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Abstract Let RI(m,n) be the classical domain of type I in Cm×n with 1 6 m 6 n. We obtain the optimal

estimates of the eigenvalues of the Fréchet derivative Df(Z̊) at a smooth boundary fixed point Z̊ of RI(m,n)

for a holomorphic self-mapping f of RI(m,n). We provide a necessary and sufficient condition such that the

boundary points of RI(m,n) are smooth, and give some properties of the smooth boundary points of RI(m,n).

Our results extend the classical Schwarz lemma at the boundary of the unit disk ∆ to RI(m,n), which may be

applied to get some optimal estimates in several complex variables.
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1 Introduction

The Schwarz lemma is one of the most influential results in the classical complex analysis, which is

widely applied in many branches of mathematical research such as geometric function theory, hyperbolic

geometry, complex dynamical systems and theory of quasi-conformal mappings. We refer to [1, 4, 5, 11]

for a more complete insight on the Schwarz lemma.

Cartan first studied the Schwarz lemma in several complex variables in [3]. In fact, this is the well-

known rigidity theorem of Cartan [3].

Theorem 1.1 (See [3]). Suppose that Ω is a bounded domain in Cn and f : Ω → Ω is a holomorphic

mapping such that f(z) = z + o(∥z − z0∥) as z → z0 for some z0 ∈ Ω. Then f(z) ≡ z.

Look discussed Schwarz lemma of several complex variables in [17], which extends the result of Car-

tan [3]. This result is stated as follows.

Theorem 1.2 (See [17]). Let Ω be a bounded domain in Cn, and let f be a holomorphic self-mapping

of Ω which fixes a point p ∈ Ω. Then

(1) the eigenvalues of Jf (p) all have modulus not exceeding 1;

(2) | det Jf (p)| 6 1;

(3) if | detJf (p)| = 1, then f is a biholomorphism of Ω.
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Naturally, higher-dimensional Schwarz lemma at the boundary has attracted the attention of many

mathematicians as well. From Theorem 1.1, Burns and Krantz [2] first considered a new rigidity problem

of holomorphic mappings at the boundary points. They obtained a rigidity theorem for holomorphic

mappings on the bounded strongly pseudoconvex domain in Cn. Huang strengthened the Burns-Krantz

result for holomorphic mappings with an interior fixed point in [9]. See [8,10] for more on these matters.

Here is one of typical results in these papers.

Theorem 1.3 (See [9]). Let Ω ⊂⊂ Cn (n > 1) be a simply connected pseudoconvex domain with C∞

boundary. Suppose that p ∈ ∂Ω is a strongly pseudoconvex point. If f : Ω → Ω is a holomorphic mapping

such that f(z0) = z0 for some z0 ∈ Ω and f(z) = z + o(∥z − p∥2) as z → p, then f(z) ≡ z.

It is natural to consider that what are the multidimensional generalizations of the boundary Schwarz

lemma corresponding to Theorem 1.2. It is this problem which motivated our study in this paper.

Recently, we first established the Schwarz lemma at the boundary of the unit ball in Cn, and gave some

applications in the geometric function theory of several complex variables in [16]. We discussed the same

problem on the unit polydisk and the strongly pseudoconvex domain, respectively in [15, 18]. Our main

purpose here is to study the boundary Schwarz lemma on the classical domain of type I. We also study

the properties of the smooth boundary points of the classical domain of type I.
The rest of the article is organized as follows. In Section 2, we give some characterizations of the

smooth boundary points of RI(m,n), which will be used in the subsequent section. In Section 3, we

establish the Schwarz lemma at the boundary on the classical domain of type I, i.e., we obtain the

optimal estimates of the eigenvalues of the Fréchet derivative of holomorphic self-mappings of RI(m,n)

at a smooth boundary fixed point of RI(m,n). In Section 4, we present some conclusions of the paper.

2 Preliminaries

2.1 Notation

Let Cm×n be the set of all m × n complex matrices with 1 6 m 6 n. For any Z,W ∈ Cm×n, the inner

product and the corresponding norm are given by

⟨Z,W ⟩ =
mX
i=1

nX
j=1

zijwij , ∥Z∥ = ⟨Z,Z⟩ 1
2 ,

where Z = (zij)m×n and W = (wij)m×n. It is well known that as real vectors in R2mn, Z and W are

orthogonal if and only if ℜ⟨Z,W ⟩ = 0. Throughout this paper, denote by Z ′ and Z, respectively, the

transpose and the complex conjugate of Z.

Let A be a square matrix of order m and let B be a square matrix of order n. Then for each

Z,W ∈ Cm×n,

⟨AZ,W ⟩ =
mX

k=1

nX
l=1

(AZ)klwkl =
mX

k=1

nX
l=1

� mX
i=1

akizil

�
wkl

=
mX
i=1

nX
l=1

zil

� mX
k=1

akiwkl

�
=

mX
i=1

nX
l=1

zil(A
′
W )il = ⟨Z,A′

W ⟩,

where A = (aij)m×m. Similarly, we have

⟨ZB,W ⟩ = ⟨Z,WB
′⟩, ⟨Z,AW ⟩ = ⟨A′

Z,W ⟩, ⟨Z,WB⟩ = ⟨ZB
′
,W ⟩.

Moreover, if U is a unitary square matrix of order m and V is a unitary square matrix of order n, then

⟨UZV,UWV ⟩ = ⟨Z,W ⟩.

The classical domain of type I, denoted by RI(m,n), is defined as

RI(m,n) = {Z ∈ Cm×n : Im − ZZ
′
> 0},
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where Im is the unit square matrix of order m, and the inequality sign means that the left-hand side is

positive definite. It is easy to check that RI(m,n) is a bounded convex circular domain in Cm×n.

Let ∂RI(m,n) be the boundary of RI(m,n), and write C1×m as Cm. Let Bm ⊂ Cm be the open unit

ball under the Euclidean metric. The Minkowski functional ρ(Z) of RI(m,n) is defined by

ρ(Z) = max{∥αZ∥ : α ∈ ∂Bm}, Z ∈ Cm×n,

where ∂Bm is the boundary of Bm. By [7], we know that ρ(Z) is a Banach norm of Cm×n, (ρ(Z))2 is

the largest eigenvalue of ZZ
′
, and

RI(m,n) = {Z ∈ Cm×n : ρ(Z) < 1}.

In particular, RI(1, n) is just the open unit ball Bn for which the Minkowski functional is ρ(Z) = ∥Z∥.
For the unitary square matrix U of order m and the unitary square matrix V of order n, it is easy to see

that

Z ∈ RI(m,n) ⇔ UZV ∈ RI(m,n) and Z ∈ ∂RI(m,n) ⇔ UZV ∈ ∂RI(m,n).

Since Z ∈ RI(m,n) means that the elements in the principal diagonal of Im − ZZ
′
are positive, we

have |zij | < 1 for i = 1, . . . ,m and j = 1, . . . , n. We also obtain ρ(UZV ) = ρ(Z) for each Z ∈ Cm×n.

Assume that f : RI(m,n) → Cm×n is a holomorphic mapping. The Fréchet derivative of f at

a ∈ RI(m,n) is defined as

(Df(a)(W ))ij =
mX
s=1

nX
t=1

∂fij
∂zst

(a)wst, W ∈ Cm×n.

