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1 Introduction

Analysis of a large data matrix often calls for dimension reduction, and is sometimes necessitated by

the need to characterize the row and column effects in a simpler structure. Low-rank representation or

approximation of the data matrix is a useful and convenient approach; from latent semantic indexing in

information retrieval to low-rank modeling in image analysis, researchers from a wide range of scientific

areas have used low-rank matrix approximation to achieve dimension reduction. The mathematical

formulation of low-rank matrix approximations is based on singular value decomposition (SVD) in matrix

algebra and principal component analysis (PCA) in statistics.

As shown in [4], a low-rank subspace approximation based on the first singular values can be found by

solving a least squares problem. The principal component analysis is based on the second moments as

summary statistics of the data. It is then not surprising that SVD and PCA are sensitive to outliers in

the data.

With a weighted least squares approach, alternating regression (or criss-cross regression) has been

considered as an effective approach for low-rank approximation in earlier years [6, 15]. Chen et al. [3]

have provided a robust SVD procedure with alternating regression based on an M -estimator [7] and the

least trimmed squares estimator (LTS) [12]. In more recent years, researchers have considered the robust

low-rank approximation problem as recovering a low-rank matrix and a sparse matrix that account for

outliers. Candès et al. [2] and Zhou et al. [19] provided detailed discussions of this approach, and Agarwal
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et al. [1] further considered the method with a more general design matrix. Following the idea of [2],

She and Chen [13] discussed the general connection between robustness and nonconvexity under reduced

rank regression. Along this line, Zhang et al. [17] used a penalization approach to deal with functional

data matrices. Zhang and Lerman [18] proposed a M -type robust low-rank approximation procedure by

using a different convex relaxation algorithm.

If the data matrix is simply a superposition of a low-rank component and a sparse component without

random noise, it has been shown in [18] that we can recover the two components exactly by solving a

convex problem. The problems we consider here are of a different nature, where the data matrix takes

the form of

Y =
k∑

l=1

θlφ
T
l +E, (1.1)

where Y is an n×m data matrix, the vectors θl and φl (l = 1, . . . , k) explain the row and column effects,

respectively, and the rows of E are independently distributed with mean 0 and covariance σ2Im. This

model has the following features:

• The mean E(Y ) is a rank-k matrix, where k is typically small.

• The rows of the data matrix are independent but not necessarily identically distributed.

• The column effects φl are fixed, but the row effects θl are either fixed or random. If the row effects

are random with mean μl = E(θl) and independent components, the elements within each row of Y

might be correlated through the random effects.

If we rewrite the model as

Y =

k∑
l=1

μlφ
T
l +E∗,

the error matrix E∗ has independent rows but each row has mean zero and an unspecified covariance

structure. A similar model where all random variables are assumed normally distributed has been con-

sidered in [8, 9]. In applications, the column entries can be measurements at different times or locations

of randomly sampled subjects. To estimate the low-rank matrix E(Y ) with robustness against outliers

of general patterns, we review four existing algorithms in Section 2, and compare their performances

in Section 3 through a small scale simulation study. The estimation procedures do not account for the

correlation structure in E∗, but if any statistical inference on the estimated row- or column-effects is to

be carried out, additional assumptions on the model are needed as discussed in [5]. The conclusions are

given in Section 4.

2 Four algorithms

We review four robust low-rank approximation algorithms in this section. Each represents a distinctive

approach to the problem with its own merit.

2.1 Alternating regression approach

Since the SVD can be characterized by alternating regression (or criss-cross regression) as demonstrated

in [6, 15], one approach to robust SVD is to robustify each regression step. Replacing the square loss

by a robust loss function does not address the robustness issue completely, because the M -estimator

of regression at each step of alternating regression has a low breakdown point when the dimension of

the matrix is moderately high. To achieve stronger robustness against multiple outliers, Chen et al. [3]

proposed a robust SVD procedure with the aid of a high breakdown point estimator at the earlier stages

of the iteration. To fix notation, denote by R the matrix that consists of μl (l = 1, . . . , k) as rows, and

by C the matrix that consists of φl (l = 1, . . . , k) as rows. Then we have

E(Y ) = RTC.
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Two robust regression estimators will be used. In generic forms, consider linear regression of zi on xi

(i = 1, . . . , n). The first is an M -estimator that minimizes

n∑
i=1

L(zi − xT
i β)

over β for a robust loss function L. The second is the least trimmed squares (LTS) estimator that

minimizes ∑
J

(zi − xT
i β)

2

over β, where the sum is over the smallest (1−α)100% of the squared residuals for some α ∈ (0, 0.5]. We

refer to [11] for more details about the least trimmed squares regression.

