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Abstract We develop an Hm-conforming (m > 1) spectral element method on multi-dimensional domain

associated with the partition into multi-dimensional rectangles. We construct a set of basis functions on the

interval [−1, 1] that are made up of the generalized Jacobi polynomials (GJPs) and the nodal basis functions.

So the basis functions on multi-dimensional rectangles consist of the tensorial product of the basis functions on

the interval [−1, 1]. Then we construct the spectral element interpolation operator and prove the associated

interpolation error estimates. Finally, we apply the H2-conforming spectral element method to the Helmholtz

transmission eigenvalues that is a hot problem in the field of engineering and mathematics.
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1 Introduction

Spectral method is an efficient method in scientific and engineering computations which can provide

superior accuracy for the solution of partial differential equations in fluid dynamics [6, 17]. But spectral

method lacks the domain flexibility. So the spectral element method is developed to overcome this

defect. Up to now the spectral element method have attracted more and more scholars’ attention.

Guo and Jia [10] studied the quadrilateral spectral method and extended it to H1-conforming spectral

element method for polygons. Shen et al. [18] provided an H1-conforming spectral element method by

constructing directly the modal basis functions on the triangle and Samson et al. [16] built a new H1-

conforming spectral element method using the basis on the triangle by the rectangle-triangle mapping.

Yu and Guo [23] developed an H2-conforming spectral element method with rectangular partition in two

dimensions.
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The orthogonal Jacobi polynomials Ĵα,β
i (x̂) (x̂ ∈ I := [−1, 1], α, β > −1) weighted with

wα,β(x̂) := (1− x̂)α(1 + x̂)β

are usually adopted to construct the modal basis functions in spectral method and spectral element

method. Shen et al. [17] extended these polynomials to the generalized case, namely the GJPs for

α, β ∈ R. It is worth indicating an important property of GJPs that they together with their first few

order derivatives vanish at the endpoints ±1. So Shen et al. used them as a set of basis functions

in Hm
0 (I) (m > 1) as well as apply them to the general order PDEs. Using the GJPs one can easily

construct the basis functions in Hm
0 for spectral method on multi-dimensional rectangle. Canuto et al.

mentioned in the book [6, Subsection 8.5] a type of modal boundary-adapted basis functions on [−1, 1].

They consist of the modal basis functions, viewed as a compact combination of Legendre polynomials,

and the nodal basis functions (without derivatives) at ±1 so that one can easily establish H1-conforming

spectral element approximation. Note that these modal basis functions are no other than the GJPs

Ĵ−1,−1
i (x̂). Using the similar way Yu and Guo [23] developed an H2-conforming spectral element method

with rectangular partition coupled with an error analysis. As the high dimensional problems are issues of

common concern in scientific computing, this motivates us to extend this case to Hm-conforming spectral

elements on multi-dimensional domain.

In this paper, we aim to develop an Hm-conforming spectral element method on multi-dimensional

domain which is the same as the one in [23] for the case m = 2 in two dimensions, using a proof method

different from that of [23]. We construct a set of basis functions on the interval [−1, 1] that are made

up of the GJPs and the nodal basis functions, the former of which can be regarded as bubble functions.

So the basis functions on multi-dimensional rectangular element consist of the tensorial product of the

basis functions on the interval [−1, 1] by an affine mapping. Then we construct the spectral element

interpolation operator and prove the associated interpolation error estimates. Finally, we shall apply the

H2-conforming spectral element method presented in this paper to the Helmholtz transmission eigenvalue

problem that is a quadratic eigenvalue problem arising in inverse scattering theory for an inhomogeneous

medium [4,8,14]. In recent years, the numerical methods of the transmission eigenvalue problem are hot

topics in the field of engineering and computational mathematics (see [1, 5, 9, 12, 13, 20, 21, 24]). Among

them, An and Shen [1] studied the spectral methods on the rectangle. But to our knowledge the above

works do not involve spectral element method with d-dimensional rectangular partition (d = 2, 3). In this

paper, we adopt the H2-conforming method built in [22] to construct a spectral element approximation

for transmission eigenvalues. Our theoretical analysis and numerical results show that the H2-conforming

spectral element method can obtain the transmission eigenvalues of high accuracy numerically.

2 An Hm-conforming spectral element method

In this section, we shall discuss an Hm-conforming spectral element method on d-dimensional domain D

(d > 1). We associate D with a sequence of rectangular partitions {πh}h>0 into elements κ whose edges

are parallel to axis. First of all, we consider the construction of the basis functions on one-dimensional

standard interval I = [−1, 1] containing nodal and modal basis functions. Before presentation, we use

the notation PN (K) to denote the polynomial space of degree less than or equal to N in each variable

on K.

First of all, we define 2m nodal basis functions ϕ̂j(x̂) (j = 0, . . . , 2m − 1) for the polynomial space

P2m−1(I) satisfying

∂jx̂ϕ̂i(−1) = ∂jx̂ϕ̂i+m(1) = δi,j and ∂jx̂ϕ̂i(1) = ∂jx̂ϕ̂i+m(−1) = 0, i, j = 0, . . . ,m− 1.

The introduction of the nodal basis functions guarantees the Hm-conformity of spectral element space

across the adjacent elements. Then we would like to increase the degree of polynomial space from

2m − 1 to N . For this purpose, we shall construct the modal basis functions on I which are actually
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the polynomial bubble functions on I. Let Ĵα,β
j (x̂) be the Jacobi polynomials which are orthogonal with

respect to the weight function ω̂α,β(x̂) = (1− x̂)α(1 + x̂)β (α, β > −1) on I,∫ 1

−1

Ĵα,β
i (x̂)Ĵα,β

j (x̂)ω̂α,β(x̂) = γα,βj δi,j .

where

γα,βj =
2α+β+1Γ(j + α+ 1)Γ(j + β + 1)

(2j + α+ β + 1)j!Γ(j + α+ β + 1)
.

