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Abstract It is known that a distance-regular graph with valency k at least three admits at most two Q-

polynomial structures. We show that all distance-regular graphs with diameter four and valency at least three

admitting two Q-polynomial structures are either dual bipartite or almost dual bipartite. By the work of

Dickie (1995) this implies that any distance-regular graph with diameter d at least four and valency at least

three admitting two Q-polynomial structures is, provided it is not a Hadamard graph, either the cube H(d, 2)

with d even, the half cube 1/2H(2d+1, 2), the folded cube H̃(2d+1, 2), or the dual polar graph on [2A2d−1(q)]

with q � 2 a prime power.
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1 Introduction

Bannai and Ito [1] proposed the research program to classify the Q-polynomial distance-regular graphs

with large enough diameter in the early 1980s. While there has been tremendous progress, it seems still

far from reaching this goal [5]. Meanwhile, they studied distance-regular graphs with more than one

Q-polynomial or P -polynomial structures, showed that such distance-regular graphs with diameter at

least 34 have at most two Q-polynomial or P -polynomial structures if they are not ordinary polygons.

They further determined the parameters for these graphs. See [1, Subsection 3.7]. In 1995, Dickie [6]

(in collaboration with Paul Terwilliger) extended the work of Bannai and Ito and obtained the following

classification for the distance-regular graphs with two Q-polynomial structures.

Theorem 1.1 (See [6, Theorem 8.1.2]). Let Γ be a distance regular graph with diameter d � 5 and

valency k � 3. Then Γ has two Q-polynomial structures if and only if Γ is one of the following:

(i) the cube H(d, 2) with d even;

(ii) the half cube 1/2H(2d+ 1, 2);

(iii) the folded cube H̃(2d+ 1, 2);

(iv) the dual polar graph on [2A2d−1(q)], where q � 2 is a prime power.

In this case, Γ has at most two Q-polynomial structures.

∗Corresponding author
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For brevity we call a distance-regular graph (or an association scheme) with exactly two Q-polynomial

structures twice Q-polynomial. In a recent survey paper, van Dam et al. [5] raised the question to classify

the distance-regular graphs with two Q-polynomial structures and diameter three or four. We show that

Theorem 1.2 can be extended to include the diameter four case. The following result is key to doing so.

Theorem 1.2. Let Γ denote a twice Q-polynomial distance-regular graph of diameter four and valency

at least three. Then one of the Q-polynomial structures has a∗1 = a∗2 = a∗3 = 0, i.e., this structure is either

dual bipartite or almost dual bipartite.

Theorem 1.2 shows the converse of [6, Lemma 8.2.1] (see Lemma 2.4 below) does not hold. We note

that this lemma played a key role in the proof of Theorem 1.1; see [6]. The proof of Theorem 1.2 involves

a very delicate argument to determine the local structure information about Γ; see Subsection 3.1.2. As

a consequence of Theorems 1.1, 1.2 and the classification of distance-regular graphs of diameter at least

four that are either dual bipartite or almost dual bipartite [6], we obtain the following result.

Theorem 1.3. Let Γ denote a twice Q-polynomial distance-regular graph with diameter d at least 4

and valency at least 3. Then Γ is one of the following:

(i) the cube H(d, 2) with d even;

(ii) the half cube 1/2H(2d+ 1, 2);

(iii) the folded cube H̃(2d+ 1, 2);

(iv) the dual polar graph on [2A2d−1(q)], where q � 2 is a prime power;

(v) a Hadamard graph of order 2γ with intersection array

{2γ, 2γ − 1, γ, 1; 1, γ, 2γ − 1, 2γ}

with γ = 1 or γ a positive even integer.

Remark 1. A Hadamard graph of order 2γ exists if and only if a Hadamard matrix1) of 2γ exists [2,

Subsection 1.8]. The Hadamard conjecture states that a Hadamard matrix of order n exists if and only

if n = 1, 2, or n is a positive integer divisible by 4.

Distance-regular graphs of diameter 2 are strongly regular graphs, which possess two P -polynomial

and two Q-polynomial structures. Any connected distance regular graph with valency two is an ordinary

n-gon, which can have more than two Q-polynomial structures only if n � 7. So in the rest of this note,

we restrict ourselves to distance-regular graphs with both diameter and valency at least three unless

stated otherwise.