It is easy to see that Df(a) is a linear transformation from Cm×n to Cm×n and df(Z) |Z=a = Df(a)(dZ).

The adjoint transformation of Df(a) is denoted by D∗f(a), i.e.,

⟨D∗f(a)(Z),W ⟩ = ⟨Z,Df(a)(W )⟩, Z ∈ Cm×n, W ∈ Cm×n.

Obviously, D∗f(a) is also a linear transformation from Cm×n to Cm×n. Moreover,

(D∗f(a)(Z))ij =
mX
s=1

nX
t=1

∂fst

∂zij
(a)zst.

In fact, let eij ∈ Cm×n be a matrix which has 1 at i-th row and j-th column, and 0’s elsewhere. Then

(D∗f(a)(Z))ij = ⟨D∗f(a)(Z), eij⟩ = ⟨Z,Df(a)(eij)⟩ =

Z,

∂f

∂zij
(a)

·
=

mX
s=1

nX
t=1

∂fst

∂zij
(a)zst.

It is clear that λ is an eigenvalue of Df(a) if and only if λ is an eigenvalue of D∗f(a).

2.2 Smooth boundary points of RI(m,n)

For Z̊ ∈ Cm×n, by [13] we know that Z̊ has the following polar decomposition, i.e.,

Z̊ = U

�
r1 0 · · · 0 0 · · · 0
0 r2 · · · 0 0 · · · 0
...

...
. . .

...
...
. . .

...

0 0 · · · rm 0 · · · 0

�
V,

where r1 > r2 > · · · > rm > 0, U is a unitary square matrix of order m and V is a unitary square matrix

of order n. We give the properties of the smooth boundary points of RI(m,n).
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Proposition 2.1. Suppose that Z̊ ∈ Cm×n has the polar decomposition above. Then Z̊ is a smooth

boundary point of RI(m,n) if and only if 1 = r1 > r2 > · · · > rm > 0. Furthermore, ρ(Z) is holomorphic

about Z and Z near Z̊, and the gradient of ρ at Z̊, i.e.,

∇ρ(Z̊) = U

�
1 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
...
...
. . .

...
...
. . .

...

0 0 · · · 0 0 · · · 0

�
V

is the unit outward normal vector to ∂RI(m,n) at Z̊ with ⟨Z̊,∇ρ(Z̊)⟩ = 1.

Proof. It is easy to verify that Z̊ ∈ ∂RI(m,n) if and only if r1 = 1. Suppose that 1 = r1 > r2 > · · · >
rm > 0. Assume that the characteristic polynomial of ZZ

′
is

Φ(x,Z) = det(xIm − ZZ
′
) = xm − tr(ZZ

′
)xm−1 + · · ·+ (−1)m det(ZZ

′
).

Then (ρ(Z))2 is a root of Φ(x,Z) near Z̊. Notice that

Φ(1, Z̊) = 0,
∂Φ

∂x
(1, Z̊) = [(x− 1)(x− r22) · · · (x− r2m)]′ |x=1 =

mY
k=2

(1− r2k) > 0. (2.1)

It follows from the implicit function existence theorem that (ρ(Z))2 is holomorphic about Z and Z

near Z̊, and satisfies (ρ(Z̊))2 = 1. Hence, ρ(Z) is also holomorphic about Z and Z near Z̊. Now, we

compute ∇ρ(Z̊). Since Φ((ρ(Z))2, Z) = det((ρ(Z))2Im − ZZ
′
) ≡ 0 near Z̊, we have

∂Φ

∂x
(1, Z̊)2ρ(Z̊)

∂ρ

∂zij
(Z̊) +

∂Φ

∂zij
(1, Z̊) = 0.

This, together with (2.1), implies

2
mY

k=2

(1− r2k)
∂ρ

∂zij
(Z̊) +

∂Φ

∂zij
(1, Z̊) = 0. (2.2)

On the other hand,

Φ(x,Z) |(x,Z)=(1,Z̊) = det(xIm − ZZ
′
) |(x,Z)=(1,Z̊) = det(Im − U

′
ZZ

′
U) |Z=Z̊,

Im − U
′
Z̊Z̊

′
U =

�
0 0 · · · 0

0 1− r22 · · · 0
...

...
. . .

...

0 0 · · · 1− r2m

�
and the algebraic cofactor of the element at s-th row and t-th column for det(Im − U

′
Z̊Z̊

′
U) is

Jst =

8><>: mY
k=2

(1− r2k), (s, t) = (1, 1),

0, (s, t) ̸= (1, 1).

Thus, we obtain

∂Φ

∂zij
(1, Z̊) = −

mX
s,t=1

∂

∂zij
(U

′
ZZ

′
U)st |Z=Z̊Jst

= −
mY

k=2

(1− r2k)
∂

∂zij
(U

′
ZZ

′
U)11 |Z=Z̊
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= −
mY

k=2

(1− r2k)
∂

∂zij

� mX
l=1

nX
s=1

mX
t=1

ul1zlsztsut1

� ����
Z=Z̊

= −
mY

k=2

(1− r2k)
mX
l=1

ul1z̊ljui1

= −
mY

k=2

(1− r2k)
mX
l=1

ul1ui1

� mX
s=1

ulsrsvsj

�
= −

mY
k=2

(1− r2k)ui1v1j

= −
mY

k=2

(1− r2k)

�
U

�
1 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
...
...
. . .

...
...
. . .

...

0 0 · · · 0 0 · · · 0

�
V

�
ij

,

where U = (uij)m×m, V = (vij)n×n and Z̊ = (̊zij)m×n. It follows from this and (2.2) that

(∇ρ(Z̊))ij = 2
∂ρ

∂zij
(Z̊) =

�
U

�
1 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
...
...
. . .

...
...
. . .

...

0 0 · · · 0 0 · · · 0

�
V

�
ij

.

That means

∇ρ(Z̊) = U

�
1 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
...
...
. . .

...
...
. . .

...

0 0 · · · 0 0 · · · 0

�
V ̸= 0.

Hence, ∂RI(m,n) is smooth near Z̊. Moreover, since ⟨UZV,UWV ⟩ = ⟨Z,W ⟩ for any Z,W ∈ Cm×n, we

get ⟨Z̊,∇ρ(Z̊)⟩ = 1.

Conversely, suppose that Z̊ is a smooth boundary point of RI(m,n). Assume

1 = r1 = r2 > · · · > rm > 0.

Then any two nonzero outward normal vectors to ∂RI(m,n) at Z̊ have the same direction. Now, we

consider the following two different (2mn− 1)-dimensional real affine spaces through Z̊ in Cm×n:

Σ1 = {Z̊ + UαV : α ∈ Cm×n, ℜα11 = 0} and Σ2 = {Z̊ + UαV : α ∈ Cm×n, ℜα22 = 0}.

To simplify our notation, set

T1 =

0BBBBBBB@
1 0 0 · · · 0 0 · · · 0
0 0 0 · · · 0 0 · · · 0
0 0 0 · · · 0 0 · · · 0
...
...
...
. . .

...
...
. . .

...

0 0 0 · · · 0 0 · · · 0

1CCCCCCCA and T2 =

0BBBBBBB@
0 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
0 0 0 · · · 0 0 · · · 0
...
...
...
. . .

