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Abstract We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea

is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding

linear boundary value problems on the sequence of finite element spaces and nonlinear eigenvalue problems on the

coarsest finite element space. The linearized boundary value problems are solved by some multigrid iterations.

Besides the multigrid iteration, all other efficient iteration methods for solving boundary value problems can

serve as the linear problem solver. We prove that the computational work of this new scheme is truly optimal,

the same as solving the linear corresponding boundary value problem. In this case, this type of iteration scheme

certainly improves the overfull efficiency of solving nonlinear eigenvalue problems. Some numerical experiments

are presented to validate the efficiency of the new method.
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1 Introduction

In recent years, much effort has been devoted to the study of problems in solving large scale eigenvalue

problems. Among these eigenvalue problems, there exist many nonlinear eigenvalue problems [3,4,10–13,

19,21,23,26], for example the calculation of the Gross-Pitaevskii equation describing the ground states of

Bose-Einstein condensates [3,4] or the Hartree-Fock and Kohn-Sham equations used to calculate ground

state electronic structures of molecular systems [11,12,19,21,23,26] from physics, chemistry and material

science. However, these high-dimensional eigenvalue problems are always very difficult to solve.

The multigrid and multilevel methods [2, 5–8, 17, 22, 24, 25, 33] provide optimal order algorithms for

solving boundary value problems. The error bounds of the approximate solutions obtained from these

efficient numerical algorithms are comparable to the theoretical bounds determined by the finite element

discretization. But there is no many efficient numerical methods for solving nonlinear eigenvalue problems

with optimal complexity. Recently, a type of multigrid method for eigenvalue problems has been proposed

in [20, 28–30, 32]. The aim of this paper is to present a full multigrid method (sometimes also referred

to as nested finite element method) for solving nonlinear eigenvalue problems based on the combination

of the multilevel correction method [14, 28, 29] and the multigrid iteration for boundary value problems.
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Comparing with the method in [20,28,29,32], the difference is that it is not necessary to solve the linear

boundary value problem exactly in each correction step. We only get an approximate solution with some

multigrid iteration steps. In this new version of multigrid method, solving nonlinear eigenvalue problem

will not be much more difficult than the multigrid scheme for the corresponding linear boundary value

problems.

An outline of the paper goes as follows. In Section 2, we introduce the finite element method for the

nonlinear eigenvalue problem and state some basic assumptions about the error estimates. A type of full

multigrid algorithm for solving the nonlinear eigenvalue problem and the corresponding computational

work estimate are given in Section 3. Two numerical examples are presented in Section 4 to validate our

theoretical analysis. Some concluding remarks are given in Section 5.

2 Finite element method for nonlinear eigenvalue problems

This section is devoted to introducing some notation and the finite element method for nonlinear eigen-

value problem. In this paper, the standard notation for Sobolev spaces W s,p(Ω) and their associated

norms and semi-norms (see [1]) will be used. For p = 2, we denote

Hs(Ω) =W s,2(Ω) and H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0},

where v|Ω = 0 is in the sense of trace, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω. Let V = H1
0 (Ω), and let ‖ · ‖s denote ‖ · ‖s,Ω

for simplicity. To facilitate the following instructions, the letter C (with or without subscripts) denotes

a generic positive constant which may be different at its different occurrences throughout the paper.

This paper is concerned with the following nonlinear elliptic eigenvalue problem: Find

(λ, u) ∈ R×H1
0 (Ω)

such that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−∇ · (A∇u) + f(x, u) = λu, in Ω,

u = 0, on ∂Ω,∫
Ω

u2dΩ = 1,

(2.1)

whereA is a symmetric and positive definite matrix with suitable regularity, f(x, u) is a nonlinear function

corresponding to the variable u, and Ω ⊂ R
d (d = 2, 3) is a bounded domain with Lipschitz boundary

∂Ω.

In order to use the finite element method for the eigenvalue problem (2.1), we define the corresponding

variational form as follows: Find

(λ, u) ∈ R× V

such that b(u, u) = 1 and

a(u, v) = λb(u, v), ∀ v ∈ V, (2.2)

where

a(u, v) =

∫
Ω

(A∇u · ∇v + f(x, u)v)dΩ, b(u, v) =

∫
Ω

uvdΩ.

For simplicity of describing and understanding, we only consider the numerical method for the simple

eigenvalue case.

