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Abstract We discuss the stochastic linear-quadratic (LQ) optimal control problem with Poisson processes

under the indefinite case. Based on the wellposedness of the LQ problem, the main idea is expressed by the

definition of relax compensator that extends the stochastic Hamiltonian system and stochastic Riccati equation

with Poisson processes (SREP) from the positive definite case to the indefinite case. We mainly study the

existence and uniqueness of the solution for the stochastic Hamiltonian system and obtain the optimal control

with open-loop form. Then, we further investigate the existence and uniqueness of the solution for SREP in

some special case and obtain the optimal control in close-loop form.
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1 Introduction

The linear-quadratic (LQ) control problem is an important tool in research areas, such as stochastic

signal analysis, mathematical finance, control theory and so on. In reality, the LQ problems describe

a large number of models in the optimal control problems. Furthermore, there exist many nonlinear

control problems that can be approximated by the LQ problem. In the early literature on LQ problems,

the control weight costs were supposed to be positive definite when the systems are deterministic or

stochastic. In recent years, there has been tremendous interest in developing stochastic linear systems,

in which the control not only affects the drift component but also the diffusion component. For this kind

of stochastic LQ problems, there exists an essential difference between the deterministic case and the

stochastic case. Peng [7] and Chen et al. [2] pointed out that the positive definite condition could be

relaxed in stochastic cases. In [2], Chen et al. studied the following stochastic linear system:{
dx(t) = (A(t)x(t) +B(t)v(t))dt+ (C(t)x(t) +D(t)v(t))dW (t),

x0 = a,
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and the cost functional

J (v(·)) = 1

2
E

∫ T

0

[⟨Ltxt, xt⟩+ ⟨Mtvt, vt⟩]dt+
1

2
E⟨SxT , xT ⟩.

The conclusion is that if D(t) ̸= 0, then D(t) can supply a compensation in some sense, so that the

control weight cost might be singular or indefinite. The essential reason for this relaxation depends on

the solvability of the following deterministic Riccati equation on the interval [0, T ]:
Ṗ (t) + P (t)A(t) +A(t)TP (t) + CT(t)P (t)C(t) + (P (t)B(t) + CT(t)P (t)D(t))

× (M(t) +DT(t)P (t)D(t))−1(BT(t)P (t) +DT(t)P (t)C(t)) + L(t) = 0,

P (T ) = S.

(1.1)

If there exists a solution of (1.1), then DTPD needs to be positive enough such that

M̃(t) ≡ M(t) +DT(t)P (t)D(t) > 0

(instead of M > 0). So, when M < 0 (but not too negative), DTPD plays a role of the compensation

for M . However, in [2], they could only give the existence and uniqueness for the Riccati equation (1.1)

in some special cases where C(t) = 0 and all the coefficients are deterministic.

Since then, many researchers became interested in this kind of indefinite stochastic LQ problems, such

as Rami et al. [11,12], Qian and Zhou [10], Yu [15], Huang and Yu [4] and so on. Rami et al. [11,12] studied

a series of indefinite LQ problems with infinite time horizon by linear matrix inequality (LMI) method,

which included continuous time models and discrete time models and the coefficients in the system were

constants or deterministic functions. In 2013, Yu [15] introduced the equivalent cost functional method

to deal with indefinite stochastic LQ problems. This method is effective to solve problems with random

coefficients. Moreover, he also dealt with the corresponding stochastic Hamiltonian systems when the

coefficients did not satisfy the classical monotonicity conditions (see [3,9]). In the following work, Huang

and Yu [4] studied the stochastic Riccati equations (SREs) related to indefinite LQ problems with random

coefficients, and they gave the existence and uniqueness of SREs and obtained feedback forms of optimal

controls.

In this paper, we study the stochastic linear system with Poisson processes as follows:
dxt = (Atxt +Btvt)dt+

m∑
i=1

(Ci
txt +Di

tvt)dW
i
t +

n∑
j=1

∫
E
[Ej

t (e)xt− + F j
t (e)vt]Ñ

j(dt, de),

x0 = a,

and minimize the following cost functional:

J (v(·)) = 1

2
E

∫ T

0

[⟨Ltxt, xt⟩+ 2⟨Rtvt, xt⟩+ ⟨Mtvt, vt⟩]dt+
1

2
E⟨SxT , xT ⟩.

Based on the equivalent cost functional method in [15], we introduce a new concept: the relax compensator.

As we represented above, the efficiency of the method in [2] depended crucially on the solvability of the

corresponding Riccati equation. However, it is difficult to obtain the solvability of the stochastic Riccati

equations with Poisson processes (SREPs). For example, in [6], Meng only could solve some special

cases for SREPs. So the method in [2] is not easy to apply generally. While, the advantage of relax

compensators is that it allows us to overcome the difficulty caused by the lack of the solvability of the

corresponding Riccati equations. On the other hand, when the coefficients are deterministic, the solution

of the Riccati equation (if it exists) could be regarded as a special relax compensator (see Remark 5.6).

Moreover, the corresponding stochastic Hamiltonian system with jumps and some special SREP under

the indefinite case are solved.

The rest of this paper is organized as follows. In Section 2, we give some notation and formulate the

problem. In Section 3, we study the wellposedness of the LQ problem by relax compensators. Section 4
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is devoted to studying the stochastic Hamiltonian system under the indefinite case, and we obtain the

open-loop form of the optimal control. In Section 5, we focus on the SREP under the indefinite condition

and obtain a feedback form of the optimal control in some special cases. Section 6 is the conclusion of

this paper.

2 Notation and problem formulation

Let Rn be the n-dimensional Euclidean space with the usual norm | · | and the usual inner product

⟨·, ·⟩. Let Rm×n be the collection of m × n matrices with the inner product ⟨A,B⟩ = tr{ABT}, for any
A,B ∈ Rm×n, where T denotes the transpose of matrices.

