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1 Introduction

Many problems in various real fields, for example, electro-rheological fluids [17], the thermistor problem

[23], or the problem of image recovery [4] are related to differential equations with nonsmooth growth

which contain p(x)-Laplacian. In this paper, we investigate the following equations which extend p(x)-

Laplacian: {
− div a(x,∇u) = λf(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in R
N with a Lipschitz boundary ∂Ω; a : Ω×R

N → R
N and f : Ω×R → R

are Carathéodory functions; and λ is a positive parameter. The operator div a(x,∇u) generalizes a

degenerate p(x)-Laplacian div(w(x)|∇u|p(x)−2∇u), where p ∈ C(Ω, (1,∞)) =: C+(Ω) and w ∈ P+(Ω) the

set of all measurable functions on Ω that are positive a.e. on Ω. There have been many studies about

p(x)-Laplacian (see [3, 5, 7, 8, 13, 15, 16, 18] and the references therein).

Throughout the paper, we assume that w ∈ P+(Ω) and p ∈ C+(Ω); and for each q ∈ C+(Ω), set

q− := minx∈Ω q(x), q+ := maxx∈Ω q(x), and let q′ denote the conjugate function of q, i.e., 1
q(x) +

1
q′(x)

= 1, ∀x ∈ Ω. Furthermore, we assume that
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(A0) a(x,−ξ) = −a(x, ξ) for a.e. x ∈ Ω and all ξ ∈ R
N .

(A1) There exists a Carathéodory function A : Ω × R
N → R, continuously differentiable with respect

to its second argument, such that A(x, 0) = 0 for a.e. x ∈ Ω and a(x, ξ) = ∇ξA(x, ξ) for a.e. x ∈ Ω and

all ξ ∈ R
N .

(A2) |a(x, ξ)| � C̃w(x)[k(x) + |ξ|p(x)−1] for a.e. x ∈ Ω and all ξ ∈ R
N , where C̃ is a positive constant,

k ∈ P+(Ω) such that wkp
′ ∈ L1(Ω) and | · | denotes the Euclidean norm.

(A3) 0 < [a(x, ξ)− a(x, η)] · (ξ − η) for a.e. x ∈ Ω and all ξ, η ∈ R
N , ξ �= η.

(A4) C̄w(x)|ξ|p(x) � a(x, ξ) · ξ for a.e. x ∈ Ω and all ξ ∈ R
N , where C̄ is a positive constant.

(A5) a(x, ξ) · ξ � p+A(x, ξ) for a.e. x ∈ Ω and all ξ ∈ R
N .

(w1) w ∈ L1
loc(Ω) and w−s ∈ L1(Ω) for some s ∈ C(Ω) such that s(x) ∈ ( N

p(x) ,∞) ∩ [ 1
p(x)−1 ,∞) for all

x ∈ Ω.

The assumption (w1) is to assure basic properties of the weighted variable exponent Sobolev spaces

W 1,p(x)(w,Ω), that are defined later. Since (w1) takes place, the weight w may be neither bounded nor

away from zero. A problem containing such a w is called degenerate. Notice that (A0)–(A5) may not be

fulfilled simultaneously. Also note that under (A1), we have for a.e. x ∈ Ω and for all ξ ∈ R
N ,

A(x, ξ) =

∫ 1

0

a(x, tξ) · ξdt. (1.2)

Thus, it is easy to see that (A2) implies that

(Ã2) A(x, ξ) � C̃1[k̃(x) +w(x)|ξ|p(x)] for a.e. x ∈ Ω and all ξ ∈ R
N , where k̃ := wkp

′ ∈ L1(Ω)∩P+(Ω)

and C̃1 := 2C̃; and (A4) implies that

(Ã4) C̄w(x)
p(x) |ξ|p(x) � A(x, ξ) for a.e. x ∈ Ω and all ξ ∈ R

N .

The operator satisfying (A0)–(A5) is of Leray-Lions type and the typical examples are

div

[
w(x)

n∑
i=1

|∇u|pi(x)−2∇u

]
and div[w(x)(1 + |∇u|2)(p(x)−2)/2∇u].

Let us name the first operator a multiple degenerate p(x)-Laplacian and the second one a degenerate

generalized mean curvature operator. Note that if k(x) in (A2) is a positive constant function then (A2)

requires w ∈ L1(Ω).

Let us denote ps(x) :=
p(x)s(x)
1+s(x) , where s is given in (w1) and

p∗s(x) :=

⎧⎨⎩
p(x)s(x)N

(s(x) + 1)N − p(x)s(x)
, if ps(x) < N,

+∞, if ps(x) � N,

for all x ∈ Ω. Furthermore, we assume that

(F̃1) There exists a constant C > 0 such that |f(x, t)| � h(x) +C|t|q(x)−1 for a.e. x ∈ Ω and all t ∈ R,

where q ∈ C+(Ω) with q(x) < p∗s(x) for all x ∈ Ω, and h ∈ P+(Ω) such that hq′ ∈ L1(Ω).

Recently, Kim and Kim [11] considered the problem (1.1) with a(x, ξ) = φ(x, |ξ|)ξ which is of type

|ξ|p(x)−2ξ (non-degenerate cases) and a growth condition which is a little different from (F̃1). Under

suitable conditions on φ that are a special case of our assumptions, they obtained the existence and

multiplicity of solutions using the mountain pass theorem and Fountain theorem. It is worth noting

that the main operator in [11] cannot include multiple p(x)-Laplace operators. Boureanu and Udrea [3]

considered the problem{
− div a(x,∇u) + |u|p(x)−2u = λf(x, u) in Ω,

u = c (constant) on ∂Ω,
(1.3)

where a satisfies (A0)–(A5) with w ≡ 1 and showed the existence and multiplicity of solutions to (1.3)

in the case of both (p(·) − 1)-sublinear at infinity and (p(·) − 1)-superlinear at infinity of nonlinearity.