Now, let us define the finite element approximations for the problem (2.2). First we generate a shape-

regular decomposition of the computing domain Ω ⊂ R
d (d = 2, 3) into triangles or rectangles for d = 2

(tetrahedrons or hexahedrons for d = 3) (see [9, 15]). The diameter of a cell K ∈ Th is denoted by hK
and the mesh size h describes the maximum diameter of all cells K ∈ Th. Based on the mesh Th, we can
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construct a finite element space denoted by Vh ⊂ V . For simplicity, we set Vh as the linear finite element

space which is defined as follows:

Vh = {vh ∈ C(Ω) | vh|K ∈ P1, ∀K ∈ Th}, (2.3)

where P1 denotes the linear function space.

The standard finite element scheme for eigenvalue problem (2.2) is: Find

(λ̄h, ūh) ∈ R× Vh

such that b(ūh, ūh) = 1 and

a(ūh, vh) = λ̄hb(ūh, vh), ∀ vh ∈ Vh. (2.4)

Define a bilinear form â(·, ·) as follows:

â(w, v) =

∫
Ω

A∇w · ∇vdΩ, ∀w ∈ V, ∀ v ∈ V

and the corresponding norm ‖ · ‖a is defined by

‖v‖a =
√
â(v, v), ∀ v ∈ V. (2.5)

Denote

δh(u) = inf
vh∈Vh

‖u− vh‖a. (2.6)

In order to present the framework to design and analyze the full multigrid method for nonlinear

eigenvalue problems, we state the following assumption for the nonlinear function:

f(x, ·) : Rd × V → V.

Assumption A. The nonlinear function f(x, ·) has the following estimate:

|(f(x,w) − f(x, v), ψ)| � Cf‖w − v‖0‖ψ‖a, ∀w ∈ V, ∀ v ∈ V, ∀ψ ∈ V, (2.7)

where the constant Cf depends on the function f(x, ·) and maybe also depends on w and v, which can be

bounded with some priori estimates, but is independent of the mesh size. For another type of assumption

for the nonlinear function f(x, ·), please refer to [31].

For generality, we only state the following assumptions about the error estimate for the eigenpair

approximation (λ̄h, ūh) defined by (2.4) (see, e.g., [10, 12] for practical examples).

Assumption B1. The eigenpair approximation (λ̄h, ūh) of (2.4) has the following error estimates:

‖u− ūh‖a � (1 + Cuηa(Vh))δh(u), (2.8)

|λ− λ̄h|+ ‖u− ūh‖0 � Cuηa(Vh)‖u− ūh‖a, (2.9)

where ηa(Vh) depends on the finite dimensional space Vh and has the following property:

lim
h→0

ηa(Vh) = 0, ηa(Ṽh) � ηa(Vh) if Vh ⊂ Ṽh ⊂ V. (2.10)

Here and hereafter Cu is some constant depending on regularity of mesh and the exact eigenfunction but

independent of the mesh size h.

Assumption B2. Assume V h is a subspace of Vh. Let us define the eigenpair approximation (λh, uh)

by solving the nonlinear eigenvalue problem as follows:

Find

(λh, uh) ∈ R× V h
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such that b(uh, uh) = 1 and

a(uh, vh) = λhb(uh, vh), ∀ vh ∈ V h. (2.11)

Then the following error estimates hold:

‖ūh − uh‖a � (1 + Cuηa(V
h))δh(ūh), (2.12)

|λ̄h − λh|+ ‖ūh − uh‖0 � Cuηa(V
h)‖ūh − uh‖a, (2.13)

where

δh(ūh) := inf
vh∈V h

‖ūh − vh‖a. (2.14)

Remark 2.1. Actually, Assumptions B1 and B2 come from the analysis of error estimates for nonlinear

eigenvalue problems by the finite dimensional approximations. The interested readers can check these

assumptions for some concrete problems discretized by the finite element method.

3 Full multigrid algorithm for nonlinear eigenvalue problems

In this section, a type of full multigrid method is presented. In order to describe the full multigrid

method, we first introduce the sequence of finite element spaces. We generate a coarse mesh TH with the

mesh size H and the coarse linear finite element space VH is defined on the mesh TH . Then a sequence

of triangulations Thk
of Ω ⊂ R

d is determined as follows. Suppose Th1 (produced from TH by regular

refinements) is given and let Thk
be obtained from Thk−1

via one regular refinement step (produce βd

subelements) such that

hk =
1

β
hk−1, k = 2, . . . , n, (3.1)

where the positive number β denotes the refinement index and is larger than 1 (always equals 2). Based

on this sequence of meshes, the corresponding nested linear finite element spaces can be built such that

VH ⊆ Vh1 ⊂ Vh2 ⊂ · · · ⊂ Vhn . (3.2)

The sequence of finite element spaces

Vh1 ⊂ Vh2 ⊂ · · · ⊂ Vhn

and the finite element space VH have the following relations of approximation accuracy (see [9, 15]):

ηa(VH) � Cδh1(u), δhk
(u) =

1

β
δhk−1

(u), k = 2, . . . , n. (3.3)

3.1 One correction step

In order to design the full multigrid method, we first introduce a one correction step in this subsection.

