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Abstract This paper proposes a new weighted quantile regression model for longitudinal data with weights

chosen by empirical likelihood (EL). This approach efficiently incorporates the information from the conditional

quantile restrictions to account for within-subject correlations. The resulted estimate is computationally simple

and has good performance under modest or high within-subject correlation. The efficiency gain is quantified

theoretically and illustrated via simulation and a real data application.
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1 Introduction

Since the seminal work of Koenker and Bassett [15], quantile regression [14] has emerged as an important

alternative to mean regression, for that it does not require specification of the error distribution and

provides a more complete description of the conditional distribution of the response variable given the

covariates. See [2, 6, 8, 12, 14, 18, 23] and references therein for overview and discussions.

Longitudinal data are very common in biological and medical research. The characteristics of a longi-

tudinal study is that repeated observations for an individual subject tend to be correlated. In the context

of mean regression with longitudinal data, incorporating the within subject correlations is essential for

efficient inferences, as demonstrated by Liang and Zeger [16] and Qu et al. [22], among others. However,

incorporating the within subject correlations is more difficult for quantile regression in longitudinal data

analysis.

Jung [9] first considered the quantile regression model for longitudinal data and proposed a quasi-

likelihood method for median regression. He et al. [7] developed a generalized estimating equations

approach for balanced longitudinal data, where the covariances involved in the generalized estimating

equations are estimated by sample versions. Their method works well when the number of repeated

measurements is small but may lead to a loss of efficiency for parameter estimation when the number

of repeated measurements is large. Chen et al. [2] and Yin and Cai [28] proposed using the generalized
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estimating equations with the independence working model to estimate quantile regression models, which

are simple but could lead to a loss of efficiency for parameter estimation when strong correlations exist.

Koenker [13] proposed using a penalized likelihood to make inferences for a quantile regression model

with subject specified fixed effects. Geraci and Bottai [6] studied a quantile regression model with random

intercepts to account for the within subject correlations and introduced a likelihood-based approach by

assuming the response variable following an asymmetric Laplace density. Liu and Bottai [17] extended

the model by Geraci and Bottai [6] to linear mixed-effects models, where random regression coefficients

are specified by a multivariate Laplace distribution. Farcomeni [4] considered a quantile regression model

with time-varying random effects and the random effects are modeled by a first order latent Markov

chain. Wang and Zhu [27] proposed a smoothed empirical likelihood (EL; see [20]) inference procedures

under the framework of quantile regression with longitudinal data, which avoids estimating the unknown

error density function and the within-subject correlations involved in the asymptotic covariance matrix

of quantile estimators. Fu and Wang [5] generalized the induced smoothing method (see [1]) to the

quantile regression with longitudinal data, where the induced smoothing method is introduced to obtain

parameter estimates and their variances from non-smooth estimating functions.

In this paper, we consider quantile regression for longitudinal data and propose a weighted quantile

regression method to incorporate within-subject correlation with weights chosen by empirical likelihood

(EL). Our idea was motivated by a recent study by Tang and Leng [26], who considered a special case

where an auxiliary conditional mean model is available in addition to the quantile model. In practice,

the method of Tang and Leng [26] will be limited when the mean regression model cannot be reliably

established or the error distribution is heavy-tail with no finite mean. However, their usage of EL

weights to effectively account for auxiliary information sheds important insights on improving efficiency.

In this paper, we focus on quantile regression at a given quantile and adopt the idea of EL weights to

borrow information from structures assumed on the conditional quantile. We show both theoretically and

empirically that this approach can serve as a generic device to improve efficiency in quantile regression

for longitudinal data.

2 Conventional quantile regression

Consider a longitudinal study with N subjects. For the i-th subject, i = 1, . . . , N , let yit and xit =

(xit1, . . . , xitp)
T ∈ R

p be the response and covariate at time t = 1, . . . , ni. We assume that the subjects

are independent and the responses for the same subject are correlated over time. For the i-th subject, let

yi = (yi1, . . . , yini)
T and xi = (xi1, . . . , xini). Suppose that the τ -th conditional quantile of yit given xi

is given by Qτ (yit | xi) = xTitβ0, where β0 is interior to the parameter space Θ, a compact subset of Rp.

The basic approach to estimating β0 is the conventional quantile regression (CQ) estimator,

β̂ = argmin
β∈Θ

1

N

N∑
i=1

ni∑
t=1

ρτ (yit − xTitβ),

where ρτ (u) = u{τ−I(u < 0)} is the check loss function and I(·) is the indicator function. In longitudinal

data, the CQ estimator is consistent but typical of low relative efficiency for completely ignoring within-

subject correlations. The asymptotic normality of the CQ estimator is given by Wang and Zhu [27] and

included below.

Theorem 2.1. Let Sit(β) = I(yit − xTitβ � 0) − τ , Si(β) = (Si1(β), . . . , Sini(β))
T, and fit(·) be

the conditional probability density function (p.d.f.) of εit = yit − xTitβ0 given xi. Under Conditions

C1–C6 (see Appendix), one has
√
N(β̂ − β0)

d→ N(0,Σ) as N → ∞, where Σ = D−1
1 D0D

−1
1 , D0 =

limN→∞ 1
N

∑N
i=1 xiΛix

T
i , Λi = E{Si(β0)S

T
i (β0) | xi}, D1 = limN→∞ 1

N

∑N
i=1 xiΨix

T
i and Ψi

= diag{fi1(0), . . . , fini(0)}.
One may construct a consistent estimate of the asymptotic covariance matrix Σ using the induced

smoothing method [1]. Let ε̂it = yit − xTitβ̂, σ
2
it = xTitxit/N , Ψ̂it =

1
σit
φ( ε̂itσit

), Ψ̂i = diag{Ψ̂i1, . . . , Ψ̂ini},
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Λ̂i = Si(β̂)S
T
i (β̂), D̂0 = 1

N

∑N
i=1 xiΛ̂ix

T
i and D̂1 = 1

N

∑N
i=1 xiΨ̂ix

T
i , where φ(u) = (2π)−1/2 exp(−u2/2)

is the density function of the standard normal variable. Then, Σ̂ = D̂−1
1 D̂0D̂

−1
1 is a consistent estimator

of Σ.

3 Weighted quantile regression

Weighting is an effective approach to improving efficiency in marginal models [24,25]. In this section, we

propose weighted quantile regression estimators in the form of

β̂WQR = argmin
β∈Θ

N∑
i=1

wi

{ ni∑
t=1

ρτ (yit − xTitβ)

}
, (3.1)

where the weights wi’s are determined by the data and reflect within-subject correlations.

3.1 Naive EL weights

Within-subject correlation serves as important auxiliary information in longitudinal data. Because quan-

tile regression does not require a likelihood, we use estimating equation and propose to find the optimal

weights using empirical likelihood. We incorporate within-subject correlations using working correla-

tion matrices specified via the decomposition by Qu et al. [22], i.e., R−1
i = a0Ini +

∑m
k=1 akMik, where

a0, a1, . . . , am are unknown constants, Id is the d× d identity matrix, and Mi1, . . . ,Mim are some known

non-identity matrices. Then define

g(zi, β) = (Im ⊗ xi)MiSi(β), i = 1, . . . , N, (3.2)

where zi = (yi, x
T
i ), Mi = (MT

i1, . . . ,M
T
im)T is an mni×ni matrix, and ⊗ denotes the Kronecker product.

