
SCIENCE CHINA
Mathematics

. ARTICLES . March 2017 Vol. 60 No. 3: 431–438

doi: 10.1007/s11425-015-0781-3

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 math.scichina.com link.springer.com

Gorensteinness, homological invariants and
Gorenstein derived categories

GAO Nan

Department of Mathematics, Shanghai University, Shanghai 200444, China

Email: nangao@shu.edu.cn

Received December 4, 2015; accepted April 1, 2016; published online July 13, 2016

Abstract Relations between Gorenstein derived categories, Gorenstein defect categories and Gorenstein stable

categories are established. Using these, the Gorensteinness of an algebra A and invariants with respect to recolle-

ments of the bounded Gorenstein derived category Db
gp(A-mod) of A are investigated. Specifically, the Goren-

steinness of A is characterized in terms of recollements of Db
gp(A-mod) and Gorenstein derived equivalences. It

is also shown that Cohen-Macaulay-finiteness is invariant with respect to the recollements of Db
gp(A-mod).

Keywords Gorenstein-projective modules, CM-finite algebras, virtually Gorenstein algebras, Gorenstein

derived categories, Gorenstein defect categories, Gorenstein stable categories

MSC(2010) 18E30, 18G25

Citation: Gao N. Gorensteinness, homological invariants and Gorenstein derived categories. Sci China Math, 2017,

60: 431–438, doi: 10.1007/s11425-015-0781-3

1 Introduction

The Gorensteinness of an algebra is of interest in the representation theory of algebras, in Gorenstein

homological algebra, and in the theory of singularity categories (see, e.g., [4,6,11,16,21,26,27]). How to

characterize the Gorenstein property is a basic problem.

An algebra has many invariants, for example, the finiteness of global dimension, the finitistic dimen-

sion, and Cohen-Macaulay (CM)-finiteness (see, e.g., [7, 22, 30, 33]). How to describe and compare these

homological invariants is a major topic of interest.

One can approach these questions by derived (and related) categories, as well as comparisons of derived

categories. Derived categories, introduced by Verdier [32], have been playing an increasingly important

role in various areas of mathematics, including representation theory, algebraic geometry, and mathe-

matical physics. There are two ways to compare derived categories. One way is by derived equivalences.

For example, Happel [20] has shown the finiteness of global dimension of an algebra is invariant under

derived equivalences. Another way is by recollements, which have been introduced by Beilinson et al. [9].

A recollement of a derived category by another two derived categories is a diagram of six functors be-

tween these categories, generalising Grothendieck’s six functors. Suppose that A, B and C are three

finite dimensional algebras over a field. If Db(A-mod) admits a recollement with respect to the bounded

derived categories Db(B-mod) and Db(C-mod) of B and C, Wiedemann [33] has shown that A has finite

global dimension if and only if so have B and C, and Happel [22] has shown that A has finite finitistic

dimension if and only if so have B and C.
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For Gorenstein homological algebra we refer to [3, 14, 15, 17, 24]. Gao and Zhang [19] defined the

corresponding version of the derived category in Gorenstein homological algebra. Gao and Zhang [19]

introduced the notions of Gorenstein derived category and Gorenstein derived equivalence which are

needed in this context. Following [19], the bounded Gorenstein derived category Db
gp(A-mod) of an

algebra A is defined as the Verdier quotient of the bounded homotopy category Kb(A-mod) with respect

to the triangulated subcategory Kb
gpac(A-mod) of A-Gproj-acyclic complexes. Later, a necessary and

sufficient criterion was given by Gao [18] for the existence of recollements of Gorenstein derived categories.

Based on these work, two questions arise.

(1) Can we characterize the Gorensteinness of an algebra in terms of the corresponding Gorenstein

derived category?

(2) Which invariants can be compared along recollements of Gorenstein derived categories?

In this paper, we will provide answers to these questions. Our answers to Question (1) are the combi-

nation of Corollary 3.2, and Theorems 3.3 and 3.5(2). We state them as Theorem A.

