11. There exist two dynamical systems (X,T ) and (Y, S), a proximal factor map

π : (X,T ) → (Y, S) and a point y ∈ Y which is multi-recurrent but π−1(y) does not contain any multi-

recurrent points.

Proof. Let τ be a local rule of a substitution defined by

τ : 1→ 1101,

0→ 0101,

i.e., τ is the substitution from the proof of Theorem 3.9. Let

x = lim
n→∞ τn(1)0∞ and z = lim

n→∞ τn(0)0∞

be fixed points of τ . Let X = Orb(x, σ). Then X is a minimal set and z ∈ X .

Observe that z0 = 0, zk = 1 for k = 4m(2n+ 1) and zk = 0 for k = 2 · 4m(2n+ 1). In particular one

has zi = xi for i > 0 (see the proof of Theorem 3.9). Note that if zj = 0 for some j > 0 then z2j = 1 and

if zj = 1 then z2j = 0. Neither (x, x) nor (z, z) is recurrent under σ × σ2.

Denote kn = |τn(1)| = 4n and observe that position of 11 uniquely identifies position of τ(1) in

x = τ(x). By the same argument τ(1)τ(1) identifies uniquely beginning of τ2(1) in x, etc. In other

words, blocks τn(0) and τn(1) form a code for every n � 1 and hence there is a unique decomposition

of x into blocks from {τn(0), τn(1)}. But X is the closure of the orbit of x which yields that for any

v ∈ X and any n � 1 there is a uniquely determined infinite concatenation {w(n)}∞j=1 of blocks over

{τn(0), τn(1)} and a block un of length 0 � |un| < kn such that v = unw
(n)
1 w

(n)
2 w

(n)
3 · · · .

With every n associate a natural projection ξn : Zkn+1 → Zkn , ξn(x) = x (mod kn). Then we obtain a

well-defined inverse limit

Y = lim←−(Zkn , ξn) = {(j1, j2, . . .) : ξn(jn+1) = jn} ⊂
∏

Zkn .

In addition, Y is coordinatewise, modulo kn on each coordinate n. Endowed with the product topology

over the discrete topologies in Zkn space Y becomes a topological group satisfying the four properties

characterizing odometers (see [9]). Let S : Y → Y be defined by S(j1, j2, . . .) = (j1 +1, j2 +1, . . .). Then

Y = Orb((0, 0, . . .), S) and (Y, S) is a minimal dynamical system (an odometer).

With every v ∈ X we can associate a sequence j(v) = (j
(v)
1 , j

(v)
2 , . . .) ∈ Y given by j

(v)
n = kn −

|un| (mod kn). This way we obtain a natural factor map π : (X, σ) → (Y, S), v �→ j(v). Note that if

π(u) = π(u′) then for every n � 1 taking k = |τn+1(0)| − jn+1 provides a decomposition σk(u), σk(u′) ∈
{τn(0), τn(1)}Z+ , which in turn implies that u, u′ share arbitrarily long common word of symbols (e.g.,

τn(0)), and as a consequence u, u′ form a proximal pair. This proves that π is a proximal extension.

Denote y = π(x).

To finish the proof observe that if u ∈ X and π(u)n = 0 then u ∈ {τn2 (0), τn2 (1)}Z+ by the definition

of π. But if τn(0) is a prefix of u (the same for τn(1) and π(u)n+1 = 0 then τn+1(0) must be a prefix of u

(resp. τn+1(1) is a prefix). Therefore, if we put y = (0, 0, 0, . . .) then π−1(y) = {x, z} and every point in

(Y, S) is multi-recurrent (it is a distal system and so Remark 3.5 applies).

To prove that multi-recurrent points can be lifted by distal extensions, we apply the theory of enveloping

semigroup. Let (X,T ) be a dynamical system. Endow XX with the product topology. By the Tychonoff

theorem, XX is a compact Hausdorff space. The enveloping semigroup of (X,T ), denoted by E(X,T ),

is defined as the closure of the set {T n : n ∈ Z+} in XX . We refer the reader to the book [3] for more

details (see also [2]).



68 Kwietniak D et al. Sci China Math January 2017 Vol. 60 No. 1

Theorem 3.12. Let π : (X,T )→ (Y, S) be a factor map, let d � 1 and assume that y ∈ Y is recurrent

under S×S2×· · ·×Sd. If x ∈ π−1(y) is such that the pair (x, z) is distal for any z ∈ π−1(y) with z �= x,

then x is recurrent under T × T 2 × · · · × T d. In particular, if y is multi-recurrent then so is x.

Proof. Let πd = π×π×· · ·×π : (Xd, T ×T 2×· · ·×T d)→ (Y d, S×S2×· · ·×Sd). Then πd is a factor

map. There exists a unique onto homomorphism θ : E(Xd, T ×T 2×· · ·×T d)→ E(Y d, S×S2×· · ·×Sd)

such that πd(pz) = θ(p)πd(z) for any p ∈ E(Xd, T × · · · × T d) and z ∈ Xd (see [3, Theorem 3.7]). Since

(y, . . . , y) is recurrent under the action of S×S2×· · ·×Sd, by [2, Proposition 2.4] there is an idempotent

u ∈ E(Y d, S × S2 × · · · × Sd) such that u(y, . . . , y) = (y, . . . , y). If we denote J = θ−1(u) then clearly

it is a closed subsemigroup of E(Xd, T × T 2 × · · · × T d) and so by Ellis-Numakura Lemma there is an

idempotent v ∈ J .

Observe that

πd(v(x, . . . , x)) = θ(v)πd(x, . . . , x) = u(y, . . . , y) = (y, . . . , y),

hence each coordinate of v(x, . . . , x) belongs to π−1(y). Furthermore, since v is an idempotent, we have

v(v(x, . . . , x)) = v(x, . . . , x), thus again by [2, Proposition 2.4] we obtain that v(x, . . . , x) and (x, . . . , x)

are proximal under T × T 2 × · · · × T d, and therefore each coordinate of v(x, . . . , x) is proximal with x

(under the action of T ). But the pair (x, z) is distal for any z ∈ π−1(y) with z �= x, which immediately

implies that v(x, . . . , x) = (x, . . . , x). Since v is an idempotent, it is equivalent to saying that (x, . . . , x)

is recurrent under T × T 2 × · · · × T d which ends the proof.

Corollary 3.13. Let π : (X,T ) → (Y, S) be a factor map. If π is distal, then a point x ∈ X is

multi-recurrent if and only if so is π(x).

3.3 The measure of multi-recurrent points

It follows from the Poincaré recurrence theorem that almost every point is recurrent for any invariant

measure (see [12, Theorem 3.3]). A similar connection holds between multi-recurrent points and multiple

recurrence in ergodic theory.

Theorem 3.14. Let (X,T ) be a dynamical system and μ be a T -invariant Borel probability measure

on X. Then μ-almost every point of X is multi-recurrent for T .

Proof. Choose a countable base {Bi}∞i=1 for topology of X . For every i ∈ N, let

Ai =
∞⋃
d=1

(
Bi

∖ ∞⋃
n=1

Bi ∩ T−nBi ∩ T−2nBi ∩ · · · ∩ T−dnBi

)
.