Note that, when m or p is large, it is inappropriate to base g(zi, β) on all matrices Mi1, . . . ,Mim, then

we may use only a subset of {Mi1, . . . ,Mim} in Mi.

By the quantile model assumptions and Theorem 2.1, it follows that E{g(zi, β0)} = 0 and the CQ

estimator β̂ is a consistent estimator of β0. Thus, we can apply the EL method to the moment restriction

limN→∞E{g(zi, β̂)} = 0. Formally, let LEL =
∏N

i=1 pi with nonnegative jump sizes pi’s that sum to 1.

The naive EL weights are then obtained by maximizing logLEL subject to the constraints

N∑
i=1

pi = 1,

N∑
i=1

pig(zi, β̂) = 0, pi � 0, i = 1, . . . , N, (3.3)

where β̂ is the CQ estimator. The problem can be solved by using Lagrange multipliers. This is equivalent

to maximizing

Q =

N∑
i=1

log(pi)− ν

( N∑
i=1

pi − 1

)
− nλT

N∑
i=1

pig(zi, β̂),

where ν is the multipliers for the second set of constraints, and λ the Lagrange multipliers for the third

set of constraints. The first-order-conditions of Q with respect to pi, ν and λ are

1

pi
− ν −NλTg(zi, β̂) = 0, i = 1, . . . , N,

N∑
i=1

pi = 1,

N∑
i=1

pig(zi, β̂) = 0.
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Multiplying the first equation by pi, summing over i and using the second and third equations, we have

ν = N ,

p̂i =
1

N(1 + λ̂Tg(zi, β̂))
, i = 1, . . . , N, (3.4)

and λ̂ solves
N∑
i=1

g(zi, β̂)

1 + λ̂Tg(zi, β̂)
= 0. (3.5)

Using {p̂i}Ni=1 in (3.4) as weights in (3.1), the weighted quantile regression estimator with naive EL

weights is given by

β̂NEL = argmin
β∈Θ

N∑
i=1

p̂i

{ ni∑
t=1

ρτ (yit − xTitβ)

}
. (3.6)

Implementing β̂NEL is straightforward. From (3.5), it is easily seen that

λ̂ = arg max
λ∈Rmp

N∑
i=1

log{1 + λTg(zi, β̂)}.

As the objective function is globally concave, this optimization problem can be solved by a simple Newton-

Raphson numerical procedure. After having λ̂ and hence p̂i’s, we can obtain β̂NEL straightforwardly using

the R package quantreg. The following theorem gives the asymptotic distribution of β̂NEL.

Theorem 3.1. Under the regularity conditions C1–C6, as N → ∞, we have

√
N(β̂NEL − β0)

d→ N(0,ΣNEL),

where ΣNEL = Σ−D−1
1 Ω1D

−1
1 ,

Ω1 = Γ1Π
−1ΓT

1 −D0D
−1
1 DT

2 Π
−1ΓT

1 − (D0D
−1
1 DT

2 Π
−1ΓT

1 )
T + Γ1Π

−1ΓT
1D

−1
1 DT

2 Π
−1ΓT

1

+ (Γ1Π
−1ΓT

1D
−1
1 DT

2 Π
−1ΓT

1 )
T − Γ1Π

−1D2D
−1
1 D0D

−1
1 DT

2 Π
−1ΓT

1 ,

D2 = lim
N→∞

1

N

N∑
i=1

(Im ⊗ xi)MiΨix
T
i ,

Γ1 = lim
N→∞

1

N

N∑
i=1

xiΛiM
T
i (Im ⊗ xi)

T,

Π = lim
N→∞

1

N

N∑
i=1

{(Im ⊗ xi)Mi}Λi{(Im ⊗ xi)Mi}T

with Ψi, Λi, D0, D1 and Σ defined in Theorem 2.1.

The asymptotic covariance matrix ΣNEL can be estimated using the induced smoothing method. Let

Π̂ = 1
N

∑N
i=1{(Im⊗xi)Mi}Λ̂i{(Im⊗xi)Mi}T, D̂2 = 1

N

∑N
i=1(Im⊗xi)MiΨ̂ix

T
i , Γ̂1 = 1

N

∑N
i=1 xiΛ̂iM

T
i (Im

⊗ xi)
T and

Ω̂1 = Γ̂1Π̂
−1Γ̂T

1 − D̂0D̂
−1
1 D̂T

2 Π̂
−1Γ̂T

1 − (D̂0D̂
−1
1 D̂T

2 Π̂
−1Γ̂T

1 )
T + Γ̂1Π̂

−1Γ̂T
1 D̂

−1
1 D̂T

2 Π̂
−1Γ̂T

1

+ (Γ̂1Π̂
−1Γ̂T

1 D̂
−1
1 D̂T

2 Π̂
−1Γ̂T

1 )
T − Γ̂1Π̂

−1D̂2D̂
−1
1 D̂0D̂

−1
1 D̂T

2 Π
−1Γ̂T

1 ,

where Ψ̂i, Λ̂i, D̂0 and D̂1 are previously defined. A consistent estimator of ΣNEL is then Σ̂NEL =

Σ̂− D̂−1
1 Ω̂1D̂

−1
1 .

It is worth noting that the matrix Ω1 may not be nonnegative definite, so the efficiency gain of β̂NEL over

the CQ estimator may not be evident theoretically. This consideration motivates our further adjustment

of the EL weights.
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3.2 Adjusted EL weights

Lemma A.2 in Appendix gives the following representation:

N−1/2
N∑
i=1

g(zi, β̂) = N−1/2
N∑
i=1

{(Im ⊗ xi)Mi −D2D
−1
1 xi}Si(β0) + op(1),

where D1 and D2 are defined in Theorems 2.1 and 3.1, respectively. This motivates us to adjust the score

function in (3.2) to

g̃(zi, β) = {(Im ⊗ xi)Mi − D̂2D̂
−1
1 xi}Si(β), i = 1, . . . , N, (3.7)

where D̂1 and D̂2 are previously defined. Then we obtain the adjusted EL weights q̂i in the same way

as p̂i in (3.4), and denote by β̂AEL the resulting weighted quantile regression estimator with adjusted EL

weights.

Theorem 3.2. Under the regularity conditions C1–C6, and as N → ∞,

√
N(β̂AEL − β0)

d→ N(0,ΣAEL),

where ΣAEL = Σ − D−1
1 Ω2D

−1
1 , Ω2 = Γ2Δ

−1ΓT
2 , Γ2 = limN→∞ 1

N

∑N
i=1 xiΛiH

T
i , Δ = limN→∞ 1

N∑N
i=1HiΛiH

T
i , Hi = (Im ⊗ xi)Mi − D2D

−1
1 xi, and Λi, D1, D2 and Σ are defined in Theorems 2.1

and 3.1.

