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Abstract The covariate-specific receiver operating characteristic (ROC) curve is an important tool for evalu-

ating the classification accuracy of a diagnostic test when it is associated with certain covariates. In this paper,

a weighted Wilcoxon estimator is constructed for estimating this curve under the framework of location-scale

model for the test result. The asymptotic normality is established, both for the regression parameter estimator

and the estimator for the covariate-specific ROC curve at a fixed false positive point. Simulation results show

that the Wilcoxon estimator compares favorably to its main competitors in terms of the standard error, espe-

cially when outliers exist in the covariates. As an illustration, the new procedure is applied to the dementia

data from the national Alzheimer’s coordinating center.
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1 Introduction

The receiver operating characteristic (ROC) analysis, which was developed in the statistical decision

theory, has been employed successfully in a variety of fields, such as experimental psychology, medical

diagnosis and medical imaging. The ROC curve plots a test’s sensitivity versus its 1-specificity as one

varies the decision threshold for test positivity, and is a useful tool to evaluate the classification ability

of a medical diagnostic test.

In practice, the ROC analysis is often complicated due to the existence of covariates. In particular, the

discrimination ability of a diagnostic test is often varied for different subpopulations defined by some or

all involved covariates. For example, for the uniform data example analyzed in Section 4, the test under

evaluation is the mini-mental state examination (MMSE), a 30-point questionnaire used to screen for

cognitive impairment. This test includes questions and problems in a number of areas, such as repeating

lists of words, arithmetic such as the serial sevens, language use and comprehension. It is likely that this

test has different discrimination ability for patients from different background. For example, controlling
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other possible confounding factors, the discrimination accuracy of the MMSE test may be different for

patients with different education levels. Moreover, some exploratory analysis shows that outliers may

exist in some covariates, such as age. Section 4 contains detailed discussion about this data example.

The covariate-specific ROC curve is widely used to evaluate the classification accuracy of the test

result for a specific subpopulation defined by the involved covariates. Like the ROC curve, a covariate-

specific ROC curve also depicts the position of each quantile point of the nondiseased population in the

diseased population. However, a covariate-specific ROC curve compares two conditional distributions.

This usually complicates the analysis and modeling process. In the literature, one uses either direct or

indirect approach to analyze the covariate-specific ROC curve (see [20, Chapter 5]). At the heart of the

direct approach is the specification of a model, either parametrically or semiparametrically, to connect

the underlying covariates directly to the target curve. This facilitates the interpretation of how covariates

affect the curve, but meanwhile causes estimation inconvenience since the curve itself is unobservable.

Quite differently, a key step for the indirect approach is the specification of a regression model for the

test result. Based on the specific model, one can straightforwardly write out the expression for the target

curve. Compared with the direct approach, the indirect modeling is easy to implement. Moreover, many

developed tools can be borrowed to make inference about the target curve. Due to these benefits, the

indirect approach is usually a first choice for modeling the covariate-specific ROC curve. A location-scale

model is usually employed for the indirect modeling (see [2–4, 8, 11–13, 19]), which is also the regression

model we focused on in the current paper.

Recently, Duan and Zhou [1] proposed to estimate the covariate-specific ROC curve through the com-

posite quantile regression method (see [21]) under a location-scale model. To facilitate the estimation,

they reformulate the classic location-scale model and estimate the regression parameters under the re-

formulated framework. One drawback of the procedure is that they have to introduce extra nuisance

parameters when estimating the regression parameters in the location-scale model. This increases the

computational burden for using their procedure, particularly when the number of quantile points is large.

Moreover, their procedure performs bad when outliers exist in the covariates. However, as will be shown

below, the weighted Wilcoxon procedure avoids all the shortcomings mentioned above, and meanwhile it

retains the efficiency and robustness advantages of the composite quantile regression method.

The Wilcoxon method is an important alternative to the least squares and quantile type methods for

estimating the regression parameters. By appropriately choosing the weight function, a weighted Wilcox-

on estimator is robust to outliers both in the response and covariates, which is frequently encountered

in biomedical and many other application fields (see [7,17]). The survey paper by McKean [10] contains

many useful references for the Wilcoxon method. In this paper, we propose to use the weighted Wilcoxon

method to estimate the regression parameters in a reformulated location-scale model, which is further

used to estimate the covariate-specific ROC curve. The simulation results suggest that the weighted

Wilcoxon procedure is very competitive to existing ones in terms of standard error, particularly when

outliers exist in the covariates.