Theorem A. Let A be an artin algebra. Consider the following statements:

(1) A is Gorenstein;

(2) A is virtually Gorenstein, and there exist Gorensein algebras B and C and a recollement

Db
gp(B-mod)

�
�

�
Db

gp(A-mod)
�

�
�

Db
gp(C-mod).

i∗

i∗
i!

j!

j∗

j∗

(2′) A is virtually Gorenstein, and for arbitrary virtually Gorensein algebras B and C, if there exists

the following recollement:

Db
gp(B-mod)

�
�

�
Db

gp(A-mod)
�

�
�

Db
gp(C-mod),

i∗

i∗
i!

j!

j∗

j∗

then B and C are Gorenstein;

(3) There is a triangle-equivalence Db
gp(A-mod) ∼= Kb(A-Gproj);

(4) A is Gorenstein derived equivalent to an algebra B, which is Gorenstein.

We have the following relations between these statements:

(i) (1) ⇔ (2) ⇔ (2′).
(ii) If A-Gproj is contravariantly finite in A-mod, then (1) ⇔ (3).

(iii) If A is CM-finite, then (1) ⇔ (4).

Our answer to Question (2) is Theorem 3.5(1). We state it as Theorem B.

Theorem B. Let A, B and C be artin algebras. Assume that the bounded Gorenstein derived category

Db
gp(A-mod) admits a recollement with respect to Db

gp(B-mod) and Db
gp(C-mod). If A, B and C are

virtually Gorenstein, then A is CM-finite if and only if so are B and C.

This paper is structured as follows. In Section 2, we recall some concepts to be used. In Section 3, we

characterize the Gorensteinness of an algebra A in two ways: recollements of Db
gp(A-mod) and Gorenstein

derived equivalences. In Section 4, we show the Karoubianness of Gorenstein defect categories, and

establish relations between Gorenstein defect categories and Gorenstein stable categories. In Section 5,

we make a conclusion.

Let us end this introduction by mentioning that in private communication with Javad Asadollahi, he

pointed out that he and his collaborators also had proofs for Theorem 3.5 in this paper. Their proofs

were obtained independently, and also are different from the proofs given in this paper (see [2]). The

author thanks him for letting us know their proofs.

2 Preliminaries

In this section, we fix notation and recall the main concepts to be used.
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Let A be an artin algebra. Denote by A-Mod (resp. A-mod) the category of left A-modules (resp. the

category of finitely-generated left A-modules), and A-Proj (resp. A-proj) the full subcategory of projective

A-modules (resp. the full subcategory of finitely-generated projective A-modules). Let Db (A-mod) be

the bounded derived category of A. Following [29], the singularity category Dsg(A) of A is the Verdier

quotient category (see [32, Chapter II, Subsection 2.1.8]) of Db(A-mod) with respect to the subcategory

formed by bounded complexes of projective modules.

An A-module M is said to be Gorenstein-projective in A-Mod (resp. A-mod), if there is an exact

sequence P • = · · · → P−1 → P 0 d0→ P 1 → P 2 → · · · in A-Proj (resp. A-proj) with HomA(P
•,Q)

exact for any A-module Q in A-Proj (resp. A-proj), such that M ∼= ker d0 (see [17]). Denote by

A-GP (resp. A-Gproj) the full subcategory of Gorenstein-projective modules in A-Mod (resp. A-mod),

and similarly denote by A-GI the full subcategory of Gorenstein-injective modules in A-Mod.

A proper Gorenstein-projective resolution of A-module M in A-mod is an exact sequence E• = · · · →
G1 → G0 → M → 0 such that all Gi ∈ A-Gproj, and that HomA(G,E•) stays exact for eachG ∈ A-Gproj.