Since the matrix Ω2 is obviously nonnegative definite, β̂AEL has an asymptotically variance no greater

than that of the CQ estimator. The asymptotic covariance matrix ΣAEL can also be estimated using the in-

duced smoothing method. Let Ĥi = (Im⊗xi)M−D̂2D̂
−1
1 xi, Γ̂2 = 1

N

∑N
i=1 xiΛ̂iĤ

T
i , Δ̂ = 1

N

∑N
i=1 ĤiΛ̂iĤ

T
i

and Ω̂2 = Γ̂2Δ̂
−1Γ̂T

2 . Then, a consistent estimator of ΣAEL is Σ̂AEL = Σ̂− D̂−1
1 Ω̂2D̂

−1
1 .

4 Simulation studies

In this section, we conduct a simulation study to investigate the finite-sample performance of the proposed

estimators. We simulate 1,000 Monte Carlo samples of size N = 100 from the following model under

three different setups:

yit = μ+ xTitβ + εit(τ), i = 1, . . . , N, t = 1, . . . , n,

where xit = (xit1, xit2)
T, β = (β1, β2)

T, εi(τ) = (εi1(τ), . . . , εin(τ))
T with εij(τ) obtained from different

transformations of latent random errors

ξi = (ξi1, . . . , ξin)
T ∼ N(0, V (α)).

The latent correlation matrix V (α) = {Vjk(α)} is either an AR(1) (Vjk(α) = α|j−k|) or exchangeable

(Vjk(α) = α+ (1− α) I(j = k)) correlation matrix.

• Setup 1. εit(τ) = F−1
τ (Φ(ξit)) with Fτ being the cdf of the asymmetric Laplace distribution

ALD(0, 1, τ) (see [29]).

• Setup 2. εit(τ) = F−1
c (Φ(ξit)) − F−1

c (τ) with Fc as the standard Cauchy cdf, i.e., Fc(x) = 0.5 +

arctan(x)/π. Note that the mean and variance of yit do not exist under this setup.

• Setup 3. εit(τ) = F−1
T (2)(Φ(ξit)) − F−1

T (2)(τ) with FT (2) as the cdf of Student’s t-distribution with 2

degrees of freedom, i.e., FT (2)(x) = 0.5+ 0.5x/(2+ x2)1/2. Note that the mean of yit exists, but variance

does not.

Note that Setups 2 and 3 present theoretical difficulty to impose an auxiliary mean regression model,

so the QREL estimator in [26] does not apply. Under all three setups, we set τ = 0.7, n = 10,

(μ, β1, β2) = (0, 1, 1) and generate xi11, xi21, . . . , xin1 independently from N(0, 1) and xi12, xi22, . . . , xin2
from Bernoulli(0.5). Three levels of within-subject correlation is considered by setting α = 0.3, 0.7

and 0.9.
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Table 1 Comparison of relative efficiency (RE). QREL is based on mean model y ∼ x1+x2; QREL2 is based on mean

model y ∼ x1; HFF is the estimator in [7, Section 2.2]; AR, autoregressive; EX, exchangeable

α = 0.9 α = 0.7 α = 0.3

Setup V (α) Method β1 β2 β1 β2 β1 β2

1 EX NEL 3.352 3.044 1.585 1.745 1.075 1.134

AEL 3.336 3.043 1.559 1.728 1.057 1.109

QREL 1.532 1.451 1.293 1.438 1.050 1.142

QREL2 1.554 0.959 1.307 1.004 1.065 0.974

HFF 2.511 2.271 1.417 1.541 0.975 1.019

AR NEL 1.808 1.939 1.144 1.154 0.996 0.997

AEL 1.783 1.868 1.124 1.150 0.974 1.015

QREL 1.404 1.476 1.126 1.120 0.999 0.987

QREL2 1.428 0.992 1.126 0.988 1.022 0.986

HFF 2.244 2.295 1.285 1.275 0.968 0.975

2 EX NEL 3.214 2.939 1.818 1.717 1.121 1.141

AEL 3.099 2.832 1.725 1.687 1.130 1.109

QREL 1.133 1.003 1.102 1.102 0.995 1.022

QREL2 1.092 0.994 1.070 0.980 1.004 0.948

HFF 2.631 2.469 1.776 1.645 1.061 1.115

AR NEL 1.781 1.823 1.177 1.153 1.013 0.995

AEL 1.799 1.764 1.146 1.157 0.985 0.981

QREL 1.054 1.064 0.971 0.996 0.969 0.961

QREL2 1.058 0.977 0.984 0.980 0.996 0.964

HFF 2.264 2.300 1.271 1.222 0.999 1.048

3 EX NEL 3.227 3.350 1.760 1.678 1.135 1.081

AEL 3.127 3.251 1.757 1.641 1.122 1.065

QREL 1.433 1.577 1.374 1.249 1.123 1.085

QREL2 1.396 0.980 1.323 0.973 1.138 0.987

HFF 2.371 2.489 1.551 1.492 1.066 1.020

AR NEL 1.563 1.755 1.099 1.207 0.971 0.966

AEL 1.571 1.762 1.103 1.186 0.960 0.934

QREL 1.282 1.367 1.069 1.138 0.985 0.969

QREL2 1.290 0.972 1.089 0.974 1.010 0.989

HFF 2.164 2.218 1.382 1.387 0.969 1.004

Five estimators of β are considered. The first one is the NEL estimator proposed in Subsection 3.1.

For the NEL estimator, we use g(zi, β) = xiMSi(β) to obtain the naive EL weights p̂i, i = 1, . . . , N . The

second one is the AEL estimator proposed in Subsection 3.2. For the AEL estimator, we use

g̃(zi, β) = (xiM − D̂2D̂
−1
1 xi)Si(β)

to obtain the adjusted EL weights q̂i, i = 1, . . . , N . Following [22], we take M as either a matrix with 0

on the diagonal and 1 elsewhere, or a matrix with two main off-diagonals being 1 and 0 elsewhere. These

two basis matrices are referred to as the exchangeable and the AR(1) working correlation matrices, re-

spectively. The third one is the QREL estimator under the auxiliary mean model y ∼ x1+x2. The fourth

one is the QREL2 estimator under the auxiliary mean model y ∼ x1. Note that under Setups 1 and 3,

QREL uses a correct mean model while QREL2 is based on a misspecified mean model, so their perfor-

mances will help us to understand the influence of the auxiliary mean structure to the QREL estimator.