Note that a point x is not multi-recurrent if and only if there exist d � 1 and i ∈ N such that x ∈ Bi

but x �∈ Bi ∩ T−nBi ∩ · · · ∩ T−dnBi for all n ∈ N. Therefore
⋃∞

i=1 Ai is the collection of non-multi-

recurrent points of (X,T ). By the multiple recurrence theorem, μ(Ai) = 0 for every i � 1. Then

μ(
⋃∞

i=1 Ai) = 0.

Corollary 3.15. If a dynamical system (X,T ) admits an ergodic invariant Borel probability measure μ

with full support, then there exists a dense Gδ subset X0 of X with full μ-measure such that every point

in X0 is both transitive and multi-recurrent.

Proof. Since μ is ergodic, then the set of all transitive points is a dense Gδ subset of X and has full

μ-measure. By Lemma 3.3 and Theorem 3.14, the set of all multi-recurrent point is also a dense Gδ

subset of X and has full μ-measure. Then the intersection of those two sets is as required.

Using results on multiple recurrence developed by Furstenberg [11], we strengthen Theorem 3.14 as

follows.

Theorem 3.16. Let (X,T ) be a dynamical system. For every T -invariant Borel probability measure μ

on X, there exists a Borel subset X0 of X with μ(X0) = 1 such that for every x ∈ X0, every d ∈ N and

every neighborhood U of x the set NT×T 2×···×Td((x, . . . , x), U × · · · × U) has positive upper density.
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Proof. For every d ∈ N and every δ > 0, let Ad,δ be the collection of all points x ∈ X for which there

exists a neighborhood U of x with diam(U) < δ such that the set

NT×T 2×···×Td((x, . . . , x), U × · · · × U)

has positive upper density.

Let μ be an ergodic T -invariant Borel probability measure onX . We are going to show that μ(Ad,δ) = 1

for every d ∈ N and every δ > 0. First we show that Ad,δ is Borel measurable. To this end, for every

t > 0 and every n,m ∈ N, let Ad,δ(t, n,m) be the collection of all points x ∈ X such that there exists an

neighborhood U of x with diam(U) < δ satisfying

1

n
#(NT×T 2×···×Td((x, . . . , x), U × · · · × U) ∩ [0, n− 1]) > t− 1

m
.

It is clear that Aδ(t, n,m) is an open subset of X and

Ad,δ =
∞⋃
k=1

∞⋂
m=1

∞⋃
n=m

Ad,δ

(
1

k
, n,m

)
.

It follows that Ad,δ is Borel measurable.

If μ(Ad,δ) < 1, then we can choose a Borel subset B ⊂ X\Aδ with diam(B) < δ/3 and μ(B) > 0. For

any x ∈ X , let

g(x) = lim sup
N→∞

1

N

N−1∑
i=0

1B∩T−iB∩···∩T−idB(x).

Then g is also Borel measurable and 0 � g(x) � 1 for any x ∈ X . By the Fatou lemma and [12,

Theorem 7.14], we have

∫
X

g(x)dμ(x) � lim sup
N→∞

1

N

∫
X

N−1∑
i=0

1B∩T−iB∩···∩T−idB(x)dμ(x)

� lim inf
N→∞

1

N

N−1∑
i=0

μ(B ∩ T−iB ∩ · · · ∩ T−idB) > 0.

Clearly g(x) = 0 for any x �∈ B, hence there exists some x ∈ B such that g(x) > 0. Let U = B(x, 2
3δ).

Then B ⊂ U and the upper density of NT×T 2×···×Td((x, . . . , x), U × · · · × U) is not less than g(x). We

obtain that x ∈ Ad,δ, which leads to a contradiction.

Therefore μ(Ad,δ) = 1 for every ergodic measure μ, every d ∈ N and every δ > 0. Let

X0 =

∞⋂
d=1

∞⋂
k=1

Ad, 1k
.

Then μ(X0) = 1 for every ergodic measure, and by the ergodic decomposition the same holds for any

T -invariant measure. Therefore X0 is as required.

Remark 3.17. Assume that pointwise convergence of multiple averages holds for μ, i.e., for every

d ∈ N and f1, f2, . . . , fd ∈ L∞(μ),

1

N

N−1∑
n=0

f1(T
nx)f2(T

2nx) · · · fd(T dnx) converges μ a.e.

Then the proof of Theorem 3.16 can be modified by replacing limsup in the definition of g by liminf,

and the modified proof yields that for every x ∈ X0, every d ∈ N and every neighborhood U of x the set

NT×T 2×···×Td((x, . . . , x), U×· · ·×U) has positive lower density. Unfortunately, the pointwise convergence

of multiple averages for general ergodic measures is still an open problem. It was proved recently that

the pointwise convergence of multiple averages holds for distal measures (see [22]).
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Glasner [15] proved that if a minimal system (X,T ) is topologically weakly mixing, then there is a

dense Gδ subsetX0 such that for each x ∈ X0, the orbit of (x, . . . , x) is dense inXd under T×T 2×· · ·×T d.

Below we present an analogous result for systems possessing a fully weakly mixing invariant measure.

Note that Lehrer [25] proved a variant of the Jewett-Krieger theorem, which implies that there are

topologically weakly mixing minimal systems without weakly mixing invariant measures. Therefore our

result complements Glasner’s theorem.

Theorem 3.18. Let (X,T ) be a dynamical system. If there exists a weakly mixing, fully supported

T -invariant Borel probability measure μ on X, then there exists a Borel subset X0 of X with μ(X0) = 1

such that for every x ∈ X0, every d ∈ N, and every non-empty open subsets U1, U2, . . . , Ud of X the set

NT×T 2×···×Td((x, x, . . . , x), U1 × U2 × · · · × Ud)

has positive upper density.

Proof. For every d ∈ N and every δ > 0, let Ad,δ be the collection of all points x ∈ X such that

there exists an open cover {Ui}�i=1 of X with diam(Ui) < δ for i = 1, . . . , � and such that for every

α ∈ {1, 2, . . . , �}d the set NT×T 2×···×Td((x, x, . . . , x), Uα(1) × Uα(2) × · · · × Uα(d)) has positive upper

density.

Following the same lines as in the proof of Theorem 3.16 we obtain that Ad,δ is Borel measurable. We

are going to show that μ(Ad,δ) = 1.

If μ(Ad,δ) < 1, there exists a Borel set W0 ⊂ X\Aδ with diam(W0) < δ/2 and μ(W0) > 0. Fix an open

cover {Ui}pi=1 of X with diam(Ui) < δ for i = 1, . . . , �. Enumerate {1, 2, . . . , p}d as {α1, α2, . . . , αk} with
k = pd.

First note that μ(Uj) > 0 for i = 1, 2, . . . , � since μ has the full support. For every x ∈ X , let

g1(x) = lim sup
N→∞

1

N

N−1∑
l=0

1W0∩T−lUα1(1)∩···∩T−ldUα1(d)
(x).

Then g1 is also Borel measurable and 0 � g1(x) � 1 for any x ∈ X . The measure μ is weakly mixing,

hence we can apply [11, Theorem 2.2] obtaining that

lim
N→∞

1

N

N∑
l=1

1W0∩T−lUα1(1)∩···∩T−ldUα1(d)
(x) = 1W0(x)

d∏
l=1

μ(Uα1(l))

in L2(X). In particular
∫
X g1(x)dμ > 0. Clearly g1(x) = 0 for any x �∈ W0. Then there exists a Borel set

W1 ⊂ W0 with μ(W1) > 0 and g1(x) > 0 for any x ∈ W1. Note that for every x ∈ W1 the upper density

of NT×T 2×···×Td((x, x, . . . , x), Uα1(1) × Uα1(2) × · · · × Uα1(d)) is not less than g1(x).