Let T > 0 be a constant and [0, T ] denote the finite time span. Let (Ω,F ,F,P) be a complete

filtered probability space. The filtration F = {Ft; 0 6 t 6 T} is generated by two mutually independent

stochastic processes. One is an m-dimensional Brownian motion {Wt := (W 1
t , . . . ,W

m
t )T, 0 6 t 6 T},

and the other is an n-dimensional Poisson random measure {N(·, ·) = (N1(·, ·), . . . , Nn(·, ·))T} defined on

R+ × E , where E = Rd \ {0}. The compensator of N is N(dt, de) = π(de)dt, which makes {Ñ((0, t]×A)

= (N−N)((0, t]×A)}t>0 a martingale for any A belonging to the Borel field B(E) with π(A) < ∞. Here,

π is a given σ-finite measure on the measurable space (E ,B(E)) satisfying that∫
E
(1 ∧ |e|2)π(de) < ∞,

which is called a Lévy measure. Ft is defined by

σ{Ws : 0 6 s 6 t} ∨ σ

{∫
E
Ñ(s, de) : 0 6 s 6 t

}
∨N , 0 6 t 6 T,

where N denotes the totality of P-null sets, and F = FT .

Moreover, we denote the sets of matrices as follows:

• Sd: the space of all d× d symmetric matrices.

• Sd+: the subset of Sd consisting of all positive semi-definite matrices.

• Ŝd+: the subset of Sd consisting of all positive definite matrices.

For any Euclidean space Rd, we introduce the following notation:

• L2
F(0, T ;Rd) = {g : [0, T ] × Ω → Rd | g(·) is an Rd-valued F-adapted stochastic process such that

∥g∥2
L2

F
= E

∫ T

0
|g(t)|2dt < ∞}.

• L∞
F (0, T ;Rd) = {g : [0, T ]× Ω → Rd | g(·) is an Rd-valued F-adapted bounded stochastic process}.

• L∞(FT ;Rd) = {ς | ς is an Rd-valued FT -measurable bounded random variable}.
• C2

F(0, T ;Rd) = {g : [0, T ] × Ω → Rd | g(·) is a càdlàg process in L2
F(0, T ;Rd) such that ∥g∥2

C2
F
=

E[sup06t6T |g(t)|2] < ∞}.
• M2

F (0, T ;Rd) = {r : [0, T ]×E ×Ω → Rd | r(·, ·) is an Rd-valued F-adapted process such that ∥r∥2
M2

F
=

E
∫ T

0

∫
E |r(t, e)|

2π(de)dt < ∞}.
In this paper, we consider the following controlled linear stochastic differential equation with Poisson

processes (SDEP) as follows:
dxt = (Atxt +Btvt)dt+

m∑
i=1

(Ci
txt +Di

tvt)dW
i
t +

n∑
j=1

∫
E
[Ej

t (e)xt− + F j
t (e)vt]Ñ

j(dt, de),

x0 = a,

(2.1)

where a ∈ Rd, A(·), Ci(·) ∈ L∞
F (0, T ;Rd×d), B(·), Di(·) ∈ L∞

F (0, T ;Rd×k) (i = 1, 2, . . . ,m), Ej(·, ·) ∈
M∞

F (0, T ;Rd×d) and F j(·, ·) ∈ M∞
F (0, T ;Rd×k) (j = 1, 2, . . . , n). The admissible control set is given by

Vad = L2
F(0, T ;Rk), and each element v(·) of Vad is called an admissible control. We also consider the

following cost functional:

J (v(·)) = 1

2
E

∫ T

0

[⟨Ltxt, xt⟩+ 2⟨Rtvt, xt⟩+ ⟨Mtvt, vt⟩]dt+
1

2
E⟨SxT , xT ⟩, (2.2)
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where L(·) ∈ L∞
F (0, T ; Sd), R(·) ∈ L∞

F (0, T ;Rd×k),M(·) ∈ L∞
F (0, T ; Sk) and S ∈ L∞(FT ; Sd).

Problem (LQ SOC). The problem is to look for an admissible control u(·) ∈ Vad satisfying

J (u(·)) = inf
v(·)∈Vad

J (v(·)). (2.3)

Such an admissible control u(·) is called an optimal control, and x(·) = xu(·) is called the corresponding

optimal trajectory.

We point out that any definiteness of the coefficients is not assumed in the above. Next, we categorize

the Problem (LQ SOC) into two classes: the positive definite case and the indefinite case.

Assumption 2.1 (Positive definite condition).[
L(·) R(·)
RT(·) M(·)

]
∈ L∞

F (0, T ; Sd+k
+ ), S ∈ L∞(FT ; Sd+)

and M(·) ∈ L∞
F (0, T ; Ŝk+). Moreover, the inverse matrix M−1(·) is also bounded.

If the positive definite condition is satisfied, we call Problem (LQ SOC) positive definite. Otherwise,

it is called indefinite. The aim of this paper is to study the indefinite case of Problem (LQ SOC) by

finding a new component to relax the positive definite condition, which is inspired by the equivalent cost

functional method introduced in [4, 15]. This method is more general than that used in [2, 12]. It is still

effective even though the solution of the corresponding Riccati equation does not exist.

At the end of this section, we introduce the following lemma which is useful in the sequel.

Lemma 2.2 (Schur’s lemma, see [1]). Let matrices L = LT, M = MT and R be given with appropriate

dimensions. The following conditions are equivalent:

(i) L−RM−1RT > 0, M > 0;

(ii) [ L R
RT M

] > 0, M > 0.

3 Wellposedness of Problem (LQ SOC)

In this section, we discuss the wellposedness for Problem (LQ SOC) with indefinite control weight cost.

By virtue of the wellposedness, we extend the LQ problem from the positive definite case to the indefinite

case.

Firstly, we give the definition of wellposedness.

Definition 3.1. If the value V = infv(·)∈Vad
J (v(·)) > −∞, then the Problem (LQ SOC) is called

well-posed.