Assume we have obtained an eigenpair approximation

(λ
(�)
hk
, u

(�)
hk
) ∈ R× Vhk

,

where (�) denotes the �-th iteration step in the k-th level finite element space Vhk
. In this subsection, a

type of correction step to improve the accuracy of the current eigenpair approximation (λ
(�)
hk
, u

(�)
hk
) will be

given as follows.
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Algorithm 3.1 (One correction step). 1. Define the following auxiliary boundary value problem: Find

û
(�+1)
hk

∈ Vhk
such that

â(û
(�+1)
hk

, vhk
) = (λ

(�)
hk
u
(�)
hk

− f(x, u
(�)
hk
), vhk

), ∀ vhk
∈ Vhk

. (3.4)

Performmmultigrid iteration steps with the initial value u
(�)
hk

to obtain a new eigenfunction approximation

ũ
(�+1)
hk

∈ Vhk
by

ũ
(�+1)
hk

= MG(Vhk
, λ

(�)
hk
u
(�)
hk

− f(x, u
(�)
hk
), u

(�)
hk
,m), (3.5)

where Vhk
denotes the working space for the multigrid iteration,

λ
(�)
hk
u
(�)
hk

− f(x, u
(�)
hk

)

is the right-hand side term of the linear equation, u
(�)
hk

denotes the initial guess and m is the number of

multigrid iteration times.

2. Define a new finite element space

VH,hk
= VH + span{ũ(�+1)

hk
}

and solve the following eigenvalue problem: Find

(λ
(�+1)
hk

, u
(�+1)
hk

) ∈ R× VH,hk

such that

b(u
(�+1)
hk

, u
(�+1)
hk

) = 1

and

a(u
(�+1)
hk

, vH,hk
) = λ

(�+1)
hk

b(u
(�+1)
hk

, vH,hk
), ∀ vH,hk

∈ VH,hk
. (3.6)

In order to simplify the notation and summarize the above two steps, we define

(λ
(�+1)
hk

, u
(�+1)
hk

) = EigenMG(VH , λ
(�)
hk
, u

(�)
hk
, Vhk

,m).

Theorem 3.1. Assume the multigrid iteration

ũ
(�+1)
hk

= MG(Vhk
, λ

(�)
hk
u
(�)
hk

− f(x, u
(�)
hk

), u
(�)
hk
,m)

of (3.4) has the following error reduction rate:

‖û(�+1)
hk

− ũ
(�+1)
hk

‖a � θ‖û(�+1)
hk

− u
(�)
hk
‖a, (3.7)

and the given eigenpair approximation (λ
(�)
hk
, u

(�)
hk

) has the following estimate:

|λ̄hk
− λ

(�)
hk

|+ ‖ūhk
− u

(�)
hk
‖0 � Cuηa(VH)‖ūhk

− u
(�)
hk
‖a. (3.8)

Under Assumptions A and B2, the resultant eigenpair approximation

(λ
(�+1)
hk

, u
(�+1)
hk

) ∈ R× Vhk

produced by performing Algorithm 3.1 has the following error estimates:

‖ūhk
− u

(�+1)
hk

‖a � γ‖ūhk
− u

(�)
hk
‖a, (3.9)

|λ̄hk
− λ

(�+1)
hk

|+ ‖ūhk
− u

(�+1)
hk

‖0 � Cuηa(VH)‖ūhk
− u

(�+1)
hk

‖a, (3.10)

where

γ = θ + (Cuθ + (1 + θ)(C̃u + Cf )(1 + Cuηa(VH)))ηa(VH) (3.11)

and C̃u depends on the desired eigenpair.
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Proof. From (2.4), (2.7) and (3.4), we have

â(ūhk
− û

(�+1)
hk

, vhk
) = ((λ̄hk

ūhk
− λ

(�)
hk
u
(�)
hk
)− (f(x, ūhk

)− f(x, u
(�)
hk

)), vhk
),

� |λ̄hk
|‖ūhk

− u
(�)
hk
‖0‖vhk

‖0 + |λ̄hk
− λ

(�)
hk

|‖u(�)hk
‖‖vhk

‖0
+ Cf‖ūhk

− u
(�)
hk
‖0‖vhk

‖a, ∀ vhk
∈ Vhk

.