The rest of the paper is organized as follows. In Section 2, we introduce the model and present the

main estimation procedure. Following this, we display the asymptotic results of the proposed estimators,

both for the regression parameters and the ROC curve at a fixed false positive point. We also present the

result for a linear location-scale model to gain insights into the new procedure. In Section 3, numerical

comparisons are conducted through simulation studies. In Section 4, the dementia data from the national

Alzheimer’s coordinating center (NACC) is analyzed for illustration. Section 5 contains a brief discussion,

and all the technical details are displayed in Appendix.

2 Methodology

2.1 Model

Let Y , D and X be the continuous test result, the true disease status and the covariates available for

a subject, respectively. Let D = 1 denote a diseased subject and 0 a healthy subject. We assume that
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larger values of Y are more indicative of the disease. Consider the location-scale model

Y = µ̃(X,D,α) +Dσ1ϵ1 + (1−D)σ0ϵ0, (2.1)

where µ̃ is a known function, α is a p-dimensional parameter vector, σ1 and σ0 are disease-specific scale

parameters, and ϵ0 and ϵ1 are disease-specific errors, both with mean 0 and variance 1, and independent

of X and D. Under (2.1), the derived ROC curve for a given X = x is

Rx(t) = s1

{
σ0
σ1
s−1
0 (t) +

µ̃(x, 0, α)− µ̃(x, 1, α)

σ1

}
,

where s0 and s1 denote the survival functions of ϵ0 and ϵ1, respectively.

To facilitate comparisons among different estimation procedures, Duan and Zhou [1] proposed to

reorganize (2.1) as

Y = µ(X,D, β) +Dε1 + (1−D)ε0, (2.2)

where µ is a known function, β is a q-dimensional parameter vector with q 6 p, ε0 and ε1 are disease-

specific errors with the respective survival functions S0 and S1. Besides the usually simpler functional

form compared to (2.1), a key feature of (2.2) is that no specific moment restrictions are imposed on

both ε1 and ε0, except their being independent of X and D. Under (2.2), the covariate-specific ROC

curve is

Rx(t) = S1{S−1
0 (t) + µ(x, 0, β)− µ(x, 1, β)}. (2.3)

2.2 The proposed method

Let {(Yi, Xi, Di) : i = 1, . . . , n} be an independent and identically distributed sample from (2.2). The

weighted Wilcoxon estimator of β, denoted by β̂n throughout, is the minimizer of

Qn(β) =
n∑

j=1

∑
i<j

bij{DiDj + (1−Di)(1−Dj)}|ei(β)− ej(β)|, (2.4)

where ei(β) = Yi − µ(Xi, Di, β), and bij is weight attached to the comparison of ei(β) and ej(β). In the

simulation studies and real data analysis, we adopt the generalized rank (GR) weights (see [16]), i.e.,

bij = h(Xi)h(Xj), where

h(Xi) = min

{
1,

b

(Xi − ψ)TW−1(Xi − ψ)

}
,

with (ψ,W ) being the robust minimum volume ellipsoid estimator of the location and scatter, and b

being the 95th percentile of χ2(r); here r is the dimension of X. As noted in [15], use of between-group

comparisons can bias the estimates if the error distributions are different. Hence we introduce the term

DiDj + (1 − Di)(1 − Dj) in (2.4), to eliminate comparisons of the residuals between the diseased and

healthy group.

Compared with [1], the proposed method has two advantages. First, we need not to introduce additional

parameters for estimating β. In contrast, [1] defines 2K quantile points of the error terms to estimate β,

where K is the number of quantile points in the composite quantile regression procedure. In this sense,

the proposed procedure is a better partner of the reformulated model framework. Second, the weighted

Wilcoxon method is robust to outliers both in the response and covariates, while the procedure in [1] can

be seriously destroyed by outliers in the covariates.

After obtaining β̂n, one can estimate S0 and S1 naturally through

Ŝ0(ε) =

∑n
i=1(1−Di)I(ε̂i > ε)∑n

i=1(1−Di)
and Ŝ1(ε) =

∑n
i=1DiI(ε̂i > ε)∑n

i=1Di
,

respectively, where ε̂i = Di{Yi − µ(Xi, 1, β̂n)} + (1 − Di){Yi − µ(Xi, 0, β̂n)}. Define Ŝ−1
0 (t) = inf{y :

Ŝ0(y) < t}. Plugging β̂n, Ŝ0 and Ŝ1 into (2.3), the proposed estimator for Rx(t) is

R̂x(t) = Ŝ1{Ŝ−1
0 (t) + µ(x, 0, β̂n)− µ(x, 1, β̂n)}. (2.5)
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2.3 Asymptotic normality