Working by induction, for every i = 1, 2, . . . , k, we can construct a Borel set Wi ⊂ Wi−1 with

μ(Wi) > 0 such that for every x ∈ Wi the set NT×T 2×···×Td((x, x, . . . , x), Uαi(1) × Uαi(2) × · · · × Uαi(d))

has positive upper density. This implies that for every x ∈ Wk and every α ∈ {1, 2, . . . , �}d the set

NT×T 2×···×Td((x, x, . . . , x), Uα(1) × Uα(2) × · · · × Uα(d)) has positive upper density. Then Wk ⊂ Ad,δ,

which leads to a contradiction, hence μ(Ad,δ) = 1.

To finish the proof, it is enough to put

X0 =

∞⋂
d=1

∞⋂
k=1

Ad, 1k
,

since μ(X0) = 1 and X0 is as required.

Remark 3.19. One can modify the proof of Theorem 3.18, by replacing Ad,δ by A′
d,δ defined as the

collection of all points x ∈ X such that there exists an open cover {Ui}�i=1 of X with diam(Ui) < δ for

i = 1, . . . , � for which the set

NT×T 2×···×Td((x, x, . . . , x), Uα(1) × Uα(2) × · · · × Uα(d))
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is not empty for every α ∈ {1, 2, . . . , �}d. Then one obtains that A′
d,δ is a dense open subset of X and

X ′
0 =

∞⋂
d=1

∞⋂
k=1

A′
d, 1k

is a dense Gδ subset of X with full μ-measure. Moreover, for every d ∈ N and every x ∈ X ′
0, the orbit

of (x, x, . . . , x) is dense in Xd under T × T 2 × · · · × T d. Since (Xd, T × T 2 × · · · × T d) is an E-system,

by [21, Lemma 3.6] we know that for every x ∈ X ′
0, every d ∈ N and every non-empty open subsets

U1, U2, . . . , Ud of X the set NT×T 2×···×Td((x, x, . . . , x), U1 × U2 × · · · × Ud) has positive upper Banach

density, but we cannot conclude that it has positive upper density. On the other hand, we do not know

whether the set X0 constructed in Theorem 3.18 is residual.

4 Van der Waerden systems and AP-recurrent points

In this section, we introduce the concept of a van der Waerden system. We explore how this notion

relates to the behaviour of multi-recurrent points and AP-recurrent points.
Definition 4.1. We say that a dynamical system (X,T ) is a van der Waerden system if it satisfies

the topological multiple recurrence property, i.e., for every non-empty open set U ⊂ X and every d ∈ N

there exists an n ∈ N such that

U ∩ T−nU ∩ T−2nU ∩ · · · ∩ T−dnU �= ∅.
By the topological multiple recurrence theorem, we know that every minimal system is a van der

Waerden system. It follows from the ergodic multiple recurrence theorem that every E-system is a van

der Waerden system.

It is easy to see that if (X,T ) is a van der Waerden system, then the relation R =
⋂∞

d=1 Rd is residual,

where

Rd =

{
y ∈ X : ∃n � 1 such that ρ(y, T iny) <

1

d
for i = 0, 1, . . . , d

}
.

As a corollary, we obtain the following (see Lemma 3.3).

Lemma 4.2. A dynamical system (X,T ) is a van der Waerden system if and only if it has a dense

set of multi-recurrent points.

By Lemmas 4.2 and 3.2, we have the following result.

Proposition 4.3. Let (X,T ) be a dynamical system. Then the following conditions are equivalent:

1. (X,T ) is a van der Waerden system;

2. (X,T n) is a van der Waerden system for some n ∈ N;

3. (X,T n) is a van der Waerden system for any n ∈ N.

Lemma 3.4 implies that every point in a uniformly rigid system is multi-recurrent. Then by Lemma 4.2

every uniformly rigid system is a van der Waerden system. By [1,17], every almost equicontinuous system

is uniformly rigid. We have just proved the following.

Proposition 4.4. Every almost equicontinuous system is also a van der Waerden system.

Moothathu introduced Δ-transitive systems in [30]. Recall that a dynamical system (X,T ) is Δ-

transitive if for every d ∈ N there exists x ∈ X such that the diagonal d-tuple (x, x, . . . , x) has a dense

orbit under the action of T × T 2 × · · · × T d.

Proposition 4.5. If a dynamical system (X,T ) is Δ-transitive, then it is a van der Waerden system.

Proof. Let U be a non-empty open subset of X and fix any d ∈ N. There exists x ∈ X such that

diagonal d-tuple (x, x, . . . , x) has a dense orbit under the action of T × T 2 × · · · × T d. Then there exists

n ∈ N such that T nx ∈ U, T 2nx ∈ U, . . . , T dnx ∈ U and thus

T nx ∈ U ∩ T−nU ∩ · · · ∩ T−(d−1)nU.
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This shows that (X,T ) is a van der Waerden system.

By Proposition 3.11, multi-recurrent points may not be lifted through factor maps. To remove this

disadvantage, we introduce the following slightly weaker notion of AP-recurrent point. As we will see

later, it is possible to characterize van der Waerden systems through AP-recurrent points.
Definition 4.6. A point x ∈ X is AP-recurrent if N(x, U) is an AP-set for every open neighborhood U

of x .

Remark 4.7. It is clear that every multi-recurrent point is AP-recurrent and every AP-recurrent
point is recurrent. The notion of AP-recurrent points can be seen as an intermediate notion of recurrence.

By Proposition 4.14, every minimal point is AP-recurrent since minimal systems are van der Waerden

systems. But by Theorem 3.9, there exist some minimal points which are not multi-recurrent. Those

minimal points are AP-recurrent but not multi-recurrent. Every transitive point of the dynamical system

presented in the proof of Proposition 4.17 is not AP-recurrent. So those transitive points are recurrent

but not AP-recurrent.
Lemma 4.8. Let (X,T ) be a dynamical system.

(1) The collection of all AP-recurrent points of (X,T ) is a Gδ subset of X.

(2) (X,T ) is a van der Waerden system if and only if it has a dense set of AP-recurrent points.
Proof. (1) Given d � 1, let

Qd =

{
y ∈ X : ∃n, a � 1 such that ρ(y, T in+ay) <

1

d
for i = 0, 1, . . . , d

}
.

It is clear that every Qd is open, hence Q =
⋂∞

d=1 Qd is a Gδ subset of X . It is easy to see that

Q =
⋂∞

d=1Qd is the set of all AP-recurrent points.
(2) First note that by Lemma 4.2 every van der Waerden system has dense set of multi-recurrent

points, hence AP-recurrent points are dense.

On the other hand, if x is AP-recurrent and x ∈ U then for every d � 1 there are a, n � 1 such that

T a+inx ∈ U for every i = 0, 1, . . . , d and so

T ax ∈ U ∩ T−nU ∩ T−2nU ∩ · · · ∩ T−dnU

completing the proof.

We have the following connection between AP-recurrent points and their orbit closures.

Proposition 4.9. Let (X,T ) be a dynamical system and x ∈ X. Then x is AP-recurrent if and only

if (Orb(x, T ), T ) is a van der Waerden system.