2 Definitions and preliminaries

In this paper, we use the notation adopted in the book of Brouwer et al. [2]. See also the book of Bannai

and Ito [1] for more background information. For the rest of this section, we recall other definitions that

will be used later.

Let Γ = (X,R) denote a distance-regular graph with vertex set X , edge set R, valency k, and diame-

ter d, and intersection numbers pkij . We sometimes write pki,j in place of pkij for the sake of clarity, and use

the usual handy abbreviation: ci = pi1,i−1 (1 � i � d), ai = pi1i (0 � i � d), bi = pi1,i+1 (0 � i � d − 1),

ki = p0ii (0 � i � d). We define c0 = 0, bd = 0.

Let A0, A1, . . . , Ad be the distance matrices for Γ with rows and columns indexed by X : where (x, y)-

entry of Ai is 1 if x, y have distance i and 0 otherwise. Note that A0 = I is the identity matrix and A1

is the adjacency matrix of Γ. Let

E0 = |X |−1J, E1, . . . , Ed

be the primitive idempotents of Γ with Krein parameters qkij , where J is the all-one matrix. The real

numbers θ0, θ1, . . . , θd satisfying A1 =
∑d

i=0 θiEi are the eigenvalues of Γ.

1) A Hadamard matrix of order n with n a positive integer is a square {+1,−1} matrix H of order n such that HHT = nI.
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2.1 Cosines

We now recall the cosines. Let E be one of the primitive idempotents above with the associated eigen-

value θ (i.e., A1E = θE). Let σ0, σ1, . . . , σd denote the real numbers satisfying

E = |X |−1m

d∑
i=0

σiAi, (2.1)

where m = rank(E). We call σ0, σ1, . . . , σd the cosine sequence of Γ of θ (or E). By [2, Subsection 4.1.B],

σ0 = 1, σ1 = θ/k, θσr = crσr−1 + arσr + brσr+1 for all r = 1, . . . , d, (2.2)

where σd+1 is indeterminate. Set cd = k − ad and (2.2) simplifies to

ad(σd−1 − σd) = k(σd − σ1σd−1). (2.3)

By [8, Lemma 13.2.1], for θ = θj , its cosine sequence (σi)i has exactly j − 1 sign-changes, and if j � 2,

the sequence σ0 − σ1, σ1 − σ2, . . . , σd − σd+1 has j − 2 sign-changes. (The number of sign-changes in the

sequence (γi)
d
i=0 is the number of indices i such that γiγi+1 < 0, skipping the zero terms if any.) This

implies the following lemma.

Lemma 2.1. Let Γ denote a distance-regular graph with diameter d � 3, and eigenvalues θ0 > θ1 >

· · · > θd. Let θ denote one of θ1, θd and let σ0, σ1, . . . , σd denote the cosine sequence for θ,

(i) Suppose θ = θ1. Then σ0 > σ1 > · · · > σd.

(ii) Suppose θ = θd. Then for each i (0 � i � d), (−1)iσi > 0.

In the sequel, the second largest and smallest eigenvalues of a distance-regular graph turn out to be of

particular interest.

2.2 Q-polynomial property

Let θ0, θ1, . . . , θd (or E0, E1, . . . , Ed) be a fixed ordering of the eigenvalues (or primitive idempotents)

of Γ. We call this ordering is a Q-polynomial structure if there is a sequence σ = (σ0, σ1, . . . , σd) and

polynomial qj of degree j, j = 0, 1, . . . , d, such that

Ej =

d∑
i=0

qj(σi)Ai;

in this case, σ is called a Q-sequence of Γ and E1 is called the primary idempotent for this Q-sequence.

In particular, the cosine sequence of a primary idempotent is a Q-sequence. The graph Γ is called Q-

polynomial if Γ has a Q-polynomial structure. We use the standard abbreviation for the Krein parameters

of a Q-polynomial structure: a∗i = qi1i, b
∗
i = qi1,i+1,, c

∗
i = qi1,i−1.

Theorem 2.2 (See [2, Theorem 8.1.2 and Corollary 8.1.4]). Let Γ be a Q-polynomial distance-regular

graph. Then every Q-sequence (σ0, σ1, . . . , σd) of Γ satisfies the recurrence

σi+1 + σi−1 = pσi + r, i = 1, . . . , d− 1, (2.4)

for suitable numbers p and r.