...
...
. . .

...

0 0 0 · · · 0 0 · · · 0

1CCCCCCCA .

For any Z̊ + UαV ∈ Σ1, we have ℜ⟨UαV,UT1V ⟩ = ℜα11 = 0. This shows that UT1V is a normal vector

to Σ1 at Z̊ (see Figure 1).
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UT1V

Σ1

UWV Z

RI (m,n)

Figure 1 The affine tangent space and normal vector to ∂RI(m,n) at Z̊

Similarly, UT2V is also a normal vector to Σ2 at Z̊. On the other hand, for each UWV ∈ RI(m,n)

we obtain

ℜ⟨Z̊ − UWV,UT1V ⟩ = ℜ

µ
U

0BBBBBBB@
1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
0 0 r3 · · · 0 0 · · · 0
...
...

...
. . .

...
...
. . .

...

0 0 0 · · · rm 0 · · · 0

1CCCCCCCAV − UWV,UT1V

¿
= 1−ℜw11 > 0.

This implies that RI(m,n) is located on one side of Σ1, i.e., Σ1 is an affine tangent space to ∂RI(m,n)

at Z̊. Similar to the above proof, we know that Σ2 is an affine tangent space to ∂RI(m,n) at Z̊ as well.

Because Z̊ is a smooth boundary point of RI(m,n), this contradicts with Σ1 ̸= Σ2. Therefore, we have

1 = r1 > r2 > · · · > rm > 0. The proof is complete.

2.3 Some lemmas

Let ∆ be the open unit disk in the complex plane C. The following lemma is the classical Schwarz lemma

at the boundary.

Lemma 2.2 (See [5]). Let f : ∆ → ∆ be a holomorphic function. If f is holomorphic at z = 1 with

f(0) = 0 and f(1) = 1, then f ′(1) > 1. Moreover, the inequality is sharp.

If the condition f(0) = 0 is removed, then one has the following estimate instead:

f ′(1) > |1− f(0)|2

1− |f(0)|2
> 0 (2.3)

by applying Lemma 2.2 to g(z) = 1−f(0)
1−f(0)

f(z)−f(0)

1−f(0)f(z)
.

Lemma 2.3 (See [13]). Let

a = A

�
l1 0 · · · 0 0 · · · 0
0 l2 · · · 0 0 · · · 0
...

...
. . .

...
...
. . .

...

0 0 · · · lm 0 · · · 0

�
B ∈ RI(m,n).

Write

Q = A

�
1√
1−l21

0

. . .

0 1√
1−l2m

�
A

′
, R = B

′

0BBBBBB@
1√
1−l21

0

. . .

1√
1−l2m

0 In−m

1CCCCCCAB.
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Here, 1 > l1 > · · · > lm > 0, A is a unitary square matrix of order m and B is a unitary square matrix

of order n. Then for any Z ∈ RI(m,n),

φa(Z) = Q−1(Im − Za′)−1(a− Z)R

is a holomorphic automorphism of RI(m,n), which interchanges 0 and a. Moreover, φa is biholomorphic

in a neighborhood of RI(m,n), and

φ−1
a = φa, dφa(Z) |Z=a = −QdZR, dφa(Z) |Z=0 = −Q−1dZR−1.

From now on, we always denote by F (Z, ξ) the infinitesimal form of Carathéodory metric or Kobayashi

metric on RI(m,n), where Z ∈ RI(m,n) and ξ ∈ Cm×n (see [12] for details).

Corollary 2.4. Let ρ(Z) be the Minkowski functional of RI(m,n). Under the notation of Lemma 2.3,

for any ξ ∈ Cm×n,

F (a, ξ) = ρ(QξR).

Proof. Since φa(Z) is a holomorphic automorphism of RI(m,n) and F (Z, ξ) is a biholomorphically

invariant metric on RI(m,n), we get

F (a, ξ) = F (0, Dφa(a)(ξ)).

This, together with Dφa(a)(dZ) = dφa(Z) |Z=a and Lemma 2.3, yields

F (a, ξ) = F (0, Dφa(a)(ξ)) = F (0,−QξR) = F (0, QξR).

Thus, by [6, Lemma 3.2], we have F (a, ξ) = F (0, QξR) = ρ(QξR). The proof is complete.

Lemma 2.5. Let Z̊ be a smooth boundary point of RI(m,n). Then

|⟨W,∇ρ(Z̊)⟩| 6 ρ(W )

for any W ∈ Cm×n.

Proof. Without loss of generality, we may assume W ̸= 0. Then W
ρ(W ) ∈ ∂RI(m,n). Notice that

RI(m,n) is a bounded convex circular domain. Then for each θ ∈ R, we obtain

ℜ

Z̊ − eiθ

W

ρ(W )
,∇ρ(Z̊)

·
> 0.

It follows from this and Proposition 2.1 that

ℜ eiθ

ρ(W )
⟨W,∇ρ(Z̊)⟩ 6 ℜ⟨Z̊,∇ρ(Z̊)⟩ = 1.

This implies |⟨W,∇ρ(Z̊)⟩| 6 ρ(W ). The proof is complete.

Lemma 2.6 (See [14]). Let f : RI(m,n) → RI(m,n) be a holomorphic mapping and let f(0) = 0.

Then for any Z ∈ RI(m,n),

ρ(f(Z)) 6 ρ(Z).

3 Main result

Now, we establish the Schwarz lemma at the smooth boundary points for holomorphic self-mappings

of RI(m,n).

Let

Z̊ = U

�
r1 0 · · · 0 0 · · · 0
0 r2 · · · 0 0 · · · 0
...

...
. . .

...
...
. . .

...

0 0 · · · rm 0 · · · 0

�
V
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be a smooth boundary point of RI(m,n), where U is a unitary square matrix of order m, V is a unitary

square matrix of order n and 1 = r1 > r2 > · · · > rm > 0. Then Proposition 2.1 implies that the tangent

space TZ̊(∂RI(m,n)) to ∂RI(m,n) at Z̊ is

TZ̊(∂RI(m,n)) = {β ∈ Cm×n : ℜ⟨β,∇ρ(Z̊)⟩ = 0} = {UαV : α ∈ Cm×n,ℜα11 = 0},

and the holomorphic tangent space T 1,0

Z̊
(∂RI(m,n)) to ∂RI(m,n) at Z̊ is

T 1,0

Z̊
(∂RI(m,n)) = {β ∈ Cm×n : ⟨β,∇ρ(Z̊)⟩ = 0} = {UαV : α ∈ Cm×n, α11 = 0}.

Suppose that f : RI(m,n) → RI(m,n) is a holomorphic mapping and f is holomorphic at Z̊ with

f(Z̊) = Z̊. Then it is easy to check that the (mn− 1)-dimensional space T 1,0

Z̊
(∂RI(m,n)) ⊂ Cm×n is an

invariant subspace of Df(Z̊).

Theorem 3.1. Let f : RI(m,n) → RI(m,n) be a holomorphic mapping with f(0) = a, and let

Z̊ = U

�
r1 0 · · · 0 0 · · · 0
0 r2 · · · 0 0 · · · 0
...

...
. . .

...
...
. . .