Proof. If x is AP-recurrent, then every point in the orbit of x is also AP-recurrent. By Lemma 4.8,

(Orb(x, T ), T ) is a van der Waerden system.

Now assume that (Orb(x, T ), T ) is a van der Waerden system. By Lemma 4.8, (Orb(x, T ), T ) has a

dense set of AP-recurrent points. Fix an open neighborhood U of x. It suffices to show that N(x, U)

∈ AP . Choose an AP-recurrent point y in U . For every d � 1, there exist k, n ∈ N such that

T ky ∈ U, T k+ny ∈ U, T k+2ny ∈ U, . . . , T k+dny ∈ U.

By continuity of T , there exists an open neighborhood V of y such that for any z ∈ V we have

T kz ∈ U, T k+nz ∈ U, T k+2nz ∈ U, . . . , T k+dnz ∈ U.

Since y ∈ Orb(x, T ), there exists m � 0 such that Tmx ∈ V . Then

Tm+kx ∈ U, Tm+k+nx ∈ U, Tm+k+2nx ∈ U, . . . , Tm+k+dnx ∈ U,

which implies that N(x, U) is an AP-set. This ends the proof.
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Proposition 4.10. Let (X,T ) be a dynamical system and x ∈ X. Then the following conditions are

equivalent:

(1) x is an AP-recurrent point in (X,T );

(2) x is an AP-recurrent point in (X,T n) for some n ∈ N;

(3) x is an AP-recurrent point in (X,T n) for any n ∈ N.

Proof. The implications (3) ⇒ (2) ⇒ (1) are clear. We only need to show (1) ⇒ (3). Fix n ∈ N.

Without loss of generality, we can assume that X = Orb(x, T ). Then (X,T ) is a topologically transitive

system, because x is a recurrent point. Moreover, as x is AP-recurrent in (X,T ), applying Proposition 4.9

we get that (X,T ) is a van der Waerden system. Denote X0 = Orb(x, T n). It is well known (see, for

example, [27, Lemma 6.5]) that the interior of X0 (with respect to the topology of X) is dense in X0,

i.e., X0 is a regular closed subset of X . By Lemma 4.2, the collection of multi-recurrent points in (X,T )

is dense in X . By Lemma 3.2, every point multi-recurrent under action of T is also multi-recurrent for

T n. Hence the set of multi-recurrent points of (X0, T
n) is dense in X0. By Lemma 4.2 again, (X0, T

n)

is a van der Waerden system. By Proposition 4.9 we obtain that every transitive point in (X0, T
n) is

AP-recurrent. So x is also AP-recurrent in (X0, T
n).

In the proof of the next result we will employ the technique developed in [27] and show that every

AP-recurrent point can be lifted through factor maps.

Proposition 4.11. Let π : (X,T )→ (Y, S) be a factor map. If y ∈ Y is an AP-recurrent point, then
there exists an AP-recurrent point x ∈ X such that π(x) = y.

Proof. It is clear that for any n ∈ Z and any F ∈ AP , the translation of F by n denoted by

n+ F = {n+ k ∈ N : k ∈ F},

is also an AP-set. In other words, the family AP is translation invariant (see [27, p. 263]). Recall that the

family AP has the Ramsey property. Then by [27, Lemma 3.4], all the assumptions of [27, Proposition 4.5]

are satisfied by AP . The result follows by application of [27, Proposition 4.5] to the family AP .
Remark 4.12. The proof of Proposition 4.11 which is short and compact, uses advanced machinery

from [27]. Another more elementary proof will be given later in Section 6.

To characterize when a transitive system is a van der Waerden system, we need the following definition.

It is a special case of a notion considered in [26].

Definition 4.13. We say that x ∈ X is an AP-transitive point if N(x, U) is an AP-set for every

non-empty open set U ⊂ X .

Proposition 4.14. Let (X,T ) be a transitive system. Then the following conditions are equivalent:

(1) (X,T ) is a van der Waerden system;

(2) there exists an AP-transitive point;

(3) every transitive point is an AP-transitive point.

Proof. The implication (3)⇒ (2) is obvious and (2)⇒ (1) follows from Proposition 4.9. We only need

to show that (1) ⇒ (3).

Let x be a transitive point. It follows from Proposition 4.9 that x is an AP-recurrent point. Fix a

non-empty open subset U of X . There exist a neighborhood V of x and k ∈ N such that T kV ⊂ U . Then

k+N(x, V ) ⊂ N(x, U). But N(x, V ) is an AP-set and so N(x, U) is also an AP-set, which proves that x

is an AP-transitive point.

Proposition 4.15. Let (X,T ) be a transitive system. If (X,T ) is a van der Waerden system, then

(Xn, T (n)) is also a van der Waerden system for every n ∈ N, where T (n) denotes n-times Cartesian

product T (n) = T × T × · · · × T .

Proof. Let U1, U2, . . . , Un be non-empty open subsets in X . Pick a transitive point x ∈ U1. Then

there exist k1, k2, . . . , kn−1 ∈ N such that T k1x ∈ U2, T
k2x ∈ U3, . . . , T

kn−1x ∈ Un. Since (X,T ) is a

van der Waerden system, x is AP-recurrent. This immediately implies that (x, T k1x, T k2x, . . . , T kn−1x)
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is AP-recurrent in (Xn, T (n)), hence (Xn, T (n)) has a dense set of AP-recurrent points. The proof is

finished by application of Lemma 4.8.

The following example shows that Proposition 4.15 is no longer true if we do not assume that (X,T )

is transitive. As a byproduct, we obtain two van der Waerden systems whose product is not a van der

Waerden system.

Example 4.16. Let n1 = 2 and define inductively nk+1 = (nk)
3. Put Ak = [nk, (nk)

2]∩N and denote

S =
⋃∞

k=1 A2k and R =
⋃∞

k=1 A2k+1. Clearly, S ∩ R = ∅. Denote by XS and XT the following subshifts

(so-called spacing shifts, see [5]):

XS = {x ∈ {0, 1}N : xi = xj = 1⇒ |i− j| ∈ S ∪ {0}},
XR = {x ∈ {0, 2}N : xi = xj = 2⇒ |i − j| ∈ R ∪ {0}}.

We can consider XS and XR as subshifts of {0, 1, 2}N. Let X = XS ∪XT ⊂ {0, 1, 2}N. For a word w

over {0, 1, 2}N, we write [w]S = [w] ∩ XS and [w]R = [w] ∩ XR. First note that the product system

(X ×X, σ × σ) is not a van der Waerden system. This is because

Nσ×σ(([1]× [2]) ∩X, ([1]× [2]) ∩X) = Nσ([1]S , [1]S) ∩Nσ([2]R, [2]R) = S ∩R = ∅.

Now we show that (X, σ) is a van der Waerden system. It it enough to prove that both (XS , σ) and

(XR, σ) are van der Waerden systems. We will consider only the case of (XS , σ), since the proof for

(XR, σ) is the same.

Fix a word w ∈ L(XS), take any positive integer k such that n2k > 2(d+|w|) and consider the following

sequence x =
(
w0n2k

)d+1
0∞. We claim that x ∈ XS . Take any integers i < j with xi = xj = 1. If

j − i � |w|, then j − i ∈ S by the choice of w. In the remaining case j − i > |w| we have

n2k � j − i � (d+ 1)|w0n2k | = (d+ 1)(|w| + n2k) �
n2k

2

(
n2k

2
+ n2k

)
< (n2k)

2,

therefore also in this case j − i ∈ S. Indeed, x ∈ XS. Put m = |w0n2k | and observe that

x, Tmx, T 2mx, . . . , T dmx ∈ [w]S .