If θ0, θ1, . . . , θd is the Q-polynomial structure corresponding to the above Q-sequence, then there are

constants r∗, s∗ such that

{
θ�+1 + θ�−1 = pθ� + r∗,

θ�+1θ�−1 = θ2� − r∗θ� − s∗,
� = 1, . . . , d− 1. (2.5)
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2.3 Double Q-polynomial structures

We record a few facts about twice Q-polynomial distance-regular graphs that will be used later.

Theorem 2.3 (See [6, Theorem 5.1.2]). Let Γ be a twice Q-polynomial distance-regular graph with

intersection numbers pi1i. Suppose that E0, E1, . . . , Ed is a Q-polynomial structure for Γ with Krein

parameters qi1i. Then we have the following implications:

q111 = 0 ⇒ qi1i = 0, (2.6)

q111 �= 0 ⇒ qi1i �= 0, (2.7)

p111 = 0 ⇒ pi1i = 0, (2.8)

for all i = 1, 2, . . . , d− 1.

The dual of (2.7), i.e., p111 �= 0 ⇒ pi1i �= 0, 1 � i � d−1, holds for any distance-regular graph [2, p. 178].

Lemma 2.4 (See [6, Lemma 8.2.1]). Let Γ be distance-regular graph with diameter d � 4. Suppose that

E0, E1, . . . , Ed and Ẽ0, Ẽ1, . . . , Ẽd are Q-polynomial structures for Γ with Krein parameters qkij and q̃kij,

respectively. If q111 �= 0 and q̃111 �= 0, then E1 = Ẽd, Ed = Ẽ1 and d = 4.

The above result played a key role in the proof of Theorem 1.1 and it will be the starting point for our

investigation in this paper.

2.4 Almost dual primitivity

The graph Γ is called imprimitive when some i, 1 � i � d, the distance-i graph Γi = (X,Ai) is dis-

connected. If Γ is imprimitive, then by [2, Theorem 4.2.1], Γ is bipartite (here Γ2 is disconnected) or

antipodal (here Γd is a union of cliques).

A Q-polynomial structure (Ei)
d
i=0 is called dual bipartite if a∗0 = a∗1 = · · · = a∗d = 0. When there

is no possibility of confusion, we also say that graph Γ is dual bipartite. Similar comment applies the

other concepts to follow immediately. If c∗i = b∗d−i for i = 0, 1, . . . , d and i �= �d/2�, then Γ is called dual

antipodal. An imprimitive Q-polynomial distance-regular graph is either dual bipartite or dual antipodal

(or both). See Theorem 3.1 below.

The terms of almost dual bipartite/antipodal were introduced by Dickie [6]. A Q-polynomial structure

(Ei)
d
i=0 is called almost dual bipartite if a∗0 = a∗1 = · · · = a∗d−1 = 0 �= a∗d; it is called almost dual antipodal

if qd1d �= 0 = qd2d = · · · = qddd. If Γ is almost dual bipartite or antipodal, then it is called almost dual

imprimitive.

For a classification of almost dual imprimitive distance-regular graphs, see [6, Theorem 3.1.4] for the

almost dual bipartite case with d � 4, and [6, Theorem 2.1.2], [7] for the dual bipartite case with d � 3.

2.5 The tight property

Now we recall the tight property [10]. A distance-regular graph Γ is called tight if it is not bipartite and

the following equality holds: (
θ1 +

k

a1 + 1

)(
θd +

k

a1 + 1

)
= − ka1b1

(a21 + 1)2
,

where θ1 and θd are the second largest and smallest eigenvalues of Γ, respectively.

For any vertex x, Γ(x) is the induced subgraph on the set of neighbours of x. If Γ is a tight distance-

regular with diameter at least 3, then Γ(x) is connected strongly regular with k vertices, valency a1, and

non-trivial eigenvalues

−1− b1
θd + 1

, −1− b1
θ1 + 1

,

where θd and θ1 are the smallest and the second largest eigenvalues of Γ, respectively. We refer Γ(x) to

as the local graph for Γ with respect to vertex x. See [10].