The first few steps of the algorithm aim to protect us from breakdown in the regression estimates. A

sketch of the algorithm is given as follows, where the element at the i-th row and j-th column of the data

matrix Y is denoted by yij .

(A1) Robust scaling. A robust scaling for the j-th column is done by

yij =
yij

MADi(yij)
, (2.1)

where MADi(yij) is the median absolute deviation of the j-th column, before we estimate the row and

column matrices. The same scaling procedure can be done to rows, but we should not scale both rows

and columns at the same time.

(A2) Initialization. R(0) is generated from a given distribution (e.g., each entry of the matrix is drawn

from the uniform distribution U(0, 1)).

(A3) Sequential stability test. This step is to moderate the effect from leveraged outliers.

(a) Suppose R(0) is an initial row matrix. The columns of the data matrix Y are regressed on R(0) to

give the M -estimator C
(0)
M and the LTS estimator C

(0)
LTS.

(b) Compare C
(0)
M with C

(0)
LTS. If the two estimates differ from each other by more than a fixed amount,

let C
(0)
LTS be our initial column matrix C(0). Otherwise, let C(0) = C

(0)
M .

(c) Regress rows of Y on C(0) to get the M -estimator and the LTS estimator of the row matrices R
(1)
M

and R
(1)
LTS, respectively. If these two estimates differ from each other by more than a fixed amount, take

R(1) = R
(1)
LTS. Otherwise, take R(1) = R

(1)
M .

(d) Repeat the process until both (R
(m)
M ,R

(m)
LTS) and (C

(m)
M ,C

(m)
LTS) show small differences; or a pre-

specified number of iterations is reached. Denote by R(m0) the row matrix estimate from the above

iteration.

(A4) Alternating M regression. Perform alternating regression by minimizing

D(R,C) � Δ(Y −RTC), (2.2)

with R(m0) as the starting value for R, where Δ is a matrix norm based on a robust loss function L, i.e.,

Δ(A) =

n∑
i=1

m∑
j=1

L(aij), (2.3)

where aij is the ij-th entry of the n×m matrix A.

After the lower rank matrix RTC is estimated from the alternating M regression, we apply the regular

SVD procedure to the matrix to obtain the robust SVD.

Several loss functions L are compared in [3], and the logistic loss is recommended for good nu-

merical performance. This algorithm has been implemented in an R package “rsvd” (available at

http://bb.shufe.edu.cn/bbcswebdav/users/2011000070/rsvd.zip) for non-commercial use. It is possible

that the algorithm finds multiple solutions with different randomization in its initial step. Unless L is the
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square loss, the objective function in alternating M regression is not a convex function. In the empirical

investigations in the next section, we take any solution from the algorithm.

The alternating regression approach is designed to provide protection against leveraged outliers in the

regression estimation, but the algorithmic convergence is not guaranteed, and the solutions are often non-

unique. Because of the use of LTS in the earlier stages of the algorithm, the computational complexity

increases quickly with the dimension of the data matrix.

2.2 Sub-sampling method

To obtain a robust estimate of the column effects in the presence of outlying rows, Feng and He [5]

considered a sub-sampling approach for robust SVD of a data matrix. The algorithm proceeds as follows.

(T1) Obtain robust column estimates:

(a) select a fixed number of rows randomly from the data matrix, denoted as Yp;

(b) apply the regular SVD on the matrix Yp, and denote the first k right singular vector as φ̂l(Yp),

l = 1, . . . , k;

(c) find θ̂l(Yp) for l = 1, . . . , k, the row parameter estimate for θ by minimizing the objective function

‖Y −∑k
l=1 θlφ̂l‖1, and denote the minimum by ρ(Yp);

(d) repeat (a)–(c) for a pre-specified number of times, and find the subset Ỹp with the smallest

value ρ(Yp);

(e) given the initial estimate of the column parameters φ̂l(Yp), l = 1, . . . , k, choose a trimming propor-

tion α and calculate the weights

si = 1(q̂α < ‖ε̂i‖2 � q̂1−α), (2.4)

where q̂α is the sample α quantile of ‖ε̂i‖2 and

ε̂i =

(
I −

k∑
l=1

φ̂lφ̂
T
l

)
yi;

(f) minimize
n∑

i=1

si

∥∥∥∥yi −
k∑

l=1

θilφl

∥∥∥∥2
2

over θ and φ, where θil is the i-th element of θl, and keep the column estimates φ̃l (l = 1, . . . , k).

