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Abstract Let (X,d, ) be a metric measure space satisfying both the geometrically doubling and the upper
doubling conditions. Let p € (1,00), 0 < p< 1< g< o0, p#4q, € [l,00) and € € (0,00). In this paper, the

authors introduce the atomic Hardy space Ijlgt’g’;(u) and the molecular Hardy space ﬁ[’;’bq’;’ €(u) via the discrete

coefficient, K J(Bp)ép , and prove that the Calderén-Zygmund operator is bounded from H I’;’bq’:’ (w) (or H 0N ’J(u))

~p.¢,7, 5 (6= +v)

into LP(), and from H? @YY (1)) into H (). The boundedness of the generalized fractional

atb, p(p+1) mb, p
integral T (8 € (0, 1)) from anlb,,% v g(u) (or Hgtlb”ql;v(u)) into LP2 (u) with 1/p2 = 1/p1 — B is also established.

The authors also introduce the p-weakly doubling condition, with p € (1,00), of the measure p and construct
a non-doubling measure p satisfying this condition. If p is p-weakly doubling, the authors further introduce
the Campanato space £,y (1) and show that €77, (1) is independent of the choices of p, n, v and ¢; the

HPMZ”*/ 9,7, €

authors then introduce the atomic Hardy space H\\l" (1) and the molecular Hardy space flﬁl’b o (), which

coincide with each other; the authors finally prove that ﬁ;’t’g’;’(u) is the predual of S;/ﬁ_ll’ 1(y). Moreover, if p

is doubling, the authors show that £, (1) and the Lipschitz space Lip, ,(¢) (¢ € [1,00)), or ﬁgt’g’;(u) and

the atomic Hardy space HY; ?(p) (g € (1, 00]) of Coifman and Weiss coincide. Finally, if (X, d, p) is an RD-space

(reverse doubling space) with p(X) = oo, the authors prove that ﬁ;’gg:;’(p), ﬁr’;’b'{’/;” “(n) and HE; 9(p) coincide

for any ¢ € (1,2]. In particular, when (X,d,p) := (RP,]|-|,dz) with dz being the D-dimensional Lebesgue
measure, the authors show that spaces Hgt’g’p"’(u), Hfl’l’bq’:’ “(w), Hgt’g’;’(u) and Hg"bq’:’ €(u) all coincide with
HP(RP) for any ¢ € (1, c0).
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1 Introduction

It is well known that the real variable theory of Hardy spaces H?(R”) on the D-dimensional Euclidean
space RP has many important applications in various fields of analysis such as harmonic analysis and
partial differential equations; see, for example, [12,48-50]. When p € (1,00), LP(RP) and HP(RP) are
essentially the same; however, when p € (0,1], the space HP(R®) is much better adapted to problems
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arising in the theory of the boundedness of operators, since some of singular integrals (for example, Riesz
transforms) are bounded on HP(RP), but not on LP(RP). In 1972, Fefferman and Stein [12] showed
that the Hardy space H'(RP) is the predual of the bounded mean oscillation space BMO(R®). Later,
Walsh [61] proved that the dual space of the Hardy space HP(RP”) is the Campanato space introduced
by Campanato [4]. From then on, various characterizations of H?(RP), including the atomic and the
molecular characterizations, and their applications were studied extensively in harmonic analysis; see, for
example, [5,8,9,16,32,38,40,51,64]. Moreover, the atomic and the molecular characterizations enabled
the extension of the real variable theory of Hardy spaces on R” to spaces of homogeneous type in the
sense of Coifman and Weiss [10,11], which is a far more general setting for function spaces and singular
integrals than Euclidean spaces.

Recall that a metric space (X, d) equipped with a non-negative measure u is called a space of homo-
geneous type, if (X, d, 1) satisfies the measure doubling condition: There exists a positive constant C,,
such that, for all balls B(x,r) :={y € X : d(z,y) < r} with z € X and r € (0, c0),

u(B(w,2r)) < Cou(B(x,7)). (L1)

This doubling condition on measures is one of the most crucial assumptions in the classical harmonic
analysis. We point out that a space of homogeneous type in [10,11] is endowed with a quasi-metric.
However, for simplicity, throughout this article, we always assume that a space of homogeneous type is
endowed with a metric.

Nevertheless, in recent years, it has been proved that many results in the classical theory of Hardy
spaces and singular integrals on R” remain valid with the D-dimensional Lebesgue measure replaced
by a non-doubling measure (see, for example, [6,24,41,53-59]). Recall that a Radon measure y on R”
is called a non-doubling measure, if there exist positive constants Cp and x € (0, D] such that, for all
r € RP and r € (0, 00),

(B, 1)) < Cor™, (1.2)

where B(z,7) := {y € R? : |y — x| < r}. Tolsa [54,55] introduced the atomic Hardy space H. (1),
for ¢ € (1,00], and its dual space, RBMO(u), the space of functions with regularized bounded mean
oscillation, with respect to p as in (1.2), and proved that Calderén-Zygmund operators are bounded
from H.?(p) into L'(p). Later, Chen et al. [6] showed that Calderén-Zygmund operators are bounded

on HY(u). Hu et al. [24] established an equivalent characterization of H.;(u) to obtain the L9(p)-
boundedness of commutators and their endpoint estimates. More research on function spaces, mainly on
Morrey spaces, and their applications related to non-doubling measures can be found in [20,42-47]. We
point out that the analysis on such non-doubling context plays a striking role in solving several long-
standing problems related to the analytic capacity, like Vitushkin’s conjecture or Painlevé’s problem;
see [56-59].

However, as was pointed out by Hytonen [27], the measure satisfying (1.2) is different from, but
not more general than, the doubling measure. Hytonen [27] introduced a new class of metric measure
spaces satisfying the so-called geometrically doubling and the upper doubling conditions (see, respectively,
Definitions 2.1 and 2.3 below), which are also simply called non-homogeneous metric measure spaces. This
new class of non-homogeneous metric measure spaces includes both spaces of homogeneous type and
metric spaces with non-doubling measures as special cases. It is already known that singular integrals on
non-homogeneous metric measure spaces arise naturally in the study of complex and harmonic analysis
questions in several complex variables (see [29,60] for the details).

In this new setting, Hytonen [27] introduced the space RBMO(u) and established the corresponding
John-Nirenberg inequality. Later, Hytonen et al. [30], and Bui and Duong [3], independently, introduced
the atomic Hardy space H ;g (1) and proved that the dual space of Halt’g (1) is RBMO(p). Hytonen et
al. [28] and Liu et al. [37] established some equivalent characterizations for the boundedness of Calderén-
Zygmund operators on L4 (u) with ¢ € (1, 00) and their endpoint boundedness. Fu et al. [13] introduced a

version of the atomic Hardy space H L) (€ HY () via the discrete coefficients K ;;)S, and showed that

the Calderén-Zygmund operator is bounded on ﬁiéé’ (1) via establishing a molecular characterization of
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H ;g (u) in this context. Recently, Fu et al. [15] introduced generalized fractional integrals and established
the boundedness of generalized fractional integrals and their commutators in this setting. More research
on the boundedness of various operators on non-homogeneous metric measure spaces can be found in
[1,26,34-36]. We refer the reader to the survey [62] and the monograph [63] for more progress on the
theory of Hardy spaces and singular integrals over non-homogeneous metric measure spaces.

We point out that the space I?it’g (1) seems to be more useful in the study on the boundedness of
operators, since it was shown in [13, Theorem 1.4] that Calderén-Zygmund operators are bounded on
H ;t’g (1), but the method does not work for the boundedness of Calderén-Zygmund operators on H, ié}f (1)
over general non-homogeneous metric measure spaces defined via the continuous coefficients (see [13,

Remark 2.4] or Remark 4.2(iv) below).

To the best of our knowledge, the theory of the Hardy space H? on non-homogeneous metric measure
spaces is still unknown, even on Euclidean spaces endowed with non-doubling measures. Let (X,d, 1)
be a non-homogeneous metric measure space in the sense of Hytonen [27]. The main purposes of this

article are two-fold. First, via the discrete coeflicients IZ'](B”’)’S’) , we introduce the atomic Hardy space

7P, 4,7
Hatb,p

Calderén-Zygmund operators and generalized fractional integrals. However, it is still unknown whether

H ;’g_’;(u) is independent of the choices of p, v and ¢ or not even under some additional condition, called

(1) and the molecular Hardy space ﬁfx’l’}f”;’ “(1), and give their applications to the boundedness of

the p-weakly doubling condition (see Definition 6.1 below). Moreover, the dual space of H”;% 7 (1) and

atb, p
the equivalence between HZ\" '(u) and HPy" 7 “(u) are also unclear. Thus, we are forced to turn to
the other goal: Introduce another atomic Hardy space H 5{13,?(”) and another molecular Hardy space

ﬁﬁl’}g’;’e(u), and then show that H w (1) is independent of the choices of p and ~ under the p-weakly

doubling condition. Then we study the Campanato space £ _ (1), the dual space of H o ’Z(u), and the

equivalence between H wns ) () and ﬁﬁq’tﬁ’ () if pu is p-weakly doubling. Moreover, if 41 is doubling, we

show that £9¢ _(p) and the Lipschitz space Lip,, (1) (¢ € [1,00)), or ﬁ;’t’g’g(u) and the atomic Hardy

space HE (i) (¢ € (1,00]) introduced by Coifman and Weiss [11] coincide with equivalent quasi-norms.