Secondly, we denote the following set of jump-diffusion processes:

Υ :=

{
K ∈ L∞

F (0, T ;Sd)
∣∣∣∣Kt = K0 +

∫ t

0

Θsds+
m∑
i=1

∫ t

0

Φi
sdW

i
s +

n∑
j=1

∫ t

0

∫
E
Ψj

s(e)Ñ
j(ds, de)

for all t ∈ [0, T ],where Θ,Φi,Ψj ∈ L∞
F (0, T ; Sd), i = 1, . . . ,m, and j = 1, . . . , n

}
and introduce the following notation:

L(K) = L+Θ+KA+ATK +
m∑
i=1

[ΦiCi + (Ci)TΦi + (Ci)TKCi] +
n∑

j=1

∫
E
[Φj(e)Ej(e)

+ (Ej(e))TΨj(e) + (Ej(e))T(K +Ψj(e))Ej(e)]πj(de),

R(K) = R+KB +
m∑
i=1

[ΦiDi + (Ci)TKDi] +
n∑

j=1

∫
E
[Ψj(e)F j(e) + (Ej(e))T(K

+Ψj(e))F j(e)]πj(de),
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M(K) = M +

m∑
i=1

(Di)TKDi +

n∑
j=1

∫
E
(F j(e))T(K +Ψj(e))F j(e)πj(de),

S(K) = S −KT .

We give the definition of relax compensator as follows.

Definition 3.2. If K ∈ Υ such that (L(K),R(K),M(K),S(K)) satisfies Assumption 2.1, then we

call K a relax compensator.

Theorem 3.3. If there exists a relax compensator K, then Problem (SOC LQ) is well-posed.

Proof. For anyK ∈ Υ, applying Itô’s formula to ⟨Ktxt, xt⟩ on the interval [0, T ] and taking expectation,

we get

E[⟨KTxT , xT ⟩]− ⟨K0a, a⟩

= E

∫ T

0

[⟨{
KtAt +AT

t Kt +
m∑
i=1

[Φi
tC

i
t + (Ci

t)
TΦi

t + (Ci
t)

TKtC
i
t ] +

n∑
j=1

∫
E
[Φj

t (e)E
j
t (e)

+ (Ej
t (e))

TΨj
t (e) + (Ej

t (e))
T(Kt +Ψj

t (e))E
j
t (e)]π

j(de) + Θt

}
xt, xt

⟩
+ 2

⟨{
KtBt

+
m∑
i=1

[Φi
tD

i
t + (Ci

t)
TKtD

i
t] +

n∑
j=1

∫
E
[Ψj

t (e)F
j
t (e) + (Ej

t (e))
T(Kt +Ψj

t (e))F
j
t (e)]π

j(de)

}
vt, xt

⟩

+

⟨{ m∑
i=1

(Di
t)

TKtD
i
t +

n∑
j=1

∫
E
[(F j

t (e))
T(Kt +Ψj

t (e))F
j
t (e)]π

j(de)

}
vt, vt

⟩]
dt.

By the definition of L(K), R(K), M(k) and S(K),

0 = E

∫ T

0

[⟨(Lt(K)− Lt)xt, xt⟩+ 2⟨(Rt(K)−Rt)vt, xt⟩+ ⟨(Mt(K)−Mt)vt, vt⟩]dt

+ E[⟨(S(K)− S)xT , xT ⟩] + ⟨K0a, a⟩. (3.1)

Combining (3.1) with the definition of J (v(·)), we have

J (v(·)) = 1

2
E

∫ T

0

[⟨Lt(K)xt, xt⟩+ 2⟨Rt(K)vt, xt⟩+ ⟨Mt(K)vt, vt⟩]dt

+
1

2
E⟨S(K)xT , xT ⟩+

1

2
⟨K0a, a⟩

=
1

2
E

∫ T

0

[
xt

vt

]T [
Lt(K) Rt(K)

RT
t (K) Mt(K)

][
xt

vt

]
dt+

1

2
E⟨S(K)xT , xT ⟩+

1

2
⟨K0a, a⟩.

According to Assumption 2.1, [
Lt(K) Rt(K)

RT
t (K) Mt(K)

]
∈ L∞

F (0, T ;Sn+m
+ )

and

S(K) ∈ L∞(FT ;Sn+m
+ ).

Hence,

J (v(·)) > 1

2
⟨K0a, a⟩ > −∞.

We proved that Problem (LQ SOC) is well-posed.
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Remark 3.4. Theorem 3.3 reveals some essence of the indefinite LQ problem. In [2], Chen et al.

studied the LQ problems by solving the associated Riccati equation directly. In general, the solvability of

Riccati equation is very difficult, and they only obtained the solvability result in some particular cases. In

this paper, the controlled system is generalized to a jump-diffusion model (see (2.1)), and the solvability

of the corresponding Riccati equation is more challenging. However, the viewpoint of Theorem 3.3 is to

look for some relax compensator instead of to solve the Riccati equation.

4 Stochastic Hamiltonian system with Poisson process under the indefinite
case

In this section, we focus on researching the stochastic Hamiltonian system with Poisson processes. Firstly,

we study the stochastic Hamiltonian system with Poisson processes under the positive definite case. Then,

by relax compensators, we extend the problem from the positive definite case to the indefinite case.

