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Abstract We are concerned with the existence of least energy solutions of nonlinear Schrödinger equations

involving the fractional Laplacian

(−Δ)su(x) + λV (x)u(x) = u(x)p−1, u(x) � 0, x ∈ RN ,

for sufficiently large λ, 2 < p < 2N
N−2s

for N � 2. V (x) is a real continuous function on RN . Using variational

methods we prove the existence of least energy solution uλ(x) which localizes near the potential well int V −1(0)

for λ large. Moreover, if the zero sets int V −1(0) of V (x) include more than one isolated component, then uλ(x)

will be trapped around all the isolated components. However, in Laplacian case s = 1, when the parameter λ is

large, the corresponding least energy solution will be trapped around only one isolated component and become

arbitrarily small in other components of int V −1(0). This is the essential difference with the Laplacian problems

since the operator (−Δ)s is nonlocal.
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1 Introduction and main results

We are concerned with the following nonlinear Schrödinger equations involving the fractional Laplacian:{
(−Δ)su(x) + λV (x)u(x) = u(x)p−1, x ∈ RN ,

u(x) � 0, u(x) ∈ Hs(RN ),
(1.1)

where 2 < p < 2�s :=
2N

N−2s for N � 2, V (x) is the potential, which is a real valued function on RN .

In recent years, much attention has been devoted to the study of the fractional Laplacian. The fractional

powers of the Laplacian, which are called fractional Laplacian and correspond to Lévy stable processes,

appear in anomalous diffusion phenomena in physics, biology as well as other areas. They occur in

flame propagation, chemical reaction in liquids and population dynamics. Lévy diffusion processes have

discontinuous sample paths and heavy tails, while Brownian motion has continuous sample paths and
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exponential decaying tails. These processes have been applied to American options in mathematical

finance for modeling the jump processes of the financial derivatives such as futures, forwards, options,

and swaps (see [1] and references therein). Moreover, they play important roles in the study of the

quasi-geostrophic equations in geophysical fluid dynamics.

There are many results which are concerned with the problems involving the fractional Laplacian.

Firstly, we refer the readers to the work by Caffarelli and Silvestre [7], in which a new formulation of

the fractional Laplacian through Dirichlet-Neumann maps was introduced. By this formulation, they

transferred the nonlocal problem to a local problem defined in a higher half space. After their pioneering

work, there are many investigations to the fractional Laplacian problem by using variational methods.

For example, using variational methods, Cabré and Tan [5] established the existence of positive solutions

for fractional problems in a bounded domain with power-type nonlinearities in the subcritical case. We

also refer the work by Dávila et al. [10], where they considered the following fractional problem:

ε2s(−Δ)su+ V (x)u − uq = 0, u > 0, u ∈ H2s(RN ), (1.2)

where 0 < s < 1, 1 < q < N+2s
N−2s , V (x) is a sufficiently smooth potential with infRN V (x) > 0 and ε > 0 is

a small parameter. Via a Lyapunov-Schmidt variational reduction, they proved the existence of multiple

spike solutions which concentrate as ε small at separate places in the case of stable critical points and

the existence of multiple spikes which concentrate as ε small at the same points.

For the following related fractional Schrödinger equation:

(−Δ)su+ V (x)u = f(x, u), x ∈ RN , (1.3)

with 0 < s < 1 and V : RN → R being the potential function, there are also many investigations. See

also Barrios et al. [2], Bona and Li [3], de Bouard and Saut [11], Cabré and Sire [4], Caffarelli et al. [6],

Cheng [8], Choi et al. [9], Dipierro et al. [12], Felmer et al. [13], Frank and Lenzmann [14], Maris [17],

Silvestre [19], Sire and Valdinoci [20], Tan [21, 22], Yan et al. [24] and references therein.

We also refer the readers to the paper by Jin et al. [15], where the authors considered the following

fractional Laplacian equations with lower order terms:

(−Δ)su = au+ b, x ∈ B1, (1.4)

where a, b ∈ Cα(B1) with 0 < α �∈ N and 2s + α is not an integer. They proved some priori estimates

results for the solutions of the above equation (1.4), such as the local Schauder estimates for non-negative

solutions. We also refer the work by Tan and Xiong [23], where they established a Harnack inequality in

the case of u ∈ C2(B1) ∩ C (B1).

In our previous paper (see Niu and Tang [18]), we considered the existence of least energy solutions

for nonlinear Schrödinger equations (1.1) in the case of s = 1/2, namely the following problem:{
(−Δ)1/2u(x) + λV (x)u(x) = u(x)p−1, x ∈ RN ,

u(x) � 0, u(x) ∈ H1/2(RN ),
(1.5)

where 2 < p < 2N
N−1 for N � 2, V (x) is the potential, which is a real valued function on RN . Using

variational methods we proved the existence of the least energy solution uλ(x) which localizes near the

potential well int(V −1(0)) for λ large.

In the present paper, as a continuation of our previous paper, we consider the fractional problem for

more general cases 0 < s < 1. Our main assumptions are the following:

(V1) V (x) ∈ C(RN ,R) such that V (x) � 0, Ω := int V −1(0) is non-empty with smooth boundary and

Ω̄ = V −1(0);

(V2) There exists M0 > 0 such that

μ({x ∈ RN : V (x) � M0}) < ∞,

where μ denotes the Lebesgue measure on RN .
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Before stating our main results, we firstly give some notation and remarks.

To treat the nonlocal problem (1.1), we will study a corresponding extension problem in one more

dimensional space, which allows us to investigate (1.1) by studying a local problem via classical nonlinear

variational methods.

