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1 Introduction

The Schwarz lemma is one of the most influential results in the classical complex analysis, which is
widely applied in many branches of mathematical research such as geometric function theory, hyperbolic
geometry, complex dynamical systems and theory of quasi-conformal mappings. We refer to [1,4,5,11]
for a more complete insight on the Schwarz lemma.

Cartan first studied the Schwarz lemma in several complex variables in [3]. In fact, this is the well-
known rigidity theorem of Cartan [3].

Theorem 1.1 (See [3]).  Suppose that Q) is a bounded domain in C™ and f : Q —  is a holomorphic
mapping such that f(z) = z 4+ o(||z — z0|]) as z — zo for some zo € Q. Then f(z) = z.

Look discussed Schwarz lemma of several complex variables in [17], which extends the result of Car-
tan [3]. This result is stated as follows.
Theorem 1.2 (See [17]).  Let Q be a bounded domain in C", and let f be a holomorphic self-mapping
of Q which fixes a point p € Q. Then

(1) the eigenvalues of J¢(p) all have modulus not exceeding 1;

(2) |det Jy(p) < 15

(3) if |det Jy(p)| =1, then f is a biholomorphism of .
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Naturally, higher-dimensional Schwarz lemma at the boundary has attracted the attention of many
mathematicians as well. From Theorem 1.1, Burns and Krantz [2] first considered a new rigidity problem
of holomorphic mappings at the boundary points. They obtained a rigidity theorem for holomorphic
mappings on the bounded strongly pseudoconvex domain in C”. Huang strengthened the Burns-Krantz
result for holomorphic mappings with an interior fixed point in [9]. See [8,10] for more on these matters.
Here is one of typical results in these papers.

Theorem 1.3 (See [9]). Let Q CC C" (n > 1) be a simply connected pseudoconvex domain with C>
boundary. Suppose that p € 95 is a strongly pseudoconvex point. If f : Q1 — Q is a holomorphic mapping
such that f(zo) = zo for some zo € Q and f(z) = z + o(||z — p||*) as z — p, then f(z) = z.

It is natural to consider that what are the multidimensional generalizations of the boundary Schwarz
lemma corresponding to Theorem 1.2. It is this problem which motivated our study in this paper.
Recently, we first established the Schwarz lemma at the boundary of the unit ball in C™, and gave some
applications in the geometric function theory of several complex variables in [16]. We discussed the same
problem on the unit polydisk and the strongly pseudoconvex domain, respectively in [15,18]. Our main
purpose here is to study the boundary Schwarz lemma on the classical domain of type Z. We also study
the properties of the smooth boundary points of the classical domain of type Z.

The rest of the article is organized as follows. In Section 2, we give some characterizations of the
smooth boundary points of Rz(m,n), which will be used in the subsequent section. In Section 3, we
establish the Schwarz lemma at the boundary on the classical domain of type Z, i.e., we obtain the
optimal estimates of the eigenvalues of the Fréchet derivative of holomorphic self-mappings of Rz(m,n)
at a smooth boundary fixed point of Rz(m,n). In Section 4, we present some conclusions of the paper.

2 Preliminaries

2.1 Notation

Let C™*™ be the set of all m x n complex matrices with 1 < m < n. For any Z,W € C™*", the inner
product and the corresponding norm are given by

m n . 1
(Z,W) =33 zywy, |12l = (Z,2)%,
i=1 j=1
where Z = (2ij)mxn and W = (w;j)mxn. 1t is well known that as real vectors in R*™" Z and W are
orthogonal if and only if R(Z, W) = 0. Throughout this paper, denote by Z’ and Z, respectively, the
transpose and the complex conjugate of Z.

Let A be a square matrix of order m and let B be a square matrix of order n. Then for each
Z, W e C7n><n,

(AZ,W) = Z Z(AZ)MWM = Z (Z akizu)@kz
k=11=1 =1 1=1 i=1
= Z Zil ( Zakiwkl) = Z Z (AW = (2, AW),
=1 =1 k=1 =1 l=1

where A = (ai;)mxm. Similarly, we have
(ZB,W)=(Z,WB), (Z,AW)=(A'Z,W), (Z,WB)=(ZB ,W).
Moreover, if U is a unitary square matrix of order m and V' is a unitary square matrix of order n, then
(UZV,UWV) = (Z,W).
The classical domain of type Z, denoted by Rz(m,n), is defined as

Rz(m,n) ={Z € C™*" : I, — ZZ > 0},
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where I, is the unit square matrix of order m, and the inequality sign means that the left-hand side is
positive definite. It is easy to check that Rz(m,n) is a bounded convex circular domain in C™*™.

Let ORz(m,n) be the boundary of Rz(m,n), and write C1*™ as C™. Let B™ C C™ be the open unit
ball under the Euclidean metric. The Minkowski functional p(Z) of Rz(m,n) is defined by

p(Z) = max{||aZ|| : . € IB™}, Z € C™*",

where dB™ is the boundary of B™. By [7], we know that p(Z) is a Banach norm of C™*" (p(Z))? is
the largest eigenvalue of Z?/, and

Rz(m,n)={Z e C™": p(Z) < 1}.