Now we introduce a backward stochastic differential equation with Poisson processes (BSDEP) which

is called the adjoint equation to (2.1):

−dqt =

(
AT

t qt +

m∑
i=1

(Ci
t)

Trit +

n∑
j=1

∫
E
(Ej

t (e))
Tθjt (e)π(de) + Ltx

v
t +Rtvt

)
dt

−
m∑
i=1

ritdW
i
t −

n∑
j=1

∫
E
θjt (e)Ñ

j(dt, de),

qT = SxT ,

(4.1)

where q(·), r(·) and θ(·, ·) are called the adjoint processes. Noting that from the classical BSDEP theory

with jumps, (4.1) has a unique solution (q(·), r(·), θ(·, ·)) for any given admissible pair (xv(·), v(·)). For

simplicity, we denote (x(·), q(·), r(·), θ(·, ·)) = (xu(·), qu(·), ru(·), θu(·, ·)). We link Problem (LQ SOC) to

the following stochastic Hamiltonian system:

0 = Mtut +RT
t xt +BT

t qt +
m∑
i=1

(Di
t)

Trit +
n∑

j=1

∫
E
(F j

t (e))
Tθjt (e)π

j(de),

dxt = (Atxt +Btut)dt+
m∑
i=1

(Ci
txt +Di

tut)dW
i
t +

n∑
j=1

∫
E
[Ej

t (e)xt− + F j
t (e)ut]Ñ

j(dt, de),

−dqt =

(
AT

t qt +
m∑
i=1

(Ci
t)

Trit +
n∑

j=1

∫
E
(Ej

t (e))
Tθjt (e)π

j(de) + Ltxt +Rtut

)
dt

−
m∑
i=1

ritdW
i
t −

n∑
j=1

∫
E
θjt (e)Ñ

j(dt, de),

x0 = a, qT = SxT .

(4.2)

Theorem 4.1. Under Assumption 2.1, the Hamiltonian system (4.2) admits a unique solution

(x(·), u(·), q(·), r(·), θ(·, ·)) ∈ L2
F(0, T ;Rd)× Vad × L2

F(0, T ;Rd)× L2
F(0, T ;Rd)×M2

F (0, T ;Rd),

in which (x(·), u(·)) is the unique optimal pair of Problem (LQ SOC).

Proof. Under Assumption 2.1, we can solve u(·) directly from the first equation of the Hamiltonian

system (4.2):

ut = −M−1
t

[
RT

t xt +BT
t qt +

m∑
i=1

(Di
t)

Trit +

n∑
j=1

∫
E
(F j

t (e))
Tθjt (e)π

j(de)

]
. (4.3)

Then the problem is reduced to solve the following fully coupled forward-backward stochastic differential
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equation with Poisson processes (FBSDEP):

dxt =

[
(At −BtM

−1
t RT

t )xt −BtM
−1
t BT

t qt −
m∑
i=1

BtM
−1
t (Di

t)
Trit

−
n∑

j=1

∫
E
BtM

−1
t (F j

t (e))
Tθjt (e)π

j(de)

]
dt+

m∑
i=1

[
(Ci

t −Di
tM

−1
t RT

t )xt

−Di
tM

−1
t BT

t qt −
m∑

k=1

Di
tM

−1
t (Dk

t )
Trkt −

n∑
j=1

∫
E
Di

tM
−1
t (F j

t (e))
Tθjt (e)π

j(de)

]
dW i

t

+

n∑
j=1

∫
E

[
(Ej

t (e)− F j
t (e)M

−1
t RT

t )xt− − F j
t (e)M

−1
t BT

t qt −
m∑
i=1

F j
t (e)M

−1
t (Di

t)
Trit

−
n∑

k=1

∫
E
F j
t (e)M

−1
t (F k

t (e))
Tθkt (e)π

j(de)

]
Ñ j(dt, de),

−dqt =

[
(AT

t −RtM
−1
t BT

t )qt +

m∑
i=1

((Ci
t)

T −RtM
−1
t (Di

t)
T)rit +

n∑
j=1

∫
E
((Ej

t (e))
T

−RtM
−1
t (F j

t (e))
T)θjt (e)π

j(de) + (Lt −RtM
−1
t RT

t )xt

]
dt−

m∑
i=1

ritdW
i
t

−
n∑

j=1

∫
E
θjt (e)Ñ

j(dt, de),

x0 = a, qT = SxT .

(4.4)

The above linear FBSDEP (4.4) admits a unique solution, since it is a special case of the relevant

arguments of Li and Yu [5]. So (4.2) admits a unique solution (x(·), u(·), q(·), r(·), θ(·, ·)).
Now, we prove that (x(·), u(·)) is an optimal pair of Problem (LQ SOC). For any admissible control v(·),

the corresponding state is denoted by xv(·). We analyze the difference between J (u(·)) and J (v(·)).
Under Assumption 2.1, J (v(·)) is convex, so

J (u(·))− J (v(·)) = 1

2
E

∫ T

0

[⟨Ltxt, xt⟩+ 2⟨Rtut, xt⟩+ ⟨Mtut, ut⟩]dt+
1

2
E⟨SxT , xT ⟩

− 1

2
E

∫ T

0

[⟨Ltx
v
t , x

v
t ⟩+ 2⟨Rtvt, x

v
t ⟩+ ⟨Mtvt, vt⟩]dt−

1

2
E⟨Sxv

T , x
v
T ⟩

6 E

∫ T

0

[⟨Ltxt, xt − xv
t ⟩+ ⟨Rtut, xt − xv

t ⟩+ ⟨RT
t xt, ut − vt⟩+ ⟨Mtut, ut − vt⟩]dt

+ E[⟨SxT , xT − xv
T ⟩]. (4.5)

Applying Itô’s formula to ⟨q(·), x(·)−xv(·)⟩ on the interval [0, T ], we get the right-hand side of the above

inequality (4.5) is zero. So J (u(·))− J (v(·)) 6 0, which implies u(·) is an optimal control.

Let (x̄(·), ū(·)) be an optimal pair of Problem (LQ SOC). From some standard variational calculus and

dual representation considerations, which is a straightforward consequence of the stochastic maximum

principle in [14], there exists (q̄(·), r̄(·), θ̄(·, ·)) ∈ L2
F(0, T ;Rd) × L2

F(0, T ;Rd) × M2
F (0, T ;Rd) such that

(x̄(·), ū(·), q̄(·), r̄(·), θ̄(·, ·)) satisfies the Hamiltonian system (4.2). From the uniqueness of (4.2), we obtain

the uniqueness of the optimal control.