And similarly as in [26, Section 3], we consider AR(1) and exchangeable working correlation matrices
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Table 2 Comparison of relative efficiency (RE). QREL, the mean model is y ∼ x1 + x2, QREL2, the mean model is

y ∼ x1; HFF, the estimator in [7, Section 2.2]; AR, autoregressive; EX, exchangeable

α = 0.9 α = 0.7 α = 0.3

Setup V (α) Method β1 β2 β1 β2 β1 β2

1 EX NEL 2.422 2.144 1.349 1.429 1.021 1.022

AEL 2.343 2.024 1.314 1.341 0.996 0.993

QREL 1.496 1.421 1.191 1.302 1.019 1.071

QREL2 1.503 0.962 1.210 0.992 1.027 0.980

HFF 2.511 2.271 1.417 1.541 0.975 1.019

AR NEL 2.355 2.571 1.467 1.352 1.064 1.041

AEL 2.323 2.376 1.407 1.310 1.028 0.990

QREL 1.459 1.549 1.380 1.287 1.059 1.037

QREL2 1.463 0.976 1.364 0.971 1.073 0.981

HFF 2.244 2.295 1.285 1.275 0.968 0.975

2 EX NEL 2.298 2.240 1.594 1.393 1.024 1.002

AEL 2.126 2.043 1.446 1.307 1.012 0.973

QREL 1.135 0.955 1.009 1.069 0.923 0.923

QREL2 1.097 0.932 1.007 0.949 0.966 0.937

HFF 2.631 2.469 1.776 1.645 1.061 1.115

AR NEL 2.376 2.439 1.480 1.392 1.050 1.027

AEL 2.252 2.292 1.450 1.354 1.021 1.022

QREL 0.973 1.007 0.985 0.944 0.942 0.966

QREL2 0.964 0.946 0.997 0.956 0.943 0.971

HFF 2.264 2.300 1.271 1.222 0.999 1.048

3 EX NEL 2.160 2.530 1.369 1.290 0.986 1.002

AEL 2.122 2.367 1.330 1.257 0.954 0.974

QREL 1.330 1.557 1.206 1.217 0.982 1.017

QREL2 1.327 0.998 1.196 0.985 1.008 0.965

HFF 2.371 2.489 1.551 1.492 1.066 1.020

AR NEL 2.181 2.282 1.396 1.474 1.055 1.019

AEL 2.095 2.220 1.329 1.446 1.030 0.992

QREL 1.364 1.391 1.176 1.273 1.005 0.982

QREL2 1.377 0.979 1.179 0.999 1.014 0.981

HFF 2.164 2.218 1.382 1.387 0.969 1.004

when computing the QREL estimators. The last one is the HFF estimator solves
∑N

i=1 xiW
−1Si(β) = 0

with W = 1
N

∑N
i=1 Si(β̂)S

T
i (β̂). We use a stepwise replication of the bisection method to get the HFF

estimator. Given β(0) = (β
(0)
1 , β

(0)
2 ), the new estimate β

(1)
l of the l-th parameter (l = 1, 2) is obtained by

applying the bisection method to the estimating equation for βl, fixing the other argument at the current

estimate. We cyclicly update the parameter until the estimates converge.

We compare the above five estimators in their relative efficiency (RE), defined as the ratio of the

root mean squared error of the CQ estimator to that of the other estimators. A larger RE indicates

better efficiency. We first use the exchangeable working correlation structure for both NEL and AEL

estimators and the QREL estimators. See results in Table 1. We see that the NEL and AEL estimators

perform similarly across different setups, and always outperform the CQ, QREL and QREL2 estimators

under moderate to large latent correlation (α = 0.7 or 0.9), even when using a misspecified working

correlation structure, i.e., V (α) = AR. The advantage becomes more evident as the latent correlation α

gets stronger. Moreover, we also see that the QREL estimators no longer provide much efficiency gain

over the CQ estimator under Setups 2 and 3, when either the mean or variance does not exist. These
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observations suggest that our empirical likelihood weighting method is a more efficient way to utilize

within-subject correlations than the method of [26]. Furthermore, we also notice that using a correct

working correlation matrix improves the efficiency for the NEL and AEL estimators. The same fact

applies to the QREL estimators as well. Results based on the AR(1) working correlation structure are

similar and presented in Table 2.

Table 3 The estimated coverage probabilities and the mean lengths of confidence intervals (in parentheses) with 1,000

simulations in Setup 1. CQ is the conventional quantile regression

V (α)

EX AR

α Working correlation Method β1 β2 β1 β2

0.9 − CQ 0.953 (0.308) 0.957 (0.613) 0.955 (0.303) 0.954 (0.601)

EX NEL 0.950 (0.179) 0.953 (0.362) 0.949 (0.226) 0.953 (0.452)

AEL 0.951 (0.178) 0.954 (0.360) 0.950 (0.225) 0.951 (0.451)

AR NEL 0.945 (0.209) 0.952 (0.421) 0.947 (0.198) 0.951 (0.395)

AEL 0.935 (0.203) 0.942 (0.407) 0.940 (0.194) 0.945 (0.386)

0.7 − CQ 0.954 (0.302) 0.953 (0.599) 0.953 (0.298) 0.949 (0.587)

EX NEL 0.946 (0.228) 0.950 (0.456) 0.949 (0.271) 0.948 (0.534)

AEL 0.942 (0.228) 0.949 (0.455) 0.947 (0.270) 0.944 (0.532)

AR NEL 0.942 (0.253) 0.946 (0.504) 0.947 (0.244) 0.943 (0.481)

AEL 0.938 (0.249) 0.939 (0.494) 0.939 (0.241) 0.937 (0.474)

0.3 − CQ 0.952 (0.297) 0.953 (0.586) 0.953 (0.296) 0.948 (0.580)

EX NEL 0.944 (0.276) 0.950 (0.546) 0.947 (0.291) 0.944 (0.571)

AEL 0.942 (0.275) 0.944 (0.543) 0.947 (0.289) 0.943 (0.566)

AR NEL 0.945 (0.286) 0.948 (0.566) 0.948 (0.285) 0.946 (0.558)

AEL 0.938 (0.281) 0.937 (0.554) 0.942 (0.280) 0.938 (0.548)

Table 4 The estimated coverage probabilities and the mean lengths of confidence intervals (in parentheses) with 1,000

simulations in Setup 2. CQ is the conventional quantile regression

V (α)

EX AR

α Working correlation Method β1 β2 β1 β2

0.9 − CQ 0.954 (0.282) 0.958 (0.573) 0.946 (0.278) 0.955 (0.563)

EX NEL 0.945 (0.164) 0.949 (0.336) 0.948 (0.208) 0.949 (0.422)

AEL 0.945 (0.165) 0.950 (0.339) 0.945 (0.209) 0.948 (0.425)

AR NEL 0.944 (0.192) 0.950 (0.391) 0.942 (0.182) 0.949 (0.369)

AEL 0.931 (0.188) 0.935 (0.383) 0.936 (0.179) 0.941 (0.364)

0.7 − CQ 0.950 (0.278) 0.950 (0.561) 0.944 (0.273) 0.947 (0.551)

EX NEL 0.943 (0.209) 0.945 (0.426) 0.936 (0.248) 0.942 (0.501)

AEL 0.940 (0.210) 0.942 (0.428) 0.934 (0.248) 0.939 (0.501)

AR NEL 0.942 (0.232) 0.944 (0.470) 0.938 (0.223) 0.940 (0.450)