Finally, if (X,d, ) is an RD-space (reverse doubling space) with u(X) = oo, we prove that Hft’g,’;(u),

ﬁi’g’;’e(u) and H2 ?(u) coincide for any ¢ € (1,2], which is still unknown if ¢ € (2,00]. In particular,
when (X,d,u) := (RP,|-|,dz) with dz being the D-dimensional Lebesgue measure, we show that the

~

spaces ﬁft’g,’;(u), ﬁﬁ;ﬁ’}‘(u% HEWD () and ﬁg§7;7e(ﬂ) all coincide with HP(RP) for any ¢ € (1, 00).

The organization of this article is as follows.

In Section 2, we first recall some necessary notation and notions, including the discrete coefficient

K ](;)’Sp , and give out some fundamental properties on K ](;)’Sp which are crucial to the succeeding content.

ﬁnm vy

ath. p (1) via the discrete coefficient I?g)ép

In Section 3, we introduce the atomic Hardy space

(f( ](;):91 =K ](;)S), where the dominating function of the considered measure appears in the size condition
of the atomic block, which seems to be well adapted to the study of the boundedness of Caldeén-Zygmund
operators and generalized fractional integrals, and establish a useful property. The key innovation in this
section is the definition of HJ;" (1) as the completeness of a subspace of L*(u), Hy; 7
suitable substitute of the classical fact that the set of all Schwartz functions having infinite order vanishing

(1), which is a

moments is dense in the Hardy space HP(RP).
In Section 4, we introduce the notion of the molecular Hardy space H wnn )" “(w), and prove that the

Calderén-Zygmund operator is bounded from H?\% 7% (1) (or H”% 7 (1)) into LP (1) by borrowing some

mb, p atb, p
ideas from [30, Theorem 4.2] with much more complicated arguments, and from H? gg_’g(;il)(u) into

7P 4,7, (6—v/p+v)/2
Hmb,p

some technical modifications.

(1) by using a method similar to that used in the proof of [13, Theorem 1.14] with

In Section 5, we establish the boundedness of the generalized fractional integral Tz (8 € (0,1)) from
Hlffb:qp’%a(u) (or HE %7 (1)) into LP2(u) with 1/pa = 1/p1 — B. The proof of the above result is parallel
to that of the conclusion for Calderén-Zygmund operators in Section 4 with slight modifications. For the

sake of the clearness, we present the full details there.
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Section 6 is mainly devoted to the theory of Campanato spaces. We first introduce an additional
assumption, called the p-weakly doubling condition (see (6.1) below), which is satisfied by spaces of ho-
mogeneous type. We also construct a non-trivial example to show that there exist some non-homogeneous
metric measure spaces satisfying the p-weakly doubling condition (6.1); see Example 6.3 below. However,
it turns out that there exist many non-homogeneous metric measure spaces which do not satisfy the
p-weakly doubling condition; see Example 6.4 below. Then we introduce the Campanato space £&9 (1)

Py

and show that €57 (1) is independent of the choices of p, 7, v and ¢ under the assumption of p-weakly

doubling conditions. Precisely, via a useful property of &7 (u) (see Proposition 6.7(a) below) and

the geometrically doubling condition, we prove that £3¢_ (u) is independent of the choices of p and
7, where the p-weakly doubling condition plays a decisive role. Then, by establishing an equivalent
characterization of £54(u) := £ (u) and a useful lemma (see Lemma 6.12 below), which is analo-
gous to [30, Lemma 2.7], and by borrowing some ideas from the proof of [30, Proposition 2.5], we show
that 5. (u) is independent of the choice of . Next, by the above equivalent characterization of €5 (u)
and the p-weakly doubling condition, we establish the John-Nirenberg inequality for €3 %(y) := 5;’1(1 (1),
which further implies that E;j"q(u) is independent of the choice of q. We point out that, on spaces of
homogeneous type, the independence of q of £ 9(u) is due to the coincidence between £79(u) and the
Lipschitz space Lip,(p); see [39]. However, this coincidence is unknown on non-homogeneous metric
measure spaces, even under the p-weakly doubling condition. Alternatively, we adopt the method de-
veloped by Hytonen for the proof of the John-Nirenberg inequality for the BMO type space in [27]; see
also [54]. At the end of this section, we establish another useful characterization of £ (u) := £ *(n),
which plays important roles in the later context.

In Section 7, we introduce the atomic Hardy space H v (1) and the molecular Hardy space Vit ()
and investigate their relation under the p-weakly doubling condition. By using a method similar to that
used in the proof of [13, Theorem 1.11], together with some technical modifications, we prove that

~

HZ ) (w) and ﬁﬁq’tﬁ’ (1) coincide with equivalent quasi-norms. Tt is still unclear whether the above
result holds true or not on general non-homogeneous metric measure spaces, even on Euclidean spaces

with non-doubling measures.

7P, ;Y
Hatb,p

condition. To this end, we first show that H 5{13:;(/0 is independent of the choices of p and 7. Precisely,
by the p-weakly doubling condition and borrowing some ideas from the proof of [30, Proposition 3.3(ii)],
we first prove that H fljgg”;(u) is independent of the choice of p. By establishing the corresponding result
(see Lemma 6.11 below) to [54, Lemma 9.2] and constructing a sequence of (p, 8,)-doubling balls which

Section 8 is mainly devoted to investigating the dual space of (1) under the p-weakly doubling

is a refinement of that appearing in the proof of [54, Lemma 9.3], we further show that ﬁ;’gﬁ;;(u) is

independent of . Finally, via the independence of p for H f:gg_’;(u) and the equivalent characterization

of £¥(u) = £ (1) established in Section 6 (see Proposition 6.18 below), we show that ﬁft’g”g(u) is

the predual of E;/ P 71(,u). It is still unknown whether the above results hold true or not on general
non-homogeneous metric measure spaces, even on FEuclidean spaces with non-doubling measures.
In Section 9, let (X,d, ) be a space of homogeneous type in the sense of Coifman and Weiss. We

investigate the relations between the Campanato space €37 (u) and the Lipschitz space Lip, ,(u), or

between ﬁ;’t’g”g(u) and the atomic Hardy space HZ;?(u) introduced by Coifman and Weiss [11]. By

carefully dividing the situation into several parts, constructing a sequence of balls via using a method
similar to that used in the proof of the independence of ~ for H. fgff’}(u) in Section 6 and adopting some

ideas from [27, Proposition 4.7], we show that, if ¢ € [1,00), then £ (u) and Lip, ,(u) coincide with

equivalent norms. By a method similar to that used in the proof of this result, we also establish the

coincidence of H. v () and H (p) for any g € (1,00] directly.

In Section 10, suppose that (X,d, u) is an RD-space with pu(X) = oo and ¢ € (1,2]. We show that

ﬁfgg:;(u), ﬁi’g’;’e(u) and HE %(u) coincide. Let ﬁg;g:;(u) and ﬁlﬁ;g;;‘(u) be dense subspaces of

HZ ) (n) and ﬁgf’;’ﬁ(u), respectively (see Definitions 3.2 and 4.1 below). We prove that

(HE () 0 L2 () © HEE 7 () € Hipgh () © (HE () N L2 (w)
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by two steps. In Step 1, to show that (HE () N L% () C fﬂg;g:g(u) for any ¢ € (1, 2], we first establish
a technical lemma (see Lemma 10.2 below). Then we establish a useful criterion for the boundedness of
some integral operators (see Lemma 10.8 below). Via this, a standard duality argument, the Calderén
reproducing formula and the boundedness of the Littlewood-Paley g-function on L?(11) obtained in [21],
we give out a key atomic decomposition for all functions from HE; 9 (y) NL?(p1) in lf(u) (see (10.5) below),

which plays an essential role in the proof of Step 1. In Step 2, via the fact that H?;/» 7 (u) C ﬂﬁ’ﬁ’l’ﬁ(u)

atb, p
(see Proposition 4.3 below) and establishing the boundedness of the Littlewood-Paley S-function from
Hpb 2 “(u) into LP(p), we conclude that, for any g € (1, 00),

HP8 () € HZD (i) © (HP () 0 L2 (1)) = (HE (1) 0 L2 (),

where HP(u) is defined by the Littlewood-Paley S-function as in [19,21]. By these two steps and a
standard density argument, we obtain the desired result. Due to the defects of the above boundedness
of the Littlewood-Paley g-function and the criterion for the boundedness of some integral operators, it is
still unclear whether ﬁfx’l’}f”;’e(u) (or ﬁft’g”g(u)) = H%:9(u) over RD-spaces (X,d, u) with pu(X) = oo for

€ (2,00]. Finally, if (X,d,u) := (RP,|-|,dr) with dz being the D-dimensional Lebesgue measure, we
prove that the spaces ﬁf{ﬁjl(u), ﬁié’;’e(u), I?i&’l(u) and ﬁf;’kz’;’e(u) all coincide with HP(RP) for
any ¢ € (1, 00).