In particular, Rz(1,n) is just the open unit ball B™ for which the Minkowski functional is p(Z) = || Z||.
For the unitary square matrix U of order m and the unitary square matrix V of order n, it is easy to see
that

Z € Rz(m,n) & UZV € Rz(m,n) and Z € IRz(m,n) < UZV € IRz(m,n).

Since Z € Rz(m,n) means that the elements in the principal diagonal of I,,, — 77 are positive, we
have |z;j| <1lfori=1,...,mand j=1,...,n. We also obtain p(UZV) = p(Z) for each Z € C™*".

Assume that f : Rz(m,n) — C™*™ is a holomorphic mapping. The Fréchet derivative of f at
a € Rz(m,n) is defined as

n

a)ws, W eC™ ™.

Df@W), =3

fzy
s=1t=1 Z‘St

It is easy to see that D f(a) is a linear transformation from C™*™ to C™*" and df (Z) | z=o = Df(a)(dZ).
The adjoint transformation of D f(a) is denoted by D* f(a), i.e.,

<D*f(a)(Z)7 W> - <Z, Df(a,)(]/[/'»7 = (men7 W e (men.
Obviously, D* f(a) is also a linear transformation from C™*™ to C™*"™. Moreover,
m afs
(D" f(a ZZat
Zij

In fact, let e;; € C™*™ be a matrix which has 1 at i-th row and j-th column, and 0’s elsewhere. Then

8fst

82”

(D*f(a)(Z))ij:<D*f(a)(Z),€ij>:<Z,Df(a)(eij)>:< azz > ZZ

s=1t=1
It is clear that A is an eigenvalue of Df(a) if and only if \ is an eigenvalue of D* f(a).
2.2 Smooth boundary points of Rz(m,n)

For Z € C™*" by [13] we know that Z has the following polar decomposition, i.e.,

770 -+ 00---0

. Org---00---0

z=U\{ . .. ... .|V
00 -7,0--0

where 1 > rg > -+ > rp, 2> 0, U is a unitary square matrix of order m and V' is a unitary square matrix
of order n. We give the properties of the smooth boundary points of Rz(m,n).
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Proposition 2.1.  Suppose that Z € C™*" has the polar decomposition above. Then Z is a smooth
boundary point of RI(m n) if and only if 1 =1y >re = -+ = ry = 0. Furthermore, p(Z) is holomorphic
about Z and Z near Z and the gradient of p at Z i.e.,

10---00---0
i 00---00---0
Voz)y=U014({ ... ... .|V

00---00---0

is the unit outward normal vector to ORz(m,n) at Z with (Z,Vp(Z)) = 1.
Proof. 1t is easy to verify that Ze ORz(m,n) if and only if ry = 1. Suppose that 1 =r; >ro > --- >
rm = 0. Assume that the characteristic polynomial of 77 is
O(x,2) = det(xly, — ZZ ) = a™ —tr(ZZ )™ ' + -+ (=1)" det(Z 7).
Then (p(Z))? is a root of ®(z, Z) near Z. Notice that

®(1,%) =0, %(1, Z)=[x—1)@-13)-(@=12) a1 = [JA =1} > 0. (2.1)

k=2

It follows from the implicit function existence theorem that (p(Z))? is holomorphic about Z and Z
near Z, and satisfies (p(Z))? = 1. Hence, p(Z) is also holomorphic about Z and Z near Z. Now, we
compute Vp(Z). Since ®((p(2))2, Z) = det((p(Z))2I,n — ZZ') = 0 near Z, we have

0 .. . Op 8%
T LD G D)+

(1,2) = 0.

This, together with (2.1), implies

2 JJ (1 - rk)aaf (Z) + ;j (1,72) = 0. (2.2)
k=2 Zij v

On the other hand,

— — =
O, 2) | (y.2)- (1.2 = Aet(2 L — ZZ) |, 11— (1.2 = Aet(Ipy — U ZZ'U) | ;_5.

- 01-r2-- 0
m—UZZU = .
0 0 --1—12

— o5/
and the algebraic cofactor of the element at s-th row and ¢-th column for det(I,,, — U 77 U) is

Jst:{Hl—rk s,t) = (1,1),
(

2

k
0, (s,t) # (1,1).

Thus, we obtain
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- _ H 82 <Z Z Z Ullzlsztsuﬂ)
k=2 i

=1 s=1 t=1 z=2
m
2 _ .
= — H(l — T‘k) E ullzljuil
k=2 =1
m m m
2 —_
=-J[a-> Uuuﬂ( > Ulsrévw)
k=2 =1 s=1
m
== H(l — T} Uirv;
k=2

10---00---0

m 00---00---0
=-T[a-(ov{ .. ... |V 7

k=2 - .on ool
00---00---0

()

where U = (4 )mxm, V = (Vij)nxn and 7 = (Zij)mxn- It follows from this and (2.2) that

-00---0
5 -00---0
Z 744:2

10---00---0

. 00--00---0
Vp(zy=Uu{ .. . _ . |V#O0

j

That means

00---00---0

Hence, ORz(m,n) is smooth near Z. Moreover, since (UZV,UWV) = (Z, W) for any Z,W € C"™*" we
get (Z,Vp(Z)) = 1.
Conversely, suppose that Z is a smooth boundary point of Rz(m,n). Assume

l=ri=r>2---27r, =>0.