...

0 0 · · · rm 0 · · · 0

�
V

be a smooth boundary point of RI(m,n), where 1 = r1 > r2 > · · · > rm > 0, U is a unitary square

matrix of order m and V is a unitary square matrix of order n. If f is holomorphic at Z̊ and f(Z̊) = Z̊,

then all the eigenvalues λ, µi (i = 1, . . . ,m+n− 2) and νi (i = 1, . . . , (m− 1)(n− 1)) of Df(Z̊) have the

following properties:

(1) The unit outward normal vector ∇ρ(Z̊) to ∂RI(m,n) at Z̊ is an eigenvector of D∗f(Z̊) and the

corresponding eigenvalue is a real number λ that we just mentioned above, i.e.,

D∗f(Z̊)(∇ρ(Z̊)) = λ∇ρ(Z̊).

(2) λ > 1−ρ(a)
1+ρ(a) > 0, and if m = 1 then λ > |1−Z̊a′|2

1−∥a∥2 > 1−∥a∥
1+∥a∥ > 0.

(3) T 1,0

Z̊
(∂RI(m,n)) = M ⊕N , where

N = {UαV : α ∈ Cm×n, α11 = 0, (α21, . . . , αm1)
′ = 0, (α12, . . . , α1n) = 0}

is an (m − 1)(n − 1)-dimensional invariant subspace of Df(Z̊), and M is an (m + n − 2)-dimensional

invariant subspace of Df(Z̊). Moreover, the eigenvalues µi of Df(Z̊), which is a linear transformation

on M , satisfy

|µi| 6
√
λ, i = 1, . . . ,m+ n− 2;

and the eigenvalues νi of Df(Z̊), which is a linear transformation on N , satisfy

|νi| 6 1, i = 1, . . . , (m− 1)(n− 1).

(4) | detDf(Z̊)| 6 λ
m+n

2 , |trDf(Z̊)| 6 λ +
√
λ(m + n − 2) + (m − 1)(n − 1). Then m = 1 shows

|detDf(Z̊)| 6 λ
n+1
2 , |trDf(Z̊)| 6 λ+

√
λ(n− 1).

The inequalities in (2)–(4) are sharp.

Proof. (1) For any β ∈ TZ̊(∂RI(m,n)), we have Df(Z̊)(β) ∈ TZ̊(∂RI(m,n)). Then

ℜ⟨β,D∗f(Z̊)(∇ρ(Z̊))⟩ = ℜ⟨Df(Z̊)(β),∇ρ(Z̊)⟩ = 0.

It follows that there exists λ ∈ R such that

D∗f(Z̊)(∇ρ(Z̊)) = λ∇ρ(Z̊).
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This means that λ is an eigenvalue of D∗f(Z̊), and ∇ρ(Z̊) is an eigenvector of D∗f(Z̊) with respect to λ.

Since λ ∈ R, we know that λ is also an eigenvalue of Df(Z̊). The proof of (1) is complete.

(2) We divide the proof of (2) into two cases.

Case 1. f(0) = a = 0. For any t ∈ (0, 1), by Lemma 2.6 we get

ρ(f(tZ̊)) 6 ρ(tZ̊) = t.

This, together with Lemma 2.5, implies

ℜ⟨f(tZ̊),∇ρ(Z̊)⟩ 6 ρ(f(tZ̊)) 6 t. (3.1)

By Proposition 2.1, ⟨Z̊,∇ρ(Z̊)⟩ = 1. Hence, combine f(tZ̊) = Z̊− (1− t)Df(Z̊)(Z̊)+O(|t−1|2)(t → 1−)

and (3.1) to obtain

1− (1− t)ℜ⟨Df(Z̊)(Z̊),∇ρ(Z̊)⟩+O(|t− 1|2) 6 t,

which gives

ℜ⟨Z̊,D∗f(Z̊)(∇ρ(Z̊))⟩+O(|t− 1|) > 1. (3.2)

Since D∗f(Z̊)(∇ρ(Z̊)) = λ∇ρ(Z̊) and ⟨Z̊,∇ρ(Z̊)⟩ = 1, (3.2) yields

λ+O(|t− 1|) > 1.

Taking t → 1−, we get λ > 1.

Case 2. f(0) = a ̸= 0. Suppose that

a = A

�
l1 0 · · · 0 0 · · · 0
0 l2 · · · 0 0 · · · 0
...

...
. . .

...
...
. . .

...

0 0 · · · lm 0 · · · 0

�
B ∈ RI(m,n)

is a polar decomposition of a. Then by Lemma 2.3, g = φa ◦ f : RI(m,n) → RI(m,n) is a holomorphic

mapping, and g is holomorphic at Z̊ with g(0) = 0. Moreover,

W̊ = g(Z̊) = φa(Z̊) = Q−1(Im − Z̊a′)−1(a− Z̊)R

is also a smooth boundary point of RI(m,n). Since Dφa(Z̊)(β) ∈ TW̊ (∂RI(m,n)) for any β ∈ TZ̊

(∂RI(m,n)), we get

ℜ⟨Dφa(Z̊)(β),∇ρ(W̊ )⟩ = 0, ℜ⟨β,D∗φa(Z̊)(∇ρ(W̊ ))⟩ = 0.

It follows that there is µ ∈ R such that

D∗φa(Z̊)(∇ρ(W̊ )) = µ∇ρ(Z̊). (3.3)

Set

h1(ζ) = ⟨φa(ζZ̊),∇ρ(W̊ )⟩, ζ ∈ ∆.

Then h1 : ∆ → ∆ is a holomorphic function, and h1 is holomorphic at ζ = 1 with h1(1) = ⟨W̊ ,∇ρ(W̊ )⟩
= 1. This, together with (2.3) and (3.3), implies

µ = ⟨Z̊, µ∇ρ(Z̊)⟩ = ⟨Z̊,D∗φa(Z̊)(∇ρ(W̊ ))⟩ = ⟨Dφa(Z̊)(Z̊),∇ρ(W̊ )⟩ = h′
1(1) > 0.

Take

h2(ζ) = ⟨g(ζZ̊),∇ρ(W̊ )⟩, ζ ∈ ∆.
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Then h2 : ∆ → ∆ is a holomorphic function, and h2 is holomorphic at ζ = 1 with h2(0) = 0 and

h2(1) = 1. Thus, by Lemma 2.2, (3.3) and (1) we obtain

1 6 h′
2(1) = ⟨Dg(Z̊)(Z̊),∇ρ(W̊ )⟩

= ⟨Dφa(Z̊)(Df(Z̊)(Z̊)),∇ρ(W̊ )⟩ = ⟨Df(Z̊)(Z̊), D∗φa(Z̊)(∇ρ(W̊ ))⟩

= µ⟨Df(Z̊)(Z̊),∇ρ(Z̊)⟩ = µ⟨Z̊,D∗f(Z̊)(∇ρ(Z̊))⟩ = λµ.