But for every non-empty open set U ⊂ XS we can find a word w such that [w]S ⊂ U and then there is

m such that

x ∈ U ∩ T−nU ∩ T−2nU ∩ · · · ∩ T−dnU.

This shows that (XS , σ) is a van der Waerden system.

By Proposition 4.5 every Δ-transitive system is a van der Waerden system. On the other hand, [30,

Proposition 3] provides an example of a strongly mixing system which is not Δ-transitive. In fact, we

will show that the example in [30, Proposition 3] is not even a van der Waerden system.

Proposition 4.17. There exists a strongly mixing system which is not a van der Waerden system.

Proof. Let F be a collection of finite words over {0, 1} satisfying the following two conditions: the

word 11 is in F and if u and v are two finite words over {0, 1} such that |u| = |v|, then the word 1u1v1

is in F . Let X = XF be the subshift specified by taking F as the collection of forbidden words. Note

that X is non-empty since 0∞, 0n10∞ ∈ X for every n � 0.

Put W = [1]X and assume that there exists n ∈ N such that W ∩ σ−nW ∩ σ−2nW �= ∅. Then there

exist two words u and v with length n− 1 such that 1u1v10∞ ∈ X , which leads to a contradiction. This

shows that (X, σ) is not a van der Waerden system.

Now we show that (X, σ) is strongly mixing. Let u and v be two words in the language of X . Put

N = |u| + |v|. For every n � N , one has u0nv0∞ ∈ X . This implies that n ∈ N([u]X , [v]X) for every

n � N , proving that (X, σ) is strongly mixing.
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Remark 4.18. In fact, one can show that the only AP-recurrent point of (X, σ) in Proposition 4.17

is the fixed point 0∞.

Proposition 4.19. Let π : (X,T )→ (Y, S) be a factor map.

(1) If (X,T ) is a van der Waerden system, then so is (Y, S).

(2) If (Y, S) is a van der Waerden system, then there exists a van der Waerden subsystem (Z, T ) of

(X,T ) such that π(Z) = Y .

(3) If π is almost one to one, then (X,T ) is a van der Waerden system if and only if (Y, S) is a van

der Waerden system.

Proof. (1) It is a consequence of the definition of van der Waerden system.

(2) By Lemma 4.8, the set of AP-recurrent point of (Y, S), denoted by Y0, is a dense subset of Y . Then

by Proposition 4.11, for every y ∈ Y0, there exists xy ∈ X such that π(xy) = y and xy is AP-recurrent.
Let X0 = {xy : y ∈ Y0} and Z =

⋃
x∈X0

Orb(x, T ). Clearly π(Z) = Y . For every x ∈ X0, any point

in Orb(x, T ) is AP-recurrent. So Z has a dense set of AP-recurrent points and so (Z, T ) is a van der

Waerden system by Lemma 4.8.

(3) By (1), we only need to prove that when π is almost one-to-one and (Y, S) is a van der Waerden

system then (X,T ) is also a van der Waerden system.

If we put X0 = {x ∈ X : π−1(π(x)) = {x}}, then by the definition of an almost one-to-one factor, X0

is residual in X . For every x ∈ X0 and every neighborhood U of x there is a neighborhood V of π(x)

such that π−1(V ) ⊂ U . This implies that π(X0) is residual in Y . By Lemma 4.8, the set of AP-recurrent
points of (Y, S), denoted again by Y0, is a residual subset of Y . Then π(X0)∩Y0 is also residual in Y and

π−1(π(X0) ∩ Y0) is residual in X . By Proposition 4.11, every point in π−1(π(X0) ∩ Y0) is AP-recurrent.
Thus (X,T ) is a van der Waerden system by Lemma 4.8.

5 Multiple IP-recurrence property

To get a dynamical characterization of C-sets, the second author of this paper introduced in [27] a class of

dynamical system satisfying the multiple IP-recurrence property. In this section, we study this property

and its relation to the van der Waerden systems.

Definition 5.1. We say that a dynamical system (X,T ) has the multiple IP-recurrence property if for

every non-empty open subset U of X , every d � 1 and every IP-sets

FS{p(1)i }∞i=1, FS{p(2)i }∞i=1, . . . , FS{p(d)i }∞i=1

in N, there exists a finite subset α of N such that

U ∩ T−∑
i∈α p

(1)
i U ∩ T−∑

i∈α p
(2)
i U ∩ · · · ∩ T−∑

i∈α p
(d)
i U �= ∅.

It is clear that if a dynamical system (X,T ) has the multiple IP-recurrent property, then it is a van

der Waerden system.

By [13, Theorem A], we know that every E-system has the multiple IP-recurrent property. It is shown

in [17] that every E-system is either equicontinuous or sensitive. We show that this dichotomy also

holds for transitive systems with the multiple IP-recurrence property. This is an extension of the main

result in [17] because there are transitive multiple IP-recurrent systems which are not E-systems (see

Remark 5.6).

Theorem 5.2. If (X,T ) is a transitive system with the multiple IP-recurrence property, then (X,T )

is either equicontinuous or sensitive.

Proof. Every transitive system is either almost equicontinuous or sensitive (see [1]), so let us assume

that (X,T ) is almost equicontinuous. It suffices to show that (X,T ) is minimal, since every minimal

almost equicontinuous system is equicontinuous (see [4]).
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Pick a transitive point x of (X,T ). By [1, Theorem 2.4], the set of transitive points coincides with the

set of equicontinuity points. Then x is also an equicontinuity point. Fix any open neighborhood U of x

and take ε > 0 such that the open ε-ball around x is contained in U . By equicontinuity of x there is δ > 0

such that if ρ(x, y) < δ then ρ(T ix, T iy) < ε/2 for every integer i � 0. Let V denote the open δ-ball

around x. Since (X,T ) has the multiple IP-recurrence property, for every IP-set FS {pi}∞i=1 there exists

a finite subset α of N such that V ∩T−∑
i∈α piV �= ∅. It follows that N(V, V ) is an IP∗-set. In particular,

N(V, V ) is a syndetic set. Next observe that if y ∈ V , then ρ(x, y) < δ. Therefore if y, T ny ∈ V , then

ρ(T nx, T ny) < ε/2 and ρ(T ny, x) < ε/2. It follows that T nx ∈ U and therefore N(V, V ) ⊂ N(x, U). So

N(x, U) is syndetic. This implies that x is a minimal point and hence (X,T ) is minimal.

Remark 5.3. It is shown in [1] that there exists an almost equicontinuous system (X,T ) which is not

equicontinuous. By Proposition 4.4, the system (X,T ) is a van der Waerden systems. But it cannot have

the multiple IP-recurrence property by Theorem 5.2.

Next, we will modify the example constructed in Proposition 4.17, to obtain a strongly mixing van der

Waerden system without the multiple IP-recurrence property.

Proposition 5.4. There is a strongly mixing system which is a van der Waerden system but does not

have the multiple IP-recurrence property.