The following results are due to Pascasio [15, 16].
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Theorem 2.5 (See [15, 16]). Let Γ be a distance regular graph with diameter d � 3 with intersection

numbers ai. Let θ0 > θ1 > · · · > θd be the eigenvalues of Γ with the respective primitive idempotents

E0, E1, . . . , Ed.

(i) Suppose that Γ is tight and E and F are two primitive idempotents other than E0. Then Hadamard

product E ◦F is a scalar multiple of a primitive idempotent H of Γ if and only if E,F are a permutation

of E1, Ed. Moreover, H = Ed−1 and θ1θd = θ0θd−1. The scalar is m1md

|X|md−1
, where m• is the rank of E•.

(ii) If E0, E1, . . . , Ed is a Q-polynomial structure with Krein parameters a∗i . Then Γ is tight if and only

if Γ is not bipartite and ad = 0 if and only if Γ is not bipartite and a∗d = 0.

3 Proofs of Theorems 1.2 and 1.3

We prove our main theorems in this section. In the rest of this paper, we will fix Γ to be a twice

Q-polynomial distance-regular graph of diameter 4. Let E0, . . . , E4 and Ẽ0, . . . , Ẽ4 be Q-polynomial

structures for Γ. The parameters for (Ẽi)i will be attached with a tilde.

We first prove Theorem 1.2, which is key to determine the diameter 4 case.

3.1 Proof of Theorem 1.2

Proof of Theorem 1.2. If Γ has q111 = 0 (or q̃111 = 0), then, by (2.6), it is dual bipartite in case qd1d = 0

(or q̃111 = 0) and almost dual bipartite otherwise.

By Lemma 2.4, Ẽ1 = E4 and Ẽ4 = E1. Suzuki [18] classified symmetric twice Q-polynomial association

schemes that are not from an ordinary polygons2) . By [18, Theorem 1], the Q-polynomial structures for Γ

have type III. In this case, the following hold by the Q-polynomial property (see also [18, Theorem 2]):

q414 = 0 = q434, q424 �= 0 �= q423.

Since q414 = 0, E1 ◦ E4 = |V Γ|−1b∗3E3, where V Γ is the vertex set of Γ. Theorem 2.5 says that θ4
is the eigenvalue associated with E4 or Ẽ4. Without loss of generality, we assume that it is E4. If Γ

is tight, then E1 is associated with θ1. By [16, Theorem 1.5], E0, E1, E2, E3, E4 is the natural ordering

of the primitive idempotents. (The list E0, E1, . . . , Ed is called natural ordering if the adjacency matrix

A1 =
∑d

i=0 θiEi with θ0 > θ1 > · · · > θd.) Now we denote the eigenvalues of Γ by θ0 > θ1 > θ2 > θ3 > θ4.

Now we prove Theorem 1.2 by showing that one of a∗1, ã
∗
1 for Γ vanishes. We distinguishing whether Γ

is bipartite or not.

3.1.1 Γ is bipartite

Assume that Γ is bipartite. So we have θ4 = −k and m4 = 1. Imprimitive Q-polynomial association

schemes have the following characterization.

Theorem 3.1 (See [17, Theorem 3] and [3,19]). Let E0, E1, . . . , Ed be a Q-polynomial structure for as-

sociation scheme X. Suppose that X is imprimitive. More precisely, let T be a proper subset of {0, 1, . . . , d}
with T �= {0} such that the linear span of {Ei | i ∈ T } is closed under the Hadamard product. In addition,

assume m1 > 2. Then one of following holds:

(i) T = {0, 2, 4, . . .} and a∗i = 0.

(ii) T = {0, d} and b∗i = c∗d−i for all i = 0, 1, . . . , d with the possible exception i = �d/2�.
An association scheme X in (3.1), and (3.1) is also called dual bipartite and dual antipodal, respectively.

Now back to Γ. Let m1 = mE1 . Suppose m1 > 2. Then Theorem 3.1 applies. If q111 > 0, Γ cannot be

dual bipartite and hence Γ is dual antipodal, i.e., Case (ii). So T = {0, 4}. However, E4 is the primary

idempotent for the second Q-polynomial structure, which is impossible.

Suppose m1 � 2. Since mE1 < k = 3, we have θE1 = θ1 by [2, Theorem 4.4.4]. If m1 = 2, then

by [11, Theorem 13(i)] k = 2, this contradicts k > 2. By [11, Lemma 7], it is impossible for m1 = 1;

otherwise m1 +m4 = 2 < k.