The GJPs are defined by

Ĵα,β
j (x̂) =


(1− x̂)−α(1 + x̂)−β Ĵ−α,−β

j−j0
(x̂), α, β 6 −1,

(1− x̂)−αĴ−α,β
j−j0

(x̂), α 6 −1, β > −1,

(1 + x̂)−β Ĵα,−β
j−j0

(x̂), α > −1, β 6 −1,

where j > j0 with j0 = −(α+ β),−α and −β for the above three cases, respectively.

Here, we fix α = β = −m then the GJPs {Ĵ−m,−m
j (x̂)}j>2m satisfy∫ 1

−1

Ĵ−m,−m
i (x̂)Ĵ−m,−m

j (x̂)ω̂−m,−m(x̂)dx̂ = γm,m
j−2mδi,j .

An attractive property of the GJPs is that

∂jx̂Ĵ
−m,−m
i (±1) = 0, j = 0, 1, . . . ,m− 1, i > 2m.

In addition, the GJPs can be represented as a compact combination of Legendre polynomials (see [17,

Lemma 6.1] and Remark 2.5), which is convenient for computation. So we adopt them to set the bubble

functions on I,

ϕ̂j(x̂) = Ĵ−m,−m
j (x̂), j = 2m, 2m+ 1, . . . , N. (2.1)

It is known that {ϕ̂j}Nj=2m are a set of basis functions of P 0
N (I) ⊂ Hm

0 (I) (see [17]). Hence, {ϕ̂j}Nj=0

constitutes a set of basis functions of PN (I). Next, we consider the case of an arbitrary interval [a, b].

For this purpose, we define

ϕj(x) =

(
b− a

2

)j

ϕ̂j(x̂) and ϕj+m(x) =

(
b− a

2

)j

ϕ̂j+m(x̂) for 0 6 j 6 m− 1, (2.2)

ϕj(x) = ϕ̂j(x̂) for 2m 6 j 6 N (2.3)

in terms with the linear transformation

x =
b− a

2
x̂+

b+ a

2
.

Then {ϕj}Nj=0 constitutes a set of basis functions of PN ([a, b]).

Now we consider the basis functions on the arbitrary element

κ := [a1, b1]× · · · × [ad, bd] ⊂ Rd.

A natural choice of the basis functions on κ is the tensor product of one-dimensional basis functions. We

define the linear transformation

xi =
bi − ai

2
x̂i +

bi + ai
2

, i = 1, . . . , d,

where x̂ := (x̂1, . . . , x̂d)
T and x := (x1, . . . , xd)

T are the vectors defined on Id and κ, respectively. Based

on the previous discussion for one dimension, one can use{ d∏
i=1

ϕji(xi)

}N

j1,...,jd=0

⊂ PN (κ)
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as a set of basis functions on the element κ. For reading convenience, we classify these basis functions on

κ as follows:

(A) Nodal basis functions:
∏d

i=1 ϕji(xi), j1, . . . , jd = 0, . . . , 2m− 1.

(B) q-face basis functions (1 6 q 6 d − 1): For any rearranged sequence {il}dl=1 of {i}di=1, define∏d
i=1 ϕji(xi), ji1 , . . . , jid−q

= 0, . . . , 2m− 1, jid−q+1
, . . . , jid > 2m.

(C) Element bubble basis functions:
∏d

i=1 ϕji(xi), j1, . . . , jd > 2m.

One can easily verify the Hm-conformity for basis functions between the adjacent elements κ1 and κ2.

We consider only the case that κ1 and κ2 share the common (d− 1)-face

∂κ1 ∩ ∂κ2 = a× [a2, b2]× · · · × [ad, bd].

For s = 0, . . . ,m− 1, we have

∂sx1
ϕj1 |κ1

(a) = ∂sx1
ϕj1 |κ2

(a), j1 = 0, . . . , 2m− 1,

∂sx1
ϕj1 |κ1(a) = ∂sx1

ϕj1 |κ2(a) = 0, j1 > 2m.

For s = 0, . . . ,m− 1 and i = 2, . . . , d, we have with xi ∈ [ai, bi],

∂sxi
ϕji |κ1(xi) = ∂sxi

ϕji |κ2(xi) =

(
2

bi − ai

)s−ji

∂sx̂i
ϕ̂ji(x̂i), ji = 0, . . . ,m− 1,

∂sxi
ϕji |κ1(xi) = ∂sxi

ϕji |κ2(xi) =

(
2

bi − ai

)s−ji+m

∂sx̂i
ϕ̂ji(x̂i), m 6 ji 6 2m− 1,

∂sxi
ϕji |κ1(xi) = ∂sxi

ϕji |κ2(xi) =

(
2

bi − ai

)s

∂sx̂i
Ĵ−m,−m
ji

(x̂i), ji > 2m.

Therefore, the basis functions
∏d

i=1 ϕji(xi) (0 6 j1, . . . , jd 6 N) together with their derivatives of

order less than or equal to m− 1 are equal on ∂κ1 ∩ ∂κ2.
In what follows, we mainly introduce some interpolation operators that will be used in the sequent

argument. For reading convenience, we use the symbols v̂ |x̂i
and v |xi to denote the restriction of the

multi-variable functional v̂ to the variable x̂i ∈ I and the restriction of the multi-variable functional v to

xi ∈ [ai, bi], respectively.