This shows λ > 1
µ . Now, we estimate µ = ⟨Dφa(Z̊)(Z̊),∇ρ(W̊ )⟩. It is easy to check that for each

X ∈ Cm×k, Y ∈ Ck×l and Z ∈ Cl×n, the maximum eigenvalue of (XY Z)(XY Z)
′6 (the maximum

eigenvalue of XX
′
) × (the maximum eigenvalue of (Y Z)(Y Z)

′
) 6 (the maximum eigenvalue of XX

′
) ×

(the maximum eigenvalue of Y Y
′
) × (the maximum eigenvalue of ZZ

′
). This gives

ρm×n(XY Z) 6 ρm×k(X)ρk×l(Y )ρl×n(Z).

Here, ρm×n, ρm×k, ρk×l and ρl×n are the corresponding matrix norms. Notice that

Dφa(Z̊)(Z̊)

= Q−1(Im − Z̊a′)−1Z̊a′(Im − Z̊a′)−1(a− Z̊)R−Q−1(Im − Z̊a′)−1Z̊R

= Q−1(Im − Z̊a′)−1Z̊a′QW̊ + W̊ −Q−1(Im − Z̊a′)−1aR

= Q−1(Im − Z̊a′)−1(Z̊a′ − Im)QW̊ +Q−1(Im − Z̊a′)−1QW̊ + W̊ −Q−1(Im − Z̊a′)−1Qa

= Q−1(Im − Z̊a′)−1Q(W̊ − a)

and

Q−1(Im − Z̊a′)−1(a− Z̊)Ra′ − Im = W̊a′ − Im,

Q−1(Im − Z̊a′)−1[(a− Z̊)Ra′ − (Im − Z̊a′)Q] = W̊a′ − Im,

Q−1(Im − Z̊a′)−1(Q− aRa′) = Im − W̊a′,

Q−1(Im − Z̊a′)−1Q−1 = Im − W̊a′,

Q−1(Im − Z̊a′)−1 = (Im − W̊a′)Q.

Then we obtain

Dφa(Z̊)(Z̊) = (Im − W̊a′)Q2(W̊ − a).

This, together with Lemma 2.5, yields

µ = ⟨Dφa(Z̊)(Z̊),∇ρ(W̊ )⟩ 6 ρ(Dφa(Z̊)(Z̊))

6 [ρm×m(Im) + ρm×n(W̊ )ρn×m(a′)][ρm×m(Q)]2[ρm×n(W̊ ) + ρm×n(a)]

= [1 + ρ(a)]2[1− (ρ(a))2]−1 =
1 + ρ(a)

1− ρ(a)
.

It follows that

λ > 1

µ
> 1− ρ(a)

1 + ρ(a)
.

In particular, if m = 1 then

µ = ⟨Dφa(Z̊)(Z̊), W̊ ⟩ = (1− W̊a′)Q2(1− aW̊
′
) = |1− W̊a′|2Q2 =

1

Q2|1− Z̊a′|2
=

1− ∥a∥2

|1− Z̊a′|2
.

This implies

λ > 1

µ
=

|1− Z̊a′|2

1− ∥a∥2
> (1− ∥a∥)2

1− ∥a∥2
=

1− ∥a∥
1 + ∥a∥

.
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The proof of (2) is complete.

(3) It is clear that T 1,0

Z̊
(∂RI(m,n)) = {UαV : α ∈ Cm×n, α11 = 0} is an invariant subspace of Df(Z̊),

i.e., (U
′
Df(Z̊)(β)V

′
)11 = 0 for any β ∈ T 1,0

Z̊
(∂RI(m,n)). Now, we claim that N = {UαV : α ∈

Cm×n, α11 = 0, (α21, . . . , αm1)
′ = 0, (α12, . . . , α1n) = 0} is an invariant subspace of Df(Z̊). We only need

to prove that for each

β = U

�
0 0 · · · 0

0 α22 · · · α2n

...
...

. . .
...

0 αm2 · · · αmn

�
V ∈ N,

if we set ε = U
′
Df(Z̊)(β)V

′ ∈ Cm×n, then ε11 = 0, (ε21, . . . , εm1)
′ = 0 and (ε12, . . . , ε1n) = 0.

Since Df(Z̊)(β) ∈ T 1,0

Z̊
(∂RI(m,n)), we know ε11 = 0. For t ∈ (0, 1), the polar decompositions of tZ̊

and f(tZ̊) are

tZ̊ = U

�
t 0 · · · 0 0 · · · 0
0 tr2 · · · 0 0 · · · 0
...

...
. . .

...
...
. . .

...

0 0 · · · trm 0 · · · 0

�
V

and

f(tZ̊) = U(t)

�
r1(t) 0 · · · 0 0 · · · 0
0 r2(t) · · · 0 0 · · · 0
...

...
. . .

...
...
. . .

...

0 0 · · · rm(t) 0 · · · 0

�
V (t),

respectively, where 1 > r1(t) > r2(t) > · · · > rm(t) > 0, U(t) is a unitary square matrix of order m

and V (t) is a unitary square matrix of order n. Then by Lemma 2.3, corresponding to a = tZ̊ and

a = f(tZ̊), we take

Q = U

0BBBBBB@
1√
1−t2

0

1√
1−t2r2

2

. . .

0 1√
1−t2r2m

1CCCCCCAU
′
, R = V

′

0BBBBBBBB@
1√
1−t2

0

1√
1−t2r2

2

. . .

1√
1−t2r2m

0 In−m

1CCCCCCCCAV

and

Q(t) = U(t)

0BBBBBBB@
1√

1−r21(t)
0

1√
1−r22(t)

. . .

0 1√
1−r2m(t)

1CCCCCCCAU(t)
′
,

R(t) = V (t)
′

0BBBBBBBBB@
1√

1−r21(t)
0

1√
1−r22(t)

. . .

1√
1−r2m(t)

0 In−m

1CCCCCCCCCAV (t).
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Because limt→1− f(tZ̊) = Z̊, we have

lim
t→1−

r1(t) = 1, lim
t→1−

r2(t) = r2, . . . , lim
t→1−

rm(t) = rm.

In addition, we also get

U(t) = U +O(|t− 1|), V (t) = V +O(|t− 1|) and Df(tZ̊)(β) = Df(Z̊)(β) +O(|t− 1|)

as t → 1−. Moreover, it follows from f(tZ̊) = Z̊ − (1− t)Df(Z̊)(Z̊) +O(|t− 1|2) that

r1(t) = ρ(f(tZ̊))

= 1− (1− t)2ℜ
mX
i=1

nX
j=1

∂ρ

∂zij
(Z̊)Dfij(Z̊)(Z̊) +O(|t− 1|2)

= 1− (1− t)ℜ⟨Df(Z̊)(Z̊),∇ρ(Z̊)⟩+O(|t− 1|2)

= 1− (1− t)ℜ⟨Z̊,D∗f(Z̊)(∇ρ(Z̊))⟩+O(|t− 1|2)
= 1− λ(1− t) +O(|t− 1|2)

as t → 1−. This impliesÈ
1− r21(t) =

È
1− [1− λ(1− t) +O(|t− 1|2)]2 =

È
2λ(1− t) +O(|t− 1|2) (3.4)

as t → 1−. By Corollary 2.4, we have

F (tZ̊, β)

= ρ

2666666664U
0BBBBBB@

1√
1−t2

0

1√
1−t2r2

2

. . .

0 1√
1−t2r2m

1CCCCCCAU
′
βV

′

0BBBBBBBB@
1√
1−t2

0

1√
1−t2r2

2

. . .