We first introduce some notation. Write n1 =
∑n

i=1Di and n0 = n−n1. Define µ1 = E{Dµ̇(X, 1, β∗)} and
µ0 = E{(1−D)µ̇(X, 0, β∗)}, where β∗ denotes the true value of β, and µ̇ represents the partial derivative

of µ with respect to β. Write µ̇n = {µ̇(X1, D1, β
∗), . . . , µ̇(Xn, Dn, β

∗)}T. Let B be the parameter space

for β, and a⊗2 = aaT for a vector or matrix a. Let Wn = (wij) be an n× n matrix with

wij =


−n−1

0 bijI{Di = 0, Dj = 0} − n−1
1 bijI{Di = 1, Dj = 1}, i ̸= j,

n−1
0 I{Di = 0}

n∑
k ̸=i

bik + n−1
1 I{Di = 1}

n∑
k ̸=i

bik, i = j.

We assume the following conditions hold:

A1. Write π = pr(D = 1). Then 0 < π < 1.

A2. The parameter space B is compact, and the true value β∗ is an interior point of B.
A3. For j = 0, 1, the distribution function Fj of εj is absolutely continuous, with continuous density fj .

A4. (i) The function µ(x, d, β) is continuous in (x, d) for each β, and is differentiable at β∗ for each (x, d),

with derivative µ̇(x, d, β) such that E{µ̇(X,D, β)⊗2} is positive definite.

(ii) There exists a measurable function U(x, d) with E{U(X,D)2} < ∞, such that |µ(x, d, β)
− µ(x, d, β̃)| 6 U(x, d)∥β − β̃∥, for each x, d, β and β̃.

(iii) There exists positive definite matrices V and C such that n−1µ̇T
nW

2
nµ̇n converges in probability

to V and n−1{τ1µ̇T
nDWnDµ̇n + τ0µ̇

T
n (In − D)Wn(In − D)µ̇n} converges in probability to C, where

τ0 =
∫
f20 (t)dt, τ1 =

∫
f21 (t)dt, D = diag{D1, . . . , Dn}, and In denotes the n× n identity matrix.

(iv) The class of functions (y, x, d) 7→ I{y − µ(x, d, β) > ω}, for β and ω in some neighborhood of the

associated true values, is Donsker.

Assumption A1 is trivial in ROC-related literatures. Assumptions A2 and A3 are regular conditions

which are required for proving the consistency of β̂n. Conditions A4(i)–A4(iii) are modified versions of

those used for investigating rank method under a linear model. Condition A4(iv) has been used in [1] to

prove the asymptotic normality of R̂x(t). Our main results are as follows.

Theorem 2.1. Suppose that Conditions A1–A4 hold. Then the sequence n1/2(β̂n−β∗) is asymptotically

normal with mean zero and covariance matrix 12−1C−1V C−1.

Theorem 2.2. Suppose that Conditions A1–A4 hold. Then, for each fixed t ∈ (0, 1), and a fixed

covariate value x, the sequence n1/2{R̂x(t)−Rx(t)} is asymptotically normal with mean zero and variance

π−1S1(w
∗){1− S1(w

∗)}+ t(1− t)f21 (w
∗)

(1− π)f20 {S
−1
0 (t)}

+
1

12
f21 (w

∗)∇T
xC

−1V C−1∇x, (2.6)

where w∗ = S−1
0 (t)+µ(x, 0, β∗)−µ(x, 1, β∗), and ∇x = {µ̇(x, 1, β∗)−µ̇(x, 0, β∗)}−{π−1µ1−(1−π)−1µ0}.

The proof of Theorem 2.2 is similar to that for proving [1, Theorem 2], and thus is omitted here. We

see that the asymptotic variance of n1/2{R̂x(t)−Rx(t)} is affected by the specific estimation procedures

only through the third term in (2.6), for which the core part is the asymptotic covariance matrix of

n1/2(β̂n − β∗). This provides us a unified framework for comparing different procedures chosen for

estimating the target ROC curve. Given the first two terms in (2.6), a procedure with smaller asymptotic

covariance for estimating β is more appealing for estimating the target ROC curve.

2.4 A special case: Linear location-scale model

To gain insights into the proposed estimation procedure, we consider a linear location-scale model Y =

α0 + α1D + αT
2X + DαT

3X + Dσ1ϵ1 + (1 − D)σ0ϵ0, which can be reorganized as Y = βT
1 X + DβT

2 X

+ Dε1 + (1 − D)ε0, where β1 = α2, β2 = α3, and ε0 and ε1 are newly defined disease-specific errors.