The above discussions are about the positive definite case. Now, we turn our attention to the indefinite

case. Inspired by the idea of relax compensators, for any K ∈ Υ, we consider a new adjoint equation

instead of the original one:

−dqKt =

(
AT

t q
K
t +

m∑
i=1

(Ci
t)

TrK,i
t +

n∑
j=1

∫
E
(Ej

t (e))
TθK,j

t (e)πj(de) + Lt(K)xt +Rt(K)ut

)
dt

−
m∑
i=1

rK,i
t dW i

t −
n∑

j=1

∫
E
θK,j
t (e)Ñ j(dt, de),

qKT = S(K)xT .

(4.6)
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Comparing (4.6) with (4.1), we take (L(K),R(K),M(K),S(K)) instead of (L,R,M, S). Then, we study

the following new stochastic Hamiltonian system with K ∈ Υ:

0 = Mt(K)uK
t + LT

t (K)xK
t +BT

t q
K
t +

m∑
i=1

(Di
t)

TrK,i
t +

n∑
j=1

∫
E
(F j

t (e))
TθK,j

t (e)π(de),

dxK
t = (Atx

K
t +Btu

K
t )dt+

m∑
i=1

(Ci
tx

K
t +Di

tu
K
t )dW i

t

+
n∑

j=1

∫
E
[Ej

t (e)x
K
t− + F j

t (e)u
K
t ]Ñ j(dt, de),

−dqKt =

(
AT

t q
K
t +

m∑
i=1

(Ci
t)

TrK,i
t +

n∑
j=1

∫
E
(Ej

t (e))
TθK,j

t (e)πj(de) + Lt(K)xt +Rt(K)ut

)
dt

−
m∑
i=1

rK,i
t dW i

t −
n∑

j=1

∫
E
θK,j
t (e)Ñ j(dt, de),

x0 = a, qKT = S(K)xT .

(4.7)

Based on Theorem 4.1, we obtain the following theorem.

Theorem 4.2. If there exists a relax compensator K̃, then for any K ∈ Υ, the stochastic Hamilto-

nian system (4.7) admits a unique solution (xK(·), uK(·), qK(·), rK(·), θK(·, ·)) ∈ L2
F(0, T ;Rd) × Vad ×

L2
F(0, T ;Rd)×L2

F(0, T ;Rd)×M2
F (0, T ;Rd). Moreover, (xK(·), uK(·)) = (xK̃(·), uK̃(·)) is the unique opti-

mal pair of Problem (LQ SOC) corresponding to J (·).
Proof. Firstly, we prove the existence and uniqueness of the Hamiltonian systems (4.7) with K and K̃

are equivalent. If (xK(·), uK(·), qK(·), rK(·), θK(·, ·)) is a solution of Hamiltonian system (4.7) with K,

then

xt = xK
t , ut = uK

t ,

qt = qKt +Ktxt,

rit = rK,i
t + (Φi

t +KtC
i
t)xt +KtD

i
tut, i = 1, . . . ,m,

θjt (e) = θK,j
t (e) + [Ψj

t (e) + (Kt +Ψj
t (e))E

j
t (e)]xt + [Kt +Ψj

t (e)]F
j
t (e)ut, j = 1, . . . , n,

(4.8)

solves the Hamiltonian system (4.2). Because (4.8) is invertible, the existence and uniqueness of the

Hamiltonian systems (4.7) with K̃ and K are equivalent.

If K̃ is a relax compensator, then (L(K̃),R(K̃),M(K̃),S(K̃)) satisfies Assumption 2.1. By The-

orem 4.1, the Hamiltonian system (4.7) with K̃ admits a unique solution, so the Hamiltonian sys-

tem (4.7) with K admits a unique solution either. Particularly, (x(·), u(·)) is the unique optimal pair for

Problem (LQ SOC).

Remark 4.3. Inspired by the idea of relax compensators, in Theorem 4.2, we use (L(K̃),R(K̃),M(K̃),

S(K̃)) instead of (L,R,M, S), which relaxes the condition on solvability of the stochastic Hamiltonian

system (4.2). Then we can solve more cases of the stochastic Hamiltonian system. In other words, the

existence of the relax compensator gives a new condition for the FBSDEP (4.4) in some special case

which does not satisfy the monotonicity conditions (see [3, 9]).

Example 4.4. Let processes x(·) and v(·) be 1-dimensional. We consider the LQ problem as follows:

minimize the cost functional J (v(·)) = 1
2E

∫ T

0
[αtx

2
t + βtv

2
t ]dt− 1

2E[(
∫ T

0
αtdt)x

2
T ] subject todxt =

∫
E
utÑ(dt, de),

x0 = a,

where α(·) and β(·) are F-adapted bounded real-valued processes. In the positive definite LQ problems,

Lt = αt and S = −
∫ T

0
αtdt are required to be non-negative, and Mt = βt is required to be positive,
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then α must be zero. As we discussed above, if we find a relax compensator, even if α ̸= 0, this

LQ problem can be well-posed too. We select Kt =
∫ t

0
αsds, then, L(K) = R(K) = S(K) = 0 and

M(K) = βt+π(E)
∫ t

0
α(s)ds. If there exists a constant k > 0 such that βt+π(E)

∫ t

0
α(s)ds > k, t ∈ [0, T ],

then (L(K),R(K),M(K),S(K)) satisfies Assumption 2.1. Moreover, the corresponding Hamiltonian

system has the following form:

0 = βtut +

∫
E
θt(e)π(de),

dxt =

∫
E
utÑ(dt, de),

− dqt = αtxtdt− rtdWt −
∫
E
θt(e)Ñ(dt, de),

x0 = a, qT = xT

∫ T

0

αtdt.