A complex C• of finitely-generated A-modules is A-Gproj-acyclic, if HomA(G,C•) is acyclic for any

G ∈ A-Gproj. It is also called proper exact for example in [3]. A chain map f• : X• → Y • is an

A-Gproj-quasi-isomorphism, if HomA(G, f•) is a quasi-isomorphism for any G ∈ A-Gproj, i.e., there are

isomorphisms of abelian groups

Hn HomA(G, f•) : Hn HomA(G,X•) ∼= Hn HomA(G, Y •), ∀n ∈ Z, ∀G ∈ A-Gproj.
Denote by K−(A-Gproj) the upper bounded homotopy category of A-Gproj, and by K−,gpb(A-Gproj)

the full subcategory,

K−,gpb(A-Gproj) := {G• ∈ K−(A-Gproj) | ∃ a positive integer N such that

H−nHomA(E,G•) = 0, ∀n > N, ∀E ∈ A-Gproj}.
Note from the proof of [19, Theorem 3.6] that if A-Gproj is contravariantly finite in A-mod, then there is

a triangle-equivalence Db
gp(A-mod) ∼= K−,gpb(A-Gproj).

We say that two artin algebras A and B are Gorenstein derived equivalent, if there is a triangle-

equivalence Db
gp(A-mod) ∼= Db

gp(B-mod).

Recall from [7,12] that an artin algebra A is Cohen-Macaulay finite (simply, CM-finite) if there are only

finitely many isomorphism classes of finitely-generated indecomposable Gorenstein-projective A-modules.

Suppose G1, . . . , Gn are all the pairwise non-isomorphic indecomposable finitely-generated Gorenstein-

projective A-modules. Throughout the paper, we set

GA :=
⊕

1�i�n

Gi.

Recall from [21] that an artin algebra A is Gorenstein if inj.dimAA < ∞ and inj.dimAA < ∞. Recall

from [7, 10] that an artin algebra A is called virtually Gorenstein if A-GP⊥ = ⊥A-GI. Note that a

Gorenstein algebra is virtually Gorenstein, but, the converse does not hold in general.

Let A be an artin algebra. Denote by A-Gproj(M,N) the subgroup of HomA(M,N) of A-maps from M

to N which factors through the finitely-generated Gorenstein-projective modules, and A-mod/A-Gproj
the quotient category of A-mod modulo A-Gproj, i.e., the objects are same as those of A-mod, and the

morphism space from M to N is the quotient group HomA(M,N)/A-Gproj(M,N). In the following, we

call A-mod/A-Gproj the Gorenstein stable category of A.

Recall from [5] that A-mod/A-Gproj carries a left triangulated structure and the stabilization of

A-mod/A-Gproj is a pair (S, S(A-mod /A-Gproj)), where S(A-mod/A-Gproj) is a triangulated cate-

gory and S : A-mod/A-Gproj → S(A-mod /A-Gproj) is an exact functor, such that for any exact

functor F : A-mod/A-G proj → C to a triangulated category C, there exists a unique triangle func-

tor F ∗ : S(A-mod/A-Gproj) → C such that F ∗S = F . For the construction of S(A-mod/A-Gproj),
see [5, 23].

Let C′, C and C′′ be triangulated categories. Recall from [9] that a recollement of C relative to C′ and
C′′ is a diagram of triangle functors
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C′
�

�
�

C
�

�
�

C′′
i∗

i∗
i!

j!

j∗

j∗

such that

(R1) (i∗, i∗), (i∗, i!), (j!, j∗) and (j∗, j∗) are adjoint pairs;

(R2) i∗, j! and j∗ are fully faithful;

(R3) j∗i∗ = 0 (and hence i∗j! = 0 and i!j∗ = 0);

(R4) for each X ∈ C there are distinguished triangles

j!j
∗X εX→ X

ηX→ i∗i∗X → (j!j
∗X)[1], i∗i!X

ωX→ X
ζX→ j∗j∗X → (i∗i!X)[1],

where εX is the counit of (j!, j
∗), ηX is the unit of (i∗, i∗), ωX is the counit of (i∗, i!), and ζX is the unit

of (j∗, j∗).

3 Gorenstein derived categories

In this section, we characterize the Gorensteinness of an algebra A in two ways: recollements of

Db
gp(A-mod) and Gorenstein derived equivalences.