1√
1−t2r2m

0 In−m

1CCCCCCCCAV

3777777775
= ρ

2666666664
�

1 0
1√

1−t2r2
2

. . .

0 1√
1−t2r2m

��
0 0 · · · 0

0 α22 · · · α2n

...
...

. . .
...

0 αm2 · · · αmn

�0BBBBBBBB@
1 0

1√
1−t2r2

2

. . .

1√
1−t2r2m

0 In−m

1CCCCCCCCA
3777777775,

which gives limt→1−
√
1− t2F (tZ̊, β) = 0. Similarly, we obtain

F [f(tZ̊), Df(tZ̊)(β)]

= ρ

266666664U(t)

0BBBBBBB@
1√

1−r21(t)
0

1√
1−r22(t)

. . .

0 1√
1−r2m(t)

1CCCCCCCAU(t)
′
Df(tZ̊)(β)V (t)

′

×

0BBBBBBBBB@
1√

1−r21(t)
0

1√
1−r22(t)

. . .

1√
1−r2m(t)

0 In−m

1CCCCCCCCCAV (t)

37777777775 .
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Notice that

U(t)
′
Df(tZ̊)(β)V (t)

′
= U

′
Df(Z̊)(β)V

′
+O(|t− 1|) = ε+O(|t− 1|)

as t → 1−. This, together with (3.4), implies

lim
t→1−

È
1− r21(t)F [f(tZ̊), Df(tZ̊)(β)]

= lim
t→1−

È
1− r21(t)ρ

26666664
0BBBBBB@
1 0

1√
1−r22(t)

. . .

0 1√
1−r2m(t)

1CCCCCCA
×

0BBBBBBB@
O(|t−1|)
1−r21(t)

ε12+O(|t−1|)√
1−r21(t)

· · · ε1n+O(|t−1|)√
1−r21(t)

ε21+O(|t−1|)√
1−r21(t)

ε22 +O(|t− 1|) · · · ε2n +O(|t− 1|)
...

...
. . .

...
εm1+O(|t−1|)√

1−r21(t)
εm2 +O(|t− 1|) · · · εmn +O(|t− 1|)

1CCCCCCCA
0BBBBBBBBB@
1 0

1√
1−r22(t)

. . .

1√
1−r2m(t)

0 In−m

1CCCCCCCCCA
37777777775

= ρ

266666664
0BBBBBBB@

0 ε12√
1−r22

· · · ε1m√
1−r2m

ε1(m+1) · · · ε1n
ε21√
1−r22

0 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
εm1√
1−r2m

0 · · · 0 0 · · · 0

1CCCCCCCA
377777775 .

By the contraction property of the Kobayashi metric, we have F [f(tZ̊), Df(tZ̊)(β)] 6 F (tZ̊, β). It follows

from this and (3.4) that

ρ

266666664
0BBBBBBB@

0 ε12√
1−r22

· · · ε1m√
1−r2m

ε1(m+1) · · · ε1n
ε21√
1−r22

0 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
εm1√
1−r2m

0 · · · 0 0 · · · 0

1CCCCCCCA
377777775

= lim
t→1−

È
1− r21(t)F [f(tZ̊), Df(tZ̊)(β)]

6 lim
t→1−

È
1− r21(t)√
1− t2

p
1− t2F (tZ̊, β)

=
√
λ lim

t→1−

p
1− t2F (tZ̊, β) = 0.

That means

(ε21, . . . , εm1)
′ = 0, (ε12, . . . , ε1n) = 0.

This shows that N is an (m− 1)(n− 1)-dimensional invariant subspace of Df(Z̊). Hence, there exists an

(m+ n− 2)-dimensional invariant subspace M of Df(Z̊) such that

T 1,0

Z̊
(∂RI(m,n)) = M ⊕N.

Since M ∩N = {0}, we have (α21, . . . , αm1)
′ ≠ 0 or (α12, . . . , α1n) ̸= 0 for any β = UαV ∈ M \ {0}.

For each eigenvalue µi of Df(Z̊) on M , suppose that β(i) = Uα(i)V ∈ M \{0} is a nonzero eigenvector

with respect to µi. Here, α
(i)
11 = 0, (α

(i)
21 , . . . , α

(i)
m1)

′ ̸= 0 or (α
(i)
12 , . . . , α

(i)
1n) ̸= 0, U

′
Df(Z̊)(β(i))V

′
=
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µiα
(i)(i = 1, . . . ,m+ n− 2). By Corollary 2.4, we get

F (tZ̊, β(i))

= ρ

2666666664U
0BBBBBB@

1√
1−t2

0

1√
1−t2r2

2

. . .

0 1√
1−t2r2m

1CCCCCCAU
′
β(i)V

′

0BBBBBBBB@
1√
1−t2

0

1√
1−t2r2

2

. . .

1√
1−t2r2m

0 In−m

1CCCCCCCCAV

3777777775
= ρ

26666664
0BBBBBB@
1 0

1√
1−t2r22

. . .

0 1√
1−t2r2m

1CCCCCCA
0BBBBBB@

0
α

(i)
12√

1−t2
· · · α

(i)
1n√

1−t2

α
(i)
21√

1−t2
α
(i)
22 · · · α

(i)
2n

...
...

. . .
...

α
(i)
m1√
1−t2

α
(i)
m2 · · · α

(i)
mn

1CCCCCCA
×

0BBBBBBBBB@
1 0

1√
1−t2r22

. . .

1√
1−t2r2m

0 In−m

1CCCCCCCCCA
37777777775 .

Thus, we obtain

lim
t→1−

p
1− t2F (tZ̊, β(i)) = ρ

2666666664
0BBBBBBBB@

0
α

(i)
12√
1−r22

· · · α
(i)
1m√

1−r2m
α
(i)
1(m+1) · · · α(i)

1n

α
(i)
21√
1−r22

0 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
α

(i)
m1√

1−r2m
0 · · · 0 0 · · · 0

1CCCCCCCCA
3777777775 ̸= 0.

On the other hand,

F [f(tZ̊), Df(tZ̊)(β(i))]

= ρ

266666664U(t)

0BBBBBBB@
1√

1−r21(t)
0

1√
1−r22(t)

. . .

0 1√
1−r2m(t)

1CCCCCCCAU(t)
′
Df(tZ̊)(β(i))V (t)

′

×

0BBBBBBBBB@
1√

1−r21(t)
0

1√
1−r22(t)

. . .

1√
1−r2m(t)

0 In−m

1CCCCCCCCCAV (t)

37777777775 .

Notice that U(t)
′
Df(tZ̊)(β(i))V (t)

′
= µiα

(i) +O(|t− 1|)(t → 1−) and α
(i)
11 = 0. Then

lim
t→1−

È
1− r21(t)F [f(tZ̊), Df(tZ̊)(β(i))]
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= lim
t→1−

È
1− r21(t)ρ

26666664
0BBBBBB@
1 0

1√
1−r22(t)

. . .

0 1√
1−r2m(t)

1CCCCCCA
×

0BBBBBBB@
O(|t−1|)
1−r2

1
(t)

µiα
(i)
12

+O(|t−1|)√
1−r2

1
(t)

· · · µiα
(i)
1n

+O(|t−1|)√
1−r2

1
(t)

µiα
(i)
21

+O(|t−1|)√
1−r2

1
(t)

µiα
(i)
22 +O(|t− 1|) · · · µiα

(i)
2n +O(|t− 1|)

...
...