(4.9)

Furthermore, the unique solution of the Hamiltonian system (4.9) is

(xt, ut, qt, rt, θt(·)) =
(
a, 0, a

∫ t

0

αsds, 0, 0

)
, t ∈ [0, T ],

which also means that the unique optimal pair is (xt, ut) = (a, 0).

Example 4.5. Let processes x(·) and v(·) be 1-dimensional. We consider an LQ problem as follows:

minimize J (v(·)) = 1
2E

∫ T

0
[−γ|vt|2]dt+ 1

2E[Sx
2
T ] subject to

dxt =
n∑

j=1

∫
E
[Ej

t (e)xt− + ut]Ñ
j(dt, de),

x0 = a,

where γ > 0. For Mt = −γI is non-positive, obviously, the standard positive definite condition is not

satisfied. Now, we try to find some relax compensator. If there exist two constants l1 and l2 such

that γ < l1 < l2 < ∞ and S > l2I, we could find a relax compensator k(t) ∈ C1(0, T ;R) such that

k(T ) ∈ [l1, l2], k(t) > l1 for all t ∈ [0, T ], meanwhile, k′(t)I − γk(t)
k(t)−γ

∑n
j=1

∫
E E

j
t (e)(E

j
t (e))

Tπ(de) > 0,

and then this LQ problem is well-posed. Moreover, the LQ problem has a unique optimal pair (x(·), u(·)) ∈
L2
F(0, T ;Rd)× Vad, and the corresponding stochastic Hamiltonian system is as follows:

0 =

n∑
j=1

∫
E
θjt (e)π

j(de)− γut,

dxt =

[ n∑
j=1

∫
E
Ej

t (e)xt + ut

]
Ñ j(dt, de),

− dqt =
n∑

j=1

∫
E
(Ej

t (e))
Tθt(e)π

j(de)dt−
n∑

j=1

∫
E
θjt (e)Ñ

j(dt, de),

x0 = a, qT = SxT .

In summary, if there exists a relax compensator, then Problem (LQ SOC) is unique solvable. Moreover,

in this case, there exists a unique solution to the corresponding stochastic Hamiltonian system (4.2), and

the unique optimal control of Problem (LQ SOC) is given by (4.3), which is in an “open-loop” form. On

the further step, we go to study the “closed-loop” form for the optimal control of Problem (LQ SOC) by

the related stochastic Riccati equation.

5 Stochastic Riccati equation under the indefinite case

In this section, we study the relationship between the stochastic Riccati equation and the LQ problem

under the indefinite case. Moreover, we shall give the existence and uniqueness result of Riccati equation
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in some special case. We introduce the following stochastic Riccati equations with Poisson processes

(SREP): 
−dPt = G(At, Bt, Ct, Dt, Et, Ft;Lt, Rt,Mt;Pt,Λt,Γt)dt

−
m∑
i=1

Λi
tdW

i
t −

n∑
j=1

∫
E
Γj
t (e)Ñ

j(dt, de),

PT = S,

(5.1)

where

G(A,B,C,D,E, F ;L,R,M ;P,Λ,Γ) = L̃(A,C,E;L;P,Λ,Γ)− R̃(B,C,D,E, F ;R;P,Λ,Γ)

× M̃−1(D,F ;R;P,Γ)R̃T(B,C,D,E, F ;R;P,Λ,Γ),

L̃(A,C,E;L;P,Λ,Γ) = L+ PA+ATP +

m∑
i=1

[ΛiCi + (Ci)TΛi + (Ci)TPCi]

+
n∑

j=1

∫
E
[Γj(e)Ej(e) + (Ej(e))TΓj(e)

+ (Ej(e))T(P + Γj(e))Ej(e)]πj(de),

R̃(B,C,D,E, F ;R;P,Λ,Γ) = R+ PB +
m∑
i=1

[ΛiDi + (Ci)TPDi] +
n∑

j=1

∫
E
[Γj(e)F j(e)

+ (Ej(e))T(P + Γj(e))F j(e)]πj(de),

M̃(D,F ;M ;P,Γ) = M +
m∑
i=1

(Di)TPDi +
n∑

j=1

∫
E
(F j(e))T(P + Γj(e))F j(e)πj(de).

(5.2)

The above Riccati equation is a BSDE with jumps. Obviously, the generator G(At, Bt, Ct, Dt, Et, Ft;Lt,

Rt,Mt;P,Λ,Γ) is nonlinear in P , Λ and Γ.

Firstly, we give the connection of SREP (5.1) to the stochastic Hamiltonian system (4.2) and to the

stochastic LQ problem.

Theorem 5.1. Let (x(·), u(·), q(·), r(·), θ(·, ·)) be the solution of the stochastic Hamiltonian system (4.2).

If SREP (5.1) admits a solution (P (·),Λ(·),Γ(·, ·)) such that P is uniformly bounded, and Λ(·) and Γ(·, ·)
are square integrable. Then we have

qt = Ptxt,

rit = (Λi
t + PtC

i
t)xt + PtD

i
tut, i = 1, . . . ,m, (5.3)

θjt (e) = [Γj
t (e) + (Pt + Γi

t(e))E
j
t (e)]xt + [Pt + Γj

t (e)]F
j
t (e)ut, j = 1, . . . , n.

Moreover, assume that Problem (LQ SOC) admits an optimal control. If M̃(D,F ;R;P,Γ) is invertible

and the inverse matrix process is bounded, then the optimal control u has the following feedback form:

ut = −M̃−1(Dt, Ft;Mt;Pt,Γt)R̃
T(Bt, Ct, Dt, Et, Ft;Rt;Pt,Λt,Γt)xt. (5.4)

Proof. Applying Itô’s formula to P (·)x(·) and comparing it with q(·), we obtain the first conclu-

sion (5.3). By the maximum principle in [14], the optimal control must have the form (4.3). Substitut-

ing (5.3) into (4.3), we get the feedback form (5.4).