The homogeneous fractional Sobolev space Ds(RN ) (0 < s < 1) is given by

Ds(RN ) :=

{
u ∈ L

2N
N−2s (RN ) : ‖u‖Ds(RN ) :=

(∫
RN

|ξ|2s|û(ξ)|2dξ
)1/2

< ∞
}
,

where û denotes the Fourier transform of u.

Note that Ds(RN ) is a Hilbert space equipped with an inner product

(u, v)Ds(RN ) =

∫
RN

|ξ|2sû(ξ)v̂(ξ)dξ.

We also define a fractional Laplacian operator on the whole space,

(−Δ)s : Ds(RN ) → D−s(RN )

by

〈(−Δ)su, v〉D−s(RN ) =

∫
RN

|ξ|2sû(ξ)v̂(ξ)dξ,

where D−s(RN ) is the dual of Ds(RN ).

Then, one can easily check that if u ∈ D2s(RN ), we have (−Δ)su ∈ L2(RN ) such that

(−Δ)su = F−1(|ξ|2sû(ξ)),

where F−1 denotes the inverse Fourier transform.

We see that for u, v ∈ Ds(RN ),

(u, v)Ds(RN ) =

∫
RN

(−Δ)s/2u · (−Δ)s/2vdx

and assuming additionally u ∈ D2s(RN ), v ∈ L2(RN ), we can apply integration by parts and get∫
RN

(−Δ)s/2u · (−Δ)s/2vdx =

∫
RN

(−Δ)su · vdx.

Finally, the notation Hs(RN ) denotes the standard fractional Sobolev space defined as

Hs(RN ) := Ds(RN ) ∩ L2(RN ),

with the norm

‖u‖Hs(RN ) :=

(∫
RN

|u(x)|2dx+

∫
RN

|ξ|2s|û(ξ)|2dξ
)1/2

.

Similarly, it holds by taking the trace that

Ds(RN ) =

{
u = tr|RN×{0}U :

∫
R

N+1
+

t1−2s|∇U |2dxdt < ∞
}

and

‖U(·, 0)‖Ds(RN ) � C

(∫
R

N+1
+

t1−2s|∇U |2dxdt
)1/2

for some C > 0 independent of

U ∈
{
U ∈ W 1,1

loc (R
N+1
+ ) :

∫
R

N+1
+

t1−2s|∇U |2dxdt < ∞
}
.
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Now we introduce the concept of s-harmonic extension of a function u ∈ Ds(RN ), which provides a

way to represent the fractional Laplacian operators as a form of Dirichlet-to-Neumann map.

By works of Caffarelli and Silvestre [7] (for RN ), it is known that there is one unique function

U ∈ H(t1−2s,RN+1
+ ) :=

{
U :

∫
R

N+1
+

t1−2s|∇U |2dxdt < ∞,

∫
R

N+1
+

t1−2s|U |2dxdt < ∞
}
,

which satisfies the equation {
div(t1−2s∇U) = 0, in RN+1

+ ,

U(x, 0) = u, for x ∈ RN ,
(1.6)

respectively in the distributional sense. Moreover, if u is compactly supported and smooth, then the

following limits

∂s
νU(x, 0) := −C−1

s

(
lim
t→0+

t1−2s ∂U

∂t
(x, t)

)
with Cs :=

21−2sΓ(1− s)

Γ(s)

are well defined and one must have

(−Δ)su = ∂s
νU(x, 0).

We call U the s-harmonic extension of u.

Let

E :=

{
U ∈ W 1,1

loc (R
N+1
+ ) :

∫
R

N+1
+

t1−2s|∇U |2dxdt < ∞, U(·, 0) ∈ L2(RN )

}
.

Then E is the Hilbert space under the inner product

(U,W )E =

∫
R

N+1
+

t1−2s∇U · ∇Wdxdt +

∫
RN

U(x, 0)W (x, 0)dx,

and the norm induced by the inner product (·, ·) is

‖U‖E =

(∫
R

N+1
+

t1−2s|∇U |2dxdt +
∫
RN

U(x, 0)2dx

)1/2

.

Indeed for every U(x, t) ∈ E, we denote U(x, 0) to be the trace of U(x, t) on RN and we take

trRNE := {U(x, 0) : U(x, t) ∈ E}.

Then by the definition of E, we have

trRNE = Hs(RN ). (1.7)

We take

Eλ :=

{
U ∈ W 1,1

loc (R
N+1
+ ) :

∫
R

N+1
+

t1−2s|∇U |2dxdt < ∞,

∫
RN

λV (x)U(x, 0)2dx < ∞
}
,

then Eλ is the Hilbert space under the inner product

(U,W )λ =

∫
R

N+1
+

t1−2s∇U · ∇Wdxdt +

∫
RN

λV (x)U(x, 0)W (x, 0)dx,

and the norm induced by the inner product (·, ·)λ is

‖U‖λ =

(∫
R

N+1
+

t1−2s|∇U |2dxdt +
∫
RN

λV (x)U(x, 0)2dx

)1/2

.



Niu M M et al. Sci China Math February 2017 Vol. 60 No. 2 265

We can study (1.1) by variational methods for a local problem. More precisely, we will study the

following boundary value problem in a half space:⎧⎪⎪⎨
⎪⎪⎩

div(t1−2s∇U) = 0, in RN+1
+ = RN × (0,∞),

∂s
νU(·, 0) = Up−1 − λV (x)U, on ∂RN+1

+ = RN × {0},
U � 0, in RN+1

+ = RN × (0,∞),

(1.8)

where

∂s
νU(x, 0) := −C−1

s

(
lim
t→0+

t1−2s ∂U

∂t
(x, t)

)

with

Cs :=
21−2sΓ(1− s)

Γ(s)
.