(T2) Obtain the i-th row estimate by minimizing

m∑
j=1

L

(
yij −

k∑
l=1

θilφ̃jl

)

over θ parameters for i = 1, . . . , n, where φ̃jl is the j-th element of φ̃l, and L is some robust loss function.

The steps (a)–(d) of the sub-sampling method aim to find a sub-matrix of rows that contains no outliers

with high probability. The clean rows are then used to obtain the column effect estimates in (f). The

row effects estimates are then obtained in (T2) through a robust loss function L. The consistency of the

parameter estimates of this method was established in [5] in the case of n → ∞. If the data matrix Y

contains outliers in a majority of rows, the sub-sampling method may not work well.

2.3 Iterative re-weighted least squares

Zhang and Lerman [18] proposed a robust estimator for principal component analysis based on a con-

strained optimization approach. One can use this method to estimate the column effects φ and then

implement a robust regression procedure row by row as in (T2) of the sub-sampling method.

In a constrained set

C = {P ∈ R
m×m : P = PT, tr(P ) = 1},
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Zhang and Lerman [18] minimize the objective function

ρ1(P ) =

n∑
i=1

‖Pyi‖2,

where yi is the i-th row of the data matrix Y . With the constrained estimate P̂ , they obtain the low-rank

projection space expanded by eigenvectors of the matrix P̂ , which is also called the geometric median

subspace (GMS). By considering a convex objective function

ρ2(P ) =

n∑
i=1

‖Pyi‖22,

the GMS estimator can be interpreted as a robust version of an inverse covariance estimator. By [18,

Theorem 10], there exists an explicit form for the solution to the optimization problem minP∈C ρ2(P ), i.e.,

P̂ ′ = (Y TY )−1/tr{(Y TY )−1}.

Thus, following iterative re-weighted least squares algorithm can be used with a regularization parame-

ter λ.

(R1) Initialize the estimate P̂1 = I/m.

(R2) At the l-th iteration, update the estimate as

P̂l =

( n∑
i=1

wiyiy
T
i

)−1
/

tr

{( n∑
i=1

wiyiy
T
i

)−1}
,

where wi = [max{‖P̂lyi‖, λ}]−1.

(R3) Repeat the above iteration until some stopping criteria are satisfied.

The algorithmic convergence and complexity of this method are analyzed in [18]. The matlab code for

the algorithm can be downloaded from the website https://web.math.princeton.edu/∼tengz/gms.shtml.

This method is computationally attractive for high dimensional data matrices, but its ability to accom-

modate outliers might not be as good as the first two methods reviewed here. For a variation of this

approach to regularized versions of robust SVD, see [17].

2.4 Constrained optimization

Extending the work of [2] where the data matrix is assumed to be the sum of a low-rank matrix as the

main feature and a sparse matrix to represent outliers, Xu et al. [16] and Zhou et al. [19] considered a

more realistic structure

Y = X +Z +U , (2.5)

where the matrix X is low-rank, the matrix Z is sparse, and the matrix U is the random noise. The

recovery procedure uses the following constrained optimization:

min
X,Z

‖X‖∗ + ‖Z‖1,2
s.t. ‖Y −X −Z‖F � δ,

where ‖ · ‖∗ is the nuclear norm, ‖ · ‖1,2 is the sum of the l2 norm of the columns of a matrix, ‖ · ‖F
is the Frobenius norm, and δ is a threshold value. A proximal gradient algorithm is used to solve the

above optimization problem. We refer to [10] for a good review of proximal algorithms that can deal with

non-smooth convex objective functions. The matlab code implementing the algorithm is available at the

website http://guppy.mpe.nus.edu.sg/∼mpexuh/code/OP.zip. The SVD of the matrix X is taken to be

robust estimates of the row and column effects for Y .
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3 Numerical studies

We report the performance of the four procedures reviewed in the previous section in a small scale

simulation study. Three sets of dimensions (n,m) = (20, 12), (n,m) = (50, 42) and (n,m) = (100, 78) are

used in the study.