It is clear that the solvability of SREP plays a crucial role for the feedback form of the optimal control.

However, even under the positive definite condition, there are two difficulties to overcome. One is that

the generator G(At, Bt, Ct, Dt, Et, Ft;Lt, Rt,Mt;P,Λ,Γ) is nonlinear in P , Λ and Γ, which means that

we cannot guarantee the existence and uniqueness by the classical theory of BSDEs. The other one

is that M̃(Dt, Ft;Mt;Pt,Γt) includes two unknown elements P (·) and Γ(·, ·) as we show in (5.2), so we

cannot guarantee that whether M̃(Dt, Ft;Mt;Pt,Γt) is positive definite or not. In [13], under the positive

definite condition, Tang gave a complete result of the existence and uniqueness of the stochastic Riccati
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equation only driven by Brownian motions. While, in our paper, the Riccati equation (5.1) is driven not

only by Brownian motions but also by Poisson processes. The method introduced by [13] cannot be used

directly because it essentially depends on the continuity of the state process x(·), and this point is not

satisfied in our paper. By virtue of the method of Peng [8], also under the positive condition, Meng [6]

obtained a solvability result of SREP (5.1) in some special case.

Now, we give the following two assumptions adopted in [6].

Assumption 5.2. Let n = 1. Suppose there exists a number m1 ∈ N with 1 6 m1 6 m such that the

coefficients satisfy

C = (C1, . . . , Cm) = (C1, . . . , Cm1 , Cm1+1, . . . , Cm),

D = (D1, . . . , Dm) = (O, . . . , O,Dm1+1, . . . , Dm),

F = O,

where O is the zero matrix.

Furthermore, denote F∗ = {F∗
t , t > 0} to be the natural filtration which is generated by the Brownian

motion (W 1
t , . . . ,W

m1
t )T and the Poisson random martingale measure Ñ(dt, de) = (Ñ1(dt, de)) augment-

ed by all P-null sets.
Assumption 5.3. Assume that At, Bt, Ct, Dt, Et, Lt, Rt and Mt are F∗-adapted matrix-valued

processes, and the random matrix S is F∗
T -measurable.

Under Assumptions 5.2 and 5.3, the controlled system (2.1) is reduced as follows:
dxt = (Atxt +Btvt)dt+

m1∑
i=1

Ci
txtdW

i
t +

m∑
i=m1+1

(Ci
txt +Di

tvt)dW
i
t +

∫
E
Et(e)xt−Ñ(dt, de),

x0 = a.

(5.5)

Due to the restriction on the measurability of coefficients (see Assumption 5.3), some later components

of Λ in SREP (5.1) vanish, i.e., Λm1+1
t = · · · = Λm

t = 0. For more details, we refer to [6, 8]. Then the

Riccati equation (5.1) is reduced to
− dPt = G(At, Bt, Ct, Dt, Et, O;Lt, Rt,Mt;Pt,Λt,Γt)dt−

m1∑
i=1

Λi
tdW

i
t −

∫
E
Γt(e)Ñ(dt, de),

PT = S,

(5.6)

where 

G(A,B,C,D,E,O;L,R,M ;P,Λ,Γ) = L̃(A,C,E;L;P,Λ,Γ)− R̃(B,C,D;R;P )

× M̃−1(D;M ;P )R̃T(B,C,D;R;P ),

L̃(A,C,E;L;P,Λ,Γ) = L+ PA+ATP +

m1∑
i=1

[ΛiCi + (Ci)TΛi + (Ci)TPCi]

+
m∑

i=m1+1

(Ci)TPCi +

∫
E
[Γ(e)E(e) + (E(e))TΓ(e)

+ (E(e))T(P + Γ(e))E(e)]π(de),

R̃(B,C,D;R;P ) = R+ PB +
m∑

i=m1+1

(Ci)TPDi,

M̃(D;M ;P ) = M +

m∑
i=m1+1

(Di)TPDi.

We notice that, in the cost functional studied in [6], there exists no cross items involved. In order to

apply the solvability result on SREP obtained in [6], we would like to link Problem (LQ SOC) in which a
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cross item ⟨Rtvt, xt⟩ is involved with a new one without cross items by an invertible linear transformation:

v̄t = vt +M−1
t RT

t xt. (5.7)

Denote

L̄t
△
= Lt −RtM

−1
t RT

t , Āt
△
= At −BtM

−1
t RT

t ,

C̄i
t

△
= Ci

t −Di
tM

−1
t RT

t , Ēt(e)
△
= Et(e).

(5.8)

Then (5.5) is rewritten as
dxt = (Ātxt +Btv̄t)dt+

m1∑
i=1

C̄i
txtdW

i
t +

m∑
i=m1+1

(C̄i
txt +Di

tv̄t)dW
i
t +

∫
E
Ēt(e)xt−Ñ(dt, de),

x0 = a,

(5.9)

and the cost functional is rewritten as the following form without cross-item:

J (v̄(·)) = 1

2
E

∫ T

0

[⟨L̄txt, xt⟩+ ⟨Mtv̄t, v̄t⟩]dt+
1

2
E⟨SxT , xT ⟩. (5.10)

Moreover, corresponding to the new problems (5.9) and (5.10), we have the following Riccati equation:
− dPt = G(Āt, Bt, C̄t, Dt, Ēt, O; L̄, O,Mt;Pt,Λt,Γt)dt−

m1∑
i=1

Λi
tdW

i
t −

∫
E
Γt(e)Ñ(dt, de),

PT = S.

(5.11)

By a straightforward calculation, it is verified that

G(Ā, B, C̄,D, Ē, O; L̄, O,M ;P,Λ,Γ) = G(A,B,C,D,E,O;L,R,M ;P,Λ,Γ),

i.e., the SREP (5.6) and the SREP (5.11) are the same.