If U satisfies (1.8), then the trace u on RN × {0} of the function U will be a solution of (1.1). By

studying (1.8), we establish the results for (1.1).

The energy functional associated with (1.8) is defined by

Jλ(U) :=
1

2

∫
R

N+1
+

t1−2s|∇U |2dxdt + λ

2

∫
RN

V (x)U(x, 0)2dx

− 1

p

∫
RN

U+(x, 0)pdx for U ∈ Eλ, (1.9)

where U+ denotes the positive part of U for every function U . In other words, U+ = max{U, 0}.
We define the Nehari manifold

Mλ :=

{
U ∈ Eλ \ {0} :

∫
R

N+1
+

t1−2s|∇U |2dxdt + λ

∫
RN

V (x)U(x, 0)2dx =

∫
RN

U+(x, 0)pdx

}

and let

cλ := inf{Jλ(U) : U ∈ Mλ}
be the infimum of Jλ on the Nehari manifold Mλ.

For λ large, the following problem:⎧⎪⎪⎨
⎪⎪⎩

(−Δ)su(x) = u(x)p−1, x ∈ Ω,

u(x) � 0, x ∈ Ω,

u(x) = 0, x ∈ RN \ Ω,
(1.10)

is some kind of limit problem of (1.1). We shall prove that there exists a least energy solution of (1.1)

converging, for λ → ∞, to a least energy solution of (1.10).

Similarly, to consider (1.10), we will study the following boundary value problem in a half space:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div(t1−2s∇U) = 0, in RN+1
+ = RN × (0,∞),

U = 0, on RN \ Ω× {0},
∂s
νU(·, 0) = Up−1, on Ω× {0},

U � 0, in RN+1
+ = RN × (0,∞),

(1.11)

where

∂s
νU(x, 0) := −C−1

s

(
lim
t→0+

t1−2s ∂U

∂t
(x, t)

)

with

Cs :=
21−2sΓ(1− s)

Γ(s)
.
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If U satisfies (1.11), then the trace u on RN × {0} of the function U will be a solution of (1.10).

To consider (1.11), we define a subspace E0 of E as follows:

E0 := {U(x, t) ∈ E : U(x, 0) = 0 in RN \ Ω}. (1.12)

Similarly, we also have

trΩE0 = Hs(Ω).

The energy functional associated with (1.11) is defined by

Φ(U) =
1

2

∫
R

N+1
+

t1−2s|∇U |2dxdt− 1

p

∫
Ω

U+(x, 0)pdx for U ∈ E0.

Comparing with the Nehari manifold Mλ, we define the Nehari manifold

N :=

{
U ∈ E0 \ {0} :

∫
R

N+1
+

t1−2s|∇U |2dxdt =
∫
Ω

U+(x, 0)pdx

}

and let

c(Ω) := inf{Φ(U) : U ∈ N}
be the infimum of Φ on the Nehari manifold N .

Remark 1.1. We say that a function uλ(x) = Uλ(x, 0) is a least energy solution of (1.1) if cλ is achieved

by some Uλ ∈ Mλ which is a critical point of Jλ. Similarly, we say that a function u(x) = U(x, 0) is a

least energy solution of (1.10) if c(Ω) is achieved by some U ∈ N which is a critical point of Φ.

Now we give our main results which are the following:

Theorem 1.2. Suppose (V1) and (V2) hold. Then for λ large, (1.1) has a least energy solution

uλ(x) = Uλ(x, 0). Furthermore, for any sequence λn → ∞ (λn → ∞ as n → ∞), {uλn(x)} has

a subsequence such that uλn converges in Hs(RN ) along the subsequence to a least energy solution u

of (1.10).

As in the case of the least energy solution of (1.1), any solution of (1.1) converges, for λ → ∞, to the

solution of (1.10). More precisely, we have the following result.

Theorem 1.3. Suppose (V1) and (V2) hold. Let un = Un(·, 0), n ∈ N be a sequence of solutions

of (1.1) with λ being replaced by λn (λn → ∞ as n → ∞) such that

lim sup
n→∞

Jλ(Un) < ∞.

Then un(x) = Un(x, 0) converges strongly along a subsequence in Hs(RN ) to a solution u of (1.10).

Our paper is organized as follows: In Section 2, we give a compactness result, Section 3 is devoted to

the “limit” problem and Section 4 contains the proofs of the main results.

We will use the same C to denote various generic positive constant, and we will use o(1) to denote

quantities that tend to 0 as λ (or n) tends to ∞.

2 Compactness result

The main result in this section is the following compactness result.

Proposition 2.1. Suppose (V1) and (V2) hold. Then for any C0 > 0, there exists Λ0 > 0 such that Jλ
satisfies the (PS)c-condition for all λ � Λ0 and c � C0.

The proof consists of a series of lemmas which occupy the rest of this section.