Finally, we make some conventions on notation. Throughout this article, C' stands for a positive
constant which is independent of the choices of the main parameters, but it may vary from line to
line. Constants with subscripts, such as Cy, do not change in different occurrences. Furthermore, we
use C(,q,.) to denote a positive constant depending on parameters p,c,... Let N := {1,2,...} and
Z4 := {0} UN. For any ball B, the center and the radius of B are denoted, respectively, by cp and rp.

For any subset E of X', we use xg to denote its characteristic function.

2 Preliminaries

In this section, we recall some necessary notation and notions, including the discrete coefficient Kg)’sp ,

and give out some fundamental properties on K ](;)ép in the non-homogeneous context.

The following notion of the geometrically doubling is well known in analysis on metric spaces, which
was originally introduced by Coifman and Weiss [10, pp. 66—67] and is also known as metrically doubling
(see, for example, [23, p.81]).

Definition 2.1. A metric space (X, d) is said to be geometrically doubling if there exists some Ny € N
such that, for any ball B(xz,r) C X with z € X and r € (0,00), there exists a finite ball covering
{B(x;,r/2)}; of B(x,r) such that the cardinality of this covering is at most Nj.

Remark 2.2. Let (X,d) be a metric space. Hytonen [27] showed that the following statements are
mutually equivalent:

(i) (X,d) is geometrically doubling.

(ii) For any € € (0,1) and any ball B(z,r) C X with € X and r € (0,00), there exists a finite ball
covering {B(x;,er)}; of B(x,r) such that the cardinality of this covering is at most Noe~ ™, here and
hereafter, Ny is as in Definition 2.1 and ng := logy No.

(iii) For every € € (0,1), any ball B(z,r) C X with z € X and r € (0,00) contains at most Npe "0
centers of disjoint balls {B(z;, €r)};.

(iv) There exists M € N such that any ball B(z,r) C X with € X and r € (0, c0) contains at most M
centers {x;}; of disjoint balls {B(z;,r/4)}M,.

Recall that spaces of homogeneous type are geometrically doubling, which was proved by Coifman and
Weiss [10, pp. 66—68].

The following notion of upper doubling metric measure spaces was originally introduced by Hytonen [27]
(see also [28,37]).
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Definition 2.3. A metric measure space (X, d, p) is said to be upper doubling if p is a Borel measure
on X and there exist a dominating function A : X x (0,00) — (0,00) and a positive constant C(),
depending on A, such that, for each x € X, r — A(x,r) is non-decreasing and, for all x € X and
r € (0,00),

w(B(z,r)) < Mz,r) < CoyAz,7/2). (2.1)

A metric measure space (X, d, u) is called a non-homogeneous metric measure space if (X, d) is geomet-
rically doubling and (X, d, ) is upper doubling.

Remark 2.4. (i) Obviously, a space of homogeneous type is a special case of upper doubling spaces,
where we take the dominating function A(z,r) := u(B(z,r)) for all x € X and r € (0,00). On the other
hand, the D-dimensional Euclidean space R with any Radon measure y as in (1.2) is also an upper
doubling space by taking A(z,7) := Cor" for all x € RP and r € (0, ).

(ii) Let (X, d, 1) be upper doubling with A being the dominating function on X x (0,00) as in Def-
inition 2.3. It was proved in [30] that there exists another dominating function X such that A < A,
C(X) < C(y and, for all z, y € X with d(x,y) <7,

Az, r) < C(X)/\(y,r). (2.2)

(iii) It was shown in [52] that the upper doubling condition is equivalent to the weak growth condition:
there exist a dominating function A : X x (0,00) — (0,00), with 7 — A(z,r) non-decreasing, positive
constants C(y), depending on A, and € such that

(iii); for all r € (0,00), t € [0,7], z, y € X and d(z,y) € [0,7],

d(z,y) +t

A+ 0= Al < Coy |1

}6)\(3:,7“);

(iii)2 for all x € X and r € (0,00), p(B(z,r)) < Az, 7).

Based on Remark 2.4(ii), from now on, we always assume that (X, d, 1) is a non-homogeneous metric
measure space with the dominating function A satisfying (2.2).

Though the measure doubling condition is not assumed uniformly for all balls in the non-homogeneous
metric measure space (X, d, p), it was shown in [27] that there still exist many balls which have the
following (c, 8)-doubling property.

Definition 2.5. Let a, 8 € (1,00). A ball B C X is said to be (o, 8)-doubling if u(aB) < Su(B),
where, for any ball B := B(cg,rp) and p € (0,00), pB := B(cp, pra).

To be precise, it was proved in [27, Lemma 3.2] that, if a metric measure space (X,d,u) is upper
doubling and «, 8 € (1,00) with g > [C(A)]l"gﬂ’ =: a”, then, for any ball B C X, there exists some
j € Zy such that o’/ B is («, 8)-doubling. Moreover, let (X, d) be geometrically doubling, 3 > o™ with
ng := logy Ny and p a Borel measure on X which is finite on bounded sets. Hytoénen [27, Lemma 3.3] also
showed that, for p-almost every = € X, there exist arbitrary small («, 3)-doubling balls centered at .
Furthermore, the radii of these balls may be chosen to be of the form a~/r for j € N and any preassigned
number r € (0,00). Throughout this article, for any « € (1,00) and ball B, the smallest (c, B,)-doubling
ball of the form o B with j € Z, is denoted by g", where

Bo = omax{no,vh) L max{5a, 30}]™ + [max{3c, 30}]".

Before we introduce the discrete coefficient K ;;)’Sp , we first give an assumption on the relation between
two balls B and S, which is supposed to hold true through the whole article:

(A) If B= S, then cg =cg and 5 = rg.

Then we claim that, if B C S, then rp < 2rg. Indeed, assume that rg > 2rg. By this and B C S,
together with the triangle inequality satisfied by d, we see that S C B. Thus, B = S, which, together
with the assumption (A), implies that rg = rg. This contradicts to rp > 2rg, which completes the proof
of the above claim.
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On the other hand, we give a simple example to illustrate that, if B ; S, then it may happen that
rg >rg. Let (X,d) = ({-1,1,3},|-]), B:={z € {-1,1,3} : |x + 1| < 3} and

S = {xe{—1,1,3}:|x—1|< Z}

Obviously, rg > rg and B ={-1,1} G {-1,1,3} = S.
Definition 2.6.  For any p € (1,00), p € (0,1] and any two balls B C S C X, let

(p)

wprfie 3 [0 TV o

Xeg, pFr
k=—log, 2 B:P7TB

here and hereafter, for any a € R, |a| represents the biggest integer which is not bigger than a, and N g )S
(»)
is the smallest integer satisfying pNBp) srg > rg.

Remark 2.7. (i) By a change of variables and (2.1), we easily conclude that

N+ log, 2] +1

s n e}

ki
c r
Pt B, PTB

where the implicit equivalent positive constants are independent of balls B € S C &X', but depend on p
and p.

(ii) A continuous version, K, g, of the coeflicient in Definition 2.6 when p = 1 was introduced in [27,30]
as follows: For any two balls B C S C &,

1

Kp g:=1+ /(25)\3 )\(CB,d((E,CB))dM(x). (24)

It was proved in [30, Lemma 2.2] that K, g has all properties similar to those for K g)’sp as in Lemma 2.8
below. Unfortunately, Kp s and K ](;)’Sl are usually not equivalent, but this is true for (R”,|-|, u) with u
as in (1.2); see [13] for more details on this.

Now we give some simple properties of K g)ép defined by (2.3) adapted from [14, Lemma 3.5], in which
p =6 and p = 1. The arguments therein are still valid for the present case. For the sake of reader’s
convenience, we present some details. In what follows, for any a € R, [a] represents the smallest integer
which is not smaller than a.

Lemma 2.8.  Let (X,d,u) be a non-homogeneous metric measure space and p € (0, 1].

(i) For any p € (1,00), there exists a positive constant C(,, depending on p, such that, for all balls
BCRCS, [K§P < CpKRsP.