Proof. We are going to construct a subshift X and two IP-sets FS{pi}∞i=1,FS{qi}∞i=1 such that for every

finite α ⊂ N we have

[1]X ∩ T−∑
i∈α pi [1]X ∩ T−∑

i∈α qi [1]X = ∅.
Let us take any sequences {pi}∞i=1 and {qi}∞i=1 satisfying

n∑
j=1

pj < pn+1 and qn = 2npn+1 for every n ∈ N.

Let F be a collection of finite words over {0, 1} satisfying the following two conditions: the words 11 is

in F , and if u and v are two finite words over {0, 1} such that |u| = ∑
i∈α pi−1 and |u|+ |v| = ∑

i∈α qi−2

for some finite subset α of N then the word 1u1v1 is in F . Let X be the subshift specified by taking F
as the collection of forbidden words. Note that X is non-empty since 0∞ ∈ X .

Let w′ and w′′ be two words in the language of X . Take any s such that

|w′|+ |w′′|+ 2 < ps+1 < qs < qs+1.

It follows that if α ⊂ N is a finite set such that∑
i∈α

pi < |w′|

then maxα � s. Let N = qs+1. For any n � N , let xn = w′0nw′′0∞. We will show that xn is a point

in X and hence X is a mixing subshift. We need to show that no word from F may appear in xn. First

note that the word 11 does not appear in xn, since the word 11 appears neither in w′ nor in w′′. Suppose
that for some non-empty words u and v over {0, 1} the word 1u1v1 appears in xn. If it is a subblock

of w′ or w′′, then it does not belong to F . Now assume that 1u1v1 appears in xn, but neither in w′, nor
in w′′. Therefore either 1u1 is a subword of w′ or 1v1 is a subword of w′′. In the first case, if α ⊂ N is a

finite set such that ∑
i∈α

pi = |u|+ 1 � |w′| < ps+1,

then maxα � s, hence ∑
i∈α

qi �
s∑

j=1

qj < qs+1.

But on the other hand |v| � n � qs+1 and therefore |u|+ |v|+ 2 >
∑

i∈α qi. It implies that 1u1v1 /∈ F .
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In the second case note that |w′′| � |v|+ 2. Now, if α ⊂ N is a finite set such that∑
i∈α

pi = |u|+ 1 � n � qs+1,

then maxα > s, hence∑
i∈α

qi � qs+1 �
∑
i∈α

pi + ps+1 > |u|+ 1 + |w′|+ |w′′| > |u|+ |v|+ 2.

It implies that 1u1v1 /∈ F . Hence xn ∈ X and therefore n ∈ N([u]X , [v]X) and (X, σ) is strongly mixing.

By a similar argument, one can show that (X, σ) is a van der Waerden system.

Finally observe that if

[1]X ∩ T−∑
i∈α pi [1]X ∩ T−∑

i∈α qi [1]X �= ∅,
then there are two finite words u, v such that 1u1v1 is in the language of X and |u| = ∑

i∈α pi − 1 and

|u| + |v| + 1 =
∑

i∈α qi − 1. This contradicts the definition of X . Thus (X, σ) does not have multiple

IP-recurrence property.

In the rest of this section, we show that there is a large family of subshifts, with the multiple IP-

recurrence property. For a function f : Z+ → [0,∞), we define

Ψf =

{
x ∈ {0, 1}N : ∀ p ∈ Z+, ∀ i ∈ N,

i+p−1∑
r=i

xr � f(p)

}

and call it the bounded density subshift generated by f . Bounded density shifts were introduced by

Stanley [33]. Stanley [33] proved also that to define Ψf we can consider only canonical functions f : Z+

→ [0,∞). By [33, Theorem 2.9], a function f : Z+ → [0,∞) is canonical for the bounded density shift Ψf

if and only if

1. f(0) = 0;

2. f(m+ 1) ∈ f(m) + Z+ for any m ∈ Z+;

3. f(m+ n) � f(m) + f(n) for any n,m ∈ Z+.

Note that if f(1) = 0, then Ψf = {0∞}.
Theorem 5.5. If f is an unbounded canonical function, then the bounded density subshift (Φf , σ)

generated by f has the multiple IP-recurrent property.

Proof. Fix a word w in the language of Ψf and let U = [w] ∩ Ψf . Take any d � 1 and any IP-sets

FS{p(1)i }∞i=1, FS{p(2)i }∞i=1, . . . , FS{p(d)i }∞i=1. For simplicity of notation, given a finite subset α of N, we

define p
(i)
α =

∑
j∈α p

(i)
j .

Without loss of generality, we may assume that for any i ∈ {1, . . . , d} and j ∈ N we have

p
(i)
j < p

(i)
j+1 and p

(i)
j < p

(i+1)
j (provided i < d).

Since f is unbounded, there exists p ∈ N such that f(p) > (d+ 1)|w| and p � d|w|. There is N ∈ N such

that if α ⊂ N is a finite set with maxα � N , then
∑

j∈α p
(i)
j > p+ |w| for every i ∈ {1, . . . , d}. Note that

for every α = {a1, . . . , as} ⊂ N and any 1 � i < d we have

p(i+1)
α �

s∑
j=1

p(i+1)
aj

�
s∑

j=1

(p(i)aj
+ 1) � s+ p(i)α .

Denote β = {N + 1, . . . , N + 2p+ 1} and observe that p
(i+1)
β > p

(i)
β + 2p for any 1 � i < d and p

(1)
β

> p+ |w|. Let
x = w0p

(1)
β −|w|w0p

(2)
β −p

(1)
β −2|w|w · · ·w0p(d)

β −p
(d−1)
β −d|w|w0∞.

It is easy to see that x ∈ Ψf and

σp
(i)
β (x) ∈ [w] for i = 1, . . . , d.
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Therefore,

U ∩ σ−p
(1)
β U ∩ σ−p

(2)
β U ∩ · · · ∩ σ−p

(d)
β U �= ∅.

Remark 5.6. By [33, Theorem 2.14], the bounded density shift (Φf , σ) in Theorem 5.5 is also strongly

mixing. If the function f grows very slow, for example f(n) = log(n + 1), then for any point x ∈ Φf

one has

lim
n→∞

1

n
#(N(x, [1]) ∩ [1, n]) � lim

n→∞
f(n)

n
= 0.

It follows that the only invariant measure of (Φf , σ) is the point mass on {0∞}. But Ψf is uncountable,

hence (Ψf , σ) is not an E-system. Let x be transitive point of (Φf , σ). By [27, Theorems 8.5 and 4.4],

we know that N(x, U) is a C-set for every neighborhood U of x. Since (Ψf , σ) is not an E-system and x

is its transitive point, there exists a neighborhood V of x such that N(x, V ) has the Banach density zero.

This gives a dynamical proof of a combinatorial result in [19] that there exists a C-set which has Banach

density zero.

6 Multi-non-wandering points and van der Waerden center

We say that a point x ∈ X is a non-wandering point if for every neighborhood U of x there exists an

n ∈ N such that U ∩ T−nU �= ∅. Denote by Ω(X,T ) the set of all non-wandering points of (X,T ). It is

easy to see that Ω(X,T ) is non-empty, closed and T -invariant. So (Ω(X,T ), T ) also forms a dynamical

system, so we can consider non-wandering points of the subsystem (Ω(X,T ), T ). To introduce the notion

of Birkhoff center, we define a (possibly transfinite) descending chain of non-empty closed and T -invariant

subsets of X . We put inductively Ω0(X,T ) = X , Ω1(X,T ) = Ω(Ω0(X,T ), T ), and for every ordinal α

we set Ωα+1(X,T ) = Ω(Ωα(X,T ), T ). We continue this process by a transfinite induction: if λ is a limit

ordinal we define

Ωλ(X,T ) =
⋂
α<λ

Ωα(X,T ).