Lemma 2.2. Let λ0 > 0 be a fixed constant. Then for λ � λ0 > 0, V (x) satisfies (V1) and (V2), Eλ

is continuously embedded in E.
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Proof. From the definition of E and Eλ, to show the lemma, we only need to prove the following

estimate: ∫
RN

U(x, 0)2dx � C

(∫
R

N+1
+

t1−2s|∇U |2dxdt+ λ

∫
RN

V (x)U(x, 0)2dx

)
. (2.1)

Let us denote

D := {x ∈ RN : V (x) � M0}
and

Dδ0 := {x ∈ RN : dist(x,D) � δ0}.
Take ζ ∈ C∞(RN ), 0 � ζ � 1 and for the above small fixed δ0,

ζ(x) =

{
1, x ∈ D,

0, x /∈ Dδ0 ,
|∇ζ| � C/δ0. (2.2)

Thus for any function U ∈ Eλ, we obtain that∫
RN

(1 − ζ2)U(x, 0)2dx =

∫
RN\D

(1− ζ2)U(x, 0)2dx+

∫
D

(1 − ζ2)U(x, 0)2dx

� 1

λ0M0
λ

∫
RN

V (x)U(x, 0)2dx (2.3)

and ∫
RN

ζ2U(x, 0)2dx =

∫
Dδ0

ζ2U(x, 0)2dx

� μ(Dδ0 )
1− 2

2
�
s

(∫
Dδ0

|U(x, 0)|2�sdx
) 2

2
�
s

� μ(Dδ0 )
1− 2

2
�
s

(∫
RN

|U(x, 0)|2�sdx
) 2

2
�
s

� SN,s√
Cs

μ(Dδ0)
1− 2

2
�
s

∫
R

N+1
+

t1−2s|∇U |2dxdt, (2.4)

where we have used Assumption (V2) and the well-known Sobolev trace inequality which states for

U ∈ D1(t1−2s,RN+1
+ ),

(∫
RN

|U(x, 0)|2�sdx
)1/2�s

� SN,s√
Cs

(∫
R

N+1
+

t1−2s|∇U |2dxdt
)1/2

,

where

SN,s = 2−2sπ−sΓ(
N−2s

2 )

Γ(N+2s
2 )

[
Γ(N)

Γ(N/2)

]2s/N

and Cs :=
21−2sΓ(1−s)

Γ(s) . Therefore, we indeed have proved (2.1) by adding two inequalities (2.3) and (2.4)

together. Thus the proof of the lemma is completed.

The following Lemma shows that 0 is an isolated critical point of Jλ.

Lemma 2.3. Let Kλ denote the set of critical points of Jλ and λ � λ0 > 0. Then there exists σ > 0

independent of λ such that ‖U‖λ � σ for all U ∈ Kλ \ {0}.
Proof. By Lemma 2.2, for any U ∈ Kλ \ {0},

0 = J ′
λ(U) · U =

∫
R

N+1
+

t1−2s|∇U |2dxdt + λ

∫
RN

V (x)U(x, 0)2dx−
∫
RN

U+(x, 0)pdx

� ‖U‖2λ − C‖U‖pE
� ‖U‖2λ − C‖U‖pλ,

where C > 0 is independent of λ � 0. Thus we see that there exists σ > 0 such that ‖U‖λ � σ.
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Lemma 2.4. There exists c0 > 0 independent of λ � λ0 > 0 such that if {Un} is a (PS)c-sequence

of Jλ, then

lim sup
n→∞

‖Un‖2λ � 2p

p− 2
c (2.5)

and either c � c0 or c = 0.

Proof. First we prove that any (PS)c-sequence must be bounded; in fact,

c = lim sup
n→∞

(
Jλ(Un)− 1

p
J ′
λ(Un)Un

)

� lim sup
n→∞

(
1

2
− 1

p

)(∫
R

N+1
+

t1−2s|∇Un|2dxdt + λ

∫
RN

V (x)Un(x, 0)
2dx

)

=
p− 2

2p
lim sup
n→∞

‖Un‖2λ,

which proves (2.5).

On the other hand, there is a constant C > 0 independent of λ � λ0 � 0 such that

J ′
λ(U) · U =

∫
R

N+1
+

t1−2s|∇U |2dxdt + λ

∫
RN

V (x)U(x, 0)2dx−
∫
RN

U+(x, 0)pdx

� ‖U‖2λ − C‖U‖pλ.

Thus there exists σ1 > 0 independent of λ such that

1

4
‖U‖2λ � J ′

λ(U) · U for ‖U‖λ < σ1. (2.6)

Now, if c <
σ2
1(p−2)
2p and {Un} is a (PS)c-sequence of Jλ, then

lim sup
n→∞

‖Un‖2λ � 2cp

p− 2
< σ2

1 .

Hence, ‖Un‖λ < σ1 for n large. Then by (2.6),

1

4
‖Un‖2λ � J ′

λ(Un) · Un = o(1)‖Un‖λ,

which implies ‖Un‖λ → 0 as n → ∞. Therefore Jλ(Un) → 0, i.e., c = 0. Thus c0 =
σ2
1(p−2)
2p is as

required.