(ii) For any a € [1,00) and p € (1,00), there exists a positive constant C,, ), depending on o and p,
such that, for all balls B C S with rg < arp, [I?;;)’Sp]p < Cla,p)-

(iii) For any p € (1,00), there exists a positive constant C(, . ., depending on p, p and v, such that, for
all balls B, [I?(Bp’)g;]p < Cp, p,vy- Moreover, letting o, B € (1,00), B C S be any two concentric balls such
that there exists no («, (3)-doubling ball in the form of a* B, with k € N, satisfying B C o*B C S, then
there exists a positive constant Co, g, p, 1), depending on «, B, p and v, such that [Kgl,)ép]p < Cla, 8,p,v)-

(iv) For any p € (1,00), there exists a positive constant c(, p. .y, depending on p, p and v, such that,
for all balls BC R C S,

REP < (KGR + o KT
(v) For any p € (1,00), there exists a positive constant ¢(, p .y, depending on p, p and v, such that,

for all balls B C RC S, [K@5"1P < p o) K157
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Proof. Fix p € (0,1], p € (1,00) and « € [1,00). We first show (i). By R C S, we have rp < 2rg.

Hence,

(p) (p)
rr < 2rs < 2pNEsrp < plloss 21N

B.3rp.
Thus, Ng],)R < [log, 2] + N](;)S. By this and (2.1), we see that
[log,, 2'\+N(Bp)s i p
~ ’ 1(p*B)
ST S g
2, Denprn)
N(Bp)s % »
’ w(p"B) o). p
= k %: 2] |:)\(CB;Pk7"B):|  Hog, 21 < (14 [log, 21K 51"
=— ng

This shows (i).
(»)
Now we prove (ii). By the fact that pNB/)vS_er < rg < arp, we have N](gp’)s —1 < log,a. Thus,
N](;)S — 1< [log, «]. From this and (2.1), we deduce that

K0P <14 NYg + log,2] <2+ |log, al + [log,2].

Thus, (ii) holds true.

Let us now prove (iii). To this end, let N be the first integer such that p™V B is (p, 8,)-doubling. If B
is (p, B8,)-doubling, the conclusion of (iii) holds true trivially. Thus, without loss of generality, we may
assume that B is non-(p, 3,)-doubling, which implies that N > 1. For any k € {—[log,2/,...,N — 1},
we have pu(p***B) > B,u(p"B). Thus, for any k € {—|log,2],...,N — 1}, u(p*B) < ”/éﬁ’vjvj). By this,
together with (2.1) and the fact that 8, > [C()]'°822 = (2p)”, we conclude that

N-1
[I?(P)Lp]p:[fz—(p%g ]p<2+ Z { M(pkB) ]p
B,pNBl S e
B, Br p b 3 Aeg, pFrp)
N-1 v1p(N—k
SRS [<2p> ]’“ >{ #(p" B) ]
b loe 2y L Do Aep, pNrp)
P

pk

< 2+§: [(QBW] <1,
k=1 P

where the implicit positive constant only depends on p, p and v. Similarly, the other part of (iii) holds
true, the details being omitted. This proves (iii).

Next we show (iv). By (i), Ny < NYs + [log,2]. If NY)g < NY¥), < NYs + [log,2], then
there exists nothing to prove. If ng,)R < Nép,)s, from the facts that Ng),)s < Ng}R + Nz(%p,)s (since

(p) (p) (p) (p) (p)
pNB’R+NR’STB > pNR’STR > TS); pNB*R’I"B > R, pk+NB1R+1+|_logp2jB c pk+2+|'logp2'\+|_logp2JR for all

k€ Zn[~|log,2],00), and (2.1), it follows that

N +N s +1+log, 2]

k P
- (p);p 7~(p), p w(p"B)
K PLIK P
[Kp's " <[Kgkl’+ Z |:)\(CB,pk’I"B)
k=NEn+1
N E+NY 414 |log, 2
_ ; B,R 08, JB p
= [KJ(;)I’%p]p+ [ He k+NYp 414 |log 2J) ]
k=—[log, 2] “A(cB,p" "B )

N(P)
< [RO:rp 4 XR’:S u((pF 28, 21+ log, 2] 1P
X B,R )\(CB pk+1+|_log92er)

k=—log, 2] )
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N
S AB/R N7
S [log, 2] Nep, phtetlios, 21t Loe, 21y p)
NI({))S-i-Q-i- ]'logp 2]+|_10g0 2] & p
~ ’ 1(p"R)
< [KJ(Sp)ép]p T Cp,p,v) Z [ k
k=—log, 2] Men, ptrr)
SR + . KT
which shows (iv).
For (v), we first prove that Ng)R + N}({)g < N(Bp)s + 1. Since
rRp = p_Nl(%p,?S—i_lel(%p,?S_er g p_Nl(Qp)SJ’_lrs < p_Nl(%p,?SJ’_le(Bp)S?"B = pNJ(Bp,)S_NI(Qp,)SJ’_er,

we obtain NJ(B’]’)R < N](gp’)s — NJ(%% + 1. From this,

(p) (p)
R >pNB’R 17037 kaCpk—HlogpQ'\—i—NB’RB,

for all k € ZN [~[log,2],00), (2.1) and (2.2), it follows that

Nifs k+[log, 2]+N Y
[f(}(g)ép]p <1+ Z {ﬂ(ﬂ *llog, 21+ B'RB)r

k‘—‘,—N(p) —1
k=—|log, 2| A(CRa P B.R

B )
N

<1+

M(kar[logp QWJ’»N(BP,)RB) :|I)
o, 214N

k=—|log, 2| |:)‘(CRa P
Nt N1

~ 1 + Z M(pk+1+[10gp QW B) b
(e, Pk+1+rlog” 21 TB)

k=N —1—log, 2]

Ngi)s-l—l-i-ﬂogp 2]

w(P*B) 1" _ ~.p
<1 Y [ B | <ig0yp,
2=, Denpirn)

where the implicit positive constants depend only on p, p and v. This finishes the proof of (v) and hence
Lemma 2.8.

Now we show that, for any pi, p2 € (1,00) and p € (0,1], I?éfg’p ~ I?gi%’p for all balls B C S.

Lemma 2.9.  Let (X,d, 1) be a non-homogeneous metric measure space, pi, p2 € (1,00) and p € (0,1].
Then there exist positive constants c(,,, py,p, vy and C,,, depending on p1, p2, v and p, such that,
for all balls B C S,

p2, P, V)

~(p2),p ~(p1):p ~(p2),p
Clpr,pa ) BB s S Kp'g <C(P17P27P,V)KB,S'

Proof.  For the sake of simplicity, we only prove this lemma for p = 1. With some slight modifications,
the arguments here are still valid for p € (0,1). For any p1, p2 € (1,00), without loss of generality, we
may assume that py > po > 1. For any two fixed balls B C S, let N; := N](;j; and I?g:j; = I?J(gp’j;’l
(y € {1,2}). It is obvious that N; < N2. Now we consider the following two cases:
Case i. plV* < p22. Tt is easy to see that p)>~' < pM'. We first prove that I?(Bpfg. < f(j(gp,zgv.

Indeed, for any n1 € {—|log,, 2|,..., N1}, let na be the smallest integer such that p5* > pi"". Then
we have

ng € {—|[log,, 2],..., N2} and P2t < Pt < phe. (2.5)

Consequently, pnglB C p'"B C py?B. By some simple calculations, we see that, for any ny €
{=[log,, 2],..., N2}, there exists at most one n; satisfying (2.5). By the above facts, —|log, 2| >
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—|log,, 2| and (2.1), we obtain

Ny no No no
o) 1(p3? B) 1(p3* B) 7 (p2)
Kpls <1+ Z na-t, y ST+ Z Nep, pierp) Ki's

)‘(CBaPQ rB) -

ni=—|log, 2| nz=-—|log,, 2]

where the implicit positive constants depend only on p1, ps and v.
On the other hand, for the case Ny < 1, it is obvious that K](Bpf; <1< K](;lg, which completes the
proof of Case i. Thus, without loss of generality, we may assume that No > 1. We notice that

. N2—1
Rip<olie %

na2=—|log,, 2|

1(p5*B)
)\(CB, 0327“13)

For any fixed ny € {—|[log,, 2|,..., N2 — 1}, let n; be the smallest positive integer such that p* > p5*.
Then we have

n1 € {—|[log,, 2],...,N1} and p;“_l < py? < pit. (2.6)

Consequently, p?lle C py?B C pi*B. By some simple calculations, we see that, for any n; €
{=llog,, 2],..., N1}, the number of ny satisfying (2.6) does not exceed [mp1)

Inps I° By the above facts
and (2.1), we know that

Ny—1 Ny

~ 5*B) 1(py* B)
Rl <14 (P ~14 2]
B.5~ B 2 e, p5°rB) B 2 , ,Z —Mecs, p3?rB)
na=—log,,, 2| ni=—L10g,, 2] pyip™ < pi2 <ot
Ny n
u(py* B) =~ (p1)
Si+ Y ~ KgN,

1
ni=—log,,, 2] )‘(CBa P1 TB)

where the implicit positive constants depend only on p1, p2 and v. This finishes the proof of Case i.

Case ii. péVQ < pivl. The proof of this case is similar to that of Case i, the details being omitted. This
finishes the proof of Lemma 2.9.