. . .
...

µiα
(i)
m1

+O(|t−1|)√
1−r2

1
(t)

µiα
(i)
m2 +O(|t− 1|) · · · µiα

(i)
mn +O(|t− 1|)

1CCCCCCCA
0BBBBBBBB@
1 0

1√
1−r2

2
(t)

. . .

1√
1−r2m(t)

0 In−m

1CCCCCCCCA
3777777775

= |µi|ρ

2666666664
0BBBBBBBB@

0
α

(i)
12√
1−r22

· · · α
(i)
1m√

1−r2m
α
(i)
1(m+1) · · · α(i)

1n

α
(i)
21√
1−r22

0 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
α

(i)
m1√

1−r2m
0 · · · 0 0 · · · 0

1CCCCCCCCA
3777777775 = |µi| lim

t→1−

p
1− t2F (tZ̊, β(i)).

It follows from this and (3.4) that

1 > lim
t→1−

F [f(tZ̊), Df(tZ̊)(β(i))]

F (tZ̊, β(i))
= lim

t→1−

√
1− t2È

1− r21(t)

È
1− r21(t)√
1− t2

F [f(tZ̊), Df(tZ̊)(β(i))]

F (tZ̊, β(i))
=

|µi|√
λ
.

This implies

|µi| 6
√
λ, i = 1, . . . ,m+ n− 2.

For any eigenvalue νi of Df(Z̊) on N , suppose that β(i) = Uα(i)V ∈ N \ {0} is a nonzero eigenvector

with respect to νi. Here, α
(i)
11 = 0, (α

(i)
21 , . . . , α

(i)
m1)

′ = 0, (α
(i)
12 , . . . , α

(i)
1n) = 0,�

α
(i)
22 · · · α

(i)
2n

...
. . .

...

α
(i)
m2 · · · α(i)

mn

�
̸= 0

and U
′
Df(Z̊)(β(i))V

′
= νiα

(i) for i = 1, . . . , (m− 1)(n− 1). Then by Corollary 2.4, we have

F (tZ̊, β(i))

= ρ

2666666664U
0BBBBBB@

1√
1−t2

0

1√
1−t2r2

2

. . .

0 1√
1−t2r2m

1CCCCCCAU
′
β(i)V

′

0BBBBBBBB@
1√
1−t2

0

1√
1−t2r2

2

. . .

1√
1−t2r2m

0 In−m

1CCCCCCCCAV

3777777775
= ρ

2666666664
�

1 0
1√

1−t2r2
2

. . .

0 1√
1−t2r2m

��
0 0 · · · 0

0 α
(i)
22 · · · α

(i)
2n

...
...

. . .
...

0 α
(i)
m2 · · · α(i)

mn

�0BBBBBBBB@
1 0

1√
1−t2r2

2

. . .

1√
1−t2r2m

0 In−m

1CCCCCCCCA
3777777775.
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Hence, we get

lim
t→1−

F (tZ̊, β(i)) = ρ

266666664
0BBBBBBB@
0 0 · · · 0 0 · · · 0

0
α

(i)
22

1−r22
· · · α

(i)
2m√

1−r22

√
1−r2m

α
(i)

2(m+1)√
1−r22

· · · α
(i)
2n√
1−r22

...
...

. . .
...

...
. . .

...

0
α

(i)
m2√

1−r2m
√

1−r22
· · · α(i)

mm

1−r2m

α
(i)

m(m+1)√
1−r2m

· · · α(i)
mn√
1−r2m

1CCCCCCCA
377777775 ̸= 0.

On the other hand,

F [f(tZ̊), Df(tZ̊)(β(i))]

= ρ

266666664U(t)

0BBBBBBB@
1√

1−r21(t)
0

1√
1−r22(t)

. . .

0 1√
1−r2m(t)

1CCCCCCCAU(t)
′
Df(tZ̊)(β(i))V (t)

′

×

0BBBBBBBBB@
1√

1−r21(t)
0

1√
1−r22(t)

. . .

1√
1−r2m(t)

0 In−m

1CCCCCCCCCAV (t)

37777777775 .

Notice that U(t)
′
Df(tZ̊)(β(i))V (t)

′
= νiα

(i) +O(|t− 1|) and r1(t) = 1−λ(1− t)+O(|t− 1|2) as t → 1−.

Then

lim
t→1−

F [f(tZ̊), Df(tZ̊)(β(i))]

= lim
t→1−

ρ

26666664
0BBBBBB@
1 0

1√
1−r22(t)

. . .

0 1√
1−r2m(t)

1CCCCCCA
×

0BBBBBB@
O(|t−1|)
1−r2

1
(t)

O(|t−1|)√
1−r2

1
(t)

· · · O(|t−1|)√
1−r2

1
(t)

O(|t−1|)√
1−r2

1
(t)

νiα
(i)
22 +O(|t− 1|) · · · νiα

(i)
2n +O(|t− 1|)

...
...

. . .
...

O(|t−1|)√
1−r2

1
(t)

νiα
(i)
m2 +O(|t− 1|) · · · νiα(i)

mn +O(|t− 1|)

1CCCCCCA
0BBBBBBBB@
1 0

1√
1−r2

2
(t)

. . .

1√
1−r2m(t)

0 In−m

1CCCCCCCCA
3777777775

= ρ

266666664
0BBBBBBB@
b 0 · · · 0 0 · · · 0

0
νiα

(i)
22

1−r22
· · · νiα

(i)
2m√

1−r22

√
1−r2m

νiα
(i)

2(m+1)√
1−r22

· · · νiα
(i)
2n√

1−r22
...

...
. . .

...
...

. . .
...

0
νiα

(i)
m2√

1−r2m
√

1−r22
· · · νiα

(i)
mm

1−r2m

νiα
(i)

m(m+1)√
1−r2m

· · · νiα
(i)
mn√

1−r2m

1CCCCCCCA
377777775 > |νi| lim

t→1−
F (tZ̊, β(i)),
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where b = limt→1−
(U(t)

′
Df(tZ̊)(β(i))V (t)

′
)11

1−r21(t)
. It follows that

1 > lim
t→1−

F [f(tZ̊), Df(tZ̊)(β(i))]

F (tZ̊, β(i))
> |νi|.

This shows

|νi| 6 1, i = 1, . . . , (m− 1)(n− 1).

The proof of (3) is complete.

(4) Since T 1,0

Z̊
(∂RI(m,n)) = {UαV : α ∈ Cm×n, α11 = 0} = M ⊕ N is an (mn − 1)-dimensional

invariant subspace of Df(Z̊), we know that there is a one-dimensional invariant subspace L of Df(Z̊)

such that

Cm×n = L⊕M ⊕N.

It follows from L ∩ T 1,0

Z̊
(∂RI(m,n)) = {0} that for any β = UαV ∈ L \ {0} we have α11 ≠ 0. Now, we

claim that λ is just the eigenvalue of Df(Z̊) on L. Assume that eλ is an eigenvalue of Df(Z̊) on L, and

β = UαV ∈ L \ {0} is a nonzero eigenvector of Df(Z̊) with respect to eλ. Then by Proposition 2.1, we

obtain

⟨Df(Z̊)(β),∇ρ(Z̊)⟩ = eλ⟨β,∇ρ(Z̊)⟩ = eλα11.