Lemma 2.5. There exists δ0 > 0 such that any (PS)c-sequence {Un} of Jλ with λ � 0 and c > 0

satisfies

lim inf
n→∞ ‖U+

n (·, 0)‖p
Lp(RN )

� δ0c. (2.7)

Proof. From the proof of Lemma 2.4 we know that {Un} is bounded and hence

c = lim
n→∞

(
Jλ(Un)− 1

2
J ′
λ(Un) · Un

)

=

(
1

2
− 1

p

)
lim
n→∞

∫
RN

U+
n (x, 0)pdx

=
(p− 2)

2p
lim
n→∞ ‖U+

n (·, 0)‖p
Lp(RN )

,

which implies (2.7) with δ0 = 2p
p−2 .
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Lemma 2.6. Let C1 be fixed. Then for any ε > 0 there exists Λε > 0 and Rε > 0 such that if {Un} is

a (PS)c-sequence of Jλ with λ � Λε, c � C1, then

lim sup
n→∞

∫
Bc

Rε

U+
n (x, 0)pdx � ε, (2.8)

where Bc
Rε

= {x ∈ RN : |x| � Rε}.
Proof. For R > 0, we set

A(R) := {x ∈ RN : |x| > R, V (x) � M0}
and

B(R) := {x ∈ RN : |x| > R, V (x) < M0}.
Then by Lemma 2.4, we can obtain that∫

A(R)

Un(x, 0)
2dx � 1

λM0

∫
RN

λV (x)Un(x, 0)
2dx

� 1

λM0

(∫
R

N+1
+

t1−2s|∇Un|2dxdt +
∫
RN

λV (x)Un(x, 0)
2dx

)

� 1

λM0

(
2p

p− 2
C1 + o(1)

)
. (2.9)

Using Hölder’s inequality and (2.5), we obtain that for 1 < q < N/(N − 2s),

∫
B(R)

Un(x, 0)
2dx �

(∫
RN

Un(x, 0)
2qdx

)1/q

μ(B(R))1/q
′

� C‖Un‖2λ · μ(B(R))1/q
′

� C
2p

p− 2
C1 · μ(B(R))1/q

′
, (2.10)

where C = C(N, q) is a positive constant and q′ is such that 1/q+1/q′ = 1, μ(B(R)) denotes the Lebesgue

measure of B(R). Setting θ = N
s

p−2
2p , the interpolation inequality and the Sobolev trace inequality yield

∫
Bc

R

U+
n (x, 0)pdx �

(∫
Bc

R

Un(x, 0)
2dx

) p(1−θ)
2

·
(∫

Bc
R

|Un(x, 0)|2�sdx
) pθ

2
�
s

�
(∫

Bc
R

Un(x, 0)
2dx

) p(1−θ)
2

(∫
RN

|Un(x, 0)|2�sdx
) pθ

2
�
s

� C

(∫
Bc

R

Un(x, 0)
2dx

) p(1−θ)
2

(∫
R

N+1
+

t1−2s|∇Un|2dxdt
) pθ

2

� C

(∫
A(R)

Un(x, 0)
2dx +

∫
B(R)

Un(x, 0)
2dx

) p(1−θ)
2

‖Un‖pθλ .

From (2.9), the first summand on the right can be made arbitrarily small if λ is large. On the other hand,

from (2.10), the second summand on the right will be arbitrarily small if R is large since μ(B(R)) → 0

as R → ∞ by Assumption (V2). This completes the proof.

The following lemma is well known and we only give the result without proof.

Lemma 2.7 (Brézis-Lieb lemma). Let {un} ⊂ Lp(RN ) and 1 � p < ∞. If

(a) {un} is bounded in Lp(RN ),

(b) un → u almost everywhere on RN , then

lim
n→∞(|un|pp − |un − u|pp) = |u|pp. (2.11)
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Lemma 2.8. Let λ � λ0 > 0 be fixed and let {Un} be a (PS)c-sequence of Jλ. Then up to a

subsequence, Un ⇀ U in Eλ with U being a weak solution of (1.8). Moreover, U1
n = Un − U is a

(PS)c′-sequence with c′ = c− Jλ(U).

Proof. Firstly, by Lemma 2.4 we know that {Un} is bounded in Eλ. Then up to a subsequence Un ⇀ U

in Eλ as n → ∞. We recall (1.7) and obtain that

Un(·, 0) ⇀ U(·, 0) in Hs(RN ), (2.12)

Un(·, 0) ⇀ U(·, 0) in Lp(RN ) for any 2 � p < 2�s, (2.13)

Un(·, 0) → U(·, 0) in Lp
loc(R

N ) for any 2 � p < 2�s, (2.14)

Un(·, 0) → U(·, 0) almost everywhere on RN , (2.15)

where 2�s =
2N

N−2s is the critical Sobolev exponent. Thus for any W ∈ Eλ we have

J ′
λ(Un) ·W =

∫
R

N+1
+

t1−2s∇Un∇W + λ

∫
RN

V (x)Un(x, 0)W (x, 0)dx

−
∫
RN

U+
n (x, 0)p−1W (x, 0)dx

→
∫
R

N+1
+

t1−2s∇U∇W + λ

∫
RN

V (x)U(x, 0)W (x, 0)dx

−
∫
RN

U+(x, 0)p−1W (x, 0)dx

= J ′
λ(U) ·W.

Therefore,

〈J ′
λ(U),W 〉 = lim

n→∞〈J ′
λ(Un),W 〉 = 0, (2.16)

which indicates that U is a critical point of Jλ.