Write β = (βT
1 , β

T
2 )

T, then we can estimate it by minimizing

Q̄n(β) =

n∑
j=1

∑
i<j

bijI(Di = 1, Dj = 1)|Yi − Yj − (β1 + β2)
T(Xi −Xj)|
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+

n∑
j=1

∑
i<j

bijI(Di = 0, Dj = 0)|Yi − Yj − βT
1 (Xi −Xj)|,

which is a special case of (2.4). It follows that we can estimate β1 only based on the second term of Q̄n(β),

and estimate β2 via θ̂ − β̂1, where θ = β1 + β2 is estimated based on the first term of Q̄n(β). We have

the following result.

Corollary 2.3. Suppose that Conditions A1–A4 hold. Let bij ≡ 1, τ0 =
∫
f20 (t)dt, and τ1 =

∫
f21 (t)dt.

Furthermore, let C1 = E[D{µ̇β(X, 1, β
∗)}⊗2] and C0 = E[(1 − D){µ̇(X, 0, β∗)}⊗2]. Then n1/2(β̂n

− β∗) is asymptotically normal with mean zero and covariance matrix 12−1Γ−1∆Γ−1, where Γ = τ1(C1

− π−1µ⊗2
1 ) + τ0{C0 − (1− π)−1µ⊗2

0 } and ∆ = (C1 − π−1µ⊗2
1 ) + {C0 − (1− π)−1µ⊗2

0 }.
Under the linear location-scale model with bij ≡ 1, there is some interesting findings about the relation-

ship between the Wilcoxon procedure and the composite quantile regression procedure for estimating β,

which further implies comparison between the two methods for estimating the target ROC curve. First,

if ε1 and ε0 are identically distributed, the composite quantile regression estimator has the same asymp-

totic distribution as the Wilcoxon estimator when the number of the selected quantiles tends to infinity.

Second, it can be shown that the asymptotic relative efficiency of the rank with respect to least squares

method is never below 0.864, which sharpens the bound 0.703 given in [21]; see [7] for more discussions.

Combined this fact to the discussions below Theorem 2.2, it appears that the newly proposed weight-

ed Wilcoxon procedure is more appealing for estimating the ROC curve than most of its competitors,

including the one introduced in [1].

3 Simulation

Simulation studies were carried out to assess the finite-sample performance of the proposed method

for estimating Rx(t). Our simulations were designed to demonstrate the robustness and efficiency of the

proposed weighted Wilcoxon (WW) estimator, compared with the Wilcoxon (W) estimator, the composite

quantile regression (CQR) estimator in [1], and the quasilikelihood (QL) estimator in [12]. All the results

were based on 1,000 replications. We totally considered two model setups.

Model 1. We used the model considered in [1], i.e.,

Y = 1 +X +D +XD +De1 + (1−D)e0,

where X ∼ N(0, 1), D ∼ B(1, 0.5), e1 and e0 were both standard normal errors, and the four variables

X, D, e1 and e0 were generated independently with each other. To investigate the effect of outliers on

the estimation of Rx(t), we considered three cases:

Case 1. A contamination of the response was done by replacing a 5% of Y randomly with Y + δ,

where δ ∼ N(0, 52).

Case 2. A contamination of the covariates was done by replacing a 5% of X randomly with X + δ,

where δ ∼ N(0, 52).

Case 3. Independently replaced 5% of Y and 5% of X with Y + δ1 and X + δ2, where δ1 and δ2 were

independent and both followed N(0, 52).

Table 1 summarizes the bias (Bias), the standard error (SE) and the root mean squared error (RMSE)

for the estimated Rx(t) with false positive points fixed at 0.1, 0.3, 0.5 and 0.7, and covariate at x = 0.5,

respectively. We observe that the WW, W and CQR procedures are more robust than the QL method

when outliers exist in the Y direction. Furthermore, the WW procedure is robust to outliers in the X

direction, in contrast to the adversely affected performance of the W, CQR and QL methods.

Model 2. We considered the same model as previously except that X ∼ U(0, 1). We displayed the

results for three configurations of e1 and e0. (1) both from N(0, 1); (2) both from a contaminated normal

distribution 0.95N(0, 1) + 0.05N(0, 502); and (3) both from the Cauchy distribution with probability

density function proportional to (1 + u2)−1.