3.1 The first study

For each dimension (n,m), we generate 5,000 data matrices from (1.1) with k = 2, where

μ1 = (20, . . . , 20)T, μ2 = 21/2(1,−1, . . . , 1,−1)T, φ1 = (1, . . . , 1)T/m1/2

and φ2 = (1,−1, . . . , 1,−1)T/m1/2, and the random effects θ1 − μ1 and θ2 − μ2 are generated from the

multivariate normal distributions with mean 0 and covariances 4Im and Im, respectively.

To assess robustness, we generate the first two rows of the matrix from a contaminated model, in which

each entry is drawn from the mixture of the normal distribution N(0, 11) with probability 0.1 and one

of following three distributions with probability 0.9: (I) 2−1/2N(0, 1); (II) (3/10)−1/2t5, where t5 is the t

distribution with 5 degrees of freedom; (III) 2−1(χ2
1 − 1), where χ2

1 is the χ2 distribution with 1 degree

of freedom. The other rows are generated from the distribution (I), (II), or (III) without contamination.

The procedures discussed in the earlier section will be denoted as

(1) “M1”: the sub-sampling method of [5].

(2) “M2”: the alternating regression method of [3].

(3) “M3”: the iterative re-weighted LS method of [18].

(4) “M4”: the constrained optimization method of [16].

For the initial step (a) of the method M1, we use 100 randomly selected subsets os size 0.3n, and the

constant α = 0.1 is used in Step (e). Two robust loss functions are used for each of the three procedures

M1–M3. No robust loss function is needed in M4.

(1) “Logistic”: L(t) = K log{cosh(t/K)}.
(2) “Huber”:

L(t) =

{
2−1t2, |t| � K,

K|t| − 2−1K2, |t| > K,

where the tuning parameter is chosen as K = 0.1. Those specific choices of constants are in line with

what have been used in the literature. Two performance measures will be used. They are the following:

(1) D1 = E‖φ̂1 − φ1‖∞;

(2) D2 = E‖φ̂2 − φ2‖∞;

(3) D3 = E‖∑2
l=1 θ̂lφ̂

T
l −∑2

l=1 θlφ
T
l ‖∞,

where ‖ · ‖∞ refers to the super norm. In the simulation study, the expectations are replaced by Monte

Carlo averages. In the simulation study, the expectations are replaced by Monte Carlo averages.

We see from Table 1 that the method of [18] and the constrained optimization of [16] can hardly

capture the right directions under (1.1), and the other two methods are satisfactory. However, the

method M2 works better for relatively large matrices in this study, probably because we fixed the number

of sub-samples taken in the method M1. If the number of sub-samples is increased, the reliability of

M1 improves. Parallel computing is ideal for accommodating a large number of sub-samples in the

method M1. However, if outliers appear in a large number of rows, the sub-sampling method may break

down. Table 2 reports the results when outliers are generated from the normal distribution N(0, 11) in

each row with probability 0.15. In this case, the performance of the method M4 is satisfactory in most

cases, and the method M2 does better when the matrix size is larger. We also note that the choice of

robust loss functions (logistic or Huber’s) has little impact on the results, so only the results from the

loss function “Logistic” are kept in all the tables except Table 1.
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Table 1 Performance measures D1, D2 and D3 in the first study as outliers appear in each of the first two rows with

probability 0.1. Each entry contains the estimated performance measure and its standard error (in brackets), where ∗
refers to a value less than 0.005

Logistic Huber

Error Method n×m D1 D2 D3 D1 D2 D3

M1 0.02 (∗) 0.22 (∗) 1.50 (0.02) 0.02 (∗) 0.22 (0.02) 1.50 (0.02)

M2 20× 12 0.03 (∗) 0.27 (0.02) 2.32 (0.05) 0.02 (∗) 0.27 (0.02) 2.18 (0.05)

M3 0.43 (0.04) 0.75 (∗) 12.59 (0.11) 0.43 (∗) 0.75 (∗) 12.6 (0.11)