We consider a new sequence U1
n := Un − U . We will prove that as n → ∞,

Jλ(U
1
n) → c− Jλ(U) (2.17)

and

J ′
λ(U

1
n) → 0. (2.18)

To show (2.17), we observe that

Jλ(U
1
n) =

1

2

∫
R

N+1
+

t1−2s|∇U1
n|2dxdt+

1

2

∫
RN

λV (x)U1
n(x, 0)

2dx− 1

p

∫
RN

U1+
n (x, 0)pdx

=
1

2

∫
R

N+1
+

t1−2s(|∇Un|2 + |∇U |2 − 2∇Un∇U)dxdt

+
1

2

∫
RN

λV (x)(Un(x, 0)
2 + U(x, 0)2 − 2Un(x, 0)U(x, 0))dx − 1

p

∫
RN

U1+
n (x, 0)pdx

= Jλ(Un)− Jλ(U)− (U1
n, U)λ − 1

p

∫
RN

U1+
n (x, 0)pdx+

1

p

∫
RN

U+
n (x, 0)pdx

− 1

p

∫
RN

U+(x, 0)pdx. (2.19)

From Lemma 2.7, ∫
RN

U+
n (x, 0)pdx−

∫
RN

U+(x, 0)pdx−
∫
RN

U1+
n (x, 0)pdx → 0
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as n → ∞. On the other hand, we know that (U1
n, U)λ → 0, as n → ∞. Thus from (2.19) we indeed

have obtained (2.17). Now we come to show (2.18). Since Lp(RN ) ⊆ trEλ is self-conjugate, up to

a subsequence, we may also assume that Un(·, 0) ⇀ U(·, 0) in Lp(RN ). From (2.16) we have for any

W ∈ Eλ,

〈J ′
λ(U

1
n),W 〉 = 〈J ′

λ(Un),W 〉 −
∫
RN

(U1+
n )p−1W (x, 0)dx+

∫
RN

(U+
n )p−1W (x, 0)dx

−
∫
RN

(U+)p−1W (x, 0)dx. (2.20)

Since J ′
λ(Un) → 0 and Un(·, 0) ⇀ U(·, 0) in Lp(RN ,R), we have

lim
n→∞ sup

‖W‖λ�1

∫
RN

((U1+
n )p−1(x, 0)W (x, 0)− (U+

n )p−1W (x, 0) + (U+)p−1W (x, 0))dx = 0.

Thus we have

lim
n→∞ sup

‖W‖λ�1

|〈J ′
λ(U

1
n),W 〉| = 0,

which implies (2.18) and this completes the proof.

Now we come to prove Proposition 2.1.

Proof of Proposition 2.1. We choose 0 < ε < δ0c0/2, where c0 > 0 and δ0 > 0 are same constants

defined in Lemmas 2.4 and 2.5, respectively. Then for the given constant C0 > 0, we choose Λε > 0 and

Rε > 0 as in Lemma 2.6. Thus we claim that Λ0 := Λε is the constant as required in Proposition 2.1.

Take {Un} to be a (PS)c-sequence of Jλ with λ � Λ0 and c � C0. As in Lemma 2.8, we may assume

that Un ⇀ U in Eλ and U1
n = Un − U is a (PS)c′-sequence of Jλ with c′ = c − Jλ(U). If c′ > 0, then

c′ � c0 by Lemma 2.4. As a consequence of Lemma 2.5,

lim inf
n→∞ ‖U1+

n (·, 0)‖p
Lp(RN )

� δ0c
′ � δ0c0.

On the other hand, Lemma 2.6 implies

lim sup
n→∞

∫
Bc

Rε

U1+
n (x, 0)p � ε <

δ0c0
2

.

This implies U1
n ⇀ U1 in Eλ with U1 �= 0, which leads to a contradiction. Therefore c′ = 0; hence U1

n → 0

in Eλ by Lemma 2.4. This completes the proof of Proposition 2.1.

Recalling the definition of cλ in Section 1 and applying Proposition 2.1 to the functional Jλ, we obtain

the following corollary.

Corollary 2.9. For any p ∈ (2, 2�s), there exists Λ0 > 0 such that cλ is achieved for all λ � Λ0 at

some Uλ ∈ Eλ which is a solution of (1.8).

3 Limit problem

Let us recall that the following problem is the “limit” problem of (1.8):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

div(t1−2s∇U) = 0, in RN+1
+ = RN × (0,∞),

U = 0, on RN \ Ω× {0},
∂s
νU(·, 0) = Up−1, on Ω× {0},

U � 0, in RN+1
+ = RN × (0,∞),

(3.1)

and the corresponding functional of (3.1) is defined by

Φ(U) =
1

2

∫
R

N+1
+

t1−2s|∇U |2dxdt− 1

p

∫
Ω

U+(x, 0)pdx for U ∈ E0,
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where E0 is defined as in Section 1. Again as defined in Section 1, the following energy:

c(Ω) := inf{Φ(U) : U ∈ N}

is the infimum of Φ on the Nehari manifold N . We will see that c(Ω) is achieved by a least energy U ∈ N .

To show that, we firstly give an imbedding lemma which is standard.

Lemma 3.1. Let 2 < p < 2�s :=
2N

N−2s for N � 2. Then trΩE0 is compactly embedded in Lp(Ω).

Proof. Note that trΩE0 ⊂ Hs(Ω) and the fact that the embedding Hs(Ω) ↪→ Lp(Ω) is compact for

2 < p < 2N
N−2s for N � 2 immediately implies Lemma 3.1.

By a standard argument applying the above compactness result Lemma 3.1, we can obtain the following

existence lemma.

Lemma 3.2. The infimum c(Ω) is achieved by a function U ∈ N which is a least energy solution

of (3.1).

Proof. Indeed, by Ekeland variational principle, there is a P.S. sequence Un ∈ E0 such that

Φ(Un) → c(Ω) and Φ′(Un) → 0.

Then we have

c(Ω) + o(1)‖Un‖ � Φ(Un)− 1

p
Φ′(Un) · Un

=

(
1

2
− 1

p

)∫
R

N+1
+

t1−2s|∇Un|2dxdt

and

c(Ω) + o(1)‖Un‖ � Φ(Un)− 1

2
Φ′(Un) · Un

=

(
1

2
− 1

p

)∫
Ω

U+
n (x, 0)pdx.