Then any two nonzero outward normal vectors to ORz(m,n) at Z have the same direction. Now, we
consider the following two different (2mn — 1)-dimensional real affine spaces through Z in C"™*™:

¥, = {Z +UaV :aeC™™ Raj; =0} and s = {Z +UaV :a e C™™ Rage = 0}.

To simplify our notation, set

7,=|000---00---0

and T,=|000--00---0

000---00 ---

(=}

For any Z+UaV e 31, we have R(UaV,UT1V) = Ray1 = 0. This shows that UT;V is a normal vector
to X1 at Z (see Figure 1).
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unv

2

Figure 1 The affine tangent space and normal vector to Rz (m,n) at Z

Similarly, UT,V is also a normal vector to 3o at Z. On the other hand, for each UWV € Rz(m,n)
we obtain

100 ---

010 -

R(Z-UWV,ULV)=R{ U|007s -

o

V-UWV, UV

000 -7, 0---0
=1—-Rw;; >0.
This implies that Rz(m, n) is located on one side of ¥, i.e., X1 is an affine tangent space to ORz(m,n)
at Z. Similar to the above proof, we know that X5 is an affine tangent space to ORz(m,n) at Z as well.

Because Z is a smooth boundary point of Rz(m,n), this contradicts with ¥; # ¥5. Therefore, we have
l=ry >ry>--- 27y > 0. The proof is complete. O

2.3 Some lemmas

Let A be the open unit disk in the complex plane C. The following lemma is the classical Schwarz lemma
at the boundary.

Lemma 2.2 (See [5]). Let f: A — A be a holomorphic function. If f is holomorphic at z = 1 with
f(0)=0 and f(1) =1, then f'(1) > 1. Moreover, the inequality is sharp.

If the condition f(0) = 0 is removed, then one has the following estimate instead:

! ‘1 7W|2
P> o >0 (2.3)

by applying Lemma 2.2 to g(z) = %&8; %.

Lemma 2.3 (See [13]).  Let
IO - 00--0
0ly - 000
a=A\ . . . | BeRz(mn).

00 1,00

Write
1
0
1 1-12
= 0 1
Q=A A, rR=TF B
1

1 1-12

O 1_!2 m

m 0 I'n, _m
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Here, 1 > 11 > --- 2 1, > 0, A is a unitary square matriz of order m and B is a unitary square matrizc
of order n. Then for any Z € Rz(m,n),

¢a(Z2) =Q (I, — Z@') *a— Z)R

is a holomorphic automorphism of Rz(m,n), which interchanges 0 and a. Moreover, @, is biholomorphic
in a neighborhood of Rz(m,n), and

901;1 = Pa; d‘pa(z) ‘Z:a = —QdZR, d@a(z) ‘ZZO = _Q_leR_l'

From now on, we always denote by F(Z,£) the infinitesimal form of Carathéodory metric or Kobayashi
metric on Rz(m,n), where Z € Rz(m,n) and £ € C™*" (see [12] for details).

Corollary 2.4.  Let p(Z) be the Minkowski functional of Rz(m,n). Under the notation of Lemma 2.3,
for any € € C" <™,

F(a,§) = p(QER).
Proof.  Since ¢,(Z) is a holomorphic automorphism of Rz(m,n) and F(Z,€) is a biholomorphically
invariant metric on Rz(m,n), we get

F(a,§) = F(0, Dga(a)(£))-
This, together with Dy, (a)(dZ) = dpe(Z)|z=a and Lemma 2.3, yields
F(a,£) = F(0, Dpa(a)(§)) = F(0, —Q¢R) = F(0, Q¢R).
Thus, by [6, Lemma 3.2], we have F(a, &) = F(0,Q¢R) = p(QER). The proof is complete. O
Lemma 2.5. Let Z be a smooth boundary point of Rz(m,n). Then
(W, Vp(2))] < p(W)

for any W € C™>™,
W

Proof.  Without loss of generality, we may assume W # 0. Then oo € ORz(m,n). Notice that
Rz(m,n) is a bounded convex circular domain. Then for each 6 € R, we obtain

§R<Z° - eiep(VVI/V)’ Vp(Z°)> > 0.
It follows from this and Proposition 2.1 that
i6
Ry (W Ve(2) < R(Z,Vp(2)) = 1.
This implies [(W, Vp(Z))| < p(W). The proof is complete. O
Lemma 2.6 (See [14]). Let f : Rz(m,n) — Rz(m,n) be a holomorphic mapping and let f(0) = 0.
Then for any Z € Rz(m,n),

p(f(2)) < p(2).