3 Atomic Hardy spaces IA-I/:t’g”g(u)

In this section, we introduce the atomic Hardy space H ft’g”;

introducing the notion of H ;’t’g:;(u), we first recall some notions related to quasi-Banach spaces; see, for
example, [19].

(1) and establish a useful property. Before

Definition 3.1. (i) A quasi-Banach space B is a vector space endowed with a quasi-norm || - ||g which
is non-negative, non-degenerate (namely, ||f||z = 0 if and only if f = 0), homogeneous, and obeys the
quasi-triangle inequality, namely, there exists a constant K € [1, 00) such that, for all f, g € B,

If +9lls < K| fll5+ llglls)-

(ii) Let r € (0,1]. A quasi-Banach space B, with the quasi-norm | - ||, is called an r-quasi-Banach
space if || f + gl < |Ifl5, + llgllp, for all f, g € B,. Hereafter, || - || is called the r-quasi-norm of the
r-quasi-Banach space B,..

Then we introduce the notion of H ;’g’g(u) over general non-homogeneous metric measure spaces.
.

Definition 3.2. Let p € (1,00), 0 <p <1< qg<o00,p#gqandy € [l,00). A function b in L?(1)
when p € (0,1) and in L'(x) when p = 1 is called a (p, q, 7, p)x-atomic block if
(i) there exists a ball B such that supp (b) C B;

(ii) [y b(x)dp(x) = 0;
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(iii) for any j € {1, 2}, there exist a function a; supported on a ball B; C B and a number \; € C
such that b = A\ja1 + A2a9 and

lall oy < [u(pBHY 9~ N(ep, rp)] /PR B~

Moreover, let |b|ﬁp o [A1] + [Az2].

A function f is sald to belong to the space Hp;;g’ (w) if there exists a sequence of (p, q,y, p)r-atomic
blocks, {b;}5°,, such that f =2, b; in L?(p) when p € (0,1) and in L'(u) when p = 1, and

oo

P .
2 0il2,0. 2y <

i=1

Moreover, define
1/p
170z 3= mf{[Z“’ |Hp 20 ] }

where the infimum is taken over all possible decompositions of f as above.
The atomic Hardy space H fﬂg’ (p) is then defined as the completion of Hgtg’ » (1) with respect to the
. i- 1B .
p-quasi-norm || ”Hapéf,’,j(ﬂ)

Remark 3.3. () By the theorem of completion of Yosida [65, p.56], we see that Hgtg’ (1) has a

completion space H win o (), namely, for any f € H i (w), there exists a Cauchy sequence {fx}72, in
Hiég’p( ) such that
1 — =0. 3.1
e 1% 1)

(1), then there exists a unique f € H?"”(u) such

Moreover, if {fx}52, is a Cauchy sequence in HP: ¢ e

that (3.1) holds true.

(ii) When p = 1, the space H;tg ,(u) was introduced in [30] and proved to be a Banach space. Thus,

AL (1) = HY 2 (1); see also [3].

(iii) Fix p, p and « as in Definition 3.2. For 1 < ¢1 < g2 < 0o, we easily obtain

tbp

HE 27 (1) € HE Y (1),

(iv) In Definition 3.2, it seems natural to assume b € L%(u) and to require f = >_°°, b; also holds true
in L%(u). However, if so, then it is unclear whether (iii) of this remark still holds true or not, which is
crucial in applications (see, for example, Remark 10.11(i)).

Now we show that any element in Hp’ & ( ) has a decomposition in terms of some (p, g, 7y, p)r-atomic

blocks, {b;}°,, in H;f{lg’p ().

Proposition 3.4.  Let (X,d, ) be a non-homogeneous metric measure space, p € (1,00), 0 < p < 1
<qg<oo,p#qandy €[l,00). Then f € Hfgg’p( ) if and only if there exist (p, q, v, p)r-atomic blocks
{bi}32, such that

F= b in HEl () (3.2)
and 3777, [bi |Hp () < 00. Moreover,

o0

e
MWz0 =8 2 Bl

where the infimum is taken over all possible decompositions of f as in (3.2).
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Proof.  We first assume that f € Hft’g’p (). Observe that, if (3.2) holds true, it is easy to see that

o0

. . ]’)v
Vg0 <8 2 Bl (33

where the infimum is taken over all possible decompositions of f as in (3.2). It remains to prove (3.2)

and the reverse inequality of (3.3). For any f € H, ;’t’g Z( ), we consider the following two cases.

Casei. fe€ Hgtg’p( ). By Definition 3.2, there exists a sequence of (p, ¢, ~, p)x-atomic blocks, {b;}$2,,

such that f =37 b; in L?(u) when p € (0,1) and in L*(x) when p =1 and

Z |b |PIF| a, ’Y(H)

atb, p

Now we claim that (3.2) holds true.
Indeed, for any M € N, f — Zf\il bi = Y aryq bi in L?(p) when p € (0,1) and in L' () when p = 1.
Then we know that

P o0
- < Z|z|’;{pq7()—>0 as M — oo.
HEG (1) =M1

|-

atb, p

Then the claim holds true. Again, by Definition 3.2 and (3.3), we obtain the desired result for Case i.

Case ii. f € Hf;g’p( )\Hﬁ;g’p(u). By Remark 3.3(i), there exists a Cauchy sequence {fx}72, in

Hiég’p( ) such that

||f_kaHp q 'Y(M) 2 i 2||f||Hp q 'Y(M)

It is easy to see that f = Y7 (fx— fr—1) in Hftg’p (u), where we let fo := 0. Since fr,— fr—1 € ﬁlg&g:g(u)
for all k£ € N, by Definition 3.2 and Case i, we see that, for any ¢ € (0,00) and any k € N, there exists a
sequence of (p, q, v, p)a-atomic blocks, {bx,;}$2;, such that

o0
fo — fr_1= Zb;m in both L?(p) when p € (0,1), or L'(p) when p =1, and Hf:gg ;(u)

i=1

and

o0
P — L y
2 iz < W= el + g

From this and f = Y72, (fk — fe—1) in H”%7 (1), we further deduce that

atb, p
[ee] [ee] [ee]
f:Z (fk = fr—1 :Zzbm in Hfﬂ‘f’p(u)
k=1 k=1 1i=1
and

[ee] [ee] [ee] oo
D il € 2 Mo fial g+ 2 o
=1 i= ’ =

14
Z[ka - f||Hp w0 T [ fr—1 — fI\ﬁ:t,ﬁ,:(u)] +€

g I

2= k _
Z ”'f”Hpq'Y(;) ||f||Hpq'v()+6

atb, p

which, together with the arbitrariness of €, completes the proof of Case ii and hence the necessity of
Proposition 3.4.
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Conversely, let f = >27°, b; in H" ¥ (1) and

oo

"
Z |b’L|Hp,q,'v(H) < 0.

X atb
i=1 2 P

Then, for each k € N, f;, = Zle b; € Jﬁlﬁ;{{jl(u) and limy_,o fr = f in ﬁ;’t’g,’;(u). Thus, f € ﬁ;’t’g,’;(u),
which completes the proof of the sufficiency and hence Proposition 3.4.

4 Boundedness of Calderon-Zygmund operators

In this section, we introduce the notion of the molecular Hardy space I;ffﬂ’g”;’e

the Calderén-Zygmund operator T is bounded from ﬁgﬁ’g’é(u) (or ﬁ;’t’g:;(u)) into LP(u), and from
~ b g, 41 . ~p, ¢, 5 (8= +v)
H;)t}g, Z(p+1) (,LL) into Hmb,p ’

tion 4.6 below.
We first introduce the notion of molecular Hardy spaces in a non-homogeneous metric measure space.