Let A be an artin algebra. Denote by A-Gproj the sable category of A-Gproj. Buchweitz’s Theorem [13,

Subsection 4.4.1] has shown that there is an embedding F : A-Gproj → Dsg(A) given by F (G) = G, where

the second G is the corresponding stalk complex at degree 0, and that if A is Gorenstein, then F is a

triangle-equivalence. The converse is also true (see [5, Theorem 6.9]). In general, to measure how far

a ring is from being Gorenstein, Bergh et al. [11] defined the Gorenstein defect category Db
def(A) :=

Dsg(A)/ImF , and also they have shown that A is Gorenstein if and only if Db
def(A) = 0.

To recognize Gorenstein rings via Gorenstein derived categories, we compare a Gorenstein defect

category with a Gorenstein derived category, and try to construct a precise relation. We start with the

following lemma.

Lemma 3.1. Let A be an artin algebra such that A-Gproj is contravariantly finite in A-mod. Then

there is a triangle-equivalence Db
def(A)

∼= Db
gp(A-mod)/Kb(A-Gproj).

Proof. By [25, Final Remark], we have a triangle-equivalenceDb
def(A)

∼= K−gpb(A-Gproj)/Kb(A-Gproj).
Since A-Gproj is contravariantly finite in A-mod, it follows from the proof of [19, Theorem 3.6(ii)] that

Db
gp(A-mod) ∼= K−gpb(A-Gproj). This completes the proof.

Now we test the Gorensteinness of A by the structure of Db
gp(A-mod).

Corollary 3.2. Let A be an artin algebra such that A-Gproj is contravariantly finite in A-mod. Then A

is Gorenstein if and only if there is a triangle-equivalence Db
gp(A-mod) ∼= Kb(A-Gproj).

Proof. By [19, Corollary 3.8], we only need to verify the sufficiency. Since Db
gp(A-mod) ∼= Kb(A-Gproj),

it follows that Db
gp(A-mod)/Kb(A-Gproj) = 0. By Lemma 3.1, we get thatDb

def(A) = 0. [11, Theorem 2.8]

implies A is Gorenstein.

Naturally there are two ways to compare Gorenstein derived categories. One way is by Gorenstein

derived equivalence, the other is by recollements of Gorenstein derived categories. We first show the

Gorensteinness is invariant under Gorenstein derived equivalences.

Theorem 3.3. Let A and B be two artin algebras such that A-Gproj and B-Gproj are contravariantly

finite respectively. If A and B are Gorenstein derived equivalent, then A is Gorenstein if and only if B

is Gorenstein.

Proof. Suppose that F : Db
gp(A-mod) → Db

gp(B-mod) is the given triangle-equivalence and F−1 is its

inverse. Since F is fully faithful, it follows that there is an isomorphism HomDb
gp(A-mod)(X

•, F−1(Y •)) ∼=
HomDb

gp(B-mod)(F (X•), Y •) for anyX• ∈ Db
gp(A-mod) and Y • ∈ Db

gp(B-mod). This means that (F, F−1)
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is an adjoint pair. Thus we get from [19, Lemma 4.3] that F : Db
gp(A-mod) → Db

gp(B-mod) restricts

to Kb(A-Gproj), and F : Kb(A-Gproj) → Kb(B-Gproj) is fully faithful. It follows that there is a

triangle-equivalence Kb(A-Gproj) ∼= Kb(B-Gproj). Thus by Lemma 3.1 we get a triangle-equivalence

Db
def(A)

∼= Db
def(B). This implies that A is Gorenstein if and only if B is Gorenstein.

Next, we will compare the invariants along recollements of Gorenstein derived categories. We show the

Gorensteinness and CM-finiteness are invariant with respect to such recollements. We need the following

lemma, which is inspired by [1].

Lemma 3.4. Let A and B be two artin algebras and F : K−,gpb(A-Gproj) → K−,gpb(B- Gproj) be a

triangle functor. The following two conditions are equivalent:

(1) F restricts to Kb(A-Gproj);
(2) F (G) ∈ Kb(B-Gproj) for any G ∈ A-Gproj.