3 Main result

Now, we establish the Schwarz lemma at the smooth boundary points for holomorphic self-mappings
of Rz(m,n).
Let
0 -+ 00---0

) Org---00---0
Z:U . .. . .. . V
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be a smooth boundary point of Rz(m,n), where U is a unitary square matrix of order m, V' is a unitary
square matrix of order n and 1 =71 > ry > --- > rp, > 0. Then Proposition 2.1 implies that the tangent
space Tz (ORz(m,n)) to ORz(m,n) at Z is

Ty (ORz(m,n)) = {8 € C™*" : R(B, Vp(Z)) = 0} = {UaV : a € C™", Ray; = 0},
and the holomorphic tangent space Té’o(aRI(m, n)) to Rz (m,n) at Z is
T,°(0Rz(m,n)) = {8 € C™": (8,Vp(Z)) = 0} = {UaV : a € C™*",ay; = 0}.

Suppose that f : Rz(m,n) — Rz(m,n) is a holomorphic mapping and f is holomorphic at Z with
f(Z) = Z. Then it is easy to check that the (mn — 1)-dimensional space TZ}’O (ORz(m,n)) C C™*™ is an
invariant subspace of D f(Z).

Theorem 3.1.  Let f: Rz(m,n) = Rz(m,n) be a holomorphic mapping with f(0) = a, and let

n 0 - 00--0

. Org - 00---0
z=U\{ . .. ... |V

be a smooth boundary point of Rz(m,n), where 1 = ry > 19 2 -+- 2 1, = 0, U is a unitary square
matriz of order m and V' is a unitary square matriz of order n. If f is holomorphic at Z and f(Z) = Z°,
then all the eigenvalues A, ju; (i=1,...,m+n—2) andv; (i=1,...,(m—1)(n—1)) of Df(Z) have the
following properties:

(1) The unit outward normal vector Vp(Z) to dRz(m,n) at Z is an eigenvector of D* f(Z) and the
corresponding eigenvalue is a real number A that we just mentioned above, i.e.,

D*f(2)(Vp(2)) = AVp(Z).

2

[

1—p(a) : _ l1-Za'| —llal
(2) A > TTota) > 0, and if m =1 then \ > T=Tlal? el > 0.

(3) T, (0Rz(m,n)) = M & N, where

=

—

N={UaV :ac¢€ C™*™ aqq =0, (o1, .. -7am1)/ =0, (a12,...,a1,) =0}

is an (m — 1)(n — 1)-dimensional invariant subspace of Df(Z), and M is an (m + n — 2)-dimensional
invariant subspace of Df(Z) Moreover, the eigenvalues p; of Df(ZO), which is a linear transformation
on M, satisfy

s S VA, i=1,...,m+n—2;

and the eigenvalues v; of Df(Zo), which is a linear transformation on N, satisfy

il <1, i=1,...,(m—1)(n—1).

(4) |[det Df(Z)| < A™2™, [tetDF(Z)] < A+ VA(m +n —2) + (m — 1)(n — 1). Then m = 1 shows
ldet Df(Z)| < A* %, [teDF(Z)| < A+ VA(n — 1).
The inequalities in (2)—(4) are sharp.

Proof. (1) For any § € T (dRz(m,n)), we have Df(Z)(8) € Ty(dRz(m,n)). Then
R(B, D* f(Z)(Vp(2))) = R(DF(Z)(B),Vp(Z)) = 0.
It follows that there exists A € R such that

D*f(2)(Vp(Z)) = A\Vp(Z).
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This means that X is an eigenvalue of D* f(Z), and Vp(Z) is an eigenvector of D* f(Z) with respect to \.
Since A € R, we know that \ is also an eigenvalue of Df(Z). The proof of (1) is complete.
(2) We divide the proof of (2) into two cases.

Case 1. f(0)=a =0. For any ¢t € (0,1), by Lemma 2.6 we get

p(f(t2)) < p(tZ) = t.

This, together with Lemma 2.5, implies
Rf(t2),Vp(Z)) < p(f(t2)) < t. (3.1)

By Proposition 2.1, (Z,Vp(Z)) = 1. Hence, combine f(tZ) = Z —(1—t)Df(Z)(Z)+O(|t—1]2)(t — 17)
and (3.1) to obtain
L= (1= OR(DI(Z)(2), V(2)) + Ot —112) <,

which gives
R(Z,D*F(2)(Vp(Z2))) + Ol = 1]) > L. (3.2)

Since D*f(Z)(Vp(Z)) = AVp(Z) and (Z,Vp(Z)) = 1, (3.2) yields
A+O(t—1)) > 1.