(1) and prove that

(), where 6 is some positive constant depending on T'; see Defini-

Definition 4.1. Let p€ (1,00),0<p<1<g< o0, p#q, v €[l,o0) and € € (0,00). A function b
in L?(u1) when p € (0,1) and in L'(u) when p = 1 is called a (p, q, 7, €, p)x-molecular block if

(i) [y b(@)dp(z) = 0;

(ii) there exist some ball B := B(cg,r5), with cg € X and rg € (0, 00), and some constants M, M € N
such that, for all k € Z4 and j € {1,..., M} with M = Mifk=0and My := M ifk € N, there
exist functions my, ; supported on some balls By, ; C Ug(B) for all k € Z, where Uy(B) := p*>B and
Ui(B) := p"2B\p"2B with k € N, and g, ; € C such that b = >, Ej]\ikl Mg, jmg, j in L?(u) when
p € (0,1) and in L'(y) when p = 1,

il oy < o7 [(pBr, N1V T N, pH ) VPRGN )T (4.1)
and
oo My
Bl o012y 1= DD kP < oo
mee k=0 j=1

A function f is said to belong to the space Iﬁlﬁ;g”;’e(u) if there exists a sequence of (p,q,v,€,p)x-

molecular blocks, {b;}2,, such that f = > 7~  b; in L?*() when p € (0,1) and in L*(u) when p = 1,
and

o0
b;|%. < 00.
;| Z|H5§b‘f’ﬁ’e<u> >

Moreover, define
o 1/p
_ s P
10z 0e oy 7= n { [Zl 'b"ﬁﬁsb%:ﬂm} }
=

where the infimum is taken over all possible decompositions of f as above.
The molecular Hardy space HY\" () is then defined as the completion of H}" (1) with respect

. Cip
to the p-quasi-norm || ”ﬁp’b"’ ()"

mb, p

Remark 4.2. (i) From the theorem of completion of Yosida [65, p. 56], it follows that HP:% 7 (1) has

mb, p
a completion space Hf;’}f,’;’ (u), namely, for any f € Hﬁl’}f”g’ “(u), there exists a Cauchy sequence { f;}73>;
in ]ﬁlﬁﬂg;’ ‘(1) such that
el 175 f”Hfj;b‘{*/j’f(u) (4.2)

Moreover, if {f}32, is a Cauchy sequence in ]ﬁlﬁ;g:;’e(u), then there exists a unique f € ﬁfx’l’g,’;’e(u)
such that (4.2) holds true.
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(ii) It was proved, in [13, Proposition 2.2(i)], that Hlll’lg’;” (1) is a Banach space and hence

1.0, a7,
Hogyr ) () = Hyd ) “()-

(iii) Fix p, p, € and v as in Definition 4.1. For 1 < ¢1 < g2 < 00, we easily have

Hﬁ;};&;'ﬁ ( )CHf)ngl;)'Yv (/J’)

(iv) We point out that, via replacing the discrete coefficient K3 4% )’ in Definitions 3.2 and 4.1 by the

>4,

continuous coefficient Kp g as in (2.4), the atomic Hardy space Hutb K

7(p) and the molecular Hardy

space Hlln’kf’;’ (1) were introduced, respectively, in [13,30]. It was proved, in [30, Proposition 3.3(ii) and
Theorem 3.8], that Halt’g’p( ) is independent of the choices of p, v and gq. Moreover, in [13, Remark 2.3],
it was proved that H;;g’ () and Hlln’lf’l:” (p) coincide with equivalent norms and hence H l’q’% (1)
is independent of the choices of p, v, ¢ and . However, Haég o (1) and Haég (1) (or Hilbq’; (1)
and Hilbq’;’ (1)) may not coincide (see [13, Remark 1.9]) and the boundedness of Calderén-Zygmund

1 . .
operators on H_;"7(u) over general non-homogeneous metric measure spaces is also unclear (see [13,

atb, p
Remark 2.4]).

By [13, Theorem 1.11], we see that ﬁ;g:;(u) = ﬁiﬁ’;’e(u). For p € (0,1), we have the following
conclusion.

Proposition 4.3.  Suppose that (X,d, p) is a non- homogeneous metric measure space. Let p € (0,1),
and p, q, v and € be as in Definition 4.1. Then Hp;;g’p( ) C HP % () € LP(u) and there exist positive

mb, p
constants C' and C such that, for all f € Hﬁ;g’p(u)

C”f”Z[),P(p,) < Hf”Hp q, 'y ‘(H) CHfHHP q, ’Y(H)

atb, p

Proof.  Let p, p, q, v and € be as in Proposition 4.3. By the Fatou lemma, it suffices to prove that, for
any (p, q,7, p)r-atomic block b, b is also a (p, ¢,7, €, p)x-molecular block which belongs to LP(u) and

||b||LP(p,) S |b|Hp q, 'Y 6 ) S |b|%5t£11:(u) (43)

By Definitions 3.2 and 4.1, it is easy to see that, for any (p, ¢, , p)x-atomic block b, b is also a (p, q, 7, €, p) A~

molecular block and |b|Hp @ ey S <o |Hp oy

On the other hand, for any (p,q,7,€ p)>\ molecular block b with the same notation as in Definition 4.1,
by the Fatou lemma, Hélder’s inequality, (4.1), B, ; C p*™?B and (2.1), we see that

oo My oo My
”bH;zp(u) < ZZ |>‘k,j|pHmk,J||Lp(u) ~ Z Z | Ak, 517 [, ]”Lq(u) [,“(Bk,j)]l v/
k=0 j=1 k=0 j=1
oo My
SN I P By )P TR (B, )P TP [Mes, pF T Rrp) P!
k=0 j=1
oo My

<ZZ|)\k J|pN|b|Hp q'y é( )ﬂ

k=0 j=1
which completes the proof of Proposition 4.3.

Remark 4.4. Let p € (0,1), and p, g, v @ and € be as in Definition 4.1. By Proposition 4.3, we easily

conclude that there exists a map T from Hpt’g’p( ) to Hlpn’f’;’ () such that, for any f € Hft’g’p (1),

there is a unique element f € Hﬁgg,e(u) satisfying Tf = f and || f] 5.4+ c(w ~ Il geas > where
’ mb, p H atb, p W)

the implicit positive constant is independent of f. In this sense, we say that Hf;g’p( ) C ﬁiﬁ’:’e(u),

which is different from the classical inclusion relation of spaces, since it is still unclear whether 7' is an
injection and Hf”ﬁff,’bq,’pv'f(u) ~ HfoI:g,fj,j(u) or not.
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Now we show that any element in Hf;’f’; "“(u) can be decomposed into a sum of a sequence of

(p, ¢, 7, € p)a-molecular blocks, {b;}3,, in Hfﬂ’bq’lj’ (). The proof is similar to that of Proposition 3.4,

the details being omitted.

Proposition 4.5.  Suppose that (X,d, ,u) is a non-homogeneous metric measure space. Let p, p, q, v
and ¢ be as in Definition 4.1. Then f € Hﬁlg’; “(u) if and only if there exist (p, q, 7, €, p)x-molecular
blocks {b;}32, such that

F=> b in HRET(p) (4.4)
i=1
and
Z' 1|H” - 'v ‘(H)
Moreover,

P _ P
nfnﬁgggJOO1nf{§g;w4H$&;¢00},
where the infimum is taken over all possible decompositions of f as in (4.4).

Now we consider the boundedness of Calderén-Zygmund operators on these atomic and molecular
Hardy spaces. To this end, we first recall the following notion of Calderén-Zygmund operators from [29].

Definition 4.6. A function K € L _((X x X)\{(z,z) : x € X}) is called a Calderén-Zygmund kernel

loc
if there exists a positive constant C(x), depending on K, such that

(i) for all z, y € X with x # y,
1
K < ; 4.
K@l <C0 0 aiey) (45)

(ii) there exist positive constants § € (0,1] and ¢k, depending on K, such that, for all z, 7, y € &
with d(z,y) > cxyd(z, T),

[d(z,7)]°
z,y)P Az, d(z,y))

A linear operator T is called a Calderdn-Zygmund operator with kernel K satisfying (4.5) and (4.6) if,
for all f e Ly°(p) :=={f € L>®(u) : supp (f) is bounded},

=AK@W@ww:wwwm. (47)

A new example of operators with kernel satisfying (4.6) and (4.7) is the so-called Bergman-type operator
appearing in [60]; see also [29] for an explanation.
We first recall the following useful lemma from [28].

Lemma 4.7.  Suppose that (X,d, 1) is a non-homogeneous metric measure space. Let T be a Calderdn-
Zygmund operator defined by (4.7) associated with kernel K satisfying (4.5) and (4.6). Then the following
statements are equivalent:

(i) T is bounded on L?(y);

(ii) T is bounded on L(u) for all ¢ € (1,00);

(iii) T is bounded from L'(u) to weak-L*(u).

Now we prove the boundedness of Calderén-Zygmund operators from Hlpn’f’;’ () into LP(u). Here-
after, let v :=log, C(y), and ¢ be as in Definition 4.6.

Theorem 4.8.  Suppose that (X,d, ) is a non-homogeneous metric measure space. Let p € (1,00),
vis <P <1< q<o0andye€ [1,00). Assume that the Calderdn-Zygmund operator T defined
by (4.7) associated with kernel K satisfying (4.5) and (4.6) is bounded on L3(p). Then T is bounded
from Hp’q’% (p) into LP(p).