M4 0.09 (∗) 0.71 (∗) 3.32 (0.02) − − −

M1 0.01 (∗) 0.16 (∗) 1.01 (∗) 0.01 (∗) 0.15 (∗) 1.02 (∗)
Normal M2 50× 42 0.01 (∗) 0.17 (∗) 1.12 (∗) 0.01 (∗) 0.17 (∗) 1.13 (∗)

M3 0.56 (∗) 0.60 (∗) 19.76 (0.09) 0.56 (∗) 0.60 (∗) 19.77 (0.09)

M4 0.06 (∗) 0.38 (∗) 4.79 (0.07) − − −

M1 0.01 (∗) 0.13 (∗) 0.86 (∗) 0.01 (∗) 0.13 (∗) 0.86 (∗)
M2 100× 78 0.01 (∗) 0.15 (∗) 0.96 (∗) 0.01 (∗) 0.15 (∗) 0.96 (∗)
M3 0.54 (∗) 0.54 (∗) 22.55 (0.08) 0.54 (∗) 0.54 (∗) 22.55 (0.08)

M4 0.03 (∗) 0.49 (∗) 10.78 (0.10) − − −

M1 0.02 (∗) 0.23 (∗) 1.56 (0.02) 0.02 (∗) 0.22 (∗) 1.54 (0.02)

M2 20× 12 0.02 (∗) 0.24 (∗) 2.18 (0.05) 0.02 (∗) 0.23 (∗) 1.95 (0.04)

M3 0.43 (∗) 0.77 (∗) 12.55 (0.10) 0.43 (∗) 0.77 (∗) 12.55 (0.10)

M4 0.09 (∗) 0.71 (∗) 3.33 (0.02) − − −

M1 0.01 (∗) 0.15 (∗) 0.96 (∗) 0.01 (∗) 0.15 (∗) 0.97 (∗)
t M2 50× 42 0.01 (∗) 0.14 (∗) 0.94 (∗) 0.01 (∗) 0.14 (∗) 0.94 (∗)

M3 0.56 (∗) 0.60 (∗) 19.56 (0.09) 0.56 (∗) 0.60 (∗) 19.56 (0.09)

M4 0.06 (∗) 0.39 (∗) 4.91 (0.07) − − −

M1 0.01 (∗) 0.13 (∗) 0.79 (∗) 0.01 (∗) 0.13 (∗) 0.79 (∗)
M2 100× 78 0.01 (∗) 0.12 (∗) 0.77 (∗) 0.01 (∗) 0.12 (∗) 0.77 (∗)
M3 0.54 (∗) 0.54 (∗) 22.7 (0.08) 0.54 (∗) 0.54 (∗) 22.7 (0.08)

M4 0.03 (∗) 0.48 (∗) 10.83 (0.10) − − −

M1 0.02 (∗) 0.23 (∗) 1.64 (0.03) 0.02 (∗) 0.23 (∗) 1.66 (0.03)

M2 20× 12 0.02 (∗) 0.18 (∗) 1.77 (0.04) 0.02 (∗) 0.18 (∗) 1.75 (0.04)

M3 0.44 (∗) 0.77 (∗) 13.04 (0.10) 0.44 (∗) 0.77 (∗) 13.05 (0.10)

M4 0.09 (∗) 0.70 (∗) 3.30 (0.02) − − −

M1 0.01 (∗) 0.17 (∗) 0.90 (∗) 0.01 (∗) 0.17 (∗) 0.90 (∗)
χ2 M2 50× 42 0.01 (∗) 0.10 (∗) 0.65 (∗) 0.01 (∗) 0.10 (∗) 0.65 (∗)

M3 0.56 (∗) 0.60 (∗) 19.57 (0.09) 0.56 (∗) 0.60 (∗) 19.57 (0.09)

M4 0.06 (∗) 0.38 (∗) 4.94 (0.07) − − −

M1 0.01 (∗) 0.14 (∗) 0.75 (∗) 0.01 (∗) 0.14 (∗) 0.75 (∗)
M2 100× 78 0.01 (∗) 0.08 (∗) 0.56 (∗) 0.01 (∗) 0.08 (∗) 0.56 (∗)
M3 0.54 (∗) 0.55 (∗) 22.62 (0.08) 0.54 (∗) 0.55 (∗) 22.62 (0.08)

M4 0.03 (∗) 0.48 (∗) 10.88 (0.10) − − −

3.2 The second study

Here we consider the same combinations of dimensions of matrices as used in Subsection 3.1. We

first generate a rank-two data matrix without outliers, denoted as Y1, by using Model (1.1) with
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Table 2 Performance measures D1, D2 and D3 in the first study as outliers appear in every row with probability 0.15.