AEL 0.930 (0.229) 0.936 (0.464) 0.932 (0.221) 0.931 (0.446)

0.3 − CQ 0.947 (0.273) 0.944 (0.549) 0.944 (0.269) 0.944 (0.543)

EX AEL 0.940 (0.253) 0.937 (0.510) 0.934 (0.263) 0.936 (0.530)

NEL 0.942 (0.253) 0.940 (0.511) 0.936 (0.265) 0.941 (0.534)

AR NEL 0.938 (0.262) 0.940 (0.529) 0.936 (0.259) 0.937 (0.521)

AEL 0.932 (0.259) 0.933 (0.521) 0.928 (0.256) 0.929 (0.513)
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Table 5 The estimated coverage probabilities and the mean lengths of confidence intervals (in parentheses) with 1,000

simulations in Setup 3. CQ is the conventional quantile regression

V (α)

EX AR

α Working correlation Method β1 β2 β1 β2

0.9 − CQ 0.956 (0.214) 0.958 (0.430) 0.949 (0.212) 0.953 (0.424)

EX NEL 0.947 (0.123) 0.947 (0.249) 0.946 (0.158) 0.945 (0.317)

AEL 0.946 (0.123) 0.946 (0.250) 0.945 (0.158) 0.943 (0.317)

AR NEL 0.943 (0.144) 0.949 (0.290) 0.940 (0.137) 0.945 (0.275)

AEL 0.930 (0.141) 0.942 (0.284) 0.934 (0.135) 0.938 (0.272)

0.7 − CQ 0.946 (0.212) 0.951 (0.424) 0.947 (0.209) 0.949 (0.419)

EX NEL 0.942 (0.159) 0.946 (0.321) 0.942 (0.190) 0.944 (0.381)

AEL 0.941 (0.160) 0.943 (0.322) 0.939 (0.190) 0.944 (0.381)

AR NEL 0.941 (0.177) 0.943 (0.355) 0.940 (0.171) 0.942 (0.343)

AEL 0.934 (0.175) 0.938 (0.350) 0.934 (0.169) 0.936 (0.340)

0.3 − CQ 0.944 (0.209) 0.944 (0.419) 0.943 (0.209) 0.947 (0.418)

EX NEL 0.938 (0.194) 0.938 (0.390) 0.939 (0.205) 0.943 (0.411)

AEL 0.938 (0.194) 0.937 (0.389) 0.937 (0.204) 0.942 (0.409)

AR NEL 0.935 (0.201) 0.940 (0.404) 0.941 (0.201) 0.941 (0.402)

AEL 0.931 (0.199) 0.934 (0.398) 0.934 (0.198) 0.935 (0.397)

An interesting observation is that the QREL2 estimator always shows efficiency gain over the CQ

estimator on β1 but not so on β2. Recall that the auxiliary mean model used by QREL2 only contains

covariate x1 but not x2, so this fact reflects that the correctness of the working mean model is critical to

the effectiveness of QREL.

It is also interesting to see that the HFF estimator in general performs quite well, and sometimes beat

our NEL and AEL estimators if we use a misspecified working correlation structure. So, it can be a good

choice if the working correlation is likely misspecified. But it can only be used for balanced data and

does not provide efficiency gain over the CQ estimator for large n and small N (see the Supplementary

material of [26]).

Tables 3–5 summarize the estimated coverage probabilities and the average lengths of 95% confidence

intervals of the CQ, NEL and AEL methods based on 1,000 simulations. The three methods all give

coverage probabilities close to the nominal level of 95%. The NEL and AEL give similar mean lengths of

confidence intervals and the mean lengths of confidence intervals of these two methods are smaller than

those of the CQ method under moderate to large latent correlation (α = 0.7 or 0.9).

5 Data analysis

We analyzed the CD4 data in [3], where 2,376 CD4 observations were obtained from 369 infected men

enrolled in the Multicenter AIDS Cohort Study (see [10]). Time is measured in years with the origin

at the date of seroconversion. We model the population quantiles of the square-root-transformed CD4

counts as a function of time and the following additional covariates: age at the time of seroconversion,

packs of cigarettes smoked per day, recreational drug use, number of sexual partners and the depressive

symptoms, where severity of depressive symptoms was evaluated with the Center for Epidemiologic

Studies Depression Scale (CES-D Scale). The transformation on CD4 counts was suggested in [3] to

achieve better normality. We model the time trend as a constant prior to seroconversion and quadratic

in time thereafter.
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Figure 1 The top left panel depicts the data points and the fitted quantile curves for time at τ = 0.05, 0.25, 0.50, 0.75

and 0.95, using our NEL method (−), AEL method (−+) and the conventional quantile regression method (−o). The

rest are fitted quantile coefficients for the NEL method (−) with 95% confidence intervals (−); for the AEL method

(−+) with 95% confidence intervals (−+); for the conventional quantile regression method (−o) with 95% confidence

intervals (−o)

We compare three estimators: the CQ estimator that ignores the within-subject correlations, the NEL

and AEL estimators. For the NEL and AEL estimators, we base g(zi, β) and g̃(zi, β) on the AR(1)

working correlation matrix. The confidence regions for these three approaches are conducted based on

the normal approximation. In the first panel of Figure 1, we plot the data with the estimated time

trends at different quantiles for these three methods. The three methods produce similar trends when

τ = 0.25, 0.5 and τ = 0.75. However, when τ = 0.05 and 0.95, there is a considerable difference between

the estimated time trends. We plot the estimated regression coefficients for the five main convariates at

various quantile levels. We see that the NEL and AEL methods produce similar estimated regression

coefficients for the five main convariates at various quantile levels. The differences between the CQ

estimator and AEL estimator of the regression coefficients exist for drug and sexual partners.

6 Comments and conclusions

In this paper, we develop weighted quantile regression estimators for longitudinal data. The weights are

optimized by empirical likelihood with estimating equation that incorporates within-subject correlation,

and hence achieve more efficient estimation. We show that the proposed estimators are asymptotically

normal and more efficient than the conventional quantile regression estimator. Our approach is partly

motivated by the QREL estimator in [26]. Compared with QREL, our proposed estimator does not require

specification of the auxiliary mean structure, and display further efficiency gain in simulation studies.
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Appendix

C1. zi = (yi, x
T
i ), i = 1, . . . , N , are independent.

C2. The true parameter value β0 is an interior point of a compact parameter space Θ ⊂ R
p.

C3. The τ -th conditional quantile of yit given xi is given by Qτ (yit | xi) = xTitβ0.

C4. n∗ = supi ni <∞ and xi has a bounded support.

C5. Let Fit(·) and fit(·) denote respectively the conditional distribution and density functions of εit =

yit−xTitβ0 given xi. The distribution functions Fit(·)’s are absolutely continuous, with continuous densities
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fit(·)’s that are uniformly bounded away form 0 and ∞ at 0. Also, f ′
it(·) exists and is uniformly bounded.

C6. D0, D1, Π and Δ are positive definite.