In [6, Theorem 5.3], under the positive definite condition, Meng proved that the SREP (5.11) (SREP

(5.6), equivalently) admits a unique solution (P (·),Λ(·),Γ(·, ·)) in the space L∞
F (0, T ; Sd)×L2

F(0, T ; (Sd)m1)

× M2
F (0, T ; Sd). Moreover, P (·) is non-negative. Combining with Theorem 5.1, we obtain a relatively

complete result for Problem (LQ SOC) under the positive definite condition, which is summed up in the

following theorem.

Theorem 5.4. Let Assumptions 2.1, 5.2 and 5.3 hold. The SREP (5.6) admits a unique solution

(P (·),Λ(·), Γ(·, ·)) ∈ L∞
F (0, T ;Sd) × L2

F(0, T ; (Sd)m1) ×M2
F (0, T ;Sd). Moreover, P (·) is non-negative for

a.e. a.s. (t, ω) ∈ [0, T ] × Ω. In addition, the LQ problems (2.2) and (5.5) admit a unique optimal pair

(x(·), u(·)) determined by

ut = −
[
Mt +

m∑
i=m1+1

(Di
t)

TPtD
i
t

]−1[
Rt + PtBt +

m∑
i=m1+1

(Ci
t)

TPtD
i
t

]T
xt,

dxt = (Atxt +Btut)dt+

m1∑
i=1

Ci
txtdW

i
t +

m∑
i=m1+1

(Ci
txt +Di

tut)dW
i
t +

∫
E
Et(e)xt−Ñ(dt, de),

x0 = a.

(5.12)

Now, we are in the position to give the corresponding result for the indefinite case with the help of

relax compensators.

Theorem 5.5. Let Assumptions 5.2 and 5.3 hold. If there exists a relax compensator K ∈ Υ, then the

SREP (5.6) admits a unique solution (P (·),Λ(·),Γ(·, ·)) ∈ L∞
F (0, T ; Sd+)×L2

F(0, T ; (Sd)m1)×M2
F (0, T ; Sd).

Moreover,

P (·) > K(·), for a.e. a.s. (t, ω) ∈ [0, T ]× Ω. (5.13)
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In addition, the LQ problems (2.2) and (5.5) admit a unique optimal pair (x(·), u(·)) determined by

ut = −
[
Mt +

m∑
i=m1+1

(Di
t)

TPtD
i
t

]−1[
Rt + PtBt +

m∑
i=m1+1

(Ci
t)

TPtD
i
t

]T
xt,

dxt = (Atxt +Btvt)dt+

m1∑
i=1

Ci
txtdW

i
t +

m∑
i=m1+1

(Ci
txt +Di

tvt)dW
i
t +

∫
E
Et(e)xt−Ñ(dt, de),

x0 = a.

(5.14)

Proof. We first prove the equivalence between the existence and uniqueness of SREP (5.6) and that of

the following SREP associated with the relax compensator K:

− dPK
t = G(At, Bt, Ct, Dt, Et, O;Lt(K),Rt(K),Mt(K);PK

t ,ΛK
t ,ΓK

t )dt−
m1∑
i=1

ΛK,i
t dW i

t

−
∫
E
ΓK
t (e)Ñ(dt, de),

PK
T = S(K).

(5.15)

In fact, it is verified that the solution (P (·),Λ(·),Γ(·, ·)) of SREP (5.6) and (PK(·),ΛK(·),ΓK(·, ·)) of

SREP (5.15) have the following relationship:

Pt = PK
t +Kt, Λt = ΛK

t +Φt, Γt = ΓK
t +Ψt, t ∈ [0, T ].

Since K ∈ Υ is a relax compensator, (L(K),R(K),M(K),S(K)) satisfies Assumption 2.1. By The-

orem 5.4, the SREP (5.15) admits a unique solution (PK(·),ΛK(·),ΓK(·, ·)) and PK(·) is uniformly

bounded and non-negative for a.e. a.s. (t, ω) ∈ [0, T ] × Ω. Then, equivalently, the SREP (5.6) has the

unique solution (P (·),Λ(·),Γ(·, ·)). Moreover, from PK
t = Pt −Kt > 0, we get

Pt > Kt. (5.16)

Furthermore, by a direct calculation, we have

M +
m∑

i=m1+1

(Di)TPDi = M(K) +
m∑

i=m1+1

(Di)TPKDi. (5.17)

Therefore, M +
∑m

i=m1+1(D
i)TPDi is invertible and the inverse matrix is bounded. Theorem 5.1 works

again to complete the proof.

Remark 5.6. If all of the coefficients in (5.5) are deterministic, then the Riccati equation (5.6) is

reduced to an ordinary differential equation with the vanishing Λ and Γ. If the corresponding deterministic

Riccati equation admits a solution P such that M̃(D,F ;M ;P,O) is positive and the inverse matrix M̃−1 is

bounded, then S(P ) = 0, M(P ) = M̃(D,F ;M ;P,O), R(P ) = R̃(B,C,D,E, F ;R;P,O,O) and L(P ) =

R(P )(M(P ))−1(R(P ))T which satisfy Assumption 2.1. So, in this case, we could regard the solution of

Riccati equation as a special relax compensator.

6 Conclusion

In this paper, we discuss the LQ problem of the stochastic system with jumps under the indefinite case.

The relax compensators are the major elements introduced by the wellposedness of the LQ problem, which

extend the condition from the positive definite case to the indefinite case for the corresponding stochastic

Hamiltonian system and Riccati equation with jumps. Firstly, we construct the LQ problem with jumps

under the indefinite condition by relax compensators. Secondly, we study the corresponding Hamiltonian

system under the positive definite condition, and then we extend to the indefinite condition. Moreover,
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we also give a new case of solvability for FBSDEP. Thirdly, we give the existence and uniqueness of

stochastic Riccati equation with jumps under the indefinite condition in some special case. The relax

compensators play a crucial role to deal with all of the problems under the indefinite case in this paper.
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