324 Fu X et al. Sci China Math February 2015 Vol. 58 No.?2

Proof.  Let p, p, ¢ and v be as in the assumptions of Theorem 4.8. For the sake of simplicity, we take
p =2 and v = 1. With some slight modifications, the arguments here are still valid for general cases. We
first reduce the proof to showing that, for all (p, g, 1, , 2) x»-molecular blocks b,

170l Loy S 16l gz, o100 (4.8)

()"

Indeed, assume that (4.8) holds true. For any f € Hﬁ;g’; %(1), there exists a sequence {b;}ien of
(p.q,1,6,2) -molecular blocks such that f = > b; in L?(u) when p € (0,1) and in L'(x) when p =1
and

Z|b|Hp<115 ||f||Hp<115 )

mb mb

If f =32, b;in L?(p), then, by the boundedness of T on L?(p), we see that, for any N € N,

N
N = I (2-)
L2 () i=1

which further implies that, for all € (0, c0),

<{meX

If f = 2,b; in L'(u), then, by the boundedness of T from L'(u) to weak-L'(u), we still know
that (4.9) holds true. Thus, by the Riesz theorem, we know that there exists a subsequence of partial
sums, {Zivz’“l T(b;)}k, such that

-0 as N — o0,
L2(p)

L2(p)

Tf(x)

> n}) —~0 as N — oo. (4.9)

Tf= lim Z T(b;) p-almost everywhere on X,

k—o0

which, together with the Fatou lemma and (4.8), implies that

oo

ITF1} 0 < hm1nf/Z|T z)|Pdu(z <ZHT My

< Z |b |Hp a, 1 5 () ~ ||f||%pybqy21,5(“)'

,15
o

Moreover, by a standard density argument, we extend T to be a bounded linear operator from H b, 1)

into LP(u), which is the desired result.

Now we prove (4.8). Let b= Y77, Zj]vi’“l Ak, jmi, ; be a (p, g, 1,9, 2) \-molecular block, where, for any
keZyandje{l,..., M}, supp (my, ;) C By, ; C Ur(B) for some balls B and By, ; as in Definition 4.1.
Without loss of generality, we may assume that M = M in Definition 4.1.

By the linearity of T', we write

{—5 M
1Tl Z0 ) < Z/ ‘ < > kg, a> dM( )
k=0 j=1
[-‘4-4 M
+Z/ ( Z)‘k Mk, J) dﬂ( )
Ue(B) k=f—4 j=1
Syl ( > ZAk,jmk,j> i +Z/ ITb() Pap)
=57 Ue(B) k=t+5 j=1 Ue(B)

=1+ 11411+ 1IV.
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Now we first estimate III. By (4.5), (2.1), (2.2), Holder’s inequality and (4.1), we obtain

00 00 M
Ip |mk7j(y)| P r
< :%: ZI/\mI /U[(B) [/Bk A(%d(x,y))du(y)} dp(x)

£=5 k=£+5 j=1
S i i i/[: |>\k’j|p/ ' d“(x)”mk,]”il(u)
£=5 k=(+5 j=1 Ue(B) [Aes, d(x, c))]P

00 S M M(2£+2B) o/d
E E E P . ||P
5 . | k7]| [}\(CB’Qz,QTB)]p [M(Bk])] ||mk7JHLq(H)

SO0 D el [ (2B)) T B )

« 2—k6p [M(2Bk,j)]7p/q, P\ (CB; 2k+27’3)}p_1
5

00 00 M M oo k—
SO DT D YYD 2Ry PP
0=5 k=0+5 j=1 j*l k=10 ¢=5
M oo
ké
S 5D SICRLIINNISD o S TSI
j=1k=10 k=0 j=1 mb, 2

In order to estimate I, write

-5 M )
I< Z/[(B) / L O;)\k,jmk,j(y)} [K(z,y) — K(x,cp)ldu(y)| du(x)
-5 M )
+Z/ [ ZAk’jmk’j(y)}K(%CB)du(y) dp(w) =: 11 + 1.
k=0 j=1

From (4.6), (2.2), (2.1), Hélder’s inequality, (4.1) and the fact that p € (%, 1], it follows that

y i (9) [d(y. c5))° v
el f { / n du(y)} du(x)

~
[$28

M-

A
WK

z,c)|]°Xep, d(x, cp))

2(k+2)6prépu(24+23)

P
2(6— 2)51)7"5[)[)\(63, 202y P . 5 HLl(“)

1

T
w
S
Il
o o
<
I

|kJ|

o
g
U

~
Il
o
~ R
I
o o
<
Il
—

o
g
7

T
w
S
Il
o o
<
I
—

NE

A, P25 P[22 B [ B )1 e, 17,

A, 5172080 [u(22 B)) P (B, )P

A
WK

o~
Il

X

[\D ot
B

§\\
=}
<
Il

=X

P[u(2By., ;)] 7" [Mcp, 28 2rp) Pt

~
|
(o1

M-

Ak, 31727 P[22 B P [A(ep, 2 2 ) [P Oy )P U )

A
WK

~
Il
o
~ R
I
o o
<
Il
—

2
NE
M=

Ak 5 |p2[u1 p)—dpllo—kv(1- p)<ZZ|/\k3|pN|b|HMM( .
k=0 j=1

)
(o)
i
o
<
i
I
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For I, the vanishing moment of b, together with (4.5), (2.1) and (2.2), implies that

h—i [ [;me | Kot dute)
Eiéizk 4;§§|AkJ¢pJ{&(3)[t[;hj|nnhj<y>|A(CB,aix7CB))du<y>]pdu<x>

M 042
1257 B) P
2 Wl 3tz g 17l

M
D PP @B P la(Br, )P i i1

=5 k=(—4 j=1
x 27K 12 By, )] 7P/ [N(ep, 25 2rp)]P
[e%) %) M M oo k+4
SO0 D2 2P~ DYDY Y 2
=5 k=(—4 j=1 j*l k=1 ¢=5
M oo
ko
IS RIS S e~ Bl
j=1 k=0 k=0 j=1 '

Combining I and I», we conclude that I < |b|HP T
mb, 2
Then we turn to estimate II. We further write

oo
=5k
oo
=5 k=(

[e's) M
+> ZIAMI”/ = 10+ .

(=5 k=(—4 j=1 Ue(B)\2Bk, j

~
+
i

M

M
S sl / ,, T )P )

—4 5=1

4 M
PpaloH JEe
2By ;

j=1

S
+ ~

N |
ﬁ m

By Holder’s inequality, L?(u)-boundedness of T, Lemma 4.7, (4.1) and (2.1), we see that

oo 44 M
<Y Y > P @Br )P/ Tl
(=5 k=f—4 j=1
oo (+4 M
S35 s P @B P
(=5 k=(—4j=1
oo l4+4 M
SY YD P e@Br )P 27 [u(2By )] P (Aes, 26 g )P
0=5 k=(—4 j=1
oo (+4 M
kS P
5 Z 22 p|)‘k |p N Z Z |/\k jlp |b|ﬁ£),b%,21,a(u)-
=5 k=(—4 j=1 k=0 j=1

For 11, from (4.5),

d(x,y) = d(xa CBk,j) - d(y7 CBk,]) > d(x7 CBk,j)

2
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for x ¢ 2By, ; and y € By, j, (2.2), (2.1), Holder’s inequality and (4.1), we deduce that

oo I+4

mi, 5 ()] g
I < el [ N ’ anly)| duz)
;k%:4jz:1 7 veBN2B.; LBy, Me, s, d(z, e, )
oo (+4 M 1
S RV dp(@)lme, 5117,
;kzz_éljz:; U Jarvem g, [Mes,,d(x, e, )P L)
o l+4 M N:;: 2k+5B+1 i1
SOOI DD DI I D S
~ > J ] L 7
(=5 k=(—4 j=1 H i=0 (Mes. ;27,7
oo {+4 M N® 19 ~(2)
k45 — ,
SY DD Pl a2 Pra 272 7By )1t PR Y s gl
=5 k=t—4 j=1
oo (+4 M
’ _ 2),
SO D0 D e iPlBie P Nl 117 oy 025 B) P éZfQHOB]”
=5 k=t—4 j=1
044

—~(2), 2
x [K;,j,’fsz] Plu(250 B)) p[K;,jjiwoB]p
oo l+4
S22 Z? ’“‘”’lml”<ZZIMI”~IblmW
(=5 k=0—4 j=1 k=0 j=1

which, together with the estimate for II;, implies that II < |b|%py 0
mb, p

To estimate IV, observe that

4 +4 M P
Vs Z/ T(ZZAk,jmk,j)(ﬂﬁ) dp()
=07 Ue(B) k=0 j=1
4
+Z/ < Z ZAk jm,”) du( ) = IVi + 1V,
=0/ Ue(B) k=l+5 j=1

By some arguments similar to those used in the estimates for II; and III, we respectively obtain

IV < [bf% and TV, < [b|%

HZ 0.0 (1)

1,5, \»
mb, 2 Hp vy ()

mb, 2
which, together with the estimates for I-III, completes the proof of Theorem 4.8.

Now we show the boundedness of Calderén-Zygmund operators from H, ;’t’g o (w) into LP ().

Corollary 4.9.  Suppose that (X,d, ) is a non-homogeneous metric measure space. Let p € (1,00),
vis <P <1< q<o0andy e [1,00). Assume that the Calderdn-Zygmund operator T defined
by (4.7) associated with kernel K satisfying (4.5) and (4.6) is bounded on L3(p). Then T is bounded

from Hf;g’p( ) into LP ().