Lemma A.1. If limN→∞ 1
N

∑N
i=1 E{supβ∈Θ ‖g(zi, β)‖q} < ∞, then max1�i�N supβ∈Θ ‖g(zi, β)‖

= o(N1/q) almost surely.

Proof. See the proof of [11, Lemma D.2].

Lemma A.2. For some 0 < C <∞,

sup
‖β−β0‖<CN−1/2

∥∥∥∥ 1

N

N∑
i=1

g(zi, β)− 1

N

N∑
i=1

g(zi, β0)−D2(β − β0)

∥∥∥∥ = op(N
−1/2),

where D2 = limN→∞ 1
N

∑N
i=1(Im ⊗ xi)MiΨix

T
i and Ψi = diag{fi1(0), . . . , fini(0)}.

Proof. Let

ḡ(zi, β) = (Im ⊗ xi)MiS̄i(β), i = 1, . . . , N,

where S̄i(β) = (S̄i1(β), . . . , S̄ini(β))
T and S̄it(β) = P (yit − xTitβ � 0)− τ . Note that

∥∥∥∥ 1

N

N∑
i=1

g(zi, β)− 1

N

N∑
i=1

g(zi, β0)−D2(β − β0)

∥∥∥∥

�
∥∥∥∥ 1

N

N∑
i=1

g(zi, β)− 1

N

N∑
i=1

g(zi, β0)− 1

N

N∑
i=1

ḡ(zi, β)

∥∥∥∥

+

∥∥∥∥ 1

N

N∑
i=1

ḡ(zi, β)−D2(β − β0)

∥∥∥∥.

According to the lemma in [9], the first term

sup
|β−β0|<CN−1/2

∥∥∥∥ 1

N

N∑
i=1

g(zi, β)− 1

N

N∑
i=1

g(zi, β0)− 1

N

N∑
i=1

ḡ(zi, β)

∥∥∥∥ = op(N
−1/2).

The second term

sup
|β−β0|<CN−1/2

∥∥∥∥ 1

N

N∑
i=1

ḡ(zi, β)−D2(β − β0)

∥∥∥∥

=

∥∥∥∥ 1

N

N∑
i=1

(Im ⊗ xi)MiΨix
T
i −D2

∥∥∥∥ sup
|β−β0|<CN−1/2

‖β − β0‖+ op(N
−1/2).

It follows from the law of large numbers that ‖N−1
∑N

i=1(Im⊗xi)MiΨix
T
i −D2‖ = op(1). This completes

the proof.

Lemma A.3. For some 0 < C <∞,

sup
‖β−β0‖<CN−1/2

∥∥∥∥ 1

N

N∑
i=1

g(zi, β)g
T(zi, β)−Π

∥∥∥∥ = op(1),

where Π = limN→∞ 1
N

∑N
i=1{(Im ⊗ xi)Mi}Λi{(Im ⊗ xi)Mi}T and Λi = E{Si(β0)S

T
i (β0) | xi}.

Proof. Let Π̃(β) = 1
N

∑N
i=1 E[{(Im ⊗ xi)Mi}Si(β)S

T
i (β){(Im ⊗ xi)Mi}T]. By the triangle inequality,

sup
‖β−β0‖<CN−1/2

∥∥∥∥ 1

N

N∑
i=1

g(zi, β)g
T(zi, β)−Π

∥∥∥∥
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� sup
‖β−β0‖<CN−1/2

∥∥∥∥ 1

N

N∑
i=1

g(zi, β)g
T(zi, β)− Π̃(β)

∥∥∥∥
+ sup

‖β−β0‖<CN−1/2

‖Π̃(β) − Π̃(β0)‖ + ‖Π̃(β0)−Π‖.

Under Condition C4, by using the uniform strong law of large numbers (see [21, p. 41]), we have

sup
‖β−β0‖<CN−1/2

∥∥∥∥ 1

N

N∑
i=1

g(zi, β)g
T(zi, β)− Π̃(β)

∥∥∥∥ = o(1) almost surely.

It is easy to see that sup‖β−β0‖<CN−1/2 ‖Π̃(β) − Π̃(β0)‖ = op(1) and ‖Π̃(β0) − Π‖ = op(1). The desired

result follows.

Lemma A.4. If λ = λ(β) solves
N∑
i=1

g(zi, β)

1 + λTg(zi, β)
= 0, (A.1)

then we have ‖λ(β)‖ = Op(N
−1/2) and

λ(β) =

{
1

N

N∑
i=1

g(zi, β)g
T(zi, β)

}−1
1

N

N∑
i=1

g(zi, β) + op(N
−1/2)

uniformly about β ∈ B0 = {β : ‖β − β0‖ < CN−1/2} for some 0 < C <∞.

Proof. The basic idea behind this proof is outlined in [19].

Let Ui = λTg(zi, β) and g
∗ = supβ∈B0

max1�i�N ‖g(zi, β)‖. Let λ(β) = ‖λ(β)‖v, ‖v‖ = 1. Substitut-

ing 1/(1 + Ui) = 1− Ui/(1 + Ui) into (A.1) and simplifying, we find that

‖λ(β)‖vT 1

N

N∑
i=1

g(zi, β)g
T(zi, β)

1 + Ui
v = vT

1

N

N∑
i=1

g(zi, β).

Since every pi > 0, we have 1 + Ui > 0 and therefore

‖λ(β)‖vT 1

N

N∑
i=1

g(zi, β)g
T(zi, β)v � ‖λ(β)‖vT 1

N

N∑
i=1

g(zi, β)g
T(zi, β)

1 + Ui
v(1 + ‖λ(β)‖g∗)

= vT
1

N

N∑
i=1

g(zi, β)(1 + ‖λ(β)‖g∗).

Consequently,

‖λ(β)‖
(
vT

1

N

N∑
i=1

g(zi, β)g
T(zi, β)v − g∗vT

1

N

N∑
i=1

g(zi, β)

)
� vT

1

N

N∑
i=1

g(zi, β).

By Lemma A.2,

sup
‖β−β0‖<CN−1/2

∥∥∥∥ 1

N

N∑
i=1

g(zi, β)

∥∥∥∥ � sup
‖β−β0‖<CN−1/2

∥∥∥∥ 1

N

N∑
i=1

g(zi, β)− 1

N

N∑
i=1

g(zi, β0)−D2(β − β0)

∥∥∥∥

+

∥∥∥∥ 1

N

N∑
i=1

g(zi, β0)

∥∥∥∥+ C‖D2‖N−1/2

= Op(N
−1/2).