It leads to the following estimates by using the property of â(·, ·) and (3.8):

‖ūhk
− û

(�+1)
hk

‖a � (C̃u + Cf )ηa(VH)‖ūhk
− u

(�)
hk
‖a, (3.12)

where C̃u depends on the desired eigenpair.

Combining (3.7) and (3.12) leads to the following error estimate for ũ
(�+1)
hk

:

‖û(�+1)
hk

− ũ
(�+1)
hk

‖a � θ‖û(�+1)
hk

− u
(�)
hk
‖a

� θ(‖û(�+1)
hk

− ūhk
‖a + ‖ūhk

− u
(�)
hk
‖a)

� θ(1 + (C̃u + Cf )ηa(VH))‖ūhk
− u

(�)
hk

‖a. (3.13)

Then from (3.12) and (3.13), we have the following inequalities:

‖ūhk
− ũ

(�+1)
hk

‖a � ‖ūhk
− û

(�+1)
hk

‖a + ‖û(�+1)
hk

− ũ
(�+1)
hk

‖a
� (θ + (1 + θ)(C̃u + Cf )ηa(VH))‖ūhk

− u
(�)
hk
‖a. (3.14)

The eigenvalue problem (3.6) can be regarded as a finite dimensional subspace approximation of the

eigenvalue problem (2.4). Using (2.12) and (2.13) in Assumption B2, the following estimates hold:

‖ūhk
− u

(�+1)
hk

‖a � (1 + Cuηa(VH,hk
)) inf

vH,hk
∈VH,hk

‖ūhk
− vH,hk

‖a

� (1 + Cuηa(VH))‖ūhk
− ũ

(�+1)
hk

‖a
� γ‖ūhk

− u
(�)
hk
‖a, (3.15)

and

|λ̄hk
− λ

(�+1)
hk

|+ ‖ūhk
− u

(�+1)
hk

‖0 � Cuηa(VH,hk
)‖ūhk

− u
(�+1)
hk

‖a
� Cuηa(VH)‖ūhk

− u
(�+1)
hk

‖a. (3.16)

Then we obtain the desired results (3.9) and (3.10) and the proof is complete.

Remark 3.2. For simplicity, we assume solving the nonlinear eigenvalue problem (3.6) with enough

accuracy in Step 2 of Algorithm 3.1 since it only needs small computational work. It is obvious that

we can also give the standard analysis for the case that we solve the nonlinear eigenvalue problem (3.6)

approximately.

3.2 Full multigrid method for nonlinear eigenvalue problems

In this subsection, based on the one correction step defined in Algorithm 3.1, a type of full multigrid

scheme will be introduced. The optimal error estimate with the optimal computational work will be

deduced for this type of full multigrid method.

Since the multigrid method for the boundary value problem has the uniform error reduction rate

(see [9, 17]), we can choose suitable m such that θ < 1 in (3.7). From the definition (3.11) for γ, it is

obvious that γ < 1 when the mesh size H of TH is small enough. Based on these properties, we can

design a full multigrid method for nonlinear eigenvalue problems as follows.
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Algorithm 3.2 (Full multigrid scheme). 1. Solve the following nonlinear eigenvalue problem in Vh1 :

Find

(λh1 , uh1) ∈ R× Vh1

such that b(uh1 , uh1) = 1 and

a(uh1 , vh1) = λh1b(uh1 , vh1), ∀ vh1 ∈ Vh1 .

Solve this nonlinear eigenvalue problem to get the desired eigenpair approximation

(λh1 , uh1) ∈ R× Vh1 .

2. For k = 2, . . . , n, do the following iterations:

• Set

λ
(0)
hk

= λhk−1
and u

(0)
hk

= uhk−1
.

• Perform the following multigrid iterations:

(λ
(�+1)
hk

, u
(�+1)
hk

) = EigenMG(VH , λ
(�)
hk
, u

(�)
hk
, Vhk

,m), for � = 0, . . . , p− 1.

• Set

λhk
= λ

(p)
hk

and uhk
= u

(p)
hk
.

End Do

Finally, we obtain an eigenpair approximation (λhn , uhn) ∈ R× Vhn in the finest space.