Taking t — 17, we get A > 1.
Case 2.  f(0) = a # 0. Suppose that

IO ---00---0

0y -~ 00---0
a=A| .. . | BERz(m,n)

is a polar decomposition of a. Then by Lemma 2.3, g = ¢, 0 f : Rz(m,n) = Rz(m,n) is a holomorphic
mapping, and g is holomorphic at Z with g(0) = 0. Moreover,

W = g(Z) = ¢a(Z) = Q (I, — Z@')'(a — Z)R

o

is also a smooth boundary point of Rz(m,n). Since D,(Z)(B) € Ty, (0Rz(m,n)) for any 8 € T
(ORz(m,n)), we get

R(Dpa(2)(B), Vo(W)) =0, R(B,D*pa(2)(Vp(W))) = 0.
It follows that there is p € R such that
D*pa(2)(Vp(W)) = uVp(Z). (3.3)

Set
hi(Q) = (¢alCZ), Vp(W)), €A
Then hy : A — A is a holomorphic function, and h; is holomorphic at ¢ = 1 with hy(1) = (W, Vp(W))
= 1. This, together with (2.3) and (3.3), implies
1= {2,1Vp(2)) = (Z,D"pu(2)(Vp(W))) = (Dpa(2)(2), Vo(W)) = h (1) > 0.

Take
ha(C) = (g(CZ),Vp(W)), (€ A.
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Then hs : A — A is a holomorphic function, and hg is holomorphic at ¢ = 1 with h2(0) = 0 and
ha(1) = 1. Thus, by Lemma 2.2, (3.3) and (1) we obtain

1< Wy(1) = (Dg(2)(2), V(W)
= (Dgu(2)(DF(2)(2)), V(W) = (DF(2)(2), D*¢u( 2)(Vp(W)))
— W(DF(2)(2),Vp(2)) = n(Z, D" [(2)(Vp(2))) = M.

This shows A > % Now, we estimate p = (Dpo(Z)(Z), Vp(W)). It is easy to check that for each

X € C™F Yy € C* and Z € C'™™™, the maximum eigenvalue of (XYZ)(XYZ)/g (the maximum

eigenvalue of X Yl) X (the maximum eigenvalue of (Y Z2)(Y Z )/) < (the maximum eigenvalue of X Y/) X
(the maximum eigenvalue of Y?l) x (the maximum eigenvalue of Z?l). This gives

Here, prmxn, Pmxk, Pxxi and p;x, are the corresponding matrix norms. Notice that

Dga(2)(2)

=Q YIn — Za) " Za (I, — Z@') Ya— Z)R— Q *(Im, — Za) ' ZR

=Q I, — Za) ' Za@QW + W — Q' (In Z) aR

= Q (I — Za') N (Za' = 1,)QW + Q (I — Za) ' QW + W = Q"' (I,, — Za') "' Qa

=Q '(Im — Za) ' QW —a)

and

Q '(Im — Za) a— Z)Rad — I, = Wa — I,
Q‘%hf—Zd)W( )Ra—% - Za)Q = wa -
Q YIn — Za)1(Q faRa) m— Wa'
Q (I, —Za) 'Q "t =1, - Wa,
Q (I — Za)™! = (I, Wa)@

Then we obtain o ] )
Do (2)(Z) = (I, — Wa)Q*(W — a).
This, together with Lemma 2.5, yields
= (Da(2)(2),Vp(W)) < p(Dpa(Z)(Z2))
< [mem(Im) + pmxn(W)anm( /)][Pme(Q)]Q[Pan(W) + men(a)]

_ 1+ p(a)

=1+ p(a)*)[1 - (p(a))?)]~ ! = .

[1+ p(a)]"[1 = (p(a))] = o(a)

It follows that
A Ls 1 - pla)
p~ 1+ p(a)
In particular, if m = 1 then
SN\ TR 21\ 2 ol 271122 1 1~ |a]?
p=(Dea(2)(2),W) =(1-Wa)Q (1 —aW ) =1 -Wa'|"Q" = =

Ql—zd]2 |1-Za|?

This implies
N £ 1 e e 1
poo 1—=al> 7 1T—fal® 14l
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The proof of (2) is complete.
(3) Tt is clear that TZ%’O(GRI(m7 n)) ={UaV :a € C™*" aj; = 0} is an invariant subspace of D f(Z2),

ie., (ﬁ/Df(Zo)(B)V/)H = 0 for any g € Té’o(aRz(m,n)). Now, we claim that N = {UaV : a €

C™ " gy =0, (g1, - .. 1)’ =0, (@12, . . ., a1y ) = 0} is an invariant subspace of D f(Z). We only need
to prove that for each
00 --- 0
0 Qgg -« Q2p
g=u| . VeN,
0 Am2 * Qmnp

if we set € = U/Df(Zo)(ﬁ)V/ € C™*" then g1 =0, (€21,...,6m1) = 0 and (g12,...,€1) = 0.
Since Df(Z)(B) € TZ}’O(GRz(m, n)), we know 17 = 0. For ¢t € (0,1), the polar decompositions of ¢Z
and f(tZ) are

t 0 --00---0
Otrg -+ 0 0---0

and
r(t) 0 0 0---0
) 0 ro(t)--- 0 0---0
ftz) =U(t) T A OF
0 0 - 7rpt)0---0
respectively, where 1 > ri(t) > ra(t) = -+ = rp(t) = 0, U(t) is a unitary square matrix of order m

and V(t) is a unitary square matrix of order n. Then by Lemma 2.3, corresponding to a = tZ and
a= f(tZ), we take