Theorem 3.5. Let A, B and C be virtually Gorenstein algebras. Assume that Db
gp(A-mod) admits

the following recollement:

Db
gp(B-mod)

�
�

�
Db

gp(A-mod)
�

�
�

Db
gp(C-mod).

i∗

i∗
i!

j!

j∗

j∗

Then

(1) A is CM-finite if and only if B and C are so;

(2) A is Gorenstein if and only if B and C are so.

Proof. Since A is virtually Gorenstein, it follows from [8] that A-Gproj is contravariantly finite in

A-mod. This implies that Db
gp(A)

∼= K−,gpb(A-Gproj) by the proof of [19, Theorem 3.6(ii)]. Similar to B

and C. Let Y • be an object in Db
gp(B-mod). Since (i∗, i∗) is an adjoint pair, there is an isomorphism

HomDb
gp(B-mod)(i

∗(X•), Y •) ∼= HomDb
gp(A-mod)(X

•, i∗(Y •)) for any X• ∈ Db
gp(A-mod). Thus we get

from [19, Lemma 4.3] that i∗ : Db
gp(A-mod) → Db

gp(B-mod) restricts to Kb(A-Gproj). Similarly, j∗
restricts to Kb(A-Gproj), j! restricts to Kb(C-Gproj) and i∗ restricts to Kb(B-Gproj).

If A is CM-finite, then we get from Lemma 3.4 and the above argument that i∗(GA) ∈ Kb(B-Gproj).
Furthermore, using the isomorphism i∗i∗ ∼= IdDb

gp(B-mod), i
∗(GA) is a generator of Db

gp(B-mod). This

implies that B is CM-finite. For the converse, by above arguments and Lemma 3.4 we get that i∗(GB) and

j!(GC) are in Kb(A-Gproj). Let X• be any object in Db
gp(A-mod). Then there is a distinguished triangle

j!j
∗(X•) → X• → i∗i∗(X•) → j!j

∗(X•)[1]. This means that i∗(GB) and j!(GC) generate Db
gp(A-mod).

It follows that A is CM-finite.

If A is Gorenstein, then by [19, Corollary 3.8] we have that Db
gp(A)

∼= Kb(A-Gproj). Since i∗(G) ∈
Kb(B-Gproj) for any G ∈ A-Gproj by Lemma 3.4, we get that every finitely-generated B-module M

admits a proper Gorenstein-projective resolution of finite length. This means Db
gp(B) ∼= Kb(B-Gproj).

Hence by Corollary 3.2 we get that B is Gorenstein. For the converse, suppose B and C are Gorenstein.

Note that there is a distinguished triangle j!j
∗(M) → M → i∗i∗(M) → j!j

∗(M)[1] for any object

M ∈ A-mod. Since j!j
∗(M) ∈ Kb(A-Gproj) and i∗i∗(M) ∈ Kb(A-Gproj), we obtain that Db

gp(A)
∼=

Kb(A-Gproj). This implies that A is Gorenstein.

4 Gorenstein defect categories

Gorenstein defect categories are used as a crucial tool in the previous section. In this section, we will

show the Karoubianness of Gorenstein defect categories, and establish relations between Gorenstein defect

categories and Gorenstein stable categories.

We first determine the dimension of Gorenstein defect categories for a simple class of algebras, where

the dimension is in the sense of Rouquier [31].

Example 4.1. Let A be a representation-finite artin algebra. Then dimDb
def(A) � 1.
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Proof. Since A is representation-finite, it follows from [28] that dimDb(A) � 1. By [31, Lemma 3.4] we

get that dimDb
def(A) � dimDsg(A) � dimDb(A). Hence dimDb

def(A) � 1.

Now we study the Karoubianness of the Gorenstein defect category of an algebra. We need some

preparation.