Each entry contains the estimated performance measure and its standard error (in brackets), where ∗ refers to a value

less than 0.005

Logistic

Error Method n×m D1 D2 D3

M1 0.22 (∗) 0.81 (∗) 38.85 (0.17)

M2 20× 12 0.11 (∗) 0.77 (∗) 29.59 (0.20)

M3 0.80 (∗) 0.83 (∗) 47.53 (0.16)

M4 0.17 (∗) 0.72 (∗) 5.78 (0.01)

M1 0.17 (∗) 0.65 (∗) 32.58 (0.24)

Normal M2 50× 42 0.03 (∗) 0.31 (∗) 7.00 (0.19)

M3 0.66 (∗) 0.68 (∗) 57.01 (0.14)

M4 0.12 (∗) 0.53 (∗) 3.70 (∗)

M1 0.12 (∗) 0.53 (∗) 13.7 (0.21)

M2 100× 78 0.01 (∗) 0.20 (∗) 1.97 (0.07)

M3 0.57 (∗) 0.58 (∗) 61.07 (0.13)

M4 0.09 (∗) 0.58 (∗) 2.79 (∗)

M1 0.22 (∗) 0.81 (∗) 38.81 (0.17)

M2 20× 12 0.11 (∗) 0.77 (∗) 29.38 (0.20)

M3 0.80 (∗) 0.83 (∗) 47.66 (0.17)

M4 0.17 (∗) 0.72 (∗) 5.79 (0.01)

M1 0.17 (∗) 0.65 (∗) 32.56 (0.24)

t M2 50× 42 0.02 (∗) 0.24 (∗) 4.38 (0.15)

M3 0.66 (∗) 0.68 (∗) 57.18 (0.13)

M4 0.12 (∗) 0.54 (∗) 3.69 (∗)

M1 0.12 (∗) 0.54 (∗) 13.17 (0.20)

M2 100× 78 0.01 (∗) 0.16 (∗) 1.33 (0.05)

M3 0.57 (∗) 0.57 (∗) 60.96 (0.14)

M4 0.09 (∗) 0.57 (∗) 2.79 (∗)

M1 0.22 (∗) 0.81 (∗) 38.75 (0.17)

M2 20× 12 0.11 (∗) 0.72 (∗) 27.87 (0.22)

M3 0.80 (∗) 0.83 (∗) 47.79 (0.17)

M4 0.17 (∗) 0.72 (∗) 5.79 (∗)

M1 0.17 (∗) 0.65 (∗) 32.36 (0.24)

χ2 M2 50× 42 0.02 (∗) 0.14 (∗) 1.43 (0.06)

M3 0.66 (∗) 0.68 (∗) 56.91 (0.13)

M4 0.12 (∗) 0.54 (∗) 3.69 (0.01)

M1 0.12 (∗) 0.53 (∗) 12.59 (0.20)

M2 100× 78 0.01 (∗) 0.10 (∗) 0.74 (0.02)

M3 0.57 (∗) 0.58 (∗) 61.11 (0.14)

M4 0.09 (∗) 0.59 (∗) 2.69 (∗)

φ1 = (1, . . . , 1)T/m1/2, φ2 = (1,−1, . . . , 1,−1)T/m1/2, and the elements of the vectors θ’s and the

matrix E independently generated from the standard normal distribution N(0, 1) and the uniform distri-

bution U(0, 1), respectively. We then produce a matrix, denoted as Y2, composed of two m-dimensional
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rows with the elements independently generated from the uniform distribution U(0, 2). Let

Y =

(
Y1

Y2

)
.

Similar synthetic data are considered by Zhang and Lerman [18]. We produce 5,000 such matrices, and

carry out four robust SVD procedures (M1–M4) on each matrix Y . Two performance measures as defined

in Subsection 3.1 are reported in Table 3, where the performance measure D1 is applied to the mean

matrix with the last two rows removed. Note that the last two rows of Y under our model are just noise.