1
1 0 1_¢2 0
1—t2 1
1_1t2r2 . _, l—tzrg
Q=U 2 , R= |4
O 1 1712&27‘2
42,2
1—2r2, 0 I
and
1
1—r2(t) 0
1
— 2
Q) = U(1) e U,
1
0 1-12,(0)
_ 1 0
\/ l—Tf(t)
1
, 1—r2(t)
R(t) = V() 0
1
1_T37L(t)

0 Infm
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Because lim;_, - f(tZ) = Z, we have

lim ri(t) =1, lim ro(t) =re, ..., lm 7p(t) = rm.
t—1- t—1- t—1-

In addition, we also get
Ut)=U+0(t—1]), V()=V+O0(t—1]) and Df(tZ)(8) = Df(Z)(B)+O(t—1|)
as t — 1~. Moreover, it follows from f(tZ) = Z — (1 — t)Df(Z)(Z) + O(|t — 1|?) that
ri(t) = p(f(t2))
=1—(1—t mii 82” 2)Dfij(Z2)(Z) + Ot — 1]?)

=1-(L=t)R(DA(Z)(2),Vp(Z)) + O(It = 1?)
=1— (L= t)R(Z,D"f(2)(Vp(2))) + Ot — 1)
=1-A1-t)+0(t—1?)

as t — 17. This implies

V1-73t) = /1= [L= A1 —t) + O(jt — 112)]2 = \/2A(1L — ) + O(Jt — 1)
as t — 17. By Corollary 2.4, we have

F(tZ,p)
_ . -
1 0 1_¢2 0
1—t2 1
1 1—t27‘2
1—t272 ! = 2
=pl|U U BV 1
1
0 12 _ 1272,
i 1—t=rs, 0 In m
_ . 0 -
) 00 - 0 1
1 1—t272
1—t2r§ 0 age -+ agon 2
=p L .
Lo P 1
0 0 Am2 *** Qmn “ /1_t27'72n
Visend, 0 In_

which gives lim;_,;- V1 — t2F (¢ ( ,3) = 0. Similarly, we obtain
F(f(t2), Df(t2)(8)]

B 1
1—r2(t) 0
1
2 R o _
—p |U@®) o) U6) DFE2) BV (D)
1
L 0 1-72 (t)
1 O T
V1712 (t)
1
\/lfrg(t)
X . V(t)
1
V1-72 ()
0 Infm i
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Notice that

T DIZ) BV =T DHZ)BV +O(|t = 1) = £ + O(|t 1))
as t — 1. This, together with (3.4), implies

lim \/1—r2(t)F[f(tZ), Df(tZ)(B)]

t—1—
1 0
1
1—7r2
= lim /1 —r2(t)p 2(®)
t—1—
1
: 1-2,(1)
ol ) c1240(t=1) . ewtO(t-1) 1 0
1-r7 (1) Vi-r2(t) T—r2(0) o
w _ . _ 17T2(t)
| v €22+ Ot =1]) -+ €20+ O(Jt — 1) 3
: : E ' 1
€m1+O(Jt— —
U ema Ot =1 - e+ Ot =1) | | A
[ €12 PR Elm oo 1
0 N V112, €1(m+1) €in
€21 ~ 0 cen 0 0 o 0
= 1—r3
j’jlrgn 0 0 0 0

By the contraction property of the Kobayashi metric, we have F[f(tZ), Df(tZ)(8)] < F(tZ, ). It follows
from this and (3.4) that

0 \/il_QTg \/Ellf;gn €1(m+1) **" €ln
e g ... 0 0O --- 0
p \/lirg

Jim /1= 13O F(f(t2), DF(t2)(8)
S e VPR

=V lim /1—#2F(tZ,53) = 0.

t—1—

N

That means
(621,...,€m1)/:07 (8127...,5171):0.

This shows that N is an (m — 1)(n — 1)-dimensional invariant subspace of D f(Z). Hence, there exists an
(m + n — 2)-dimensional invariant subspace M of D f(Z) such that

T30 (@Rz(m, ) = M & N.
Since M N N = {0}, we have (@z21,...,amm1) # 0 or (a12,...,a1,) # 0 for any 8 =UaV € M \ {0}.

For each eigenvalue p1; of Df(Z) on M, suppose that g = Ua(l:)V € M\ {0} is a nonzero eigenvector
with respect to p;. Here, 04111) =0, (aéll),...,a%)l)’ # 0 or (agw..,agg) £ 0, UDF(Z)(BNV =
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i (i =1,...,m+n —2). By Corollary 2.4, we get
F(t2,8Y)
B 1
1 0 1—¢2
1—t2 1
1 1—t2r2
—p|U b UV
1
0 m . Vi-t2r2,
[ /1 0 oy oy
) L vie Ve
—) V1—t2r2 \/% aég) aéz’rz
1 a(i) 1 i
\° vimn) \s anh o e
1 0 \]
1
17t2r§
X
1
0 Infm
Thus, we obtain
i (® (&) . )
o el w0
0 \/fjrg \/11,7”72” al(m+1) Ap
(i)
. L 0 0 0 0
lim /1—2F(tZ,89) =p 1=rs
t—1— :
(i)
ml 0 0 0 0
1=rZ,
On the other hand,
FIf(t2), Df(tZ)(BY)]
i 1
lfrf(t)
1
_ 1-r2(t) ! S AN
=p|U(t) Ut) Df(t2)(BM)V (1)
0
L 1—r2,(t)
X -
lfrf (t) 0
1
1—r2(t)
X V(t)
1
V1-r7.(t)
0 Infm i