2) The last case (V) in Suzuki’s classification was recently eliminated [14].
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3.1.2 Γ is not bipartite

Assume that Γ is not bipartite. Since a∗4 = 0, Γ is tight and a4 = 0 by Theorem 2.5. In the literature [2,

p. 247], there is an infinite series of feasible formally self-dual intersection arrays

{μ(2μ+ 1), (μ− 1)(2μ+ 1), μ2, μ; 1, μ, μ(μ− 1), μ(2μ+ 1)}. (3.1)

This series was ruled out in [9]. Had a graph with this array existed, it would be tight with a pair of

non-integral eigenvalues, and would have possessed two P -polynomial and two Q-polynomial structures.

We will give an alternative proof that there are no distance-regular graphs with intersection array (3.1).

Since Γ is not bipartite, it follows from (2.7) that a1a2a3 �= 0. By Theorem 2.5,

θ1θ4 = θ0θ3. (3.2)

Our next goal is to determine the relations among θi and the parameters of the local graph for Γ.

Now applying Theorem 2.2 to the two Q-polynomial structures of Γ, we obtain

θ2 − pθ1 + θ0 = θ3 − pθ2 + θ1 = θ4 − pθ3 + θ2, (3.3)

θ2 − p̃θ4 + θ0 = θ3 − p̃θ2 + θ4 = θ1 − p̃θ3 + θ2. (3.4)

We obtain from (3.3) and (3.4)

p =
θ0 − θ4
θ1 − θ3

, p̃ =
θ0 − θ1
θ4 − θ3

, p− p̃ =
2(θ1 − θ4)

θ2 − θ3
.

From these equation and θ1θ4 = kθ3, we find

p = θ0/θ1, p̃ = θ0/θ4, θ2 = −θ3. (3.5)

Now substituting these into (3.3) leads to

θ1 + θ4 = 2θ2. (3.6)

If we substitute (3.5) into (2.5), we find

r∗ = θ2, s∗ = θ1θ3, r̃∗ = θ2, s̃∗ = θ4θ2.

Since Γ is tight, we have (
θ1 +

k

a1 + 1

)(
θ4 +

k

a1 + 1

)
= − ka1b1

(a1 + 1)2
. (3.7)

We find from this and (3.6) and (3.2) that

θ2(a1 − 1) = b1 + 1. (3.8)

Now we collect some equations above that are key to the proof as follows:

θ1θ4 = θ0θ3, (3.9)

θ1 + θ4 = 2θ2, (3.10)

θ2(a1 − 1) = b1 + 1. (3.11)

By Subsection 2.5, a local graph Γ(x) is strongly regular with k vertices and valency a1 and non-trivial

eigenvalues

ξ = −1− b1
θ4 + 1

, τ = −1− b1
θ1 + 1

.

where ξ � 0 and τ < −1.

The local graph Γ(x) cannot be a conference graph. Otherwise, we have a1 = (k − 1)/2 and such a

graph has diameter 3 by [13]. (The intersection array (3.1) has the second largest and minimal eigenvalues
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non-integral. Any graph with this array has a conference graph as its local graph and therefore cannot

exist.) Therefore, ξ and τ are both integers and thus θ4, θ1 are both rational numbers. Since they are

algebraic integers, θ4, θ1 are integers.

We find from (3.9)–(3.11) that

−(θ1 + 1)(θ4 + 1) = (k − 2)θ2 − 1 = (a1 − 1)θ2 + b1θ2 − 1 = b1 + 1 + b1θ2 − 1 = b1(θ2 + 1).

From this we can derive
−b21

(θ1 + 1)(θ4 + 1)
=

b1
(θ2 + 1)

. (3.12)

Since the left hand side is an integer, θ2 + 1 divides b1 and hence a1 by (3.11). Let a1 = α(θ2 + 1),

b1 = β(θ2 + 1). By (3.9) and (3.10) we find θ1, θ4 = θ2 ±
√
θ2(k + θ2). Now θ2(k + θ2) = αθ2(θ2 + 1)2

and hence k = α(θ2 + 1)2 − θ2. In the rest of this proof, we will determine eigenvalues θi in terms of a1
and k.