Theorem 3.3. Assume the conditions of Theorem 3.1 and Assumption B1 hold. After implementing

Algorithm 3.2, the resultant eigenpair approximation (λhn , uhn) has the following error estimate:

‖ūhn − uhn‖a � C
γp

1− βγp
δhn(u), (3.17)

|λ̄hn − λhn |+ ‖ūhn − uhn‖0 � C
γp

1− βγp
ηa(VH)δhn(u), (3.18)

under the condition βγp < 1.

Proof. Define

ek := ūhk
− uhk

.

Then from Step 1 in Algorithm 3.2, it is obvious that e1 = 0. For k = 2, . . . , n, from Assumption B1 and

Theorem 3.1, we have

‖ek‖a � γp‖ūhk
− uhk−1

‖a
� γp(‖ūhk

− ūhk−1
‖a + ‖ūhk−1

− uhk−1
‖a)

� γp(Cδhk
(u) + ‖ek−1‖a). (3.19)

By the iterating inequality (3.19) and the condition βγp < 1, the following inequalities hold:

‖en‖a � Cγpδhn(u) + Cγ2pδhn−1(u) + · · ·+ Cγ(n−1)pδh2(u)

� C

n∑
k=2

γ(n−k+1)pδhk
(u) = C

( n∑
k=2

(βγp)n−k

)
γpδhn(u)

� C
γp

1− βγp
δhn(u). (3.20)

For such choice of p, we arrive at the desired result (3.17) and (3.18) can be obtained by (2.13), (3.10)

and (3.17).

Remark 3.4. The good convergence rate of the multigrid method for boundary value problems leads

to that we do not need to choose large m and p (see [9, 17, 25, 33]).
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3.3 Estimate of the computational work

In this subsection, we turn our attention to the estimate of computational work for the full multigrid

method defined in Algorithm 3.2. It will be shown that the full multigrid method makes solving the

nonlinear eigenvalue problem need almost the same work as solving the corresponding linear boundary

value problems.

First, we define the dimension of each level finite element space as Nk := dimVhk
. Then we have

Nk ≈
(
1

β

)d(n−k)

Nn, k = 1, 2, . . . , n. (3.21)

The computational work for the second step in Algorithm 3.1 is different from the linear eigenvalue

problems [20, 28–30]. In this step, we need to solve a nonlinear eigenvalue problem (3.6). Always, some

type of nonlinear iteration method (self-consistent iteration or Newton type iteration) is adopted to solve

this nonlinear eigenvalue problem. In each nonlinear iteration step, it is required to assemble the matrix

on the finite element space VH,hk
(k = 2, . . . , n) which needs the computational work O(Nk). Fortunately,

the matrix assembling can be carried out by the parallel way easily in the finite element space since it

has no data transfer.

Theorem 3.5. Assume we use ϑ computing-nodes in Algorithm 3.2, the nonlinear eigenvalue solving

in the coarse spaces VH,hk
(k = 1, . . . , n) and Vh1 need work O(MH) and O(Mh1), respectively, and the

work of the multigrid solver

MG(Vhk
, λ

(�)
hk
u
(�)
hk

− f(x, u
(�)
hk

), u
(�)
hk
,m)

in each level space Vhk
is O(Nk) for k = 2, 3, . . . , n. Let � denote the nonlinear iteration times when

we solve the nonlinear eigenvalue problem (3.6). Then in each computational node, the work involved in

Algorithm 3.2 has the following estimate:

Total work = O
((

1 +
�

ϑ

)
Nn +MH logNn +Mh1

)
. (3.22)

Proof. We use Wk to denote the work involved in each correction step on the k-th finite element

space Vhk
. From the definition of Algorithm 3.1, we have the following estimate:

Wk = O
(
Nk +MH +�

Nk

ϑ

)
. (3.23)

Based on the property (3.21), iterating (3.23) leads to

Total work =

n∑
k=1

Wk = O
(
Mh1 +

n∑
k=2

(
Nk +MH +�

Nk

ϑ

))

= O
( n∑

k=2

(
1 +

�

ϑ

)
Nk + (n− 1)MH +Mh1

)

= O
( n∑

k=2

(
1

β

)d(n−k)(
1 +

�

ϑ

)
Nn +MH logNn +Mh1

)

= O
((

1 +
�

ϑ

)
Nn +MH logNn +Mh1

)
. (3.24)

This is the desired result and we complete the proof.