Notice that U(t)/Df(tZD)(ﬁ(i))V(t)/ = pia® +O(|t —1])(t = 17) and ozlil) = 0. Then

lim
t—1—

L=} (O)F(f(t2), Df(t2)(BY)]
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{ 1 0
1
\/1—7r2
= lim \/1—7r3(t)p 2
t—1— :
1
0 1-rZ,(t)
o(jt—1)) piall) +0(t—1)) il +o(jt—1)) 1 0
1—72(t) V1-r2(t) V1-r2(0) 1
) . T
piaf)+00e=1) (i) T =30
« V-2 () piczy + O(|t —11) Nzazn +O(|t —1|)
1
0 4o N==RO)
% pialty + Ot = 1) -+ malh +0(t =11 | { I
r ) o®
a . m_ o) N )
0 \/112r2 \/11 . Q(m+1) Y1n
)
1 0 0 0 0 o
=lplp || V' = |pi| lim /1 —2F(tZ, "),
. t—1—
) 0 0 0 0
It follows from this and (3.4) that
s pi FU2). DFEZ)(BD)] _ VI—2 1=t Pf(t2), Df(t2)(BD)] _ |pl
A F(tZ,B®) \/1 2() VIi- t2 F(tZ,8®) VA
This implies
il < VA, i=1,...,m+n—2
For any eigenvalue v; of Df(Z Z) on N, suppose that 3 = Ua®DV € N\ {0} is a nonzero eigenvector
with respect to v;. Here, a{) =0, (af),... o) =0, (a{),...,al)) =0,
o) - af)
RN
o o ol
and U Df(Z2)(BD)YV =10 for i =1,...,(m — 1)(n — 1). Then by Corollary 2.4, we have
(t2,89)
B 1
1—t2 1
1 1212
— 272 J— o\ —
=p|U e T Oy 1%
1
I 0 1—1t2r72n 0 e In_m J
_ , 0\
1 0 0 0 0 1
. . _ ,’,2
—r 0 ay) - ay) o
Do : )
0 Ve 0 oy el 0 e I
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Hence, we get
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0 0 0 0 0
0 1&2";2 - a% fié/?’wn . \/aéi?
o ) - 1—7r2y/1—12 1—r2 1—r2
lim F(tZ, %) = ’ Vo 2 2 0.
Jm F(tZ,5) = p E ; E : 7
0 o oDy sy | _all)
L 1-r2, l—rg 1-r2, \/1—7*72,7, \/1—r$n _
On the other hand,
FIf(tZ), Df(tZ)(89)]
lfrf(t) 0
1
) —_— ° N
=p|U@) @ U(t) Df(t2) (B (D)
0 1
L 1-72,(1)
) 3
1—7‘f(t) 0
1
1—r2(t)
X V(t)
1
V1-7r2, ()
0 In-m |

—

Notice that W/Df(tZo)(ﬁ(i))V(t) =y +O(t—1))and 7 () = 1= X1 —t) +O(|t —1]*) as t — 1™

Then

lim F[f(tZ), Df(t2)(8D)]

t—1—
1 0
1
. lfrg(t)
= lim p
t—1—
0 1
Vi-r3 ()
o(t—1)) o1 O(t=1D 1 0
1-r3(t) V120 Vi—r2(0) L
OUt1) 0l) +O(lt—1]) -+ vial) +O(Jt — 1)) 1—r2(t)
« 1-r] (t)
oqt=1p ., (@ _ N () _ m
m Vi t+ O( t 1|) ViOQtmn + O('t 1|) 0 .
[ /b 0 0 0 0
0 me) __wol)  melny | wed)
=73 \/177"2\/177"72“ \/177"2 \/177“2 . N .
=r : : g T | 2l tim P2, 89),
Vlairl)z Va‘,oé%)m ”iaii)(mﬂ) o u,ﬂ,a%)n
L 1—r2,4/1—r2 1-r2, \/1_7.72” \/1_@” |
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where b = lim;_,{- (U ) Df(f)r(f(:; V(H) s . It follows that
1

> 1 FU(t2), DF(2)(5D)]
= t—1— F(tZo,ﬂ(l))

> |vil.

This shows
lvi| <1, i=1,....,(m—=1)(n—-1).
The proof of (3) is complete.
(4) Since Té’O(BRI(m, n)) = {UaV : o € C"*", a;; = 0} = M & N is an (mn — 1)-dimensional

invariant subspace of Df(Z), we know that there is a one-dimensional invariant subspace L of Df(Z)
such that

C™™" =L& M N.