It is easy to see that {Un} is bounded in E0. Then, we can easily find a subsequence of {Un} (we still

denote Un) such that Un ⇀ U ∈ E0. Thus by Lemma 3.1, there is a subsequence of {Un} (we denote it

as itself) such that Un(·, 0) → U(·, 0) in Lp(Ω). Obviously, we have

c(Ω) � 1

2

∫
R

N+1
+

t1−2s|∇U |2dxdt− 1

p

∫
Ω

U+(x, 0)pdx

� lim
n→∞

1

2

∫
R

N+1
+

t1−2s|∇Un|2dxdt − 1

p

∫
Ω

U+
n (x, 0)pdx = c(Ω).

Then U achieves c(Ω) which is a least energy solution of (3.1).

Remark 3.3. When the zero set Ω = intV −1(0) has more than one isolated component, for example,

Ω = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅. Suppose U ∈ N is the least energy solution of (3.1) with U(x, 0) = 0

in Ω1 and U(x, 0) � 0 in Ω2. Then we have (−Δ)sU(x, 0) =
∫
RN

U(x,0)−U(y,0)
|x−y|N+2s dy < 0 in Ω1. However,

on the other hand (−Δ)sU(x, 0) = U(x, 0)p−1 = 0 for x ∈ Ω1. This contradiction shows that the least

energy solution U(x, y) of (3.1) satisfies U(x, 0) � 0 both in Ω1 and in Ω2. The phenomenon is totally

different from the local operator Laplacian since in Laplacian case, u = 0 in Ω immediately indicates that

Δu = 0 in Ω for any domain Ω. For the fractional Laplacian case, it is not the case.

4 Proofs of the main results

In this section we will give the proofs of our main results. To begin with, we firstly give an asymptotic

behavior for cλ as λ is large. More precisely, we have the following lemma.
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Lemma 4.1. cλ → c(Ω) as λ → ∞.

Proof. It is easy to see that cλ � c(Ω) for all λ � 0. By the definition of cλ, it is not difficult to check

that cλ is monotone increasing with respect to λ > 0.

Now, assume on the contrary that for a sequence {λn} with λn → ∞ as n → ∞,

lim
n→∞ cλn = k < c(Ω).

First of all, Lemma 2.4 implies k > 0 and by Corollary 2.9, for n large enough, there exists a sequence

Un ∈ Mλn which is a solution of (1.8) with λ being replaced by λn such that Jλn(Un) = cλn . Similar to

the proof of Lemma 2.4, it is easy to verify that {Un} is bounded in E. Thus up to a subsequence, we

may assume that Un ⇀ U in E and

Un(x, 0) → U(x, 0) in Lθ
loc(R

N ) for 2 � θ < 2�s. (4.1)

We firstly claim that U(·, 0)|Ωc = 0 and hence U ∈ E0, where Ωc = {x ∈ RN : x �∈ Ω}. In fact, if

U(·, 0)|Ωc �= 0, then there exists a compact subset F ⊂ Ωc with dist(F,Ω) > 0 such that U(·, 0)|F �= 0.

Then by (4.1), ∫
F

Un(x, 0)
2dx →

∫
F

U(x, 0)2dx > 0.

However, since V (x) � ε0 > 0 for all x ∈ F and for some ε0 > 0, it follows that

Jλn(Un) �
p− 2

2p
λn

∫
F

V (x)Un(x, 0)
2dx � p− 2

2p
λnε0

∫
F

Un(x, 0)
2dx → ∞ as n → ∞,

which leads to a contradiction.

Next, we show that Un(·, 0) → U(·, 0) in Lp(RN ) for 2 < p < 2�s. Indeed, if not, then by the

concentration compactness lemma of Lions [16], there exist δ > 0, ρ > 0 and xn ∈ RN with |xn| → ∞
such that

lim inf
n→∞

∫
Bρ(xn)

|Un(x, 0)− U(x, 0)|2dx � δ > 0.

Then we have

Jλn(Un) =
p− 2

2p

∫
R

N+1
+

t1−2s|∇Un|2dxdt+ p− 2

2p

∫
RN

λnV (x)Un(x, 0)
2dx

� p− 2

2p
λn

∫
Bρ(xn)∩{x:V (x)�M0}

V (x)Un(x, 0)
2dx

=
p− 2

2p
λn

∫
Bρ(xn)∩{x:V (x)�M0}

V (x)|Un(x, 0)− U(x, 0)|2dx

� p− 2

2p
λn

(
M0

∫
Bρ(xn)

|Un(x, 0)− U(x, 0)|2dx−M0

∫
Bρ(xn)∩{x:V (x)�M0}

Un(x, 0)
2dx

)

� p− 2

2p
λn

(
M0

∫
Bρ(xn)

|Un(x, 0)− U(x, 0)|2dx− o(1)

)

→ ∞ as n → ∞.

For the last inequality we have used Hölder’s inequality and the fact

μ(Bρ(xn) ∩ {x : V (x) � M0}) → 0 as n → ∞.

This contradiction implies Un(·, 0) → U(·, 0) in Lp(RN ). By this strong convergence, one can easily check

that U � 0 is a solution of the following problem:⎧⎪⎪⎨
⎪⎪⎩
div(t1−2s∇U) = 0, in RN+1

+ = RN × (0,∞),

∂s
νU(·, 0) = Up−1(x, 0), on Ω,

U = 0, on RN \ Ω.
(4.2)
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Furthermore, again from the strong convergence U+
n (·, 0) → U+(·, 0) in Lp(RN ), we have

k = lim
n→∞ cλn = lim

n→∞ Jλn(Un)

= lim
n→∞ Jλn(Un)− 1

2
J ′
λn

(Un) · Un

= lim
n→∞

(
1

2
− 1

p

)∫
RN

U+
n (x, 0)pdx

=

(
1

2
− 1

p

)∫
Ω

U+(x, 0)pdx.