Furthermore, by Lemma A.1, we have g∗ = op(N
1/2). Thus we have

‖λ(β)‖
(
vT

1

N

N∑
i=1

g(zi, β)g
T(zi, β)v + op(1)

)
= Op(N

−1/2).
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Then Lemma A.3 gives sup‖β−β0‖<CN−1/2 ‖ 1
N

∑N
i=1 g(zi, β)g

T(zi, β)‖ = Op(1). Hence, uniformly for any

β ∈ {β | ‖β − β0‖ < CN−1/2}, we obtain ‖λ(β)‖ = Op(N
−1/2). Based on this order bound for λ(β), we

then have max1�i�N ‖Ui‖ = op(1) uniformly for β ∈ {β | ‖β − β0‖ < CN−1/2}.
Now, write

0 =
1

N

N∑
i=1

g(zi, β)/(1 + Ui)

=
1

N

N∑
i=1

g(zi, β)

(
1− Ui +

U2
i

1 + Ui

)

=
1

N

N∑
i=1

g(zi, β)− 1

N

N∑
i=1

g(zi, β)g
T(zi, β)λ+

1

N

N∑
i=1

g(zi, β)
U2
i

1 + Ui
.

Because ∥∥∥∥ 1

N

N∑
i=1

g(zi, β)
U2
i

1 + Ui

∥∥∥∥ � 1

N

N∑
i=1

‖g(zi, β)‖3‖λ‖2|1 + Ui|−1

= op(N
1/2)Op(N

−1)Op(1) = op(N
−1/2),

we have, uniformly for β ∈ {β | ‖β − β0‖ < CN−1/2},

λ(β) =

{
1

N

N∑
i=1

g(zi, β)g
T(zi, β)

}−1
1

N

N∑
i=1

g(zi, β) + op(N
−1/2).

Lemma A.5. Let εit(β) = yit − xTitβ, σ
2
it = xTitxit/N , Ψ̂it(β) = σ−1

it φ(εit(β)/σit) and Ψ̂i(β) =

diag{Ψ̂i1(β), . . . , Ψ̂ini(β)}, where φ(u) = (2π)−1/2 exp(−u2/2). Let D̂1(β) = 1
N

∑N
i=1 xiΨ̂i(β)x

T
i and

D̂2(β) =
1
N

∑N
i=1(Im ⊗ xi)MiΨ̂i(β)x

T
i . Then, we have

sup
‖β−β0‖<CN−1/2

‖D̂1(β)−D1‖ p→ 0, (A.2)

sup
‖β−β0‖<CN−1/2

‖D̂2(β)−D2‖ p→ 0. (A.3)

Proof. The two results (A.2) and (A.3) can be proved in the same way, so we only prove (A.2) here.

By the triangle inequality, we have

sup
‖β−β0‖<CN−1/2

‖D̂1(β) −D1‖ � sup
‖β−β0‖<CN−1/2

‖D̂1(β)− D̂1(β0)‖+ ‖D̂1(β0)− E{D̂1(β0) | x1, . . . , xN}‖

+ ‖E{D̂1(β0) | x1, . . . , xN} − D̃1‖+ ‖D̃1 −D1‖,

where D̃1 = 1
N

∑N
i=1 xiΨix

T
i . It is easy to see that ‖D̃1 −D1‖ p→ 0 and

sup
‖β−β0‖<CN−1/2

‖D̂1(β) − D̂1(β0)‖ � sup
‖β−β0‖<CN−1/2

1

N

N∑
i=1

ni∑
t=1

‖xit‖2|Ψ̂it(β) − Ψ̂it(β0)|

� CN−1/2 1

N

N∑
i=1

ni∑
t=1

‖xit‖3σ−2
it |φ′(ε̂it(β∗)/σit)|,

where φ′(u) is the derivative of φ(u) and β∗ is a point on the segment connecting β and β0. Note that

σit = Op(N
−1/2) and limu→∞ |uφ′(u)| = 0, then we have sup‖β−β0‖<CN−1/2 ‖D̂1(β) − D̂1(β0)‖ = op(1).

By the law of large numbers, we have ‖D̂1(β0)− E{D̂1(β0) | x1, . . . , xN}‖ p→ 0. Next, we will show that

‖E{D̂1(β0) | x1, . . . , xN} − D̃1‖ p→ 0. Observe that

‖E{D̂1(β0) | x1, . . . , xN} − D̃1‖ =

∥∥∥∥ 1

N

N∑
i=1

xi[E{Ψ̂i(β0) | xi} −Ψi]x
T
i

∥∥∥∥
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� 1

N

N∑
i=1

ni∑
t=1

‖xit‖2|E{Ψ̂it(β0) | xit} −Ψit|.

Furthermore,

|E{Ψ̂it(β0) | xit} −Ψit| =
∣∣∣∣σ−1

it

∫
φ(u/σit)fit(u)du− fit(0)

∣∣∣∣
=

∣∣∣∣
∫
φ(u)[fit(0) + uσitf

′
it(ξu)]du − fit(0)

∣∣∣∣
� σit

∫
|φ(u)uf ′

it(ξu)|du,

where ξu lies between 0 and uσit. By the condition C5, there exists M > 0, such that |f ′
it(u)| < M . It

follows that

|E{Ψ̂it(β0) | xit} −Ψit| � σit

√
2

π
M → 0.

Thus, we have ‖E{D̂1(β0) | x1, . . . , xN} − D̃1‖ → 0. The desired result follows.

Proof of Theorem 2.1. See the proof of [27, Theorem 1].

Proof of Theorem 3.1. By the proof of Theorem 2.1, we have
√
N(β̂ − β0) = −D−1

1 B + op(1), where

D1 = limN→∞ 1
N

∑N
i=1 xiΨix

T
i , B = N−1/2

∑N
i=1 xiSi(β0)

d→ N(0, D0), D0 = limN→∞ 1
N

∑N
i=1 xiΛix

T
i

and Λi = E{Si(β0)S
T
i (β0) | xi}. By Lemma A.2,

1

N

N∑
i=1

g(zi, β̂) =
1

N

N∑
i=1

g(zi, β0) +D2(β̂ − β0) + op(N
−1/2)

=
1

N

N∑
i=1

g(zi, β0)−D2D
−1
1 N−1/2B + op(N

−1/2).

Therefore,

1

N

N∑
i=1

g(zi, β̂) =
1

N

N∑
i=1

{(Im ⊗ xi)Mi −D2D
−1
1 xi}Si(β0) + op(N

−1/2).

By Lemmas A.3 and A.4, we have

λ̂ =

{
1

N

N∑
i=1

g(zi, β̂)g(zi, β̂)
T

}−1
1

N

N∑
i=1

g(zi, β̂) + op(N
−1/2)

= Π−1 1

N

N∑
i=1

{(Im ⊗ xi)Mi −D2D
−1
1 xi}Si(β0) + op(N

−1/2). (A.4)

Let εit = yit−xTitβ0 and Ait(δ) = ρτ (εit−xTitδ/
√
N)−ρτ (εit). The function AN (δ) =

∑N
i=1Np̂i

∑ni

t=1Ait(δ)

is convex and is minimized at δ̂ =
√
N(β̂NEL − β0). Utilizing the following identity (see [12]),

ρτ (u− v)− ρτ (u) = vψτ (u) +

∫ v

0

{I(u � s)− I(u � 0)}ds,

where ψτ (u) = I(u < 0)− τ , we have Ait(δ) = A1it(δ) +A2it(δ) with

A1it(δ) = N−1/2xTitδSit(β0),

A2it(δ) =

∫ xT
itδ/

√
N

0

{I(εit � s)− I(εit � 0)}ds.
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Thus,

AN (δ) =

N∑
i=1

Np̂i

ni∑
t=1

A1it(δ) +

N∑
i=1

Np̂i

ni∑
t=1

A2it(δ).