It follows from L N TZ}’O(aRz(mm)) = {0} that for any § = UaV € L\ {0} we have aj; # 0. Now, we

claim that X is just the eigenvalue of Df(Z) on L. Assume that X is an eigenvalue of Df(Z) on L, and
B =UaV € L\ {0} is a nonzero eigenvector of D f(Z) with respect to A. Then by Proposition 2.1, we
obtain

(DF(2)(B), Vp(2)) = NB,Vp(Z)) = A1
On the other hand,

(DF(2)(8),Vp(2)) = (8, D F(2)(Vp(£))) = MB, Vp(Z)) = Ao

This, together with aq; # 0, yields A=A Therefore, A\, p; (i =1,....m+n—2)and v; (i = 1,...,
(m —1)(n — 1)) are all the eigenvalues of Df(Z) on C™*™. This implies

m4n

|det Df(Z)] < A2, |[eDf(Z)| < A+ VA(m+n—2) + (m —1)(n—1).

The proof of (4) is complete. O

Remark 3.2. From the view of geometry, N is an invariant subspace of Df(Z) perhaps because the
Levi form of p at 7 is positive semi-definite and not positive definite on N. We get the same conclusions
of || < VX (i =1,...,m+n—2) with [15, Theorem 3.1] perhaps because the Levi form of p at Z is
positive definite on M.

Remark 3.3.  From the proof of Theorem 3.1, it is clear that we need only to assume that the mapping f
is C* up to the boundary of Rz(m,n) near Z.

Remark 3.4. Whenm =1,n=1, f(0) =0 and Rz(1,1) = A, Theorem 3.1 is just Lemma 2.2. When
m =1 and Rz(1,n) = B™, Theorem 3.1 is just [16, Theorem 3.1].

Finally, we give the following example to show that the inequalities in (2)—(4) of Theorem 3.1 are
sharp.

Example 3.5. Let

and 0 < e < 1. Write e;; € C™*™ as a matrix, which has 1 at 4-th row and j-th column, and 0’s elsewhere.

By Lemma 2.3, take
1 1
Q — 1—¢2 0 , R= 1—¢? 0 .
0 Imfl 0 Infl
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Suppose that

00 -7, 0---0

is a smooth boundary point of Rz(m,n) and
f(Z)=—p-a(Z2)=Q ' (Im+ Za') ' (a+ Z)R,

where 1 >ry > -+ 21, 2 0. Then f: Rz(m,n) — Rz(m,n) is a holomorphic mapping with f(0) = a,
and f is holomorphic at Z. Moreover, f has the following properties.

(W) £(2) = 2.

(2) For any g € C™*™,

. 1—p(a) 0 1—p(a) 0
Df(z)(B) = | V @ g Ve
0 Im,1 0 Infl

(3) Df(Z)(e11) %&eu. This shows that one of eigenvalues of Df(Z) is 1;2223

(4) Df(Z)(erj) = /1548 er; (5 =2,...,n) and Df(Z)(eqn) = \/ 543 en (i =2,...,m). This shows
that the m + n — 2 cigenvalues of Df(Z) are all 4/ ;58

(5) Df(Zo)(eZ-j) =e; (i =2,...,m;j = 2,...,n). This shows that the (m — 1)(n — 1) eigenvalues
of Df(Z) are all 1.

Proof. By Lemma 2.3, it is clear that f : Rz(m,n) — Rz(m,n) is a holomorphic mapping with
f(0) = a, and f is holomorphic at Z.
(1) It is obvious that p(a) = €. Since

140 --- 00

) O ) 1 O . 0 TQ"'OO"'O
Za’:<go>, Im+Za’=<+€I ) and a+ 7 = R I

m—1

we have

f(2)=Q 'Um+ Za) Ya+ 2)R

_ Vi—g2 0 ﬁ 0 0 7r9--- 0 0---0 11_52 0
0 Imfl 0 Imfl 0 In—l

00 -7, 0---0
= 7.
(2) By a straightforward calculation, we get

DF(Z)(B) = Q '(Im + Za&) ' BR — Q" (I, + Za) ' B (I + Za') " (a+ Z)R
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=Q MIm+ 2a) ' BR— QM (I, + Za) ' BT Q(Z)
1=
= 1+e B(R —aQZ)
0
1— 5
— ?g 0 ﬂ 0 _ V1—g2 0
0 In,l 0 O
_ 112 0 0
0 In—l
1—p(a) 1—p(a)
T+p(a) 0 B I+p(a) 0 (3.5)
0 InL—l O In—l

(3)—(5) Replacing 8 with e;; (i=1,...,m;j=1,...,n) in (3.5), we can obtain

D) en) = T35 en
Df(Zo)(elj)_ 1;2&3;61.]7 .7:27 , 1,
DI en) = | e i=2eom,

at once. The proof is complete. O

4 Conclusions

In this paper, we considered the Schwarz lemma at the smooth boundary points of Rz(m,n). There
are some interesting problems that deserve further investigation such as the Schwarz lemma at the non-
smooth boundary points and the boundary Schwarz lemma on the other classical domains. In addition,
we can apply it to obtain some new results in the geometric function theory of several complex variables.
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