In the compact metric space decreasing family of closed sets is always at most countable, hence there is

a countable ordinal α such that

X = Ω0(X,T ) ⊃ Ω1(X,T ) ⊃ · · · ⊃ Ωα(X,T ) = Ωα+1(X,T ) = · · · .

We say that Ωα(X,T ) is the Birkhoff center of (X,T ) if Ωα+1(X,T ) = Ωα(X,T ) and we define depth of

(X,T ) by

depth(X,T ) = min{α : Ωα(X,T ) = Ωα+1(X,T )}.
Note that compactness of X implies that depth(X,T ) < ω1, where ω1 is the first uncountable ordi-

nal number.

Inspired by the notion of non-wandering points and the Birkhoff center, we introduce multi-non-

wandering points and the van der Waerden center.

Definition 6.1. Let (X,T ) be a dynamical system. A point x ∈ X is multi-non-wandering if for every

open neighborhood U of x and every d ∈ N there exists an n ∈ N such that

U ∩ T−nU ∩ T−2nU ∩ · · · ∩ T−dnU �= ∅,

i.e., for every d ∈ N, the diagonal d-tuple (x, x, . . . , x) is non-wandering in (Xd, T×T 2×· · ·×T d). Denote

by Ω(∞)(X,T ) the collection of all multi-non-wandering points.

First, we have the following characterization of multi-non-wandering points in a orbit closure of a point.

Proposition 6.2. Let (X,T ) be a dynamical system and x ∈ X. Suppose that Orb(x, T ) = X. Then y

is a multi-non-wandering point if and only if N(x, U) is an AP-set for every neighborhood U of y.
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Proof. First assume that y is a multi-non-wandering point. Fix a neighborhood U of y. For every

d ∈ N there exists an n ∈ N such that the set V = U ∩ T−nU ∩ T−2nU ∩ · · · ∩ T−dnU is non-empty and

open. Since Orb(x, T ) = X there exists m � 0 such that Tmx ∈ V ⊂ U , and hence

Tm+nx ∈ U, Tm+2nx ∈ U, . . . , Tm+dnx ∈ U,

i.e., {m+ n,m+ 2n, . . . ,m+ dn} ⊂ N(x, U). Thus N(x, U) is an AP-set.

Fix a neighborhood U of y and assume that N(x, U) is an AP-set. There exist m,n ∈ N such that

{m,m+ n,m+ 2n, . . . ,m+ dn} ∈ N(x, U). Put z = Tmx. Then z ∈ U ∩ T−nU ∩ T−2nU ∩ · · · ∩ T−dnU

and so y is a multi-non-wandering point.

The proof of the following result is inspired by the set’s forcing in [7] (see [27, Section 5] for more

information on this topic).

Theorem 6.3. A set F ⊂ N is an AP-set if and only if for every dynamical system (X,T ) and every

x ∈ X, there is a multi-non-wandering point in TFx, where TFx = {T nx : n ∈ F}.
Proof. Assume that F is an AP-set. Let (X,T ) be a dynamical system and x ∈ X . Without loss of

generality, assume that Orb(x, T ) = X . Set K = TFx. Cover K with closed balls with diameter less

than 1 and let r1 be the cardinality of a finite subcover of this cover. Then we can present

K =

r1⋃
i=1

K1,i,

where each K1,i is compact and has diameter less than 1. Since the family AP of AP-sets has the Ramsey

property, there are an AP-set F1 ⊂ F and i1 such that TF1x ∈ K1,i1 . Set K1 = K1,i1 . Cover K1 with

closed balls with diameter less than 1/2 and let r2 be the cardinality of some finite subcover of this cover.

Write

K1 =

r2⋃
i=1

K2,i,

where each K2,i is compact and has diameter less than 1/2. By induction we have a sequence of compact

sets {Ki}∞i=1 and a sequence of AP-sets {Fi}∞i=1 such that Ki+1 ⊂ Ki, diam(Ki) < 1/i, Fi+1 ⊂ Fi and

TFix ⊂ Ki. By the compactness ofX , there is y ∈ X such that
⋂∞

i=1 Ki = {y}. For every neighborhood U

of y, there exists i0 such that Ki0 ⊂ U . Then Fi0 ⊂ N(x, U), hence N(x, U) is an AP-set. Thus y is a

multi-non-wandering point by Proposition 6.2.

Now assume that for every dynamical system (X,T ) and every x ∈ X there is a multi-non-wandering

point in TFx. Let x be the characteristic function of F . We can view x as a point in the full shift

({0, 1}Z+, σ). Put X = Orb(x, σ) and note that N(x, [1] ∩ X) = F . By assumption, there exists a

multi-non-wandering point y ∈ TFx ⊂ [1]∩X . By Proposition 6.2, F = N(x, [1]∩X) is an AP-set, since

[1] ∩X is a neighborhood of y.

Theorem 6.4. Let (X,T ) be a dynamical system and x ∈ X be such that Orb(x, T ) = X. Then

(1) If U is a neighborhood of Ω(∞)(X,T ) and y ∈ X, then N(y, U) is an AP∗-set.
(2) If M is a non-empty closed subset X satisfying (1), then Ω(∞)(X,T ) ⊂ M , i.e., Ω(∞)(X,T ) is

characterized as the smallest subset of X satisfying (1).

Proof. We first show that (1) holds. Take a neighborhood U of Ω(∞)(X,T ). If there exists z ∈ X

such that N(z, U) is not an AP∗-set, then F = N(z, U c) is an AP-set. By Theorem 6.3, there exists a

multi-non-wandering point in TF z ⊂ U c. This contradicts Ω(∞)(X,T ) ⊂ U .

Assume that M ⊂ X is non-empty, closed and satisfies (1). We show that Ω(∞)(X,T ) ⊂ M . Fix a

multi-non-wandering point z. Let V be a neighborhood of z. It follows from Proposition 6.2 that N(x, V )

is an AP-set. But N(x, U) is an AP∗-set for every neighborhood U of M . Hence N(x, V )∩N(x, U) �= ∅.
We get that U ∩ V �= ∅ for every neighborhood V of z and every neighborhood U of M . Thus z ∈ M ,

since M is closed.
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Using the characterization of the set of multi-non-wandering points (see Theorem 6.4), we can give

another proof of Proposition 4.11 without using the advanced results on ultrafilters.

Proof of Proposition 4.11. Without loss of generality, assume that Y = Orb(y, S). Let

A = {A ⊂ X : (A, T ) is a subsystem of (X,T ) and Y ⊂ π(A)}.

It is clear that A is not empty since X ∈ A. By Zorn lemma, there is a minimal (under the inclusion)

element Z ∈ A. Pick x ∈ π−1(y) ∩ Z. Note that Orb(x, T ) ⊂ Z and Y ⊂ π(Orb(x, T )). By the

minimality of Z, we have Z = Orb(x, T ). Fix a neighborhood U of Ω(∞)(Z, T ) and a neighborhood V

of y. By Theorem 6.4, N(z, U) is an AP∗-set. But N(x, V ) is an AP-set. Then there exists n ∈ N

such that T nz ∈ U and T ny ∈ V . Thus y ∈ π(Ω(∞)(Z, T )). By the minimality of Z again, one has

Z = Ω(∞)(Z, T ). Thus Z is a van der Waerden system and x is AP-recurrent by Proposition 6.2 and

Lemma 4.8.

It is clear that Ω(∞)(X,T ) is closed and T -invariant. So (Ω(∞)(X,T ), T ) also forms a dynamical

system. We can consider multi-non-wandering points in (Ω(∞)(X,T ), T ). It is shown in Example 6.7

that Ω(∞)(Ω(∞)(X,T ), T ) may not equal Ω(∞)(X,T ). Similar to the Birkhoff center, we introduce the

van der Waerden center. We put Ω
(∞)
0 (X,T ) = X , Ω

(∞)
1 (X,T ) = Ω(∞)(Ω

(∞)
0 (X,T ), T ) and Ω

(∞)
2 (X,T ) =

Ω(∞)(Ω
(∞)
1 (X,T ), T ). We continue this process. Then

X = Ω
(∞)
0 (X,T ) ⊃ Ω

(∞)
1 (X,T ) ⊃ · · ·Ω(∞)

α+1(X,T )

= Ω(∞)(Ω(∞)
α (X,T ), T ),Ω

(∞)
λ (X,T )

=
⋂
α<λ

Ω(∞)
α (X,T ),

where λ is a limit ordinal number. We say that Ω
(∞)
α (X,T ) is the van der Waerden center of (X,T ) if

Ω
(∞)
α+1(X,T ) = Ω

(∞)
α (X,T ).

Note that a dynamical system is a van der Waerden system if and only if every point is multi-non-

wandering. The following result shows that the van der Waerden center is just the the maximal van der

Waerden subsystem.

Proposition 6.5. Let (X,T ) be a dynamical system and Ω
(∞)
α (X,T ) be the van der Waerden center

of (X,T ). Then Ω
(∞)
α (X,T ) is the closure of the set of AP-recurrent points of (X,T ). Furthermore,

(Ω
(∞)
α (X,T ), T ) is the maximal van der Waerden subsystem of (X,T ).

Proof. Let Z be the set of AP-recurrent points of (X,T ). It is not hard to see that Z ⊂ Ω
(∞)
γ (X,T )

for every ordinal number γ. So Z ⊂ Ω
(∞)
α (X,T ).

Since Ω
(∞)
α+1(X,T ) = Ω

(∞)
α (X,T ), every point in the dynamical system (Ω

(∞)
α (X,T ), T ) is multi-non-

wandering, and then (Ω
(∞)
α (X,T ), T ) is a van der Waerden system. By Lemma 4.2, the set of AP-

recurrent points of (Ω
(∞)
α (X,T ), T ) is dense in Ω

(∞)
α (X,T ). Then Ω

(∞)
α (X,T ) ⊂ Z.

Proposition 6.6. Let π : (X,T )→ (Y, S) be a factor map. Then the image of van der Waerden center

of (X,T ) under π coincides with the van der Waerden center of (Y, S).

Proof. Let X0 and Y0 be the set of all AP-recurrent points in (X,T ) and (Y, T ) respectively. By

Proposition 4.11, we have π(X0) = Y0. Then the result follows from Proposition 6.5.

Example 6.7. There exists a dynamical system (X,T ) such that Ω(∞)
(
Ω(∞)(X,T ), T

) �= Ω(∞)(X,T ).

Take any increasing sequence {zn}n∈Z
⊂ (0, 1) such that limn→−∞ zn = 0 and limn→∞ zn = 1. Let

X = {0, 1} ∪ {zn : n ∈ Z} (mod 1), i.e., we view zn as a sequence on the unit circle. Then we have

limn→∞ ρ(z−n, zn) = 0, where ρ is the standard metric on the unit circle.

Define

Y = X × {0} ∪
∞⋃

n=1

2n+1⋃
j=2n

n⋃
i=−n

{(zi, 4−n − j2−n−14−n−1)} ∪
∞⋃
n=0

(z−n, 2) ∪ (0, 2).
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Clearly, if j �= s then 4−n − j2−n−14−n−1 �= 4−n − s2−n−14−n−1 and 4−n − 4−n−1 > 4−n−1. Therefore

the coordinates like (zi, 4
−n − j2−n−14−n−1) uniquely determine a point in Y . The set Y is a closed

subset of a product space X × [0, 4]. Therefore Y with the maximum metric is compact.

Let g(zn) = zn+1 for every n ∈ Z and g(0) = 0 ∈ X . For any integer j ∈ [2n, 2n+1] denote aj =

(z−n, 4
−n − j2−n−14−n−1) and bj = (zn, 4

−n − j2−n−14−n−1). Then we define a function f : Y → Y by

putting

f(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(g(x), y), y = 0 or (y = 2 and x �= z0),

a1, y = 2 and x = z0,

(g(x), y), y ∈ (0, 2) and (x, y) �= bj for every j,

aj+1, (x, y) = bj.

Clearly f is a bijection and it is also not hard to verify that it is a homeomorphism. Observe that

Ω(f) = {(0, 2)} ∪ X × {0}. We are going to show that Ω(∞)(f) = Ω(f). Clearly both fixed points are

in Ω(∞)(f). Now let us take any m ∈ Z and any open set U � (zm, 0). There is N > 0 such that

(zm, y) ∈ U for every y � 4−N . Fix any d > 0 and take n > max{d,N, |m|}. Now if we take any

j = 2n, . . . , 2n + d < 2n+1 − 1, then

pj = (zm, 4−n − j2−n−14−n−1) ∈ Y ∩ U.

By the definition of f , for j = 0, . . . , d− 1 we have f2n+1(pj) = pj+1. In other words,

pd ∈ U ∩ f−2n−1(U) ∩ · · · ∩ f−(2n+1)d(U) �= ∅.

Indeed (zm, 0) ∈ Ω(∞)(f). But

Ω(∞)(f |Ω(∞)(f)) = Ω(f |Ω(∞)(f)) = {(0, 0), (0, 2)} .

It follows that the van der Waerden center can be a proper subset of Ω(∞)(f).

Remark 6.8. It is shown in [31] that if α is a countable ordinal, then there exists a dynamical system

(X,T ) with depth(X,T ) = α. We define the van der Waerden depth of (X,T ) as

depth(∞)(X,T ) = min{α : Ω
(∞)
α+1(X,T ) = Ω(∞)

α (X,T )}.

We conjectured that the van der Waerden depth is a countable ordinal and for every countable ordinal

number α there exists a dynamical system (X,T ) such that depth(∞)(X,T ) = α2) .
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10 Foryś M, Huang W, Li J, et al. Invariant scrambled sets, uniform rigidity and weak mixing. Israel J Math, 2016, 211:

447–472

11 Furstenberg H. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J Anal
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34 Szemerédi E. On sets of integers containing no k elements in arithmetic progression. Acta Arith, 1975, 27: 199–245

35 Van der Waerden L. Beweis eine baudetschen vermutung nieus arch. Wisk, 1927, 15: 212–216

36 Weiss B. Multiple recurrence and doubly minimal systems. In: Topological Dynamics and Applications. Contemp

Math, vol. 215. Providence: Amer Math Soc, 1998, 189–196