1710 Zhang Q Z et al. Sci China Math September 2017 Vol. 60 No. 9

Table 1 Bias, SE and RMSE for estimating R0.5(t). All values are multiplied by 100

false positive point

0.1 0.3 0.5 0.7

method Bias (SE) RMSE Bias (SE) RMSE Bias (SE) RMSE Bias (SE) RMSE

Case 1 (outliers in only Y )

W −3.7 (10.0) 10.7 −2.0 (5.6) 5.9 −1.7 (3.4) 3.8 −1.6 (2.0) 2.6

WW −3.7 (10.0) 10.7 −2.0 (5.6) 6.0 −1.7 (3.4) 3.8 −1.6 (2.0) 2.6

CQR −3.9 (10.1) 10.8 −2.2 (5.6) 6.0 −1.8 (3.5) 3.9 −1.6 (2.0) 2.5

QL −4.2 (10.2) 11.1 −2.3 (5.8) 6.2 −1.8 (3.5) 4.0 −1.7 (2.1) 2.7

Case 2 (outliers in only X)

W −7.3 (9.7) 12.2 −6.3 (8.8) 10.8 −5.1 (7.0) 8.7 −3.9 (5.0) 6.3

WW −3.6 (9.3) 10.0 −2.2 (5.6) 6.0 −2.0 (3.5) 4.0 −2.0 (2.1) 2.9

CQR −8.6 (9.8) 13.0 −7.9 (9.3) 12.2 −6.3 (7.7) 9.9 −4.6 (5.6) 7.3

QL −13.7 (8.9) 16.3 −15.5 (9.8) 18.4 −12.9 (8.9) 15.7 −9.3 (7.0) 11.6

Case 3 (outliers in both X and Y )

W −11.3 (10.2) 15.3 −8.8 (9.2) 12.7 −7.0 (7.3) 10.1 −5.5 (5.1) 7.5

WW −8.1 (10.3) 13.2 −4.2 (5.9) 7.2 −3.7 (3.9) 5.4 −3.5 (2.6) 4.4

CQR −12.7 (10.1) 16.2 −10.4 (9.5) 14.0 −8.3 (7.9) 11.5 −6.3 (5.6) 8.4

QL −16.8 (9.1) 19.1 −17.1 (10.0) 19.8 −14.3 (8.9) 16.8 −10.4 (6.8) 12.4

Table 2 Bias, SE and RMSE for estimating R0.5(t). All values are multiplied by 100

false positive point

0.1 0.3 0.5 0.7

method Bias (SE) RMSE Bias (SE) RMSE Bias (SE) RMSE Bias (SE) RMSE

Normal

W 0.9 (8.4) 8.4 0.3 (5.1) 5.1 0.0 (3.0) 3.0 0.0 (1.6) 1.6

WW 0.8 (8.4) 8.4 0.3 (5.1) 5.1 0.0 (3.0) 3.0 0.0 (1.6) 1.6

CQR 0.8 (8.4) 8.4 0.2 (5.1) 5.1 0.0 (3.0) 3.0 0.0 (1.6) 1.6

QL 0.8 (8.3) 8.4 0.2 (5.0) 5.1 0.1 (5.1) 5.1 0.0 (1.6) 1.6

Contanimated normal

W −0.1 (9.8) 9.8 0.2 (5.2) 5.2 0.1 (3.3) 3.3 0.0 (2.2) 2.2

WW −0.1 (9.8) 9.8 0.2 (5.2) 5.2 0.1 (3.3) 3.3 0.0 (2.2) 2.2

CQR −0.2 (9.8) 9.8 0.1 (5.2) 5.2 0.0 (3.4) 3.4 0.0 (2.2) 2.2

QL −14.0 (16.9) 21.9 −13.8 (14.2) 19.8 −7.1 (9.3) 11.7 −3.8 (7.3) 8.3

Cauchy

W 2.7 (10.6) 10.9 −1.1 (6.8) 6.9 −0.2 (4.1) 4.1 −0.1 (3.5) 3.5

WW 2.7 (10.6) 10.9 −1.1 (6.8) 6.9 −0.2 (4.1) 4.1 −0.1 (3.5) 3.5

CQR 2.7 (10.6) 10.9 −1.2 (6.9) 7.0 −0.2 (4.1) 4.1 −0.1 (3.5) 3.5

QL 4.2 (14.6) 15.2 −20.2 (19.8) 28.3 −9.9 (14.9) 17.9 −4.3 (12.5) 13.2

Table 2 summarizes the corresponding simulation results. For the contaminated normal and Cauchy

distributions, the proposed method greatly outperforms the QL method in most cases, and is similar

to CQR. For the normal error distribution, the four procedures behave very similarly to each other.

The simulation findings can be summarized as follows. First, the newly proposed WW procedure

behaves very similar to the CQR procedure for normal setups without outliers existing in the covariates,

and both of them perform better than the remaining two procedures. Second, the WW procedure performs

the best among all the considered procedures when outliers exist in the covariates, and the efficiency gain

of the WW over the CQR method can be substantial. Due to its competitive numerical performance, the

WW procedure appears to be a promising choice in the covariate-specific ROC analysis.
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4 Example

A real data set collected by the NACC is analyzed to illustrate the proposed method. The test under

evaluation is the MMSE, a 30-point questionnaire used to screen for cognitive impairment, with lower

values indicating more severe impairment. We used 30 minus the original test score as our response T , so

that larger response values were more indicative of the disease status. Our interest is how well the test

can predict progression to dementia among subjects who have at least four follow-ups. The total sample

size was n = 1,124.

The dementia status D was defined through the clinical diagnosis result at a patient’s fourth visit to

one of the participating research centers. We considered six covariates, i.e.,

X = (X1, . . . , X6)
T,

which suggested in turn the patient’s age, gender (1 for male, and 0 for female), years of education, the

presence or not (1 for presence, and 0 otherwise) of depression, Parkinson’s disease, and stroke.

To model the test score, we used a linear location model, including the main effects of D and X as

well as their first order interactions. The scale model was assumed to depend only on the disease status.

As revealed by Figures 1 and 2, the distribution of T is highly skewed, and X1 contains some obvious

outliers. One may suggest a log-transformation of the response variable. However, our preliminary

analysis indicates that the log-transformed T is still unsatisfactory. Since the transformation may not

remove the outliers and meanwhile brings additional issues such as the interpretation, we chose to analyze

the variables on their original scale.

Table 3 summarizes the point estimates of the model parameters and their bootstrap SE based on 500

bootstrap resampling. Figure 3 displays the estimated Rx(t) at two education levels, i.e., 3 years and 23

years, for a white man aged 75 with no stroke history, no depression and no Parkinson’s disease, by

the four different procedures as adopted in the simulation studies. We observe that, compared to other

procedures, the ROC curve produced by the WW method shows much more difference for patients with

different education levels we investigated, with the MMSE becoming less accurate for predicting the

dementia status with the increase of the education levels. This is also demonstrated by the corresponding

areas under the curve as summarized in Figure 4.
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Figure 1 Histograms of T (i.e., 30 minus the original MMSE scores) for the healthy (D = 0) and diseased (D = 1) groups
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Figure 2 Boxplots of the age variable

Table 3 Estimated parameters and their bootstrap SE (in parentheses) for the dementia data

W WW CQR QL

σ̂1 ∗ ∗ ∗ 2.290 (0.100)

σ̂0 ∗ ∗ ∗ 1.720 (0.070)

Intercept ∗ ∗ ∗ 2.220 (0.720)

X1 0.021 (0.007) 0.023 (0.007) 0.019 (0.007) 0.021 (0.008)

X2 0.490 (0.120) 0.440 (0.140) 0.470 (0.110) 0.620 (0.140)

X3 −0.119 (0.023) −0.116 (0.025) −0.130 (0.024) −0.154 (0.028)

X4 0.050 (0.140) −0.000 (0.130) 0.090 (0.130) 0.110 (0.170)

X5 −0.060 (0.250) −0.090 (0.260) −0.040 (0.260) −0.170 (0.270)

X6 0.310 (0.300) 0.370 (0.300) 0.350 (0.280) 0.270 (0.320)

D ∗ ∗ ∗ 2.890 (1.520)

D ×X1 −0.009 (0.016) −0.023 (0.015) −0.008 (0.014) −0.012 (0.016)

D ×X2 0.100 (0.280) 0.220 (0.310) 0.080 (0.280) −0.050 (0.300)

D ×X3 −0.022 (0.052) −0.050 (0.056) −0.010 (0.052) −0.010 (0.053)

D ×X4 −0.390 (0.310) −0.330 (0.300) −0.460 (0.290) −0.560 (0.320)

D ×X5 −0.160 (0.580) −0.240 (0.600) −0.130 (0.580) −0.150 (0.560)

D ×X6 −0.930 (0.910) −1.040 (0.830) −1.020 (0.900) −0.480 (0.930)

Note. X1: age; X2: gender; X3: education; X4: depression; X5: Parkinson; X6: stroke; D: true dementia status.
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Figure 3 Estimated Rx(t) by the W method (dot dashed lines), the WW method (solid lines), the CQR method (dotted

lines) and the QL method (long dashed lines), for 3 years of education (thick lines) and 23 years of education (thin lines)

5 Discussion

In this paper, we have proposed a new method for estimating the covariate-specific ROC curve based on

the Wilcoxon rank method, which is an important alternative to the least squares and the quantile method
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Figure 4 Estimated area under the curve by the W method (thin solid lines), the WW method (thick solid lines), the

CQR method (dotted lines) and the QL method (dot dashed lines), with changing education levels

in the regression problem. Our results suggest that the weighted Wilcoxon method is very competing

for estimating the covariate-specific ROC curve, particularly when outliers exist in the covariates. To

conclude, we point out some possible research avenues in the future. When there are many covariates,

the variable selection issue arises for model interpretation and estimation efficiency. Ma and Huang [9]

and Wang et al. [18] studied the variable selection for the area under the curve, the most commonly used

summary measure of the ROC curve. To our knowledge, there is few variable selection studies focusing

on the indirect modeling approach for the ROC curve. It is challenging but interesting to develop in the

future flexible selection approaches in the context of the covariate-specific ROC curve.
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Appendix A

Proof of Theorem 2.1. Let Yij = Yi − Yj and µ̇ij(s, β
∗) = µ̇(Xi, s, β

∗) − µ̇(Xj , s, β
∗). For Qn(β)

in (2.4), it is equivalent to consider the following objective function:

Ln(β) =
1

n(n− 1)

∑
s∈{0,1}

∑
i̸=j

bij1{Di = s,Dj = s}|Yij − {µ(Xi, s, β)− µ(Xj , s, β)}|

=
1

n(n− 1)

∑
s∈{0,1}

∑
i̸=j

bijI{Di = s,Dj = s}|e∗ij −∆s
ij |,

where e∗ij = ei(β
∗)− ej(β

∗) and ∆s
ij = {µ(Xi, s, β)− µ(Xj , s, β)} − {µ(Xi, s, β

∗)− µ(Xj , s, β
∗)}. By the

identity in [6], i.e., (|r − t| − |r|)/2 = t{I(r < 0)− 1/2}+
∫ t

0
{I(r 6 w)− I(r 6 0)}dw, we have

Γn(β) = Ln(β)− Ln(β
∗)

=
1

n(n− 1)

∑
s∈{0,1}

∑
i̸=j

bijI(Di = s,Dj = s){|e∗ij −∆s
ij | − |e∗ij |}

=
1

n(n− 1)

∑
s∈{0,1}

∑
i̸=j

bijI(Di = s,Dj = s)∆s
ij{2I(e∗ij < 0)− 1}

+
2

n(n− 1)

∑
s∈{0,1}

∑
i̸=j

bijI(Di = s,Dj = s)

∫ ∆s
ij

0

{I(e∗ij < t)− I(e∗ij < 0)}dt

=: Zn1 + Zn2. (A.1)

Before analyzing Γn(β), we first define

ϕn = n−3/2
∑

s∈{0,1}

∑
i,j

bijI(Di = s,Dj = s)µ̇ij(s, β
∗){2I(e∗ij < 0)− 1}.

Recall that µ̇ij(s, β
∗) = µ̇(Xi, s, β

∗)− µ̇(Xj , s, β
∗). Following [5, Lemma 5.2.3], we have

ϕn = n−3/2
∑

s∈{0,1}

∑
i,j

bijI(Di = Dj = s)µ̇ij(s, β
∗){2Fs(e

∗
j )− 1}+ op(1). (A.2)

Denote the first term on the right-hand side of (A.2) by ϕ†n. It is easy to find that

ϕ†n = n−1/2
∑

s∈{0,1}

n∑
j=1

I(Dj = s)

{
1

n

n∑
j=1

bijI(Di = s)µ̇ij(s, β
∗)

}
{2Fs(e

∗
j )− 1}. (A.3)

Conditional on (X,D), ϕ†n is a sum of independent but not identically distributed random variables.