Introduce the interpolation operator Π̂1
i for v̂ = v̂(x̂) ∈ C(m−1)d(Id) corresponding to the variable

x̂i ∈ I (1 6 i 6 d):

(Π̂1
i v̂)(x̂) =

m−1∑
j=0

((∂jx̂i
v̂) |x̂i=−1ϕ̂j(x̂i) + (∂jx̂i

v̂) |x̂i=1ϕ̂j+m(x̂i)),

and the orthogonal projector Π̂2
i for v̂ := v̂(x̂) ∈ Cmd(Id) satisfying v̂ |x̂i

∈ Hm
0 (I) so that

Π̂2
i v̂ |x̂i

∈ P 0
N (I) := PN (I) ∩Hm

0 (I) :

∫ 1

−1

∂mx̂i
(Π̂2

i v̂(x̂)− v̂(x̂))∂mx̂i
v̂N (x̂i)dx̂i = 0, ∀ v̂N (x̂i) ∈ P 0

N (I).

We can infer

Π̂2
i v̂(x̂) =

N+1−2m∑
j=1

φ̂j(x̂i)

∫ 1

−1

∂mx̂i
v̂(x̂)∂mx̂i

φ̂j(x̂i)dx̂i,

where {φ̂j}N+1−2m
j=1 constitutes a set of orthonormal basis functions in Hm

0 (I).

Define (Π1
i v)(x) = (Π̂1

i v̂)(x̂) and (Π2
i v)(x) = (Π̂2

i v̂)(x̂) with v(x) := v̂(x̂). Then it is obvious that Π2
i

is an orthogonal projector satisfying

Π2
i v |xi ∈ P 0

N ([ai, bi]) := PN ([ai, bi]) ∩Hm
0 ([ai, bi]),∫ bi

ai

∂mxi
(Π2

i v(x)− v(x))∂mxi
vN (xi)dxi = 0, ∀ vN (xi) ∈ P 0

N ([ai, bi]),
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and

(Π1
i v)(x̂) =

m−1∑
j=0

((∂jxi
v) |xi=−1ϕj(xi) + (∂jxi

v) |xi=1ϕj+m(xi)).

Define the interpolation Îi for v̂ := v̂(x̂) ∈ Cmd(Id) such that (Îiv̂)(x̂) = v̂(x̂) (i = 1, . . . , d) for any

v̂ |x̂i
∈ PN (I) satisfying

(Îiv̂)(x̂) = (Π̂1
i v̂ + Π̂2

i ◦ (I − Π̂1
i )v̂)(x̂),

where I is the identity operator.

Define v(x) = v̂(x̂) and the interpolation Ii for v := v(x) ∈ Cmd(κ) such that (Iiv)(x) = v(x),

∀v |xi ∈ PN ([ai, bi]) and

(Iiv)(x) = (Π1
i v +Π2

i ◦ (I −Π1
i )v)(x).

It is obvious that (Iiv)(x) = (Îiv̂)(x̂).

Let Hs(K) be the standard Sobolev space with norm ∥ · ∥s,K for a given K ⊆ D and we shall omit the

subscript K if K = D. Hereafter in this paper, we use the symbol x . y to mean x 6 Cy for a constant

C that is independent of the mesh size and the degree of piecewise polynomial space and may be different

at different occurrences. Now we start with the interpolation error estimates in one dimension.

Lemma 2.1. Assume v̂(x̂) ∈ Ct(Id) (m 6 t 6 N + 1). Then there holds for 0 6 s 6 m,

∥Îiv̂ − v̂∥s,I . (1/N)t−s∥v̂∥t,I .

Here, ∥v̂∥t,I denotes the norm of v̂ with respect to the variable x̂i.

Proof. From [17, Theorem 6.1], we know if f̂(x̂i) ∈ Hm
0 (I) ∩ Ht(I) (t > m) then there holds for

0 6 s 6 m,

∥Π̂2
i f̂ − f̂∥s,I . (1/N)t−s∥f̂∥t,I .

Note that (v̂ − Π̂1
i v̂) |x̂i

∈ Hm
0 (I) and Π̂1

i (v̂ − Π̂1
i v̂) = 0. Then

∥Îiv̂ − v̂∥s,I = ∥Îi(v̂ − Π̂1
i v̂)− (v̂ − Π̂1

i v̂)∥s,I
= ∥Π̂2

i ◦ (I − Π̂1
i )(v̂ − Π̂1

i v̂)− (v̂ − Π̂1
i v̂)∥s,I

= ∥Π̂2
i (v̂ − Π̂1

i v̂)− v̂ − Π̂1
i v̂∥s,I

. (1/N)t−s∥v̂ − Π̂1
i v̂∥t,I

. (1/N)t−s∥v̂∥t,I .

This concludes the proof.

We define the multi-dimensional interpolation operator Cmd(Id) → PN (Id) on Id as

(ÎN v̂)(x̂) = (Î1 ◦ · · · ◦ Îdv̂)(x̂). (2.4)

One can easily verify that (ÎN v̂)(x̂) = v̂(x̂) holds for any v̂(x̂) ∈ PN (Id).

Lemma 2.2. For any v̂ ∈ Ct(Id) with md 6 t 6 N + 1, there holds

∥ÎN v̂ − v̂∥s,Id . (1/N)t−s∥v̂∥t,Id , 0 6 s 6 m.

Proof. Let d nonnegative integers α1, . . . , αd satisfy
∑d

i=1 αi = s. We obtain from Lemma 2.1 that

∥∂α1
x1

· · · ∂αd
xd

(Î1v̂ − v̂)∥0,Id . (1/N)t−s∥v̂∥t,Id ,

and

∥∂α1
x1
∂α2
x2

· · · ∂αd
xd

(Î1 − I)(Î2 ◦ · · · ◦ Îdv̂ − v̂)∥s,Id

. (1/N)m−α1∥∂mx1
∂α2
x2

· · · ∂αd
xd

(Î2 ◦ · · · ◦ Îdv̂ − v̂)∥0,Id ,
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where I is the identity operator. Hence by the triangular inequality and (2.4), we have

∥∂α1
x1

· · · ∂αd
xd

(ÎN v̂ − v̂)∥0,Id

. ∥∂α1
x1

· · · ∂αd
xd

(Î1v̂ − v̂)∥0,Id + ∥∂α1
x1

· · · ∂αd
xd

(Î2 ◦ · · · ◦ Îdv̂ − v̂)∥0,Id

+ ∥∂α1
x1

· · · ∂αd
xd

(Î1 − I)(Î2 ◦ · · · ◦ Îdv̂ − v̂)∥0,Id

. (1/N)t−s∥v̂∥t,Id + ∥∂α1
x1

· · · ∂αd
xd

(Î2 ◦ · · · ◦ Îdv̂ − v̂)∥0,Id

+ (1/N)m−α1∥∂mx1
∂α2
x2

· · · ∂αd
xd

(Î2 ◦ · · · ◦ Îdv̂ − v̂)∥0,Id

. (1/N)t−s∥v̂∥t,Id + ∥∂α1
x1

· · · ∂αd
xd

(Î3 ◦ · · · ◦ Îdv̂ − v̂)∥0,Id

+ (1/N)m−α2∥∂α1
x1
∂m2 · · · ∂αd

xd
(Î3 ◦ · · · ◦ Îdv̂ − v̂)∥0,Id

+ (1/N)m−α1∥∂mx1
∂α2
x2

· · · ∂αd
xd

(Î3 ◦ · · · ◦ Îdv̂ − v̂)∥0,Id

+ (1/N)(m−α1)+(m−α2)∥∂mx1
∂mx2

· · · ∂αd
xd

(Î3 ◦ · · · ◦ Îdv̂ − v̂)∥0,Id .

Repeating the above argument, we get

∥∂α1
x1

· · · ∂αd
xd

(ÎN v̂ − v̂)∥0,Id

. (1/N)t−s∥v̂∥t,Id + ∥∂α1
x1

· · · ∂αd
xd

(Îdv̂ − v̂)∥0,Id

+
d−1∑
k=1

∑
i1<···<ik6d−1

(
1

N

)(m−αi1 )+···+(m−αik
)

∥∂mxi1
· · · ∂mxik

∂
αik+1
xik+1

· · · ∂
αid−1
xid−1

∂αd
xd

(Îdv̂ − v̂)∥0,Id

. (1/N)t−s∥v̂∥t,Id .

This ends this proof.

Likewise the multi-dimensional interpolation Iκ
N : Cmd(κ) → PN (κ) on κ is defined as

(Iκ
Nv)(x) = (I1 ◦ · · · ◦ Idv)(x).

In order to guarantee the Hm-conformity for the interpolations Iκ1

N and Iκ2

N between the adjacent

elements κ1 and κ2, we need to verify for any v ∈ Cmd(D) and |α| 6 m− 1 there holds

∂α1
x1

· · · ∂αd
xd

Iκ1

N v(x) = ∂α1
x1

· · · ∂αd
xd

Iκ2

N v(x), ∀x ∈ ∂κ1 ∩ ∂κ2

and ∂κ1 ∩ ∂κ2 ̸= ∅. As before we only consider the case ∂κ1 ∩ ∂κ2 = a× [a2, b2]× · · · × [ad, bd]. Due to

the Hm
0 -orthogonality of Π̂2

i , we have for i = 1, . . . , d,

v0 = (1−Π1
i )v :

∫ bi

ai

∂mxi
(Π2

i |κ1v0(x)−Π2
i |κ2v0(x))∂

m
xi
vN (xi) = 0, ∀ vN ∈ P 0

N ([ai, bi]).

Then obviously ∂jxi
Π2

i |κ1v0(x) = ∂jxi
Π2

i |κ2v0(x), ∀x ∈ ∂κ1 ∩ ∂κ2, for 0 6 j 6 m, 1 6 i 6 d. Also, it

is obvious that ∂jxi
Π1

i |κ1v(x) = ∂jxi
Π1

i |κ2v(x), ∀x ∈ ∂κ1 ∩ ∂κ2, for 0 6 j 6 m − 1, 1 6 i 6 d. Hence,

∂jxi
Ii |κ1v(x) = ∂jxi

Ii |κ2v(x),∀x ∈ ∂κ1 ∩ ∂κ2, for 0 6 j 6 m− 1, 1 6 i 6 d. Then for 0 6 j 6 m− 1, 1 6
i 6 d, there holds ∂jxi

Iκ1

N v(x) = ∂jxi
Iκ2

N v(x), ∀x ∈ ∂κ1∩∂κ2. According to the definition of Iκ
N , repeating

the above argument we yield the assertion.

In the end, we introduce the spectral element space

SN,h = {v : v |κ ∈ PN (κ), ∀κ ∈ πh and ∂αv (0 6 |α| 6 m− 1)

are continuous accross ∂κ1 ∩ ∂κ2 for κ1, κ2 ∈ πh and ∂κ1 ∩ ∂κ2 ̸= ∅}.