Namely we obtain that

Φ(U) =

(
1

2
− 1

p

)∫
Ω

U+(x, 0)pdx = k,

which implies U ∈ N and k � c(Ω). This also leads to a contradiction. Thus we proved that limλ→∞ cλ
= c(Ω). Thus the proof of this lemma is completed.

Now we are ready to give the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. It suffices to prove that any sequence of Un ∈ Eλn with Un ∈ Mλn , Jλn(Un) = cλn

(λn → ∞ as n → ∞) converges in E along a subsequence to a least energy solution of (1.11). As in the

proof of Lemma 2.4, we can obtain that such a sequence Un must be bounded in E. Thus without loss

of generality, we may assume that Un ⇀ U in E and Un(·, 0) → U(·, 0) in Lθ
loc(R

N ) for 2 < θ < 2�s.

To complete the proof, it is sufficient to prove that Un → U strongly in E and U ∈ N is a least energy

solution of (1.11) such that Φ(U) = c(Ω). Firstly, as in the proof of Lemma 4.1, we can prove that U � 0

is a solution of the following problem:⎧⎪⎪⎨
⎪⎪⎩
div(t1−2s∇U) = 0, in RN+1

+ = RN × (0,∞),

∂s
νU(·, 0) = Up−1(x, 0), on Ω,

U = 0, on RN \ Ω,
(4.3)

and U+
n (x, 0) → U+(x, 0) strongly in Lp(RN ).

Now we claim that

λn

∫
RN

V (x)Un(x, 0)
2dx → 0 and

∫
R

N+1
+

t1−2s|∇Un|2dxdt →
∫
R

N+1
+

t1−2s|∇U |2dxdt.

Indeed, if either

lim sup
n→∞

λn

∫
RN

V (x)Un(x, 0)
2dx > 0

or

lim sup
n→∞

∫
R

N+1
+

t1−2s|∇Un|2dxdt >
∫
R

N+1
+

t1−2s|∇U |2dxdt.

Then we get that ∫
R

N+1
+

t1−2s|∇U |2dxdy <

∫
Ω

U+(x, 0)pdx,

thus there is α ∈ (0, 1) such that αU ∈ N and

c(Ω) � Φ(αU)

=
p− 2

2p

∫
R

N+1
+

t1−2s|∇αU |2dxdt

<
p− 2

2p

∫
R

N+1
+

t1−2s|∇U |2dxdt

� lim
n→∞

p− 2

2p

(∫
R

N+1
+

t1−2s|∇Un|2dxdt+
∫
RN

λnV (x)Un(x, 0)
2dx

)
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= lim
n→∞ Jλn(Un)

= c(Ω),

which leads to a contradiction. Thus we complete the proof of Theorem 1.2.

Proof of Theorem 1.3. Suppose {un = Un(·, 0)} ∈ Hs(RN ) is a solution of (1.1) with λ being replaced by

λn (λn → ∞ as n → ∞). It is easy to see that such a sequence Un must be bounded in E. We may assume

that Un ⇀ U in E and Un(·, 0) → U(·, 0) in Lθ
loc(R

N ) for 2 < θ < 2�s. As in the proof of Lemma 4.1, we

can prove that U(·, 0)|Ωc = 0 and U ∈ E0 is a solution of (1.11). Moreover, Un(·, 0) → U(·, 0) in Lθ(RN )

for 2 < θ < 2�s. As in the proof of Theorem 1.2, it suffices to show Un → U in E. We observe that∫
R

N+1
+

t1−2s|∇(Un − U)|2dxdt+
∫
RN

λnV (x)|Un(x, 0)− U(x, 0)|2dx

=

∫
R

N+1
+

t1−2s|∇Un|2dxdt +
∫
RN

λnV (x)Un(x, 0)
2dx−

∫
R

N+1
+

t1−2s|∇U |2dxdt

−
∫
RN

λnV (x)U(x, 0)2dx+ o(1)

=

∫
RN

U+
n (x, 0)pdx−

∫
Ω

U+(x, 0)pdx+ o(1)

= o(1).

Here we used the fact that Un and U lie on the Nehari manifold Mλn and N , respectively. This completes

the proof of Theorem 1.3.
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17 Maris M. On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation. Nonlinear

Anal, 2002, 51: 1073–1085

18 Niu M, Tang Z. Least energy solutions of nonlinear Schrödinger equations involving the half Laplacian and potential

wells. Commun Pure Appl Anal, 2016, 15: 1215–1231

19 Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math,

2007, 60: 67–112

20 Sire Y, Valdinoci E. Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a

symmetry result. J Funct Anal, 2009, 256: 1842–1864

21 Tan J. The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc Var Partial Differential

Equations, 2011, 42: 21–41

22 Tan J. Positive solutions for non local elliptic problems. Discrete Contin Dyn Syst, 2013, 33: 837–859

23 Tan J, Xiong J. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete Contin Dyn

Syst, 2011, 31: 975–983

24 Yan S, Yang J, Yu X. Equations involving fractional Laplacian operator: Compactness and application. J Funct Anal,

2015, 269: 47–79