In this setting, the performance of the method M3 has improved over the first study, because this

method is more capable of handling outliers of modest sizes. The performance of robust SVD procedures

M1, M2 and M4 are roughly comparable, as they all down-weight the effect of outlying rows.

3.3 The third study

In this study, we consider a case where outliers appear in the space orthogonal to the space expanded by

column vectors φl, l = 1, . . . , k of (1.1), which is also discussed by She et al. [14]. The simulation model

can be formulated as

Y = UDΦT + TΦT
⊥ +E, (3.1)

where U and Φ are the first k left and right singular vectors of an n × m matrix with each element

independently drawn from the standard normal distribution, respectively, the matrix Φ⊥ is composed of

all of the rest right singular vectors, D is a k × k diagonal matrix, and T is an n × (m − k) matrix of

the form ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 · · · 2

2 2 · · · 2

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Table 3 Performance measures D1, D2 and D3 in the second study where two rows are contaminated with bounded

noise. The standard errors of all the entries are less than 0.005

Logistic

Method n×m D1 D2 D3

M1 0.09 0.18 1.01

M2 20× 12 0.10 0.20 1.03

M3 0.26 0.44 1.23

M4 0.08 0.37 0.96

M1 0.04 0.12 0.92

M2 50× 42 0.04 0.16 0.98

M3 0.14 0.43 1.24

M4 0.03 0.10 0.77

M1 0.02 0.09 0.86

M2 100 × 78 0.03 0.13 0.93

M3 0.10 0.35 1.16

M4 0.02 0.08 0.73
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Table 4 Performance measures D1, D2 and D3 under logistic loss in the third study where D = Diag{60, 40} (k = 2)

and D = Diag{60, 40, 20, 10} (k = 4), respectively. Each entry contains the estimated performance measure and its

standard error (in brackets), where ∗ refers to a value less than 0.005

k = 2 k = 4

Error Method n×m D1 D2 D3 D1 D2 D3

M1 0.06 (∗) 0.65 (∗) 25.59 (0.17) 0.10 (∗) 0.71 (∗) 59.25 (0.17)

M2 20× 12 0.06 (∗) 0.68 (∗) 27.73 (0.16) 0.09 (∗) 0.74 (∗) 60.04 (0.18)

M4 0.22 (∗) 0.77 (∗) 6.72 (∗) 0.22 (∗) 0.77 (∗) 38.10 (0.011)

M1 0.08 (∗) 0.63 (∗) 6.60 (0.07) 0.08 (∗) 0.65 (∗) 43.01 (0.06)

Normal M2 50× 42 0.12 (∗) 0.60 (∗) 8.90 (0.12) 0.12 (∗) 0.61 (∗) 46.53 (0.12)

M4 0.12 (∗) 0.50 (∗) 4.13 (∗) 0.12 (∗) 0.50 (∗) 38.13 (0.01)

M1 0.06 (∗) 0.56 (∗) 5.18 (0.06) 0.06 (∗) 0.57 (∗) 42.72 (0.07)

M2 100× 78 0.12 (∗) 0.49 (∗) 7.72 (0.13) 0.12 (∗) 0.49 (∗) 45.86 (0.14)

M4 0.09 (∗) 0.48 (∗) 3.46 (0.01) 0.09 (∗) 0.49 (∗) 39.55 (∗)

M1 0.06 (∗) 0.66 (∗) 25.75 (0.16) 0.10 (∗) 0.71 (∗) 59.22 (0.17)

M2 20× 12 0.06 (∗) 0.69 (∗) 27.63 (0.16) 0.09 (∗) 0.73 (∗) 59.89 (0.19)

M4 0.22 (∗) 0.76 (∗) 6.71 (∗) 0.22 (∗) 0.77 (∗) 38.10 (0.01)

M1 0.08 (∗) 0.64 (∗) 6.69 (0.08) 0.08 (∗) 0.68 (∗) 43.24 (0.06)

t M2 50× 42 0.12 (∗) 0.64 (∗) 10.59 (0.15) 0.12 (∗) 0.65 (∗) 47.71 (0.14)

M4 0.12 (∗) 0.51 (∗) 4.15 (∗) 0.12 (∗) 0.50 (∗) 38.12 (0.01)