Since p̂i = 1/[N(1 + λ̂Tg(zi, β̂))], by Lemmas A.1 and A.4, we have that

p̂i = N−1{1− λ̂Tg(zi, β̂)(1 + op(1))},

uniformly for i = 1, . . . , N . For the first term, we have

N∑
i=1

Np̂i

( ni∑
t=1

A1it(δ)

)

=

N∑
i=1

{1− λ̂Tg(zi, β̂)(1 + op(1))}
( ni∑

t=1

A1it(δ)

)

= N−1/2
N∑
i=1

δTxiSi(β0){1− λ̂Tg(zi, β̂)(1 + op(1))}

= δTN−1/2
N∑
i=1

xiSi(β0)− δTN−1
N∑
i=1

xiSi(β0)S
T
i (β0)M

T
i (Im ⊗ xi)

TN1/2λ̂+ op(1).

By the law of large numbers, we have that

N−1
N∑
i=1

xiSi(β0)S
T
i (β0)M

T
i (Im ⊗ xi)

T p→ Γ1. (A.5)

Thus, by (A.4) and (A.5), we obtain

N∑
i=1

Np̂i

( ni∑
t=1

A1it(δ)

)

= δTN−1/2
N∑
i=1

[xi − Γ1Π
−1{(Im ⊗ xi)Mi −D2D

−1
1 xi}]Si(β0) + op(1),

where N−1/2
∑N

i=1[xi − Γ1Π
−1{(Im ⊗ xi)Mi − D2D

−1
1 xi}]Si(β0)

d→ N(0, D0 − Ω1) and Ω1 is given in

Theorem 3.1. For the second term, we have

N∑
i=1

Np̂i

( ni∑
t=1

A2it(δ)

)
=

N∑
i=1

ni∑
t=1

A2it(δ)−
N∑
i=1

ni∑
t=1

A2it(δ)λ̂
Tg(zi, β̂).

We first show that

N∑
i=1

ni∑
t=1

A2it(δ) =
1

2
δTD1δ + op(1). (A.6)

Observe that

E

( N∑
i=1

ni∑
t=1

A2it(δ)

∣∣∣∣ x1, . . . , xN
)

=

N∑
i=1

ni∑
t=1

E{A2it(δ) | xi}

=
N∑
i=1

ni∑
t=1

∫ xT
itδ/

√
N

0

{Fit(s)− Fit(0)}ds
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=
1√
N

N∑
i=1

ni∑
t=1

∫ xT
itδ

0

{Fit(u/
√
N)− Fit(0)}du

=
1

N

N∑
i=1

ni∑
t=1

∫ xT
itδ

0

√
N{Fit(u/

√
N)− Fit(0)}du

=
1

N

N∑
i=1

ni∑
t=1

∫ xT
itδ

0

fit(0)udu+ op(1)

= (2N)−1
N∑
i=1

ni∑
t=1

δTfit(0)xitx
T
itδ + op(1)

=
1

2
δTD1δ + op(1)

and

var

( N∑
i=1

ni∑
t=1

A2it(δ)

∣∣∣∣ x1, . . . , xN
)

=

N∑
i=1

var

( ni∑
t=1

A2it(δ)

∣∣∣∣ xi
)

�
N∑
i=1

n2
iE

({
n−1
i

ni∑
t=1

A2it(δ)

}2 ∣∣∣∣xi
)

�
N∑
i=1

ni

ni∑
t=1

E(A2
2it(δ) |xi)

� n∗
√
N

max
1�i�N,1�t�ni

|xTitδ|
N∑
i=1

ni∑
t=1

E{A2it(δ) | xi} = op(1),

where n∗ = supi ni <∞. Therefore, (A.6) is proved. In addition, it is true that

∣∣∣∣
N∑
i=1

ni∑
t=1

λ̂Tg(zi, β̂)A2it(δ)

∣∣∣∣ � max
1�i�N

{|λ̂Tg(zi, β̂)|}
∣∣∣∣

N∑
i=1

ni∑
t=1

A2it(δ)

∣∣∣∣.

Since max1�i�N{|λ̂Tg(zi, β̂)|} = op(1), this term is negligible asymptotically. It follows that

AN (δ) =
N∑
i=1

Np̂i

( ni∑
t=1

Ait(δ)

)

d→ A0(δ) = δTN−1/2
N∑
i=1

{xi − Γ1Π
−1[(Im ⊗ xi)Mi −D2D

−1
1 xi]}Si(β0) +

1

2
δTD1δ.

Summarizing the above results, we conclude that

√
N(β̂NEL − β0) = δ̂

d→ argmin
δ
A0(δ).

The theorem follows by noting that

argmin
δ
A0(δ) = −D−1

1 N−1/2
N∑
i=1

{xi − Γ1Π
−1[(Im ⊗ xi)Mi −D2D

−1
1 xi]}Si(β0). �

Proof of Theorem 3.2. By the proof of Theorem 3.1 and Lemma A.5, we have

1

N

N∑
i=1

g̃(zi, β̂) =
1

N

N∑
i=1

HiSi(β0) + op(N
−1/2),
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where Hi = (Im ⊗ xi)Mi −D2D
−1
1 xi. Similar to the proof of Lemmas A.3 and A.4, we have

λ̂ =

{
1

N

N∑
i=1

g̃(zi, β̂)g̃(zi, β̂)
T

}−1
1

N

N∑
i=1

g̃(zi, β̂) + op(N
−1/2)

= Δ−1 1

N

N∑
i=1

HiSi(β0) + op(N
−1/2).

Let εit = yit−xTitβ0 andAit(δ) = ρτ (εit−xTitδ/
√
N)−ρτ (εit). The function AN (δ)=

∑N
i=1Nq̂i

∑ni

t=1Ait(δ)

is convex and is minimized at δ̂ =
√
N(β̂AEL−β0). By the similar arguments of the proof of Theorem 3.1,

we obtain

AN (δ) =

N∑
i=1

Nq̂i

( ni∑
t=1

Ait(δ)

)

d→ A0(δ) = δTN−1/2
N∑
i=1

(xi − Γ2Δ
−1Hi)Si(β0) +

1

2
δTD1δ,

where N−1/2
∑N

i=1(xi−Γ2Δ
−1Hi)Si(β0)

d→ N(0, D0−Ω2) and Ω2 is given in Theorem 3.2. Summarizing

the above results, we conclude that

√
N(β̂AEL − β0) = δ̂

d→ argmin
δ
A0(δ).

The theorem follows by noting that

argmin
δ
A0(δ) = −D−1

1 N−1/2
N∑
i=1

(xi − Γ2Δ
−1Hi)Si(β0). �


