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1 Introduction

Let I be a subset of {1, . . . , n}. A real n× n symmetric matrix P is partially positive (PP) for I if there

exist vectors v1, . . . , vl ∈ R
n such that

P = v1v
T
1 + · · ·+ vlv

T
l , vi(I) � 0, (1.1)

where l is called the length of the decomposition (1.1). If P is partially positive, we call (1.1) a PP-

decomposition of P . Specially, if I = {1, . . . , n}, we call P is completely positive (CP) and (1.1) is a

CP-decomposition of P . Clearly, a PP-matrix is positive semidefinite and P (I, I) is CP.

CP-matrices are special cases of PP-matrices. They have wide applications in general quadratic pro-

gramming [2], etc. Zhou and Fan [19] proposed a semidefinite algorithm for the CP-matrix completion

problem, which includes the CP-checking as a special case. In this paper, we consider a more general

problem: How do we check whether a matrix is partially positive for a given index set? If it is not partially

positive, can we get a certificate for this? If it is partially positive, can we get a PP-decomposition for it?

To the best of our knowledge, little is known about that. We characterize the PP-matrices and propose

a semidefinite algorithm for the problem of checking the partial positivity.

The paper is organized as follows. In Section 2, we give a necessary and sufficient condition to charac-

terize PP-matrices. In Section 3, we formulate the problem of checking the partial positivity of a matrix

as an A-truncated K-moment problem. A semidefinite algorithm is proposed for it. Its properties are

also studied. In Section 4, we propose another approach to the problem. Some computational results are

reported in Section 5. Finally, we conclude the paper in Section 6.
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2 A characterization of PP-matrices

Denote by Sn the set of real n× n symmetric matrices. Suppose Q ∈ Sn is in the block form

Q =

(
B CT

C A

)
, (2.1)

where A and B are square matrices.

The generalized Schur complement of A in Q, denoted by S(Q,A), is the matrix B−CTA†C, where A†

is the Moore-Penrose generalized inverse.

Lemma 2.1 (See [1]). Let Q given in (2.1) be positive semidefinite. Then the matrices S(Q,A) and(
CTA†C CT

C A

)

are positive semidefinite.

Denote by R(A) the range space of A. If Q is positive semidefinite, then

R([C,A]) = R(A). (2.2)

So, R(C) ⊆ R(A). Therefore,

AA†C = C. (2.3)

Based on the above results, we give a necessary and sufficient condition for a matrix to be partially

positive.

Theorem 2.2. Let I ⊆ {1, . . . , n}. Then P ∈ Sn is partially positive for I if and only if P is positive

semidefinite and P (I, I) is completely positive.

Proof. If P is partially positive for I, by (1.1), P is positive semidefinite and A = P (I, I) is completely

positive.

Conversely, suppose P is positive semidefinite and P (I, I) is completely positive. Then there exists a

permutation matrix E such that

P̃ = ETPE =

(
B CT

C A

)
, (2.4)

where A = P (I, I). So, there exists a D � 0 such that

A = DDT. (2.5)

Note that R(A) = R(D). By (2.3),

DD†C = C.

Let

X = D†C. (2.6)

Then

DX = C. (2.7)

By Lemma 2.1,

B −XTX = B − CT(D†)TD†C = B − CTA†C � 0.

Thus, there exists an L such that

B −XTX = LLT. (2.8)

So, by (2.5)–(2.8),

P̃ =

(
B CT

C A

)
=

(
B −XTX 0

0 0

)
+

(
XTX CT

C A

)
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=

(
L

0

)(
L

0

)T

+

(
XT

D

)(
XT

D

)T

. (2.9)

Therefore,

P = E

(
L

0

)(
L

0

)T

ET + E

(
XT

D

)(
XT

D

)T

ET (2.10)

is a PP-decomposition of P for I. The proof is completed.

Theorem 2.2 gives a way to check whether a matrix is PP.

Proposition 2.3. Suppose I1 ⊆ I2 ⊆ {1, . . . , n} and P ∈ Sn is not partially positive for I1. Then P

is not partially positive for I2 either.

Proof. We prove by contradiction. Suppose P is partially positive for I2. Then there exists a matrix V

such that

P = V V T, V (I2, :) � 0.

Since I1 ⊆ I2 ⊆ {1, . . . , n}, we have

P = V V T, V (I1, :) � 0.

Hence, P is partially positive for I1, which is a contradiction. The proof is completed.

Let I ⊆ {1, . . . , n} be given. Denote by

E = {v ∈ R
n : v(I) � 0}

the set of partially positive vectors and

Pn =

{∑
i

viv
T
i : vi ∈ E

}

the partially positive cone. We have the following result.

Proposition 2.4. The partially positive cone Pn is proper (i.e., closed, convex, point and full-

dimensional).

Proof. Obviously, E ⊆ R
n is a closed cone and has nonempty interior. By [6, Proposition 5], Pn

is proper.

3 A semidefinite algorithm for checking PP

It is shown in [4] that checking a CP matrix is NP-hard. Thus checking a PP matrix is also NP-hard.

In recent years, semidefinite programming relaxation and approximation algorithms have been presented

for some NP-hard problems, for example, see [11, 12, 18]. In this section, we show how to formulate

the problem of checking a PP matrix as an A-truncated K-moment problem (A-TKMP) and propose a

semidefinite algorithm for it. The convergence of the algorithm is also discussed. A PP-decomposition of

a matrix can also be obtained if it is PP.

3.1 Formulation as an A-TKMP

Let N be the set of nonnegative integers. For α = (α1, . . . , αn) ∈ N
n, denote |α| := α1 + · · ·+ αn. Let

A := {α ∈ N
n : |α| = 2}. (3.1)

Note that a symmetric matrix can be identified by a vector consisting of its upper triangular entries.

Then, P ∈ Sn can be identified as a vector as

p = (pα)α∈A ∈ R
A, pα = Pij if α = ei + ej , i � j,
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where R
A denotes the space of real vectors indexed by α ∈ A and ei is the i-th unit vector in R

n. We

call p an A-truncated moment sequence (A-tms) (see [8, 14]).

Let

K = {x ∈ R
n : xTx− 1 = 0, x(I) � 0}. (3.2)

Every vector satisfying (1.1) is a multiple of a vector in K. So, by (1.1), P is partially positive if and

only if there exist vectors v1, . . . , vl ∈ K and ρ1, . . . , ρl > 0 such that

P = ρ1v1v
T
1 + · · ·+ ρlvlv

T
l . (3.3)

The A-truncated K-moment problem (A-TKMP) studies whether or not a given A-tms p admits a

K-measure μ, i.e., a nonnegative Borel measure μ supported in K such that

pα =

∫
K

xαdμ, ∀α ∈ A,

where xα := xα1
1 · · ·xαn

n . A measure μ satisfying the above is called a K-representing measure for p. A

measure is called finitely atomic if its support is a finite set, and is called l-atomic if its support consists

of at most l distinct points. We refer to [14] for representing measures of truncated moments sequences.

Hence, by (1.1), a symmetric matrix P , with the identifying vector p ∈ R
A, is partially positive if and

only if p admits an l-atomic K-measure, i.e.,

p = ρ1[v1]A + · · ·+ ρl[vl]A, (3.4)

where each vi ∈ K, ρi > 0, and

[v]A := (vα)α∈A.

In other words, checking the partial positivity of a matrix is equivalent to an A-TKMP with A and K

given in (3.1) and (3.2), respectively.

3.2 A semidefinite algorithm

We start with some basics about localizing matrices. Denote

R[x]A := span{xα : α ∈ A}.

We say R[x]A is K-full if there exists a polynomial r ∈ R[x]A such that r|K > 0 (see [7]). Choose

r =
∑n

i=1 x
2
i ∈ R[x]A, then r|K > 0. So R[x]A is K-full for A and K given in (3.1) and (3.2), respectively.

An A-tms y ∈ R
A defines an A-Riesz function Ly acting on R[x]A as

Ly

(∑
α∈A

rαx
α

)
:=
∑
α∈A

rαyα. (3.5)

We also denote 〈r, y〉 := Ly(r) for convenience. Let Nn
d := {α ∈ N

n : |α| � d} and R[x]d := span{xα :

α ∈ N
n
d}. For s ∈ R

N
n
2k and q ∈ R[x]2k, the k-th localizing matrix of q generated by s is the symmetric

matrix L
(k)
q (s) satisfying

Ls(qr
2) = vec(r)TL(k)

q (s) vec(r), ∀ r ∈ R[x]k−�deg(q)/2�. (3.6)

In the above, vec(r) denotes the coefficient vector of r in the graded lexicographical ordering, and �t	
denotes the smallest integer that is not smaller than t. In particular, when q = 1, L

(k)
1 (s) is called a k-th

order moment matrix and denoted by Mk(s). We refer to [7, 8, 14] for more details about localizing and

moment matrices.

Let I = {i1, . . . , im} ⊆ {1, . . . , n}, where i1 < i2 < · · · < im. For convenience, denote the polynomials

h(x) := xTx− 1, g0(x) := 1, g1(x) := xi1 , . . . , gm(x) := xim .
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Then, K can be equivalently described as

K = {x ∈ R
n : h(x) = 0, g(x) � 0}, (3.7)

where g(x) = (g0(x), g1(x), . . . , gm(x)). Obviously, K is nonempty compact.

As shown in [14], a necessary condition for s ∈ R
N

n
2k to admit a K-measure is

L
(k)
h (s) = 0, and L(k)

gj (s) � 0, j = 0, 1, . . . ,m. (3.8)

If, in addition to (3.8), s satisfies the rank condition

rankMk−1(s) = rankMk(s), (3.9)

then s admits a unique K-measure, which is rankMk(s)-atomic (see Curto and Fialkow [3]). We say

that s is flat if both (3.8) and (3.9) are satisfied.

Given two A-truncated moment sequences y ∈ R
N

n
d and z ∈ R

N
n
e , we say z is an extension of y, if

d � e and yα = zα for all α ∈ N
n
d . We denote by z|A the subvector of z, whose entries are indexed by

α ∈ A. For convenience, we denote by z|d the subvector z|Nn
d
. If z is flat and extends y, we say z is a flat

extension of y. Note that an A-tms y ∈ R
A admits a K-measure if and only if it is extendable to a flat

tms z ∈ R
N

n
2k for some k (see [14]). Therefore, by (3.4), a matrix P is partially positive if and only if its

identifying vector p has a flat extension.

Let d > 2 be an even integer. Choose a polynomial R ∈ R[x]d and write it as

R(x) =
∑
α∈Nn

d

Rαx
α.

Consider the linear optimization problem

η = min
z

∑
α∈Nn

d

Rαzα

subject to z|A = p, z ∈ Υd(K),

(3.10)

where

Υd(K) = {z ∈ R
N

n
d : z admits a K-measure}.

Note that since K is a compact set and R[x]A is K-full, the feasible set of (3.10) is compact convex

and (3.10) has a minimizer for any generic polynomial R. Usually, we choose a generic positive definite

R ∈ Σn,d, where Σn,d is the set of all the sum of squares polynomials in n variables with degree d. Since

Υd(K) is difficult to be described, we relax it by the cone

Γk(h, g) := {z ∈ R
N

n
2k | L(k)

h (z) = 0, L(k)
gj (z) � 0, j = 0, 1, . . . ,m}, (3.11)

with k � d/2 an integer. The k-th order semidefinite relaxation of (3.10) is

ηk = min
z

∑
α∈Nn

d

Rαzα

subject to z|A = p, z ∈ Γk(h, g).

(3.12)

Clearly, ηk � η for all k. Suppose z∗,k is a minimizer of (3.12). If z∗,k ∈ Υd(K), then ηk = η and z∗,k

is a minimizer of (3.10), i.e., the relaxation (3.12) is exact for solving (3.10). If the relaxation (3.12) is

infeasible, then (3.10) is also infeasible.

Based on solving the hierarchy of (3.12), we present a semidefinite algorithm for checking whether a

symmetric matrix is partially positive as follows.

Algorithm 3.1. A semidefinite algorithm for checking PP.

Step 0. Choose a generic R ∈ Σn,d, and let k := d/2.
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Step 1. Solve (3.12). If (3.12) is infeasible, then p does not admit a K-measure, i.e., P is not partially

positive, and stop. Otherwise, compute a minimizer z∗,k. Let t := 1.

Step 2. Let w := z∗,k|2t. If the rank condition (3.9) is not satisfied, go to Step 4.

Step 3. Compute the finitely atomic measure μ admitted by w,

μ = ρ1δ(v1) + · · ·+ ρlδ(vl),

where l = rankMt(w), vi ∈ K, ρi > 0, and δ(vi) is the Dirac measure supported on the point vi
(i = 1, . . . , l). Stop.

Step 4. If t < k, set t := t+ 1 and go to Step 2; otherwise, set k := k + 1 and go to Step 1.

Remark 3.2. Denote [x]d := (xα)α∈Nn
d
. We choose R = [x]Td/2J

TJ [x]d/2 in (3.12), where J is a random

square matrix obeying Gaussian distribution. We check the rank condition (3.9) numerically with the

help of singular value decompositions [5]. The rank of a matrix is evaluated as the number of its singular

values that are greater than or equal to 10−6. We use Henrion and Lasserre’s method in [9] to get an

r-atomic K-measure for w.

Remark 3.3. If I = {1, . . . , n}, the partially positive matrix reduces to the completely positive matrix.

So, Algorithm 3.1 can also check whether a symmetric matrix is completely positive or not.

We show some properties of Algorithm 3.1, which can be deduced from [14,16].

Theorem 3.4. Algorithm 3.1 has the following properties:

(1) If (3.12) is infeasible for some k, then p admits no K-measures and the corresponding matrix P is

not partially positive.

(2) If the matrix P is not partially positive, then (3.12) is infeasible for all k big enough.

(3) If the matrix P is partially positive, then for almost all generated R, we can asymptotically get a

flat extension of p by solving the hierarchy of (3.12). This gives a PP-decomposition of P .

Remark 3.5. If the matrix P with the identifying vector p ∈ R
A is partially positive, then, under some

general conditions, which are almost necessary and sufficient, we can get a flat extension of p by solving

the hierarchy of (3.12), within finitely many steps (see [13, 15]). This always happens in our numerical

experiments. After getting a flat extension of p, we can get an l-atomic K-measure for p, which then

produces a PP-decomposition of P .

4 An alternative approach to checking PP

In this section, we propose an alternative approach to the problem of checking whether a symmetric

matrix is partially positive or not.

Theorem 2.2 shows that a matrix P ∈ Sn is partially positive for a given index set I ⊆ {1, . . . , n} if

and only if P is positive semidefinite and P (I, I) is completely positive. So, to check the partial positivity

of P , it is natural to first check whether P is positive semidefinite. If P is not positive semidefinite, then

P is not PP for I; otherwise, we check whether P (I, I) is CP.

Considering the above analysis, we present another algorithm for checking PP.

Algorithm 4.1.

Step 1. Check whether P is positive semidefinite. If not, output P is not PP, and stop.

Step 2. Check whether P (I, I) is CP. Stop.

Remark 4.2. In Step 2, we can use Algorithm 3.1 to check whether P (I, I) is CP as CP is a special

case of PP. If P (I, I) is CP, a CP-decomposition for it can also be obtained by Algorithm 3.1. Then,

by (2.6), (2.8) and (2.10), we can get a PP-decomposition of P . In fact, we can also use the algorithms

given in [14, 19] to check whether P (I, I) is CP.

To check the partial positivity of P , Algorithm 3.1 uses the whole matrix P , while Algorithm 4.1 first

checks whether P is positive semidefinite, then checks whether the submatrix P (I, I) is CP. As the size
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of P (I, I) is generally smaller than P , it is more efficient for Algorithm 3.1 to get a CP-decomposition

of P (I, I) than to get a PP-decomposition of P . In this sense, Algorithm 4.1 has the advantage of solving

bigger problems.

The convergence of Algorithm 4.1 is similar to that of Algorithm 3.1, so we omit it here.

5 Numerical experiments

In this section, we present some numerical experiments to show how to check the partial positivity of

a matrix by Algorithms 3.1 and 4.1. A PP-decomposition of a matrix is also given if it is PP. We use

software GloptiPoly 3 [10] and SeDuMi [17] to solve the relaxation problem (3.12). We choose d = 4 and

k = 2 in Step 0 of Algorithm 3.1.

Example 5.1. Consider the matrix P given as

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 1

1 3 0 0 0 0 0

1 0 2 1 0 0 0

0 0 1 2 1 1 0

0 0 0 1 3 1 0

0 0 0 1 1 2 1

1 0 0 0 0 1 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.1)

and I = {1, 3, 4, 7}.
We apply Algorithms 3.1 and 4.1 to check whether P is PP or not. Algorithm 3.1 terminates at Step 1

with k = 2, i.e., (3.12) is infeasible. So, P is not partially positive for the given index set I. Algorithm 4.1

terminates at Step 1, hence P is not positive semidefinite, which also implies that P is not PP for I.

Example 5.2. Consider the matrix P given as

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 1

0 3 0 0 0 0 0

1 0 2 1 0 0 0

0 0 1 2 1 1 0

0 0 0 1 3 1 0

0 0 0 1 1 2 1

1 0 0 0 0 1 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.2)

and I = {1, 3, 4, 6, 7}.
It can be checked that P is positive semidefinite. However, P (I, I) is not completely positive (see [1,

Example 2.9]). So, by Theorem 2.2, P is not PP for I. We use Algorithms 3.1 and 4.1 to verify this fact.

Algorithm 3.1 terminates at Step 1 with k = 3, which implies that P is not PP for I. Algorithm 4.1

terminates at Step 2 as the relaxation problem of checking the complete positivity of P (I, I) is infeasible.

This also implies that P is not PP for I.

Now we let Ĩ = {3, 4, 6, 7}. Algorithm 3.1 terminates at Step 3 with k = 4. So P is PP for Ĩ. We

obtain the PP-decomposition P =
∑9

i=1 ρiviv
T
i , where ρi and vi are

ρ1 = 1.2444, v1 = (−0.1424,−0.2062, 0.0000, 0.3439,−0.3330, 0.8414, 0.0000)T,

ρ2 = 2.0634, v2 = (0.3140,−0.7968, 0.5014, 0.0000,−0.1230, 0.0000, 0.0000)T,

ρ3 = 1.3333, v3 = (−0.1528,−0.7787, 0.0000, 0.5822, 0.1771, 0.0000, 0.0000)T,

ρ4 = 3.3274, v4 = (0.0364, 0.1658, 0.0000, 0.0000,−0.5338, 0.0000, 0.8284)T,
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ρ5 = 2.9337, v5 = (0.3239, 0.3954, 0.7106, 0.4797, 0.0610, 0.0000, 0.0000)T, (5.3)

ρ6 = 1.2861, v6 = (0.1889,−0.3929, 0.0000, 0.0000, 0.1649, 0.0033, 0.8847)T,

ρ7 = 2.4879, v7 = (−0.2236, 0.0873, 0.0000, 0.5378, 0.6722, 0.4486, 0.0000)T,

ρ8 = 0.4664, v8 = (0.4262, 0.3612, 0.0000, 0.1156, 0.3668, 0.7348, 0.0000)T,

ρ9 = 3.8573, v9 = (0.2118, 0.0030, 0.0000, 0.0000, 0.3971, 0.3082, 0.8381)T.

We also apply Algorithm 4.1. It gives a CP-decomposition P (Ĩ , Ĩ) = DDT, where

D =

⎛
⎜⎜⎜⎜⎝

1.4142 0.0000 0.0000 0.0000

0.7071 1.2247 0.0000 0.0000

0.0000 0.8165 1.1547 0.0000

0.0000 0.0000 0.8660 2.2913

⎞
⎟⎟⎟⎟⎠ .

Furthermore, we obtain a PP-decomposition P = V V T, where

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.1910 0.3262 0.7071 −0.4082 0.2887 0.3273

1.7321 0 0 0 0 0 0

0 0 0 1.4142 0.0000 0.0000 0.0000

0 0 0 0.7071 1.2247 0.0000 0.0000

0 1.4960 0.0000 0.0000 0.8165 0.2887 −0.1091

0 0 0 0.0000 0.8165 1.1547 0.0000

0 0 0 0.0000 0.0000 0.8660 2.2913

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Algorithm 4.1 gets a shorter PP-decomposition than Algorithm 3.1.

Example 5.3. Consider the matrix P given as

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

16 5 4 3 2 1

5 20 5 4 3 2

4 5 22 5 4 3

3 4 5 22 5 4

2 3 4 5 20 5

1 2 3 4 5 16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.4)

and I = {2, 5, 6}.
We first apply Algorithm 3.1 to check whether P is PP or not. It terminates at Step 3 with k = 4.

So, P is PP for I. The PP-decomposition of P is P =
∑11

i=1 ρiviv
T
i , where ρi and vi are

ρ1 = 3.4149, v1 = (−0.5049, 0.0000,−0.6365, 0.3539, 0.4634, 0.0000)T,

ρ2 = 8.2685, v2 = (0.5086, 0.0000,−0.3375,−0.4051, 0.0000, 0.6806)T,

ρ3 = 6.2683, v3 = (0.3977, 0.0000,−0.2598, 0.6151, 0.0000, 0.6292)T,

ρ4 = 17.2625, v4 = (0.4610, 0.0000,−0.0600, 0.5212, 0.7157, 0.0000)T,

ρ5 = 8.0393, v5 = (−0.5525, 0.0000, 0.1023, 0.5084, 0.4752, 0.4472)T,

ρ6 = 18.8776, v6 = (0.3690, 0.8929, 0.1835, 0.1813, 0.0000, 0.0000)T, (5.5)

ρ7 = 9.7859, v7 = (−0.2277, 0.0000, 0.3458, 0.6714, 0.0000, 0.6146)T,

ρ8 = 18.2278, v8 = (0.3654, 0.0000, 0.8535, 0.3715, 0.0000, 0.0000)T,

ρ9 = 5.3541, v9 = (−0.1413, 0.7734, 0.1594, 0.3510, 0.0000, 0.4830)T,

ρ10 = 8.1673, v10 = (−0.1681, 0.4625, 0.3300,−0.1349, 0.7942, 0.0000)T,
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ρ11 = 12.3336, v11 = (0.0466, 0.0000, 0.4928,−0.4696, 0.5294, 0.5041)T.

We also apply Algorithm 4.1 to P for I = {2, 5, 6}. It gives a CP-decomposition P (I, I) = DDT, where

D =

⎛
⎜⎜⎝

0.0314 4.4720 0.0000

0.0000 0.6708 4.4215

3.8321 0.4204 1.0671

⎞
⎟⎟⎠ .

A PP-decomposition is further obtained as P = V V T, where

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.5631 0.2980 3.7764 0.0596 1.1176 0.2828

0 0 0 0.0314 4.4720 0.0000

4.4731 0 0.0000 0.4558 1.1149 0.7355

0.6641 4.3964 0.0000 0.6689 0.8898 0.9958

0 0 0 0.0000 0.6708 4.4215

0 0 0 3.8321 0.4204 1.0671

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Actually, it is a CP-decomposition for P as V � 0, moreover, the length of the decomposition above is

shorter than that given by Algorithm 3.1.

In fact, P is a nonnegative symmetric strictly diagonally dominant matrix. So, it is completely positive

(see [20]). Therefore, P is partially positive for all I ⊆ {1, . . . , 6}. Let I = {1, . . . , 6}. Algorithm 3.1

gives the following CP-decomposition P =
∑16

i=1 ρiviv
T
i , where ρi and vi are

ρ1 = 12.0753, v1 = (0.0000, 0.0000, 0.0000, 0.3128, 0.0000, 0.9498)T,

ρ2 = 0.2638, v2 = (0.0000, 0.0000, 0.9998, 0.0207, 0.0000, 0.0000)T,

ρ3 = 7.5303, v3 = (0.0000, 0.0000, 0.7669, 0.0000, 0.3768, 0.5195)T,

ρ4 = 8.6983, v4 = (0.8242, 0.0000, 0.5580, 0.0971, 0.0000, 0.0000)T,

ρ5 = 13.2307, v5 = (0.0000, 0.0000, 0.0000, 1.0000, 0.0000, 0.0000)T,

ρ6 = 5.3722, v6 = (0.0000, 0.0000, 0.9243, 0.1038, 0.3673, 0.0000)T,

ρ7 = 8.1539, v7 = (0.0000, 0.0000, 0.6392, 0.7690, 0.0000, 0.0000)T,

ρ8 = 7.8696, v8 = (0.0000, 0.0000, 0.0000, 0.0629, 0.8458, 0.5297)T, (5.6)

ρ9 = 3.6693, v9 = (0.7306, 0.5719, 0.0000, 0.0000, 0.0000, 0.3730)T,

ρ10 = 10.4216, v10 = (0.0000, 0.5994, 0.8005, 0.0000, 0.0000, 0.0000)T,

ρ11 = 4.5920, v11 = (0.0000, 0.9533, 0.0000, 0.1182, 0.0000, 0.2780)T,

ρ12 = 7.6981, v12 = (0.8216, 0.5481, 0.0000, 0.1566, 0.0000, 0.0000)T,

ρ13 = 9.5664, v13 = (0.0000, 0.0000, 0.0000, 0.2903, 0.9569, 0.0000)T,

ρ14 = 4.8866, v14 = (0.7753, 0.0000, 0.0000, 0.3467, 0.5279, 0.0000)T,

ρ15 = 5.5739, v15 = (0.0000, 0.9379, 0.0000, 0.3469, 0.0000, 0.0000)T,

ρ16 = 6.3986, v16 = (0.0000, 0.7571, 0.0000, 0.2081, 0.6193, 0.0000)T.

6 Conclusions

In this paper, we introduce the partially positive matrices and investigate whether a symmetric matrix P

is partially positive for a given index set I. A semidefinite algorithm (see Algorithm 3.1) is presented.

If P is not partially positive, a certificate for this can be obtained; if P is partially positive, a PP-

decomposition can be obtained. An alternative approach (see Algorithm 4.1) is also proposed to check

the partial positivity. It first checks whether P is positive semidefinite, then checks whether P (I, I) is
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completely positive by Algorithm 3.1. Numerical results show that Algorithm 4.1 may give a shorter

PP-decomposition of a matrix if it is partially positive.
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