M1 0.06 (∗) 0.58 (∗) 5.38 (0.07) 0.07 (∗) 0.60 (∗) 43.24 (0.06)

M2 100× 78 0.12 (∗) 0.52 (∗) 8.73 (0.15) 0.12 (∗) 0.53 (∗) 46.48 (0.15)

M4 0.09 (∗) 0.48 (∗) 3.46 (0.01) 0.09 (∗) 0.49 (∗) 39.55 (∗)

M1 0.06 (∗) 0.66 (∗) 26 (0.16) 0.10 (∗) 0.71 (∗) 59.29 (0.17)

M2 20× 12 0.06 (∗) 0.68 (∗) 27.5 (0.16) 0.10 (∗) 0.74 (∗) 59.95 (0.19)

M4 0.22 (∗) 0.76 (∗) 6.72 (∗) 0.22 (∗) 0.77 (∗) 38.08 (0.01)

M1 0.10 (∗) 0.67 (∗) 6.86 (0.08) 0.10 (∗) 0.70 (∗) 43.35 (0.07)

χ2 M2 50× 42 0.17 (∗) 0.62 (∗) 10.41 (0.15) 0.17 (∗) 0.64 (∗) 48.12 (0.15)

M4 0.12 (∗) 0.51 (∗) 4.17 (∗) 0.12 (∗) 0.50 (∗) 38.13 (0.01)

M1 0.29 (∗) 0.46 (∗) 7.06 (0.12) 0.30 (∗) 0.47 (∗) 44.86 (0.13)

M2 100× 78 0.27 (∗) 0.47 (∗) 9.31 (0.16) 0.28 (∗) 0.48 (∗) 47.54 (0.16)

M4 0.09 (∗) 0.48 (∗) 3.51 (0.01) 0.09 (∗) 0.49 (∗) 39.55 (∗)

The elements of the error matrix E are generated from one of three distributions (I) 2−1/2N(0, 1); (II)

(3/10)−1/2t5; (III) 2
−1(χ2

1 − 1) as described in the first study. For each combination of the dimensions n

and m, we generated 5,000 matrices from (3.1). Since it costs more than 10 minutes for each generated

matrix with the method M3, we have to terminate the related computation based on this approach. The

comparisons among other methods are reported in Table 4 where datasets are generated from (3.1) with

the rank k = 2 and k = 4 for the matrix D, respectively.

We still consider the rank-2 matrix approximation regardless of the true rank k. As indicated in Table 4,

the performance of the method M4 is clearly better than other methods based on the measure of the

difference between the estimated and the true mean matrices, although larger matrix size can shrink such

differences. Since the setting of (3.1) is similar to those considered by Candès et al. [2] where a matrix is

composed of a low-rank matrix and a sparse matrix, we are not surprised to observe better performance

of the method M4, especially when the matrix is large. When the true rank k in (3.1) is larger than
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what we have thought, the performance of all methods in recovering the low-rank matrix UDΦT is not

as satisfactory as that of the case where we correctly specify the rank k.

4 Conclusions

Different algorithms to estimate robust low-rank data matrices have been developed in recent years.

The iterative re-weighted least squares method uses the geometric median subspace to provide a fast

and scalable algorithm for high dimensional matrices with outliers of modest sizes. Gross outliers that

occur in a small number of rows can be well accommodated by the sub-sampling method, and the sub-

sampling algorithm is especially suited for parallel computing. The robust alternating regression approach

is capable of handling more general patterns of outliers, but it is computationally difficult to scale and

there is no assurance of algorithmic convergence. For matrices composed of low-rank and sparse matrices,

the constrained approach can better recover the low-rank structures.

The computational complexity of the algorithms depends on the dimension of the data matrix. The

alternating regression approach and the sub-sampling approach are probably the least scalable with the

dimension. The former uses the LTS estimator that is expensive to compute well, and the sub-sampling

method requires a larger number of sub-samples to handle a larger number of outlying rows. The iterative

re-weighted least squares method is computationally simpler but can run into problems of convergence

when ill-conditioned matrices are present in the iterations. The constrained optimization method is

computationally more stable then the other methods. Although the empirical study reported in the

present paper is limited in scope, we hope that it will stimulate further developments and comparisons

in robust low-rank matrix approximations, both in theory and in computation.
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