Moreover, they used several three solutions type theorems to obtain at least three distinct solutions to
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(1.3) for the case of (p(·)− 1)-sublinear at infinity. For a degenerate case, the authors [9] considered the

problem {
− div(w(x)|∇u|p(x)−2∇u) = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.4)

under the condition (w1) and showed that

(1) the existence of non-trivial solutions using the mountain pass theorem when f satisfies (F̃1) with h

is constant and q− > p+, the Ambrosetti-Rabinowitz condition (the (AR) condition), limt→0
f(x,t)

|t|p+−1
= 0

uniformly for x ∈ Ω;

(2) the uniqueness of solutions using the Browder’s theorem when f satisfies (F̃1) and is nonincreasing

with respect to the second variable;

(3) the uniqueness and the nonnegativeness of solutions using cut-off method when w ∈ L∞(Ω), w−s+ ∈
L1(Ω); the nonlinearity f is continuous, and nonincreasing with respect to the second variable and

f(x, 0) � 0, for all x ∈ Ω.

Motivated by the above results, we shall consider degenerate p(x)-Laplace equations (1.1) with Leray-

Lions type operators which generalize the main operators in [3,9,11] to obtain their results. We also use

a three solutions type theorem to obtain the multiplicity of solutions to (1.1) when the nonlinearity is

(p(·) − 1)-sublinear at infinity as in [3]. However, since the boundary condition in the present paper is

different from theirs, we need to give a new approach to deal with the nontriviality of solutions.

This paper is organized as follows. In Section 2, we review the weighted variable exponent Lebesgue-

Sobolev spaces and list properties of those spaces. In Section 3, we obtain variational principles for our

variational settings. In Section 4, we show the existence and multiplicity of solution to (1.1) in two cases;

(p(·)−1)-superlinear at infinity and (p(·)−1)-sublinear at infinity using direct methods and critical point

theories in calculus of variations. In Section 5, we show that the unique solution to (1.1) is nontrivial

and nonnegative. The final section concludes the paper.

2 Abstract framework and preliminary results

In this section, we only review the weighted variable exponent Lebesgue-Sobolev spaces Lp(x)(w,Ω)

and W 1,p(x)(w,Ω), which were studied in [9, 12] and for the variable exponent Lebesgue-Sobolev spaces

Lp(x)(Ω) and W 1,p(x)(Ω), we refer to [5, 13] and the references therein.

Let p ∈ C+(Ω) and w ∈ P+(Ω). We define the variable exponent Lebesgue space as

Lp(x)(w,Ω) =

{
u : Ω → R is measurable,

∫
Ω

w(x)|u(x)|p(x)dx < ∞
}
.

Then Lp(x)(w,Ω) endowed with the norm

|u|Lp(x)(w,Ω) = inf

{
λ > 0 :

∫
Ω

w(x)

∣∣∣∣u(x)λ

∣∣∣∣p(x)dx � 1

}
,

becomes a normed space. When w(x) ≡ 1, we have Lp(x)(w,Ω) ≡ Lp(x)(Ω) and use the notation |u|Lp(x)(Ω)

instead of |u|Lp(x)(w,Ω).

The following propositions will be useful for the next sections.

Proposition 2.1 (See [5,13]). The space Lp(x)(Ω) is a separable and uniformly convex Banach space,

and its conjugate space is Lp′(x)(Ω), where 1/p(x)+1/p′(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω),

we have ∣∣∣∣ ∫
Ω

uv dx

∣∣∣∣ � (
1

p−
+

1

(p′)−

)
|u|Lp(x)(Ω)|v|Lp′(x)(Ω) � 2|u|Lp(x)(Ω)|v|Lp′(x)(Ω).
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Define the modular ρ : Lp(x)(w,Ω) → R by

ρ(u) =

∫
Ω

w(x)|u(x)|p(x)dx, ∀u ∈ Lp(x)(w,Ω).

Proposition 2.2 (See [12]). For all u ∈ Lp(x)(w,Ω), we have

(i) |u|Lp(x)(w,Ω) < 1 (= 1, > 1) if and only if ρ(u) < 1 (= 1, > 1), respectively;

(ii) if |u|Lp(x)(w,Ω) > 1 then |u|p−

Lp(x)(w,Ω)
� ρ(u) � |u|p+

Lp(x)(w,Ω)
;

(iii) if |u|Lp(x)(w,Ω) < 1 then |u|p+

Lp(x)(w,Ω)
� ρ(u) � |u|p−

Lp(x)(w,Ω)
.

Consequently, |u|p−

Lp(x)(w,Ω)
− 1 � ρ(u) � |u|p+

Lp(x)(w,Ω)
+ 1, ∀u ∈ Lp(x)(w,Ω).

Proposition 2.3 (See [9]). If u, un ∈ Lp(x)(w,Ω) (n = 1, 2, . . . ), then the following statements are

equivalent:

(i) limn→∞ |un − u|Lp(x)(w,Ω) = 0;

(ii) limn→∞ ρ(un − u) = 0.

The weighted variable exponent Sobolev space W 1,p(x)(w,Ω) is defined by

W 1,p(x)(w,Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(w,Ω)},

with the norm ‖u‖W 1,p(x)(w,Ω) = |u|Lp(x)(Ω) + ‖∇u‖Lp(x)(w,Ω). W
1,p(x)
0 (w,Ω) is defined as the closure of

C∞
0 (Ω) in W 1,p(x)(w,Ω) with respect to the norm ‖ · ‖W 1,p(x)(w,Ω).

The separability of W 1,p(x)(w,Ω) is required for Fountain theorem.

Proposition 2.4. Assume that (w1) holds. Then W 1,p(x)(w,Ω) is a separable reflexive Banach space.

Proof. By [12, Theorem 2.10], we have that W 1,p(x)(w,Ω) is a reflexive Banach space. The only thing

left to prove is the fact that W 1,p(x)(w,Ω) is separable. We first show that Lp(x)(w,Ω) is separable. It

is well known that Lp(x)(Ω) is separable so there exists a countable subset F of Lp(x)(Ω) such that F is

dense in Lp(x)(Ω). Let Fw = {w− 1
p f : f ∈ F}. It is clear that Fw is a countable subset of Lp(x)(w,Ω).

For any f ∈ Lp(x)(w,Ω), we have w
1
p f ∈ Lp(x)(Ω). So there exists a sequence {fn}∞n=1 ⊂ F such that

|fn − w
1
p f |Lp(x)(Ω) → 0 as n → ∞.

By this and Proposition 2.3, we have∫
Ω

|fn(x) − w(x)
1

p(x) f(x)|p(x)dx =

∫
Ω

w(x)|w(x)− 1
p(x) fn(x) − f(x)|p(x)dx → 0

as n → ∞. Equivalently, |w− 1
p fn − f |Lp(x)(w,Ω) → 0 as n → ∞. Note that {w− 1

p fn}∞n=1 ⊂ Fw. This

implies the separability of Lp(x)(w,Ω).

We next show the separability of W 1,p(x)(w,Ω). We have that the product space Y := Lp(x)(Ω)

× (Lp(x)(w,Ω))N = Lp(x)(Ω) × Lp(x)(w,Ω) × · · · × Lp(x)(w,Ω) is a separable Banach space with an

equivalent norm

|(u0, u1, . . . , uN)|Y = |u0|Lp(x)(Ω) +

∣∣∣∣( N∑
i=1

u2
i

)1/2∣∣∣∣
Lp(x)(w,Ω)

.

Consider the operator T : W 1,p(x)(w,Ω) → (Y, | · |Y ), Tu = (u, ux1, . . . , uxN ). Then T is a linear isometric

operator. Obviously, T (W 1,p(x)(w,Ω)) is closed in Y . Indeed, if {un} ⊂ W 1,p(x)(w,Ω) and Tun → v =

(v0, v1, . . . , vN ) as n → ∞ in Y , i.e.,⎧⎨⎩un → v0 in Lp(x)(Ω),
∂un

∂xi
→ vi in Lp(x)(w,Ω)

(2.1)
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as n → ∞ for each i = 1, . . . , N , then we have that {un} is a Cauchy sequence in W 1,p(x)(w,Ω) so there

exists u ∈ W 1,p(x)(w,Ω) such that un → u as n → ∞ in W 1,p(x)(w,Ω) and hence, v0 = u. We now show

that vi =
∂u
∂xi

. In fact, for any φ ∈ C∞
0 (Ω) we have∫

Ω

∂un

∂xi
φdx = −

∫
Ω

un
∂φ

∂xi
dx. (2.2)

It follows from (2.1) that
∫
Ω
un

∂φ
∂xi

dx → ∫
Ω
u ∂φ
∂xi

dx as n → ∞. Let Ω0 = supp(φ) then Lp(x)(w,Ω) ↪→
L1(Ω0) (see [12, Proposition 2.8]). So (2.1) implies that ∂un

∂xi
→ vi in L1(Ω0). Hence, we infer

∫
Ω

∂un

∂xi
φdx →∫

Ω viφdx as n → ∞ since∣∣∣∣ ∫
Ω

∂un

∂xi
φdx−

∫
Ω

viφdx

∣∣∣∣ � ∫
Ω

∣∣∣∣∂un

∂xi
− vi

∣∣∣∣|φ|dx � ‖φ‖∞
∫
Ω0

∣∣∣∣∂un

∂xi
− vi

∣∣∣∣dx.
Letting n → ∞, we obtain from these facts and (2.2) that

∫
Ω
viφdx = − ∫

Ω
u ∂φ
∂xi

dx. So vi =
∂u
∂xi

and hence,

v = Tu, i.e., v ∈ T (W 1,p(x)(w,Ω)). So T (W 1,p(x)(w,Ω)) is closed in Y . It implies that T (W 1,p(x)(w,Ω))

is separable and hence, so is W 1,p(x)(w,Ω).

The next imbedding result will be used in the later sections frequently.

Proposition 2.5 (See [12]). Assume that (w1) holds. If q ∈ C+(Ω) and q(x) < p∗s(x) for all x ∈ Ω,

then we obtain the continuous compact imbedding W 1,p(x)(w,Ω) ↪→↪→ Lq(x)(Ω).

3 Variational settings

Throughout the paper, let us denote X := W
1,p(x)
0 (w,Ω) and on X we have an equivalent norm ‖u‖ =

‖∇u‖Lp(x)(w,Ω) (see [12, Corollary 2.12]). Using the same argument as in the proof of [14, Theorem 4.1]

we have the next lemma, the so-called (S+)-property which will be used to show compactness.

Lemma 3.1. Assume that (w1) and (A2)–(A4) hold. If un ⇀ u (weakly) as n → ∞ in X and

lim sup
n→∞

∫
Ω

a(x,∇un) · (∇un −∇u)dx � 0

then un → u (strongly) as n → ∞ in X.

Let us define Φ,Ψ, J : X → R by

Φ(u) =

∫
Ω

A(x,∇u)dx, Ψ(u) =

∫
Ω

F (x, u)dx and J = Φ− λΨ (3.1)

with F (x, t) =
∫ t

0 f(x, s)ds. Then we have fundamental results for Φ and Ψ.

Lemma 3.2. (i) Assume that (w1), (A1) and (A2) hold. Then Φ ∈ C1(X,R) and

〈Φ′(u), υ〉 =
∫
Ω

a(x,∇u) · ∇υdx, for any u, υ ∈ X.

If in addition (A3) and (A4) hold, then Φ′ : X → X∗ is a homeomorphism with a bounded inverse.

(ii) Assume that (w1) and (F̃1) hold. Then Ψ ∈ C1(X,R) and

〈Ψ′(u), υ〉 =
∫
Ω

f(x, u)υdx, for any u, υ ∈ X.

Moreover, Ψ and Ψ′ are sequentially weakly continuous, i.e., un ⇀ u (weakly) as n → ∞ in X implies

Ψ(un) → Ψ(u) and Ψ′(un) → Ψ′(u) as n → ∞ in R and X∗, respectively.
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Proof. By modifying the proof of [9, Lemma 3.1], we can easily obtain the differentiability of Φ and Ψ

and their derivative formulas.

In the case of (i), if we assume in addition that (A3) and (A4) hold, then L := Φ′ : X → X∗ is

strictly monotone, coercive, and continuous on X . Therefore by invoking the Browder’s theorem for

monotone operators in the reflexive Banach spaces (see [21, Theorem 26.A]), we deduce that L has a

bounded inverse L−1 : X∗ → X . Let fn → f as n → ∞ in X∗ and set un = L−1(fn), u = L−1(f), i.e.,

fn = L(un), f = L(u). Then the boundedness of L−1 and {fn} imply that {un} is bounded. So up to a

subsequence, we have un ⇀ ū (weakly) as n → ∞ in X. By this and the estimate below,

|〈fn − f, un − u〉| � ‖fn − f‖X∗‖un − u‖,

we infer that limn→∞〈L(un), un − u〉 = limn→∞〈fn, un − u〉 = limn→∞〈fn − f, un − u〉 = 0, i.e.,

limn→∞
∫
Ω a(x,∇un) · (∇un − ∇u)dx = 0. This implies that un → ū (strongly) as n → ∞ in X in

view of Lemma 3.1. This yields fn = L(un) → L(ū) and thus, f = L(ū). By the strict monotonicity of L

we obtain u = ū and hence, L−1(fn) → L−1(f), i.e., L−1 is continuous on X∗.
Arguments for showing the sequentially weak continuity of Ψ and Ψ′ in the case of (ii) are standard

(see [10, Proof of Proposition 2.9]), we omit it.

Lemma 3.2 implies that when (w1), (A1), (A2) and (F̃1) hold, J ∈ C1(X,R). On more assumptions,

we have the following result for J and J ′. The proof is easily obtained from Lemmas 3.1 and 3.2.

Lemma 3.3. Assume that (w1), (A1)–(A4) and (F̃1) hold. Then for every λ ∈ R, J is sequentially

weakly lower semicontinuous and the derivative J ′ is an (S+) type operator, i.e., if un ⇀ u (weakly) in X

and lim supn→∞〈J ′(un), un − u〉 � 0 then un → u (strongly) in X.

Definition 3.4. We say that u ∈ X is a weak solution to (1.1) if∫
Ω

a(x,∇u(x)) · ∇ϕ(x)dx = λ

∫
Ω

f(x, u(x))ϕ(x)dx

for all ϕ ∈ X .

Obviously, under assumptions of Lemma 3.2, a critical point of J is a weak solution to (1.1). We now

remind some variational principles for the multiplicity of solutions. The following is a three critical points

type theorem due to Bonanno et al. [2].

Theorem 3.5 (See [2, Theorem 2.1]). Let X be a reflexive real Banach space, and let Φ : X → R be

a coercive, continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional

whose Gâteaux derivative admits a continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux

differentiable functional whose Gâteaux derivative is compact such that Φ(0) = Ψ(0) = 0. Assume that

there exist r0 > 0 and u0 ∈ X with r0 < Φ(u0) such that

(i) supΦ(u)<r0Ψ(u) < r0Ψ(u0)/Φ(u0);

(ii) for each λ ∈ Λ = (Φ(u0)/Ψ(u0), r0/supΦ(u)<r0Ψ(u)), the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λ, the functional Φ− λΨ has at least three distinct critical points in X.

The last concern is the existence of infinitely many critical points when the energy functional J is

symmetric. Recall that if X is a separable reflexive Banach space then it is well-known that there exist

{en}∞n=1 ⊂ X and {fn}∞n=1 ⊂ X∗ such that X = span{en}∞n=1, X
∗ = span{fn}∞n=1 and

〈fi, ej〉 =
{
1, if i = j,

0, if i �= j,

where 〈·, ·〉 is the duality product between X∗ and X (see [22, Section 17]). Denote Xn = span{en},
Yn =

⊕n
k=1 Xk, Zn =

⊕∞
k=n Xk. For Xn, Yn, Zn taken as the above, we have the following theorem.

Theorem 3.6 (See [20, Fountain theorem]). Assume that J ∈ C1(X,R) is even and for each n =

1, 2, . . . , there exist ρn > γn > 0 such that

(H1) bn = inf{u∈Zn:‖u‖=γn} J(u) → +∞ as n → ∞;
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(H2) an = max{u∈Yn:‖u‖=ρn} J(u) � 0;

(H3) J satisfies the (PS)c condition for every c > 0.

Then J has a sequence of critical values tending to +∞.

4 Existence and multiplicity of solutions

We divide this section to show the existence and multiplicity of solutions to (1.1) into two cases: (p(·)−1)-

superlinear and (p(·) − 1)-sublinear at infinity using critical point theories in calculus of variations and

the three critical points type Theorem 3.5.

4.1 (p(·)− 1)-superlinear at infinity

In this subsection, we shall establish the existence and multiplicity of solutions when f satisfies the (AR)

condition. We assume that

(F1) There exists a constant C > 0 such that |f(x, t)| � C
(
1 + |t|q(x)−1

)
for a.e. x ∈ Ω and all t ∈ R,

where q ∈ C+(Ω) with q(x) < p∗s(x) for all x ∈ Ω.

(F2) There exist l > 0 and θ > p+ such that 0 < θF (x, t) � f(x, t)t for a.e. x ∈ Ω and all |t| � l,

where F (x, t) =
∫ t

0 f(x, s)ds.

(F3) limt→0
f(x,t)

|t|p+−1
= 0 uniformly for x ∈ Ω.

Notice that (F1) implies that

(G1) |F (x, t)| � C[|t|+ 1
q(x) |t|q(x)] � C1[1 + |t|q(x)] for a.e. x ∈ Ω and all t ∈ R.

Under the condition (F1), the (AR) condition (F2) implies that there exists a function κ ∈ L∞(Ω)∩P+(Ω)

such that

F (x, t) � κ(x)|t|θ, for a.e. x ∈ Ω and all |t| > l. (4.1)

From this, one can deduce that f is (p(·)−1)-superlinear at infinity. The first existence result is obtained

by the classical mountain pass theorem [1].

Theorem 4.1. Assume that (w1) and (A1)–(A5) hold. Assume also that (F1)–(F3) hold in which

p+ < q−. Then (1.1) has at least one nontrivial weak solution in X for every λ > 0.

If we assume in addition the oddivity on a and f, we can obtain the following type multiplicity of

solutions.

Theorem 4.2. Assume that (w1) and (A0)–(A5) hold. Assume also that (F1) and (F2) hold. If

f(x,−t) = −f(x, t) for a.e. x ∈ Ω and for all t ∈ R, then J has a sequence of critical points {±un} such

that J(±un) → +∞ as n → ∞ and (1.1) has infinitely many pairs of solutions to every λ > 0.

The proofs of Theorems 4.1 and 4.2 will be done thanks to the next two lemmas which verify the (PS)

condition and the mountain pass geometries of J , respectively. Since the proofs of these two lemmas are

similar to that of [9, Theorem 3.3], we omit it.

Lemma 4.3. Assume that (w1) and (A1)–(A5) hold. Assume also that (F1) and (F2) hold. Then J

satisfies the (PS) condition for every λ > 0.

Lemma 4.4. Assume that (w1), (Ã2) and (Ã4) hold. Assume also that (F1)–(F3) hold in which p+ < q−.
Then for every λ > 0,

(i) there exist r, ρ > 0 such that J(u) � ρ if ‖u‖ = r;

(ii) there exists e ∈ X with ‖e‖ > r such that J(e) < 0.

We now give the proofs of Theorems 4.1 and 4.2.

Proof of Theorem 4.1. The fact J(0) = 0 and Lemmas 4.3 and 4.4 show that J satisfies all required

conditions of the mountain pass theorem and this completes the proof.

Proof of Theorem 4.2. We showed that J ∈ C1(X,R) by Lemma 3.2 and it is obvious to see that J is an

even functional due to the oddivity of f, (1.2) and (A0). Next, we shall verify that J satisfies conditions

(H1)–(H3) in Fountain theorem. (H3) is clearly satisfied by Lemma 4.3.
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To show (H1), we let

βn = sup{|u|Lq(x)(Ω) : u ∈ Zn, ‖u‖ = 1}
for each n ∈ N. By Proposition 2.5, it is clear that Ψ(u) = |u|Lq(x)(Ω) is sequentially weakly continuous

on X . Thus, βn → 0 as n → ∞ in view of [8, Lemma 3.3]. This implies that there exists a positive

integer n0 such that βn � 1 for all n � n0. For each n ∈ N, define γn by

γn =

⎧⎨⎩
1√
βn

, if n0 � n,

1, if 1 � n < n0.

Obviously, γn � 1 for all n and γn → ∞ as n → ∞. Then for u ∈ Zn with ‖u‖ = γn, by (Ã4), (G1),

Proposition 2.2 and the definition of βn, we have

J(u) � C̄

p+

∫
Ω

w(x)|∇u|p(x)dx− λ

∫
Ω

F (x, u)dx

� C̄

p+
‖u‖p− − λC1

∫
Ω

|u|q(x)dx− λC1|Ω|

� C̄

p+
‖u‖p− − λC1(1 + |u|q+

Lq(x)(Ω)
)− λC1|Ω|

� C̄

p+
‖u‖p− − λC1β

q+

n ‖u‖q+ − λ(1 + |Ω|)C1

� C̄

p+
‖u‖p− − λC1β

q+

n ‖u‖q++p− − λ(1 + |Ω|)C1.

Thus, for n � n0 we have

bn = inf
{u∈Zn:‖u‖=γn}

J(u) � β
− p−

2
n

(
C̄

p+
− λC1β

q+

2
n

)
− λ(1 + |Ω|)C1.

This completes (H1).

Finally, we shall verify (H2). By (G1) and (4.1), there exists a constant C2 such that

F (x, t) � κ(x)|t|θ − C2, for a.e. x ∈ Ω and all t ∈ R.

Using this and (Ã2), for u ∈ Yn with ‖u‖ > 1, we have

J(u) � C̃1

∫
Ω

(k̃(x) + w(x)|∇u|p(x))dx− λ

∫
Ω

κ(x)|u|θdx+ λC2|Ω|

� C̃1‖u‖p+ − λ|u|θLθ(κ,Ω) + C̃1|k̃|L1(Ω) + λC2|Ω|. (4.2)

Since on the finite dimensional space Yn, the norms ‖ · ‖ and | · |Lθ(κ,Ω) are equivalent and p+ < θ, (4.2)

implies that J(u) � 0 for all u ∈ Yn with ‖u‖ large enough. This completes (H2) and thus the proof is

done.

4.2 (p(·)− 1)-sublinear at infinity

In this part, we consider problem (1.1) when f satisfies (p(·) − 1)-sublinear at infinity (the condition

(F5)). We assume that

(F4) f ∈ L∞(Ω× [−T, T ]) for each T ∈ R+.

(F5) lim|t|→∞
f(x,t)

|t|p−−1
= 0 uniformly for x ∈ Ω.

(F6) There exist a constant t0 > 0 and a ball B with B ⊂ Ω such that
∫
B
F (x, t0)dx > 0.

Using direct methods and critical point theories in calculus of variations, we obtain the first result of

existence of multiple nontrivial solutions to (1.1).
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Theorem 4.5. Assume that (w1), (A1)–(A4) and (F4)–(F6) hold. Then there exists λ0 > 0 such

that (1.1) has at least one nontrivial weak solution for every λ > λ0. If in addition (F3) holds in which

p+ < p∗s(x) for all x ∈ Ω, then (1.1) has at least two nontrivial weak solutions to every λ > λ0.

Proof. It follows from (F5) that for each ε > 0, there exists T = T (ε) > 0 such that

|f(x, t)| � ε|t|p−−1, for a.e. x ∈ Ω and all |t| > T.

By this and (F4) we deduce that

|f(x, t)| � C(ε) + ε|t|p−−1, for a.e. x ∈ Ω and all t ∈ R, (4.3)

where

C(ε) = ess sup
x∈Ω,|t|�T

|f(x, t)|.

So by Lemma 3.2, J ∈ C1(X,R) and by Lemma 3.3, J is sequentially weakly lower semicontinuous. We

claim that J is coercive. Indeed, we deduce from (4.3) that

|F (x, t)| � C(ε)|t|+ ε

p−
|t|p−

, for a.e. x ∈ Ω and all t ∈ R. (4.4)

Since X ↪→ Lp−
(Ω) ↪→ L1(Ω), there are positive constants C3 and C4 such that

|u|Lp−(Ω) � C3‖u‖, |u|L1(Ω) � C4‖u‖

for all u ∈ X . So for any u ∈ X , (Ã4) and (4.4) yield

J(u) � C̄

p+
(‖u‖p− − 1)− λC(ε)

∫
Ω

|u|dx− λε

p−

∫
Ω

|u|p−
dx

�
(

C̄

p+
− λεCp−

3

p−

)
‖u‖p− − λC(ε)C4‖u‖ − C̄

p+
.

Thus, choosing ε > 0 such that C̄
p+ − λεCp−

3

p− > 0 we obtain from the last estimate that J is coercive since

p− > 1. Therefore, J has a global minimizer u1 on X .

Next, we show that there exists u ∈ X such that J(u) < 0. For each ε > 0, let Bε := {x ∈ Ω :

dist(x,B) � ε}, where B is the ball given in (F6). Take ε > 0 small enough such that Bε ⊂ Ω. Then

there exists uε ∈ C1
c (Ω) such that

uε(x) :=

{
t0, x ∈ B,

0, x ∈ Ω \Bε,

and 0 � uε(x) � t0, ∀x ∈ Ω, where t0 is given in (F6). Thus, uε ∈ X and for a.e. x ∈ Ω,

|F (x, uε(x))| �
∫ uε(x)

0

|f(x, s)|ds � |f |L∞(Ω×[−t0,t0])uε(x) � t0|f |L∞(Ω×[−t0,t0]).

Thus, we estimate

J(uε) =

∫
Ω

A(x,∇uε)dx − λ

∫
Ω

F (x, uε(x))dx

=

∫
Ω

A(x,∇uε)dx − λ

∫
B

F (x, t0)dx− λ

∫
Bε\B

F (x, uε(x))dx

�
∫
Ω

A(x,∇uε)dx − λ

[ ∫
B

F (x, t0)dx− t0|f |L∞(Ω×[−t0,t0])|Bε \B|
]
, (4.5)
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where |Bε \B| is the Lebesgue measure of Bε \B. Fixing a sufficiently small constant ε0 > 0 such that

t0|f |L∞(Ω×[−t0,t0])|Bε0 \B| � 1

2

∫
B

F (x, t0)dx,

we obtain from (4.5) that

J(uε0) �
∫
Ω

A(x,∇uε0)dx− λ

2

∫
B

F (x, t0)dx.

Then J(uε0) < 0 for all λ > λ0, where

λ0 :=
2
∫
Ω A(x,∇uε0)dx∫
B
F (x, t0)dx

.

Consequently, for any λ > λ0, the global minimizer u1 satisfies J(u1) < 0 = J(0). It means that for any

λ > λ0, the problem (1.1) has a nontrivial solution u1.

We now assume in addition that (F3) holds in which p+ < p∗s(x) for all x ∈ Ω. Note that the

coercivity of J and the (S+)-property of J ′ imply that J satisfies the (PS) condition. We claim that J

also satisfies the geometries in the mountain pass theorem. Indeed, since p+ < p∗s(x) for all x ∈ Ω, there

is a constant q such that p+ < q < p∗s(x) for all x ∈ Ω. Thus, we have X ↪→↪→ Lq(Ω) ↪→ Lp+

(Ω) in the

view of Proposition 2.5 and the boundedness of Ω. Let Cp+ and Cq be two positive imbedding constants

such that |u|Lp+(Ω) � Cp+‖u‖, |u|Lq(Ω) � Cq‖u‖ for all u ∈ X . By (F3) and (F5), we have that for

δ = 1

2λp+Cp+

p+

, there exist γ1 > 1 and γ2 > 0 such that

|f(x, t)| � δ|t|p−−1 � δ|t|q−1, for a.e. x ∈ Ω and all |t| > γ1,

and

|f(x, t)| � p+δ|t|p+−1, for a.e. x ∈ Ω and all |t| < γ2.

Combining these with (F4) we obtain that

|F (x, t)| � δ|t|p+

+ C5|t|q, for a.e. x ∈ Ω and all t ∈ R, (4.6)

where C5 = C5(δ) is some positive constant. It implies that for u ∈ X with ‖u‖ < 1, we have

J(u) � C̄

p+

∫
Ω

w(x)|∇u|p(x)dx− λδ

∫
Ω

|u|p+

dx− λC5

∫
Ω

|u|qdx

� C̄

p+
‖u‖p+ − λδCp+

p+ ‖u‖p+ − λC5C
q
q ‖u‖q

=
C̄

2p+
‖u‖p+ − λC5C

q
q ‖u‖q.

Taking 0 < r < min{1, ‖u1‖, ( C̄
2p+λC5C

q
q
)

1

q−p+ } and letting ρ = C̄
2p+ r

p+ − λC5C
q
q r

q , we have

J(u) � ρ, ∀u ∈ X with ‖u‖ = r.

Thus, J has the second critical point u2, which is a weak solution to (1.1) and J(u2) � ρ > 0 = J(0); so

u2 �= u1 and u2 �= 0.

Remark 4.6. Using the similar argument as above with the same assumptions on a and w as in

Theorem 4.5, we can show that (1.1) has a weak solution in X for every λ > 0 if (F̃1) holds in which

q+ < p−. That solution is a global minimizer of J, which is nontrivial if (F4) and (F6) hold in addition

and λ large enough.

Next, we shall establish the existence of three solutions to (1.1) by using Theorem 3.5. Defining Φ and

Ψ as in (3.1), we have the following result.
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Theorem 4.7. Suppose that (w1), (A1)–(A4) and (F3)–(F6) hold in which p+ < p∗s(x) for all x ∈ Ω.

Then, there exist r0 > 0 and u0 ∈ X with r0 < Φ(u0) and

sup
Φ(u)<r0

Ψ(u) < r0Ψ(u0)/Φ(u0)

such that (1.1) has at least three distinct solutions in X for all

λ ∈ Λ =
(
Φ(u0)/Ψ(u0), r0/ sup

Φ(u)<r0

Ψ(u)
)
.

Proof. Taking uε0 , q and the imbedding constants Cq, Cp+ as in the proof of Theorem 4.5, we have

Ψ(uε0) =

∫
Ω

F (x, uε0)dx >
1

2

∫
B

F (x, t0)dx > 0, Φ(uε0) =

∫
Ω

A(x,∇uε0)dx > 0.

Here we note that
∫
Ω
A(x,∇v)dx = 0 if and only if v = 0. Let r0 be such that 0 < r0 < min{ C̄

p+ ,Φ(uε0)}.
If Φ(u) < r0 then by (Ã4), we get that

C̄

p+

∫
Ω

w(x)|∇u|p(x)dx < r0, i.e.,

∫
Ω

w(x)|∇u|p(x)dx <
p+r0

C̄
< 1.

This fact and Proposition 2.2 yield

‖u‖p+

<
p+r0

C̄
< 1, i.e., ‖u‖ <

(
p+r0

C̄

) 1

p+

.

Then we can estimate ∫
Ω

|u|qdx = |u|qLq(Ω) � (Cq‖u‖)q <
Cq

q (p
+)

q

p+ r
q

p+

0

C̄
q

p+

,

and ∫
Ω

|u|p+

dx = |u|p+

Lp+(Ω)
� (Cp+‖u‖)p+

<
Cp+

p+ p+r0

C̄
.

By these estimates and (4.6), we have that for u ∈ X with Φ(u) < r0,∫
Ω

F (x, u)dx � δ

∫
Ω

|u|p+

dx + C5

∫
Ω

|u|qdx �
δCp+

p+ p+r0

C̄
+

C5C
q
q (p

+)
q

p+ r
q

p+

0

C̄
q

p+

,

where δ > 0 is arbitrarily fixed. Thus we have

sup
Φ(u)<r0

Ψ(u) � r0

[
δCp+

p+ p+

C̄
+

C5C
q
q (p

+)
q

p+ r
q

p+
−1

0

C̄
q

p+

]
.

Choosing δ > 0 such that
δCp+

p+
p+

C̄
< 1

2

Ψ(uε0 )

Φ(uε0 )
and r0 > 0 small enough such that

C5C
q
q (p

+)
q

p+ r
q

p+
−1

0

C̄
q

p+

<
1

2

Ψ(uε0)

Φ(uε0)
,

we obtain that

sup
Φ(u)<r0

Ψ(u) < r0
Ψ(uε0)

Φ(uε0)
.

Note that Φ−λΨ is coercive for every λ � 0 (see the proof of Theorem 4.5). Applying Theorem 3.5 with

u0 = uε0 in the view of Lemma 3.2, we have the conclusion.

Remark 4.8. To show the nontriviality of solutions in [3], they used a stronger condition than (F6);

F (x, t0) > 0 for a.e. x ∈ Ω.

Moreover, we do not impose p(x) � 2, ∀x ∈ Ω and the uniformly monotonicity of the operator a as in [3]

to obtain Theorem 4.7.
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5 Uniqueness and nonnegativeness

In this section, we are concerned with the uniqueness and the nonnegativeness of solutions to (1.1).

First, when we assume that f is nonincreasing with respect to the second variable and (A3) holds,

we have the unique existence by the Browder’s theorem for monotone operators in the reflexive Banach

spaces (see [21, Theorem 26.A]). Since the proof is very similar to the proof of [9, Theorem 3.4], we shall

omit it.

Theorem 5.1. Assume that (w1) and (A2)–(A4) hold. Assume also that (F̃1) holds and f : Ω×R → R

is nonincreasing with respect to the second variable. Then for every λ > 0, (1.1) has a unique weak

solution.

To show the existence of a unique nontrivial nonnegative solution, we need an L∞-bound of solutions

to (1.1). For such an L∞-bound, more restrictions on w are required.

(w2) w ∈ L∞(Ω) and w−s+ ∈ L1(Ω) for some s ∈ C(Ω) such that s(x) ∈ ( N
p(x) ,∞) ∩ [ 1

p(x)−1 ,∞) for

all x ∈ Ω.

Example 5.2. It is easy to verify that w(x) = |x|a (0 � a < min{p−, N(p− − 1)}) satisfies (w2) with
s(x) ≡ N−ε

a , where 0 < ε < min{N(p−−a)
p− , N(p−−1)−a

p−−1 }.
We have the following L∞-bound result.

Lemma 5.3. Assume that (w2), (A2), (A4) and (F1) hold. Then for every λ > 0, there exist positive

constants α, β such that, if u is a weak solution to (1.1), then u ∈ L∞(Ω), and

|u|L∞(Ω) � α

[
1 +

(∫
Ω

|u|q̃(x)dx
)β]

,

where q̃(x) := max{p(x), q(x)} for all x ∈ Ω.

Proof. Noting p(x) � q̃(x) < p∗s(x), ∀x ∈ Ω and |f(x, t)| � 2C(1 + |t|q̃(x)−1) for a.e. x ∈ Ω and all

t ∈ R and repeating the argument used in [9, Proof of Theorem 4.2], we get the desired conclusion.

Employing the L∞-bound and cut-off method, we obtain the existence of a unique nontrivial nonneg-

ative solution which is an extension of [9, Theorem 5.1] for a single degenerate p(x)-Laplacian. Unlike

the assumption in [9], we do not require the continuity of f for the last main result.

Theorem 5.4. Assume that (w2), (A1)–(A4) hold. Assume also that f : Ω× R → R is nonincreasing

with respect to the second variable on [0,∞) such that f(x, 0) � 0, f(x, 0) �≡ 0 and f(·, t) ∈ L∞(Ω) for

each t � 0. Then for every λ > 0, (1.1) has a nontrivial nonnegative weak solution and this solution is

the unique solution if f is nonincreasing with respect to the second variable on R.

Proof. Let us denote u− = −min{u, 0} for u ∈ X in this proof. By the hypotheses on f ,

d := ess sup
x∈Ω

f(x, 0)

is a positive constant. Theorem 5.1 guarantees the existence of a unique weak solution ud to the problem{
− div a(x,∇u) = λd in Ω,

u = 0 on ∂Ω.
(5.1)

Lemma 5.3 also guarantees ud ∈ L∞(Ω). We claim that ud is nonnegative. In fact, since ud is a weak

solution to (5.1), we have ∫
Ω

a(x,∇ud) · ∇u−
d dx = λd

∫
Ω

u−
d dx. (5.2)

Moreover, from (A4) we have∫
Ω

a(x,∇ud) · ∇u−
d dx =

∫
{x∈Ω: ud�0}

a(x,∇ud) · ∇u−
d dx
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+

∫
{x∈Ω: ud<0}

a(x,∇ud) · ∇u−
d dx =

∫
{x∈Ω: ud<0}

a(x,−∇u−
d ) · ∇u−

d dx

= −
∫
{x∈Ω: ud<0}

a(x,∇(−u−
d )) · ∇(−u−

d )dx � 0.

So it follows from this and (5.2) that
∫
Ω
u−
d dx = 0. Consequently, u−

d = 0 a.e. on Ω, i.e., ud is nonnegative

a.e. on Ω. Define

f∗(x, t) =

⎧⎪⎪⎨⎪⎪⎩
f(x, 0), if x ∈ Ω and t < 0,

f(x, t), if x ∈ Ω and 0 � t � ud(x),

f(x, ud(x)), if x ∈ Ω and ud(x) < t,

and

F ∗(x, t) =
∫ t

0

f∗(x, s)ds, J̃(u) =

∫
Ω

A(x,∇u)dx − λ

∫
Ω

F ∗(x, u)dx.

From the assumptions on f and the nonnegativeness of ud, it is easy to see that there exists a positive

constant C6 such that |f∗(x, t)| � C6 for a.e. x ∈ Ω and all t ∈ R. So by a similar argument to the proof

of Theorem 4.5 we have that J̃ ∈ C1(X,R) and J̃ is coercive, sequentially weakly lower semicontinuous.

Therefore J̃ has a global minimizer u∗ and we have{
− div a(x,∇u∗) = λf∗(x, u∗) in Ω,

u∗ = 0 on ∂Ω.
(5.3)

We claim that 0 � u∗ � ud a.e. on Ω. Indeed, it follows from (5.3) that∫
Ω

a(x,∇u∗) · ∇u−
∗ dx = −

∫
Ω

a(x,∇(−u−
∗ )) · ∇(−u−

∗ )dx = λ

∫
Ω

f∗(x, u∗)u−
∗ dx.

Thus, u−
∗ = 0 because of (A4) and the fact that f∗(x, t) = f(x, 0) � 0 for t < 0. So u∗ � 0 a.e. on Ω. To

show that u∗ � ud, let Ω1 = {x ∈ Ω : u∗ > ud}. Due to u∗ � 0, we have f∗(x, u∗) � f(x, 0) � d. Thus

− div [a(x,∇ud)− a(x,∇u∗)] = λ[d− f∗(x, u∗)] � 0. (5.4)

Denoting ϕ = ud − u∗ and taking −ϕ− as a test function in (5.4) we have − ∫
Ω[a(x,∇ud)− a(x,∇u∗)]·

∇ϕ−dx � 0, and hence, since ∇ϕ = −∇ϕ− on Ω1, we get
∫
Ω1

[a(x,∇ud)−a(x,∇u∗)] ·(∇ud−∇u∗)dx � 0.

It follows that ∇ϕ = 0 on Ω1 due to the monotonicity of a. It implies that ∇ϕ− = 0 on Ω and therefore

ϕ− = 0 on Ω, i.e., ϕ � 0 a.e. on Ω. It means that u∗ � ud a.e. on Ω. Consequently, f∗(x, u∗) = f(x, u∗)
and hence, u∗ is a weak solution to (1.1). Since − div a(x,∇u∗) = λf(x, u∗) and f(x, 0) �≡ 0, u∗ is

nontrivial.

When f is nonincreasing with respect to the second variable on R, the uniqueness comes from the

monotonicity of a and f (see [7, Proof of Theorem 1.1]).

6 Conclusion and further discussion

In this paper, we show the existence and multiplicity of nontrivial solutions to degenerate p(x)-Laplace

equations (1.1) involving Leray-Lions type operators under the (AR) condition. We also obtain an L∞-

bound of solutions to problem (1.1) when the nonlinear term satisfies a subcritical growth condition.

Employing this fact and a cut-off argument we obtain the existence of a nontrivial nonnegative solution

to (1.1).

Some interesting questions arising from our results are to find what conditions on the degeneracy

w imply the C1 regularity for solutions to problem (1.1) and to show the existence of solutions to

problem (1.1) without the (AR) condition. For example, in the non-degenerate case, i.e., a(x, ξ) =

|ξ|p(x)−2ξ, Fan [6] proved the C1 regularity for solutions and thanks to this result, Tan and Fang [19]
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obtained the existence and multiplicity of positive solutions to (1.1) without the (AR) condition via

Morse-theoretical methods. We believe that these results can be extended to our degenerate cases under

suitable assumptions on the weight w.
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