Suppose A is CM-finite. We take a right A-Gproj-approximation of M for any M ∈ A-mod/A-Gproj,
and denote its kernel by M1. Then we have a functor Ω : A-mod/A-Gproj → A-mod/A-Gproj, view
Ω(M) := M1. Denote by Ω

n
the n-th composition functor of Ω for any positive integer n � 2. Then we

have the following lemma.

Lemma 4.2. Let X• be a complex in Db
gp(A-mod)/Kb(A-Gproj) and n0 > 0. Then for any n large

enough, there exists a module M in Ω
n0
(A-mod) such that X• ∼= Q(M)[n], where Q : Db

gp(A-mod) →
Db

gp(A-mod)/Kb(A-Gproj) is the Verdier quotient functor (see [32, Chapter II, Subsection 2.1.8]).

Proof. Since A is CM-finite, it follows from [8] that every object X in A-mod has a proper Gorenstein-

projective resolution G•
X ∈ K−(A-Gproj). By induction on the length of the complex X•, we obtain

that there is an A-Gproj-quasi-isomorphism G• → X• with G• ∈ K−(A-Gproj). This implies that

HnHomA(E,G•) ∼= HnHomA(E,X•) for all n ∈ Z and E ∈ A-Gproj. So by X• is a bounded complex,

we can take n � n0 such that HiHomA(E,X•) = 0 for all i � n0 − n and E ∈ A-Gproj. Consider

the truncation τ�−nG• = · · · → 0 → M → G1−n → G2−n → · · · of G•, which is A-Gproj-quasi-
isomorphic to G•. Then the cone of the obvious chain map τ�−nG• → M [n] is in Kb(A-Gproj), which
becomes an isomorphism in Db

gp(A-mod)/Kb(A-Gproj). This shows that X• ∼= Q(M)[n] and M lies in

Ω
n0
(A-mod).

Lemma 4.3. Let 0 → M → G1−n → · · · → G0 → N → 0 be an A-Gproj-acyclic complex with each Gi

Gorenstein-projective. Then we have an isomorphism Q(N) ∼= Q(M)[n] in Db
gp(A-mod)/Kb(A-Gproj).

In particular, for an A-module M , we have a natural isomorphism Q(Ω
n
(M)) ∼= Q(M)[−n].

Proof. The stalk complex N is A-Gproj-quasi-isomorphic to Z• := · · · → 0 → M → G1−n → · · · →
G0 → 0. This follows that N ∼= Z• in Db

gp(A-mod) and there is a triangle M [n−1] → G• → Z• → M [n],

where G• := G1−n → · · · → G0. Thus we have a morphism N → M [n] in Db
gp(A-mod), whose cone is in

Kb(A-Gproj). Then this morphism becomes an isomorphism in Db
gp(A-mod)/Kb(A-Gproj).

We consider the composite functor Q′ : A-mod ↪→ Db
gp(A-mod)

Q−→ Db
gp(A-mod)/ Kb(A-Gproj). It

vanishes on A-Gproj, so it induces uniquely a functor A-mod/A-Gproj → Db
gp(A-mod)/Kb(A-Gproj),

which still denote by Q′. Then for any modules M and N in A-mod/A-Gproj, the functor Q′ induces a
natural map by Lemma 4.3,

Φ0 : HomA(M,N)/A-Gproj(M,N) → HomDb
gp(A-mod)/Kb(A-Gproj)(Q(M), Q(N)).

We represent the isomorphism Q(M) ∼= Q(Ω
n
(M)[n]) by θM . Then the above map induces a map

Φn : HomA(Ω
n
(M),Ω

n
(N))/A-Gproj(M,N) → HomDb

gp(A-mod)/Kb(A-Gproj)(Q(M), Q(N))

given by Φn(f) = (θN )−1 ◦ (Φ0(f)[n]) ◦ θM .

Consider the chain of maps HomA(Ω
n
(M),Ω

n
(N))/A-Gproj(M,N) → HomA(Ω

n+1
(M), Ω

n+1
(N))

/A-Gproj(M,N) induced by Ω. Then we have an induced map

Φ : lim−→HomA((Ω
n
(M),Ω

n
(N))/A-Gproj(M,N) → Hom(Q(M), Q(N)).