On the other hand,

⟨Df(Z̊)(β),∇ρ(Z̊)⟩ = ⟨β,D∗f(Z̊)(∇ρ(Z̊))⟩ = λ⟨β,∇ρ(Z̊)⟩ = λα11.

This, together with α11 ̸= 0, yields eλ = λ. Therefore, λ, µi (i = 1, . . . ,m + n − 2) and νi (i = 1, . . . ,

(m− 1)(n− 1)) are all the eigenvalues of Df(Z̊) on Cm×n. This implies

| detDf(Z̊)| 6 λ
m+n

2 , |trDf(Z̊)| 6 λ+
√
λ(m+ n− 2) + (m− 1)(n− 1).

The proof of (4) is complete.

Remark 3.2. From the view of geometry, N is an invariant subspace of Df(Z̊) perhaps because the

Levi form of ρ at Z̊ is positive semi-definite and not positive definite on N . We get the same conclusions

of |µi| 6
√
λ (i = 1, . . . ,m + n − 2) with [15, Theorem 3.1] perhaps because the Levi form of ρ at Z̊ is

positive definite on M .

Remark 3.3. From the proof of Theorem 3.1, it is clear that we need only to assume that the mapping f

is C1 up to the boundary of RI(m,n) near Z̊.

Remark 3.4. When m = 1, n = 1, f(0) = 0 and RI(1, 1) = ∆, Theorem 3.1 is just Lemma 2.2. When

m = 1 and RI(1, n) = Bn, Theorem 3.1 is just [16, Theorem 3.1].

Finally, we give the following example to show that the inequalities in (2)–(4) of Theorem 3.1 are

sharp.

Example 3.5. Let

a =

�
ε 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
...
...
. . .

...
...
. . .

...

0 0 · · · 0 0 · · · 0

�
∈ RI(m,n)

and 0 < ε < 1. Write eij ∈ Cm×n as a matrix, which has 1 at i-th row and j-th column, and 0’s elsewhere.

By Lemma 2.3, take

Q =

 
1√

1−ε2
0

0 Im−1

!
, R =

 
1√

1−ε2
0

0 In−1

!
.
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Suppose that

Z̊ =

�
1 0 · · · 0 0 · · · 0
0 r2 · · · 0 0 · · · 0
...

...
. . .

...
...
. . .

...

0 0 · · · rm 0 · · · 0

�
is a smooth boundary point of RI(m,n) and

f(Z) = −φ−a(Z) = Q−1(Im + Za′)−1(a+ Z)R,

where 1 > r2 > · · · > rm > 0. Then f : RI(m,n) → RI(m,n) is a holomorphic mapping with f(0) = a,

and f is holomorphic at Z̊. Moreover, f has the following properties.

(1) f(Z̊) = Z̊.

(2) For any β ∈ Cm×n,

Df(Z̊)(β) =

�q
1−ρ(a)
1+ρ(a) 0

0 Im−1

�
β

�q
1−ρ(a)
1+ρ(a) 0

0 In−1

�
.

(3) Df(Z̊)(e11) =
1−ρ(a)
1+ρ(a)e11. This shows that one of eigenvalues of Df(Z̊) is 1−ρ(a)

1+ρ(a) .

(4) Df(Z̊)(e1j) =
q

1−ρ(a)
1+ρ(a)e1j (j = 2, . . . , n) and Df(Z̊)(ei1) =

q
1−ρ(a)
1+ρ(a)ei1 (i = 2, . . . ,m). This shows

that the m+ n− 2 eigenvalues of Df(Z̊) are all
q

1−ρ(a)
1+ρ(a) .

(5) Df(Z̊)(eij) = eij (i = 2, . . . ,m; j = 2, . . . , n). This shows that the (m − 1)(n − 1) eigenvalues

of Df(Z̊) are all 1.

Proof. By Lemma 2.3, it is clear that f : RI(m,n) → RI(m,n) is a holomorphic mapping with

f(0) = a, and f is holomorphic at Z̊.

(1) It is obvious that ρ(a) = ε. Since

Z̊a′ =

 
ε 0

0 0

!
, Im + Z̊a′ =

 
1 + ε 0

0 Im−1

!
and a+ Z̊ =

�
1 + ε 0 · · · 0 0 · · · 0
0 r2 · · · 0 0 · · · 0
...

...
. . .

...
...
. . .

...

0 0 · · · rm 0 · · · 0

�
,

we have

f(Z̊) = Q−1(Im + Z̊a′)−1(a+ Z̊)R

=

 √
1− ε2 0

0 Im−1

! 
1

1+ε 0

0 Im−1

!�1 + ε 0 · · · 0 0 · · · 0
0 r2 · · · 0 0 · · · 0
...

...
. . .

...
...
. . .

...

0 0 · · · rm 0 · · · 0

� 
1√

1−ε2
0

0 In−1

!
=

�
1 0 · · · 0 0 · · · 0
0 r2 · · · 0 0 · · · 0
...

...
. . .

...
...
. . .

...

0 0 · · · rm 0 · · · 0

�
= Z̊.

(2) By a straightforward calculation, we get

Df(Z̊)(β) = Q−1(Im + Z̊a′)−1βR−Q−1(Im + Z̊a′)−1βa′(Im + Z̊a′)−1(a+ Z̊)R
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= Q−1(Im + Z̊a′)−1βR−Q−1(Im + Z̊a′)−1βa′Qf(Z̊)

=

 È
1−ε
1+ε 0

0 Im−1

!
β(R− a′QZ̊)

=

 È
1−ε
1+ε 0

0 Im−1

!
β

" 
1√

1−ε2
0

0 In−1

!
−

 
ε√

1−ε2
0

0 0

!#
=

 È
1−ε
1+ε 0

0 Im−1

!
β

 È
1−ε
1+ε 0

0 In−1

!
=

�q
1−ρ(a)
1+ρ(a) 0

0 Im−1

�
β

�q
1−ρ(a)
1+ρ(a) 0

0 In−1

�
. (3.5)

(3)–(5) Replacing β with eij (i = 1, . . . ,m; j = 1, . . . , n) in (3.5), we can obtain

Df(Z̊)(e11) =
1− ρ(a)

1 + ρ(a)
e11,

Df(Z̊)(e1j) =

Ê
1− ρ(a)

1 + ρ(a)
e1j , j = 2, . . . , n,

Df(Z̊)(ei1) =

Ê
1− ρ(a)

1 + ρ(a)
ei1, i = 2, . . . ,m,

Df(Z̊)(eij) = eij , i = 2, . . . ,m, j = 2, . . . , n

at once. The proof is complete.

4 Conclusions

In this paper, we considered the Schwarz lemma at the smooth boundary points of RI(m,n). There

are some interesting problems that deserve further investigation such as the Schwarz lemma at the non-

smooth boundary points and the boundary Schwarz lemma on the other classical domains. In addition,

we can apply it to obtain some new results in the geometric function theory of several complex variables.
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