Obviously, by Condition A3 and the fact Fs(e
∗
j ) ∼ U(0, 1) when Dj = s, we have E(ϕ†n) = 0. In addition,

recall the definition of Wn and µ̇n in Subsection 2.3, we have

Var(ϕ†n|X,D) = n−3
∑

s∈{0,1}

n∑
j=1

I(Dj = s)

{
1

n

n∑
j=1

bijI(Di = s)µ̇ij(s, β
∗)

}2

E{2Fs(e
∗
j )− 1}2
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= (3n)−1
∑

s∈{0,1}

∑
i,j,k

I(Di = s,Dj = s,Dk = s)bijbkj µ̇ij(s, β
∗)µ̇kj(s, β

∗)

= (3n)−1µ̇T
nW

2
nµ̇n, (A.4)

which converges to V/3 in probability. The conditional normality can be established via the Lindeberg-

Feller central limit theorem. By Slutsky’s lemma, together with (A.2)–(A.4), we have

ϕn
D−→ ϕ, with ϕ ∼ Nq(0, V/3). (A.5)

Now we will show that

Γn(β) = (β − β∗)TC(β − β∗) + n−1/2ϕ̄Tn (β − β∗) + op(∥β − β∗∥2) + op(n
−1) (A.6)

holds uniformly in an op(1) neighborhood of β∗, where ϕ̄n converges in distribution to Nq(0, V/3).

To verify (A.6), we first show that

Zn1 =
1√
n
ϕ̄Tn (β − β∗) + op

(
∥β − β∗∥√

n

)
(A.7)

holds uniformly in an op(1) neighborhood of β∗. By Taylor’s expansion for ∆s
ij , we have

Zn1 =
1

n(n− 1)

∑
s∈{0,1}

∑
i̸=j

bijI(Di = s,Dj = s){2I(e∗ij < 0)− 1}µ̇ij(s, β
∗)T(β − β∗)

+
1

n(n− 1)

∑
s∈{0,1}

∑
i̸=j

bijI(Di = s,Dj = s){2I(e∗ij < 0)− 1}

× {µij(s, β)− µij(s, β
∗)− µ̇ij(s, β

∗)T(β − β∗)}

=
1√
n

n2

n(n− 1)
ϕTn (β − β∗) +Rn1. (A.8)

Let ϕ̄n = [n2/{n(n− 1)}]ϕn. By (A.5) and Slutsky’s lemma, ϕ̄n converges in distribution to Nq(0, V/3).

Under Condition A4 and some calculus, Var(Rn1) = o(n−1∥β − β∗∥2). Together with E(Rn1) = 0, we

conclude that Rn1 = op(n
−1/2∥β − β∗∥). Based on the above discussions, (A.7) is proved.

Write Zn2 = E(Zn2 | X,D) + Zn2 − E(Zn2 | X,D). Note that e∗ij is defined within the same group.

For the healthy group, we denote the distribution function and density function of e∗ij as G0 and g0,

respectively. Similarly, we can define G1 and g1 for the diseased group. A simple calculation yields

g0(0) = τ0 and g1(0) = τ1. Then we have

E(Zn2 | X,D)

=
2

n(n− 1)

∑
s∈{0,1}

∑
i̸=j

bijI(Di = s,Dj = s)

∫ ∆s
ij

0

E{I(e∗ij < t)− I(e∗ij < 0)}dt

=
2

n(n− 1)

∑
s∈{0,1}

∑
i̸=j

bijI(Di = s,Dj = s)

∫ ∆s
ij

0

{Gs(t)−Gs(0)}dt

=
2

n(n− 1)

∑
s∈{0,1}

∑
i̸=j

bijI(Di = s,Dj = s)

∫ ∆s
ij

0

t{1 + o(1)}dt

=
1

n(n− 1)

∑
s∈{0,1}

gs(0)
∑
i̸=j

bijI(Di = s,Dj = s)(∆s
ij)

2{1 + o(1)}

=
(β − β∗)T

n(n− 1)

∑
s∈{0,1}

gs(0)
∑
i̸=j

bijI(Di = s,Dj = s)µ̇ij(s, β
∗)µ̇ij(s, β

∗)T(β − β∗) + op(∥β − β∗∥2)

= (β − β∗)Tn−1{g1(0)µ̇T
nDWnDµ̇n + g0(0)µ̇

T
n (In − D)Wn(In − D)µ̇n}(β − β∗) + op(∥β − β∗∥2)
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= (β − β∗)TC(β − β∗) + op(∥β − β∗∥2). (A.9)

Similarly, one can verify that Var(Zn2 | X,Z) = op(n
−2). Therefore,

Zn2 − E(Zn2 | X,D) = op(n
−1). (A.10)

Combining (A.9) and (A.10), we show that

Zn2 = (β − β∗)TC(β − β∗) + op(∥β − β∗∥2) + op(n
−1) (A.11)

uniformly in op(1) neighborhoods of β
∗.

Since ∥β − β∗∥2 + n−1 > 2n−1/2∥β − β∗∥, (A.6) follows by combining (A.1), (A.7) and (A.11). The

remaining results follow from [14, Theorems 1 and 2]. This completes the proof.
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