Remark 3.6. Since we have a good enough initial solution ũhk+1
in the second step of Algorithm 3.1,

then solving the nonlinear eigenvalue problem (3.6) always does not need many nonlinear iteration times

(� � 3 in our numerical experiments). In this case, the complexity in each computational node will

be O(Nn) provided MH 
 Nn and Mh1 � Nn. For more difficult nonlinear eigenvalue problems, the

complexity in each computational node can also be bounded to O(Nn) by the parallel way with enough

computational nodes.
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4 Numerical results

In this section, two numerical examples are presented to illustrate the efficiency of the full multigrid

scheme proposed in this paper.

Example 4.1. In this example, we consider the ground state solution of Gross-Pitaevskii equation

(GPE) for Bose-Einstein condensation (BEC),⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−Δu+Wu+ ζ|u|2u = λu, in Ω,

u = 0, on ∂Ω,∫
Ω

u2dΩ = 1,

(4.1)

where Ω denotes the three dimensional domain [0, 1]3, ζ = 1 and W = x21 + x22 + x23.

From the results [10, 32], Assumptions A, B1 and B2 hold for the GPE (4.1). So the proposed full

multigrid method can be applied to the GPE (4.1).

The sequence of finite element spaces is constructed by linear elements on a series of meshes produced

by regular refinement with β = 2. In each level of the full multigrid scheme defined in Algorithm 3.2,

the parameters are set to be m = 1, p = 1. In addition, we take 3 conjugate gradient smooth steps for

the presmoothing and postsmoothing iteration step in the multigrid iteration in Step 1 of Algorithm 3.1.

Since the exact solution is not known, an adequate accurate approximation is chosen as the exact solution

for our numerical test. Figure 1 shows the corresponding initial mesh.

Figure 2 gives the corresponding numerical results of Algorithm 3.2. From Figure 2, we can find that

the full multigrid scheme can obtain the optimal error estimates for both eigenvalue and eigenfunction

approximations.

In order to show the efficiency of Algorithm 3.2, we provide the CPU time for Algorithm 3.2. Here, we

choose the Package ARPACK as the eigenvalue solving tool and the full multigrid scheme is implemented

on the machine PowerEdge R720 with the linux system. The corresponding results are presented in Table

1 which shows the efficiency and linear complexity of Algorithm 3.2.

Example 4.2. In the second example, we consider the GPE with the coefficient

ζ = 100 and W = x21 + x22 + x23

on the domain Ω = [0, 1]3.

The initial mesh used in this example is the one shown in Figure 1. Numerical results are presented

in Table 2 and Figure 3. It is obvious that Table 2 and Figure 3 also show the efficiency and linear

complexity of Algorithm 3.2.

Figure 1 The initial mesh for Example 4.1
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Figure 2 (a) The errors of the full multigrid method for the ground state solution of GPE, where λh and uh denote

the numerical eigenvalue and eigenfunction by Algorithm 3.2. (b) CPU time of Algorithm 3.2 for Example 4.1

Table 1 The CPU time for Example 4.1 by Algorithm 3.2

Number of levels Number of elements Time for Algorithm 3.2

1 3,072 0.45

2 24,576 1.55

3 196,608 8.08

4 1,572,846 63.01

5 12,582,912 519.86

Table 2 The CPU time for Example 4.2 by Algorithm 3.2

Number of levels Number of elements Time for Algorithm 3.2

1 24,576 4.32

2 196,608 11.43

3 1,572,846 70.88

4 12,582,912 577.52
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Figure 3 (a) The errors of the full multigrid method for the ground state solution of GPE, where λh and uh denote

the numerical eigenvalue and eigenfunction by Algorithm 3.2. (b) CPU time of Algorithm 3.2 for Example 4.2
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5 Concluding remarks

In this paper, a type of full multigrid method is introduced for nonlinear eigenvalue problems. The pro-

posed method is based on the combination of the multilevel correction technique for nonlinear eigenvalue

problems and the multigrid iteration for linear boundary value problems. The multilevel correction tech-

nique can transform the nonlinear eigenvalue solving into a series of solutions of linear boundary value

problems on a sequence of finite element spaces. The multigrid iteration is one of the efficient iteration

which has uniform error reduction rate.

The multigrid iteration can also be replaced by other types of efficient iteration schemes such as

algebraic multigrid method, the type of preconditioned schemes based on the subspace decomposition

and subspace corrections (see [9,33]) and the domain decomposition method (see [27,34]). Furthermore,

the multilevel correction method can be coupled with the adaptive refinement technique (see [16,18,35])

to design a multilevel adaptive finite element method for nonlinear eigenvalue problems.
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