The proof is complete.

Lemma 4.4. Let A be a CM-finite algebra, and M,N be in A-mod/A-Gproj. Then the map Φ is an

isomorphism.

Proof. We refer to [5, Theorem 3.8] for a detailed proof.
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Recall that an additive category A is Karoubian (i.e., idempotent split) provided that each idempotent

e : X → X splits, i.e., it admits a factorization X
u−→ Y

v−→ X with u ◦ v = IdY . In particular, for an artin

algebra A, the quotient category A-mod/A-Gproj is Karoubian.

Theorem 4.5. The Gorenstein defect category Db
def(A) of a CM-finite algebra A is Karoubian.

Proof. We claim that Db
gp(A-mod)/Kb(A-Gproj) is Karoubian. By Lemma 4.3 and [19, Proposition 2.9]

it suffices to show that for each module M in A-mod/A-Gproj, an idempotent e : Q(M) → Q(M) splits.

Lemma 4.4 implies that for a large n, there is an idempotent en : Ω
n
(M) → Ω

n
(M) in A-mod/A-Gproj

which is mapped by Φ to e. Note that the idempotent en splits. Then the idempotent e splits. By

Lemma 3.1 we have a triangle-equivalence

Db
def(A)

∼= Db
gp(A-mod)/Kb(A-Gproj).

Hence Db
def(A) is Karoubian.

Next, we will show the Gorenstein defect category of an algebra A is triangular equivalent to the

stabilization of the Gorenstein stable category of A.

Lemma 4.6. Let A be an artin algebra such that A-Gproj is contravariantly finite in A-mod. Then

there is a triangle-equivalence S(A-mod/A-Gproj) ∼= Db
def(A).

Proof. Since A-Gproj is contravariantly finite in A-mod, it follows from [5, Theorem 3.8] that there is

a triangle-equivalence S(A-mod/A-Gproj) ∼= K−,gpb(A-Gproj)/Kb(A-Gproj). By [25, Final Remark] we

get a triangle-equivalence S(A-mod/A-Gproj) ∼= Db
def(A).

As an application we show the equivalences of Gorenstein stable categories can induce the equivalences

of Gorenstein defect categories for two CM-finite algebras. For convenience, we introduce two definitions.

Definition 4.7. Two artin algebras A and B are said to be Gorenstein stably equivalent if their

Gorenstein stable categories A-mod/A-Gproj and B-mod/B-Gproj are equivalent as left triangulated

categories, where the left triangulated structure is in the sense of Beligiannis [5].

Definition 4.8. Two artin algebras A and B are said to be Gorenstein defect equivalent if there is a

triangle-equivalence Db
def(A)

∼= Db
def(B).

Theorem 4.9. Let A and B be two artin algebras such that A-Gproj and B-Gproj are contravariantly

finite respectively. If A and B are Gorenstein stably equivalent, then A and B are Gorenstein defect

equivalent.

Proof. Since A and B are Gorenstein stably equivalent, there is a triangle-equivalence by [5, Corol-

lary 3.3], S(A-mod/A-Gproj) ∼= S(B-mod/B-Gproj). By Lemma 4.6 we have triangle-equivalences

S(A-mod/A-Gproj) ∼= Db
def(A) and S(B-mod/B-Gproj) ∼= Db

def(B).

Hence we get a triangle-equivalence Db
def(A)

∼= Db
def(B).

5 Conclusion

In this paper, we construct the relations between Gorenstein derived categories, Gorenstein defect cate-

gories and Gorenstein stable categories. On the basis of these, we characterize the Gorensteinness of an

algebra A in terms of recollements of Db
gp(A-mod) and Gorenstein derived equivalences, and also show

that CM-finiteness is invariant with respect to recollements of the bounded Gorenstein derived category

Db
gp(A-mod) of A.
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