Let (σi)i be the cosine sequence of θ1. Then by Lemma 2.1, σi > σi+1 (0 � i � 3). Since a4 = 0,

σ3 = σ1σ4 by (2.3). By the remarks preceding Lemma 2.1, the sequence (σi)i has one sign change and

thus σ4 < 0 and σ1 > 0. Hence σ3 < 0. It remains to determine the sign of σ2. Let (σ̃i)i be cosine

sequence of θ4. Then (−1)iσ̃i > 0. Let (ui)i be the cosine sequence of θ3. Then ui = σiσ̃i by Theorem 2.5.

Fortunately, some recent results in [4] allows us to determine the sign of σ2: It is readily deduced

from [4, Propositions 1(iii) and 2] that σ2 � 0. Hence, u2 � 0. We find from this, θ2 = −θ3 and (2.2)

(with r = 1) that k− θ2a1 � θ22 . As k = (a1 − 1)(θ2 +1)+ 1, we obtain a1 � θ2(θ2 + 1) and thus α � θ2.

Recall (α(θ2 + 1) − 1)θ2 − 1 = (a1 − 1)θ2 − 1 = b1 = β(θ2 + 1). We obtain β = αθ2 − 1 and

b1 = (αθ2−1)(θ2+1), ξ = −1−b1/(θ4+1) =
√
αθ2 and τ = −ξ. This means that ξ divides a1(= k−b1−1)

and hence, as a1 = ξ2 + α, ξ divides α. This implies that θ2 divides α and hence θ2 � α. We conclude

α = θ2 = ξ. Now, the local graph Γ(x) has the following parameters:

k = θ22(θ2 + 2), a1 = θ2(θ2 + 1), θ1 = θ2(θ2 + 2), θ4 = −θ22.

We see that

θ1 =
a1 +

√
a21 + 4k

2
.

Now Γ is antipodal by the following result.

Lemma 3.2 (See [12, Proposition 3.5]). Let Ω be a distance-regular graph with d at least three and

distinct eigenvalues k = θ0 > θ1 > · · · > θd. Then θ1 = (a1 +
√
a21 + 4k)/2 if and only if one of the

following holds:

(i) d = 3 and Ω is a Shilla distance-regular graph;

(ii) d = 4 and Ω is an antipodal distance-regular graph.

Since Γ is antipodal, it is dual bipartite. So

a∗1 = 0, or ã∗1 = 0.

This completes the proof of Theorem 1.2.

3.2 Proof of Theorem 1.3

Proof of Theorem 1.3. Since the twice Q-polynomial distance-regular graphs with diameter at least 5

are classified by Theorem 1.1. It remains to treat the diameter 4 case. Let Γ be a twice Q-polynomial

distance-regular graph with diameter 4 and valency at least 3. Then the Krein parameters a∗i of Γ can

be divided into the following four cases:

(i) If a∗1 = a∗4 = 0, then Γ is H(4, 2) or a Hadamard graph by [7].

(ii) If a∗1 = 0 �= a∗4, then Γ is 1
2H(9, 2), or H̃(9, 2) by [6, Theorem 3.1.4].

(iii) Suppose a∗1 �= 0 �= a∗4. By [18, Theorem 2], the Q-polynomial structures (Ei)i is almost dual

antipodal and thus by [6, Lemma 3.1.3], the other Q-polynomial structure (Ẽi)i is almost dual bipartite.

This case is implied by the previous case by treating (Ẽi)i, which has ã∗1 = 0 �= ã∗4.
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(iv) If a∗1 �= 0 = a∗4, then ã∗1 = 0 by Theorem 1.2 and Cases (i) and (ii) apply. So the proof of

Theorem 1.3 is completed.

Remark 2. The following graphs are twice Q-polynomial distance-regular graphs of diameter 3:

Graphs in Theorem 1.1(ii)–(iv) with d = 3, antipodal distance-regular graphs with intersection array

{k, μ, 1; 1, μ, k} (μ < k − 1), and bipartite (but not antipodal) distance-regular graphs with intersection

array {k, k − 1, k − μ; 1, μ, k} (μ < k − 1). These antipodal ones are called Taylor graphs, and these

bipartite ones are the incidence graphs of nontrivial symmetric 2-designs. See [2, p. 431].
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