We define the spectral element interpolation operator IN,h : Cmd(D) → SN,h as IN,h |κ = Iκ
N for any

κ ∈ πh. One can easily verify that IN,hv = v and (IN,hv)(x) = (ÎN v̂)(x̂) for any v ∈ PN (κ) and any

x ∈ κ.

Note that if (m+ 1
2 )d < t 6 N + 1 then Ht(Id) ↪→ Cmd(Id) and ÎN : Ht(Id) → Hm(Id) is bounded,

then Lemma 2.2 is also true for any v in Ht(Id) due to the density of C∞(Id) in Ht(Id). Using the

scaling argument, we can easily derive the interpolation error estimate on the element κ and the entire

domain D.
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Lemma 2.3. For any v ∈ Ht(κ) with (m+ 1
2 )d < t 6 N + 1, there holds

∥IN,hv − v∥s,κ . (h/N)t−s∥v∥t,κ, 0 6 s 6 m.

Theorem 2.4. For any v ∈ Ht(D) with (m+ 1
2 )d < t 6 N + 1,

∥IN,hv − v∥s,D . (h/N)t−s∥v∥t,D, 0 6 s 6 m.

Remark 2.5. We consider the special case of m = 2. The nodal basis functions with respect to the

endpoint −1 are respectively,

ϕ̂0(x̂) =
(x̂− 1)2(x̂+ 2)

4
, ϕ̂1(x̂) =

(x̂− 1)2(x̂+ 1)

4
. (2.5)

Meanwhile, the nodal basis functions with respect to the endpoint 1 are respectively,

ϕ̂2(x̂) = − (x̂+ 1)2(x̂− 2)

4
, ϕ̂3(x̂) =

(x̂+ 1)2(x̂− 1)

4
. (2.6)

One can easily verify that ϕ̂0(−1) = 1, ϕ̂′1(−1) = 1, ϕ̂2(1) = 1 and ϕ̂′3(1) = 1.

Legendre polynomials and Chebyshev polynomials are two most popular Jacobi polynomials. Now

we adopt Legendre polynomials {L̂j}Nj=0 or Chebyshev polynomials {T̂j}Nj=0 to give the bubble basis

functions on I. One may set

ϕ̂j(x̂) = (2j − 1)L̂j−4(x̂)− 2(2j − 3)L̂j−2(x̂) + (2j − 5)L̂j(x̂), j = 4, 5, . . . , N, (2.7)

since

ϕ̂j(x̂) =
(2j − 1)(2j − 3)(2j − 5)

4(j − 2)(j − 3)
Ĵ−2,−2
j (x̂);

another choice is ϕ̂j(x̂) = (j − 1)T̂j−4(x̂)− 2(j − 2)T̂j−2(x̂) + (j − 3)T̂j(x̂), j = 4, 5, . . . , N.

Remark 2.6. One may set different polynomial degrees for each element. Figure 1 shows three ele-

ments κ1–κ3 and the basis functions of P4(κ1) on κ1. If one wants to decrease the polynomial degrees to

3 on κ1 and κ2, one should delete the basis functions ϕ4(x1)ϕ4(x2) on both κ1 and κ2, ϕ2(x1)ϕ4(x2) and

ϕ3(x1)ϕ4(x2) on the common edge of κ1 and κ2.

Remark 2.7. The Hm-conforming spectral elements can deal with the problem with mixed boundary

condition on multi-dimensional domain due to adopting the nodal basis functions at the endpoint ±1.

Though we restrict our attention to the spectral method on rectangular domain, it can be extended to

spectral method on non-rectangular domains like the way as in [10]. Likewise the mesh adopted by the

spectral element method can be improved for approximating general domains better.

) ~

κ1
κ2 κ3

x 1

x 2

φ2 (x2 ) φ3(x2

) φ4(x2

) ~φ0 (x2 ) φ1(x2

) φ0(x1 ) φ4(x1

) φ1(x1

) φ2(x1

) φ3(x1

Figure 1 The elements κ1–κ3 and the basis functions on κ1
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3 H2-conforming spectral elements for transmission eigenvalues

In this section, we aim to apply theH2-conforming spectral elements in the last section to the transmission

eigenvalue problem.

Consider the Helmholtz transmission eigenvalue problem: Find k ∈ C, ω, σ ∈ L2(D), ω − σ ∈ H2(D)

such that

∆ω + k2n(x)ω = 0 in D, (3.1)

∆σ + k2σ = 0 in D, (3.2)

ω − σ = 0 on ∂D, (3.3)

∂ω

∂ν
− ∂σ

∂ν
= 0 on ∂D, (3.4)

where D ⊂ Rd (d = 2, 3) is an open bounded simply connected inhomogeneous medium, ν is the unit

outward normal to ∂D.

The eigenvalue problem (3.1)–(3.4) can be stated as the classical weak formulation below (see [4,9,15]):

Find k2 ∈ C, k2 ̸= 0, nonzero u ∈ H2
0 (D) such that(

1

n(x)− 1
(∆u+ k2u),∆v + k

2
n(x)v

)
0

= 0, ∀ v ∈ H2
0 (D), (3.5)

where (·, ·)0 is the inner product of L2(D). As usual, we define λ = k2 as the transmission eigenvalue in

this paper. We suppose that the index of refraction n ∈ L∞(D) is a real valued function such that n− 1

is strictly positive (strictly negative) almost everywhere in D.

Define Hilbert space H = H2
0 (D) × L2(D) and define Hs(K) = Hs(K) × Hs−2(K) with norm

∥(u,w)∥s,K = ∥u∥s,K + ∥w∥s−2,K for a given K ⊆ D. We write H1 := H1(D) for simplicity.

Although (3.5) is a quadratic eigenvalue problem, it can be linearized by introducing some variables.

Using the linearized way in [22], we introduce w = λu, then (3.5) is equivalent to the following linear

weak formulation: Find (λ, u, w) ∈ C×H2
0 (D)× L2(D) such that(

1

n− 1
∆u,∆v

)
0

= −λ
(

1

n− 1
u,∆v

)
0

− λ

(
∆u,

n

n− 1
v

)
0

− λ

(
n

n− 1
v

)
0

, ∀ v ∈ H2
0 (D), (3.6)

(w, z)0 = λ(u, z)0, ∀ z ∈ L2(D). (3.7)

We introduce the following sesquilinear forms:

A((u,w), (v, z)) =

(
1

n− 1
∆u,∆v

)
0

+ (w, z)0,

B((u,w), (v, z)) = −
(

1

n− 1
u,∆v

)
0

−
(
∆u,

n

n− 1
v

)
0

−
(

n

n− 1
w, v

)
0

+ (u, z)0.

Then (3.5) can be rewritten as the following problem: Find λ ∈ C, nonzero (u,w) ∈ H such that

A((u,w), (v, z)) = λB((u,w), (v, z)), ∀ (v, z) ∈ H. (3.8)

Let norm ∥ · ∥A be induced by inner product A(·, ·). Then it is clear ∥ · ∥A is equivalent to ∥ · ∥2,D in H.

When n ∈W 1,∞(D) for any given (f, g) ∈ H1, B((f, g), (v, z)) is a continuous linear form on H1:

B((f, g), (v, z)) . ∥(f, g)∥1,D∥(v, z)∥1,D, ∀ (v, z) ∈ H1. (3.9)

Consider the dual problem of (3.8): Find λ∗ ∈ C, nonzero (u∗, w∗) ∈ H such that

A((v, z), (u∗, w∗)) = λ∗B((v, z), (u∗, w∗)), ∀ (v, z) ∈ H. (3.10)
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In order to discretize the space H, we need finite element spaces to discretize H2
0 (D) and L2(D),

respectively. Since H2
0 (D) ⊂ L2(D) here we can construct the spectral element space SN,h

0 := SN,h

∩H2
0 (D) such that HN,h := SN,h

0 × SN,h
0 ⊂ H2

0 (D)× L2(D).

The conforming spectral element approximation of (3.8) is given by the following: Find λN,h ∈ C,
nonzero (uN,h, wN,h) ∈ HN,h such that

A((uN,h, wN,h), (v, z)) = λN,hB((uN,h, wN,h), (v, z)), ∀ (v, z) ∈ HN,h. (3.11)

According to Theorem 2.4 and the operator interpolation theory, we know the following error estimates

hold for spectral element space. For any ψ ∈ H2
0 (D) ∩ H2+r(D) (0 6 r 6 N − 1, N + 1 > (m + 1

2 )d),

there holds

inf
v∈SN,h

∥ψ − v∥s . (h/N)2+r−s∥ψ∥2+r, s = 0, 1, 2.

To give the error of eigenfunction (uN,h, wN,h) in the norm ∥ · ∥1,D we need the following regularity

assumption (see [3]):

R(D): For any ϱ ∈ H−1(D), there exists ψ ∈ H2+r1(D) satisfying

∆

(
1

n− 1
∆ψ

)
= ϱ in D,

ψ =
∂ψ

∂ν
= 0 on ∂D,

and

∥ψ∥2+r1 6 Cp∥ϱ∥−1, (3.12)

where r1 ∈ (0, 1], Cp denotes the prior constant dependent on the equation and D but independent of

the right-hand side ϱ of the equation.

In this paper, let λ be an eigenvalue of (3.8) with the ascent α. Let M(λ) and M(λN,h) be the space

spanned by all generalized eigenfunctions corresponding respectively to the eigenvalues λ and λN,h. As

for the dual problem (3.10), the definitions of M∗(λ∗) are made similarly to M(λ).

In what follows, to characterize the approximation of the finite element spaceHN,h toM(λ) andM∗(λ∗),

we introduce the following quantities:

δN,h(λ) = sup
(v,z)∈M(λ)

∥(v,z)∥2,D=1

inf
(vh,zh)∈HN,h

∥(v, z)− (vN,h, zN,h)∥2,D,

δ∗N,h(λ
∗) = sup

(v,z)∈M∗(λ∗)
∥(v,z)∥2,D=1

inf
(vN,h,zN,h)∈HN,h

∥(v, z)− (vN,h, zN,h)∥2,D.

Note that if M(λ),M∗(λ∗) ⊂ Ht(D) with 2 6 t 6 N + 1, N + 1 > (m+ 1
2 )d, then

δN,h(λ) . (h/N)t−2 and δ∗N,h(λ
∗) . (h/N)t−2. (3.13)

Using the spectral approximation theory in [2, 7], [22] established the a priori error estimates for the

conforming finite element version of (3.11). According to [22], the following theorem is valid for the

conforming spectral elements, as well as for the spectral method as a special case.

Theorem 3.1. Suppose n ∈ L∞(D), and M(λ),M∗(λ∗) ⊂ Ht(D) with 2 6 t 6 N + 1, N + 1 >

(m + 1
2 )d. Let λN,h be an eigenvalue of (3.11) that converges to λ. Let (uN,h, wN,h) ∈ M(λN,h) and

∥(uN,h, wN,h)∥A = 1. Then there exists (u,w) ∈M(λ) such that

∥(uN,h, wN,h)− (u,w)∥2,D . (h/N)
t−2
α , (3.14)

|λ− λN,h| . (h/N)
2(t−2)

α ; (3.15)

further suppose n ∈W 1,∞(D) and R(D) is valid then

∥(uN,h, wN,h)− (u,w)∥1,D . (h/N)
r1
α + t−2

α . (3.16)
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Proof. From [22, Theorems 3.3 and 3.5] (see also [11, Lemma 2.1]) we know if (uN,h, wN,h) ∈M(λN,h)

and ∥(uN,h, wN,h)∥A = 1 then there exists (u,w) ∈M(λ) such that

∥(uN,h, wN,h)− (u,w)∥2,D . δN,h(λ)
1/α,

|λ− λN,h| . (δN,h(λ)δ
∗
N,h(λ

∗))1/α;

Table 1 Numerical eigenvalues obtained by SM on (−0.5, 0.5)2

n N dof k1,h k2,h,k3,h k4,h k5,h

16 15 288 1.87959117836 2.4442361007 2.86643909864 3.14011071773664

16 20 578 1.87959117345 2.4442360999 2.86643911078 3.14011071380238

16 25 968 1.87959117325 2.4442360993 2.86643910989 3.14011071380235

16 30 1,458 1.87959117313 2.4442360992 2.86643910981 3.14011071380234

n N dof k1,h k2,h k3,h k5,h, k6,h

f1 15 288 2.8221893622 3.5386966987 3.5389915453 4.4965518722

±0.8714816081i

f1 20 578 2.8221893415 3.5386966965 3.5389915430 4.4965519547

±0.8714817833i

f1 25 968 2.8221893411 3.5386966953 3.5389915418 4.4965519545

±0.8714817812i

f1 30 1,458 2.8221893409 3.5386966952 3.5389915416 4.4965519545

±0.8714817805i

n N dof k1,h,k2,h k3,h k4,h k5,h

f2 15 288 4.3184549937 4.5885145655 4.6472932515 4.95760056967

±0.6549618762i

f2 20 578 4.3184553572 4.5885144838 4.6472932378 4.95759998805

±0.6549618008i

f2 25 968 4.3184553557 4.5885144805 4.6472932351 4.95759999028

±0.6549617996i

f2 30 1,458 4.3184553554 4.5885144801 4.6472932348 4.95759999016

±0.6549617990i

Table 2 Numerical eigenvalues obtained by SEM on (−1, 1)2\([0, 1)× (−1, 0])

n h N dof k1,h k2,h k3,h k4,h

16
√
2 15 960 1.47854 1.569782 1.705721 1.78312049

16
√
2 20 1,870 1.47742 1.569746 1.705408 1.78311760

16
√
2 25 3,080 1.47691 1.569735 1.705269 1.78311674

16
√
2 30 4,590 1.47665 1.569730 1.705195 1.78311641

16
√
2
2

15 4,264 1.47722 1.569741 1.705355 1.78311725

16
√
2
4

15 17,928 1.47663 1.569730 1.705189 1.78311639

16
√
2
8

15 73,480 1.47635 1.569727 1.705111 1.78311614

n h N dof k1,h k2,h k3,h k5,h, k6,h

f1
√
2 15 960 2.30499 2.395810 2.64178134 2.92613

±0.56694i

f1
√
2 30 4,590 2.30277 2.395702 2.64177929 2.92466

±0.56511i

f1
√
2
2

15 4,264 2.30343 2.395724 2.64177970 2.92510

±0.56566i

f1
√
2
4

15 17,928 2.30274 2.395701 2.64177927 2.92464

±0.56509i

f1
√
2
8

15 73,480 2.30241 2.395694 2.64177916 2.92442

±0.56482i
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Table 3 Numerical eigenvalues obtained by SM on (0, 1)3

n N dof k1,h k2,h, k3,h, k4,h k5,h, k6,h, k7,h k8,h, k9,h

16 5 8 2.094055156 2.664272514 3.0661457744 3.406897998

16 10 343 2.067227464 2.584867751 2.9870636216 3.246721378

16 15 7,304 2.067227678 2.584856761 2.9870431376 3.246569769

16 20 4,913 2.067227671 2.584856755 2.9870431377 3.246569737

n N dof k1,h k2,h k3,h k4,h

f1 5 8 3.098469114 3.865559775 3.8745648277 3.877187844

f1 10 343 3.025670231 3.722083630 3.7247284048 3.724785357

f1 15 7,304 3.025670590 3.722061785 3.7247087240 3.724765624

f1 20 4,913 3.025670572 3.722061777 3.7247087161 3.724765616

Table 4 Numerical eigenvalues obtained by SEM on ((−1, 1)2\(−1, 0]2)× (0, 1)

n h N dof k1,h k2,h k3,h k4,h

16
√
3 4 14 1.85647 1.90219 1.96071 2.07418

16
√

3
2

4 512 1.82025 1.87691 1.93480 2.04285

16
√

3
4

4 6,800 1.80961 1.87089 1.92939 2.03857

16
√
3 7 512 1.81154 1.87122 1.92966 2.03879

16
√
3 8 950 1.80956 1.87078 1.92929 2.03848

16
√
3 9 1,584 1.80841 1.87069 1.92925 2.03845

16
√
3 10 2,450 1.80760 1.87064 1.92922 2.03843

n h N dof k1,h k2,h k3,h k4,h

f1
√
3 4 14 2.69988 2.73831 2.92444 3.07209

f1
√

3
2

4 512 2.65535 2.66530 2.85574 2.98575

f1
√

3
4

4 6,800 2.64344 2.64820 2.84249 2.97109

f1
√
3 7 512 2.64455 2.65045 2.84339 2.97245

f1
√
3 8 950 2.64325 2.64810 2.84230 2.97092

f1
√
3 9 1,584 2.64269 2.64702 2.84203 2.97042

f1
√
3 10 2,450 2.64215 2.64641 2.84186 2.97005

Table 5 Numerical eigenvalues obtained by SEM on (−1, 1)3\(−1, 0)3

n h N dof k1,h k2,h, k3,h k4,h,k5,h k6,h

16
√
3 4 74 1.4993 1.5552 1.6676 1.6857

16
√

3
2

4 1,568 1.4443 1.5199 1.6443 1.6515

16
√

3
4

4 17,840 1.4277 1.5097 1.6392 1.6420

16
√

3
4

5 45,808 1.4225 1.5069 1.6388 1.6395

16
√
3 6 774 1.4402 1.5161 1.6405 1.6477

16
√
3 7 1,568 1.4325 1.5121 1.6397 1.6442

16
√
3 8 2,770 1.4279 1.5097 1.6392 1.6421

16
√
3 9 4,464 1.4248 1.5081 1.6389 1.6406

n h N dof k1,h k2,h k3,h k4,h

f1
√
3 4 74 2.2003 2.2307 2.2957 2.3602

f1
√

3
2

4 1,568 2.1191 2.1675 2.2282 2.3227

f1
√

3
4

4 17,840 2.0953 2.1523 2.2105 2.3152

f1
√

3
4

5 45,808 2.0880 2.1480 2.2066 2.3143

f1
√
3 6 774 2.1126 2.1625 2.2197 2.3178

f1
√
3 7 1,568 2.1020 2.1561 2.2141 2.3161

f1
√
3 8 2,770 2.0955 2.1523 2.2105 2.3151

f1
√
3 9 4,464 2.0913 2.1498 2.2083 2.3146
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Figure 2 The 1st eigenfunction for n = 16 on (−1, 1)3\(−1, 0)3 (a), on ((−1, 1)2\(−1, 0]2) × (0, 1) (b) and on (−1, 1)3

(c); the 2nd eigenfunction for n = 16 on (−1, 1)3 (d)

furthermore, if n ∈W 1,∞(D) and R(D) is valid then

∥(uN,h, wN,h)− (u,w)∥1,D . (h/N)r1/αδN,h(λ)
1/α.

Substituting (3.13) into the above estimates yields the desired results (3.14)–(3.16).

4 Numerical experiment

In this section, we will report some numerical experiments for solving the transmission eigenvalue prob-

lem (3.8) by the H2 conforming spectral element method (SEM) on non-rectangular domain or by the

spectral method (SM) on rectangular domain. In computation, the basis functions for both SM and SEM

are adopted according to (A)–(C), where the functions ϕj , j = 0, 1, . . . , N are defined by (2.2)–(2.7) (here,

we use ϕ̂j , j = 4, 5, . . . , N defined by (2.7) instead of (2.1)). Notice that the spectral scheme in [1] is based

on the iterative method in [19], which is different from the one in this paper. An obvious feature of the

method in [1] is using an estimated eigenvalue to initialize the iterative procedure. We consider the case

when the medium D is the unit square (−0.5, 0.5)2 or the L-shaped domain (−1, 1)2\([0, 1)× (−1, 0]) in

two dimensions and when D is the unit cube (0, 1)3, the thick L-shaped domain ((−1, 1)2\(−1, 0]2)×(0, 1)

or the Fichera corner domain (−1, 1)3\(−1, 0)3 in three dimensions; we set the homogeneous index of

refraction n = 16, inhomogeneous n = f1(x), f2(x) with f1(x) = 8 + x1 − x2 and f2(x) = 4 + ex1+x2 .

We use uniform rectangular refinement to obtain a sequence of partitions of D. Accordingly some nu-

merical eigenvalues on these domains are listed in Tables 1–5. We also depict the cross section of some

eigenfunctions on the thick L-shaped domain and the Fichera corner domain with n = 16 (see Figure 2).

We use Matlab 2012a to solve (3.11) by the sparse solver eigs on a Lenovo G480 PC with 4G memory.

For reading convenience, we denote by kj,h =
√
λj,h the numerical eigenvalue obtained on the spaceHh,

which approximates the j-th eigenvalue
√
λj .

Tables 1 and 3 show that the numerical eigenvalues obtained by SM on both the unit square and the

unit cube with different n own superior accuracy; specifically, they achieve about eight-digit accuracy

with N = 15. Whereas the numerical eigenvalues obtained by SEM on the L-shaped domain, the thick
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L-shaped domain and the Fichera corner domain do not have such accuracy (see Tables 2, 4 and 5).

This is due to the fact that the eigenfunctions on the unit square and the unit cube are often smooth

whereas those on the L-shaped domain, the thick L-shaped domain and the Fichera corner domain have

the singularities towards the reentrant corner (see Figure 2).

5 Conclusions and further work

In this paper, we study the Hm-conforming rectangular spectral element methods on arbitrarily dimen-

sional domain, which is a basic and significant work. We also apply it to solve the Helmholtz transmission

eigenvalue problem. A more significant and challenging work is to extend the rectangular spectral ele-

ments to quadrilateral spectral elements on arbitrarily dimensional domain even for m = 2. We are not

able to complete it so far.
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