Proof.  Let p, p, q, v and § be as in assumptions of Corollary 4.9. For the sake of simplicity, we take
p =2 and v = 1. By an argument similar to that used in the proof of Theorem 4.8, it suffices to show
that, for any (p, g, 1, 2)x-atomic block b,

1Tl 2r () S 10l 7zm 2

which is an easy consequence of the facts that b is also a (p, g, 1, 9, 2) x-molecular block and | P00 ()

< |b|ﬁp,g, L) (see (4.3)), together with (4.8) from the proof of Theorem 4.8. This finishes the proof of
atb, 2

Corollary 4.9.
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Remark 4.10.  When p = 1, Theorem 4.8 or Corollary 4.9 is a special case of [30, Theorem 4.1], since,
for any ¢ € (1,00], p € (1,00), v € [1,00) and € € (0,00), Hit’g”g(u) C Hit’g:;’(u), where Hit’g”g(u)
is introduced in [30] (see [13, Remark 1.9(i)]), and, by [13, Theorem 1.11 and Remark 1.9(i)], we know
that H;t’g:;(,u) is independent of the choices of ¢, p and 7, and H;t’g:g(u) and Hrln’}f”;‘(u) coincide with
equivalent norms.

~p,q,7, 3 (6—1+v)

Now we establish the (H ’ ég’;(';il)(u), H.\, (u))-boundedness of Calderén-Zygmund oper-

ators. In what follows, for T" as in Corollary 4.9, T is said to satisfy T*1 = 0 if, for all h € Lp°(u) with
Ja y)dp(y) =0,

/ Th(y)dp(y) = 0.
X

Observe that, for such T' and h, by Corollary 4.9, we have Th € L (u).

Theorem 4.11.  Suppose that (X,d, ) is a non-homogeneous metric measure space. Let p € [2,00),
Vs <p < 1<qg<ooandy € [l,00). Assume that the Calderdn-Zygmund operator T' defined by (4.7)
associated with kernel K satisfying (4.5) and (4.6) is bounded on L*(p) and T*1 = 0. Then T is bounded

~p.q,7+1 . ~p,q,7, 3 (6= +v)
fmm H;)t}g’ ,;/(p+1) (‘LL) into Hmb,p ’ ! (M)

Proof.  Observe that, when p = 1, Theorem 4.11 is a special case of [13, Theorem 1.14], since it was
shown, by [13, Theorem 1.11 and Remark 1.9(i)], that, for any ¢ € (1,00], p € (1,00), v € [1,00) and

e € (0,00), H;t’g:;(,u) and ﬁi’}f”;‘(u) coincide with equivalent norms, and H;t’g:;(u) is independent of
the choices of ¢, p and . Thus, to show Theorem 4.11, we only need to consider the case p € (vié’ 1).
Moreover, for the sake of simplicity, we assume that v = 1 and p = 2. Via some slight modifications,
the arguments here are still valid for general cases. We first reduce our proof to showing that, for any

(p,q,2,6)x-atomic block, Tbh is a (p, q, 1, é(é - ; + v), 2)x-molecular block and

TO| .01, 5(5—;+u)( ) < |b|ﬁpv%2(u)' (4.10)

mb, 2 H atb, 6

Indeed, assume that (4.10) holds true. For any ]ﬁlg;g: g(,u), there exists a sequence {b; };en of (p, q,2,6)x-
atomic blocks such that f =37, b; in L?(u) and
[ee]
b2 ~ [ fIZ ,
2 itz ~ 1 g2

i=1

By the boundedness of T on L?(u), we see that

N N N
S T(h) - Tf —HT<Zbi—f) <Ih-f] s a Now
i=1 L2 () i=1 L2(p) i=1 L2 ()

Thus, Tf = Y ;2 T(b;) in L?*(p). Moreover, by (4.10), T'(b;) is a (p,q, 1, 5(6 — » +v),2)x-molecular
block for any i € N, we know that

00 o]
TP . <Y TP . <) il L .
H f”ﬁ:::’;’ é(,;,p+u)(u) X P | ( 1)|ﬁ:":’21’ 5(5,p+,,)(u) ~ — | 1|H:€bq:62(/i) ~ ||f||H:£1f:62(l")

Furthermore, by a standard density argument, we extend T to be a bounded linear operator from
=0 4, . ~p.q, 1, ;(6—7+v)
HEh ¢ (p) into Hyy'y'* (1)-

Now we show that (4.10) holds true. Let b be a (p, q, 2, 6)x-atomic block. Then b := 25:1 Aja;, where,
for any j € {1,2}, supp (a;) C B; C B for some balls B; and B as in Definition 3.2. Let By := 8B. We

write

Th = (Tb)XBo + Z(Tb)XQkBO\Qk—lBO =: A1 + AQ.
k=1
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We first estimate A;. Since B; C B, we have 3B; C 8B = By. Let N; := N2(?3)j,Bo' Obviously,
N; > —1. Without loss of generality, we may assume that N; > 3. For the case N; € [—1,3), we easily
observe that 2B; C By C 2°B;, which can be reduced to the case N; > 3. We further decompose

2 N;—2
Z)\ (Taj)x2B, —|—Z Z Aj(Taj)xai+1B,\2: B, +Z>\ (Taj) XBo\2Vi B,
j=1 j=1 i=1 J=1

= A1 +A2+As

To estimate Aj 1, by Definition 3.2(iii), the boundedness of T' on L*(u), Lemmas 4.7, 2.8(v), 2.8(iv),
2.8(ii) and 2.9, and K:%)]’,}’)BO > 1, we see that, for any j € {1,2},

lall o < 6B,V Nep, rp) VP [K S 5]~

<
< [(GB)Y 17 Nep, 8rp)] TP IKSD By ) 2
<

[(6B;) 1A

(Ta;)x2B; | Lau)

(
( 1— l/p[ k(2P ]71,

CBy>T4B,)) 3B;,4B,

here and hereafter, cg and cp, denote the centers of B and By, and g and 745, denote the radii of B and

4By, respectively. Let c;, independent of a; and j, be the implicit positive constant of the above inequality,
_ 2

oj1:=ciAj and nj 1 = ¢ 1(Taj)X23j. Then Ay 1 = ZFI 0,141, supp (nj 1) C 3B; C By and

_ — 2 —
15,10l gy < (GBI Nemon rane )]V P 1K D s )7

For Ay 3, we observe that rpg, ~ r, Nj-ipo where 75, and Nj-1p, denote the radii of By and 2™i 1B},
respectively. For any j € {1,2}, let x; and r; be the center and the radius of B, respectively. By (4.5),
(2.2), (2.1), Hélder’s inequality, Definition 3.2(iii), Kg?’g > 1, By C 2Vit3B;, Lemmas 2.8(ii) and 2.9,
we obtain

1/
la;(y !

q
T 1 N;—1 a(p < d
I aJ)XBO\Q g BJHL () ~ {/B\QN -1, [ ANz, d(x,y)) H(y)} u(x)}

e {/SB\QNJ_lBj [/B A(xjfléii)lej))du(y)}qdu(a;)}l/q

Nj—-1p. 1;q )
[,U'(SB\2 Bj)] [M(Bj)]l/q Haj”Lq(u)
(2B 1 Nep, )] K B2

)\(xja2Nj71rj)
— 2 ? -
(BT M emys rap ) VP RS s

A

AR YA

Let ¢z, independent of a; and j, be the implicit positive constant of the above inequality, o 3 := c2;
_ 2
and nj 3 = ¢, 1(Taj)XBO\2Nj—lBj. Then Ay, 3 =3 5_, 0j,3n;,3, supp (n;,3) C 168 = 2B, and

_ 2 _
5,30l Laguy < [(AB)]Y 9™ [A(esy, Tam,)]' l/p[KéB)oﬂBo] L

We now estimate A; 2. By (4.5), (2.2), (2.1), Definition 3.2(iii), Hélder’s inequality, Lemmas 2.8(v),
2.8(iv), 2.8(ii) and 2.9, we conclude that

[(T'aj)xzi+18,\2: B, | La(u)

{/2”13.\21-3, [/Bj A(Ezi((i),'y))du(y)rdu(a;)}l/q

{/ZMB . [/ \ leaj T u(y)rdu(w)}l/q

A

A
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. 1 1 1 1/(1
< ey, 217 gl [ / | du(xﬂ

i+15,\2i B, )\((Ej,Qsz)
i /q
: - (nE* B
< (s 21V g [u(B»WQ[ .
J J I La(w) J )\(xj,2lrj)
123 B)) = 2),pq- i - -
SRR BT @B T N ey, rasy)) VPR )7

~ Nazj, 2iry) - P “+2B; 4B,

Let c3, independent of a;, j and 4, be the implicit positive constant of the above inequality,

(@) | 127 By) =), pq-1
O 1= C3\; K5
7,2 j)\(iL’j,WTj) B;,B
and » .
i 127 By) ] =),
Then

j_2

2
2 :Z Z J,2n1 2’
j:

supp (ngz)z) C 2772B; C 2By and

i i _ 2), _
195 | gy < [REF2B)Y I Neny, rap, )| TP IRER, p )7

Now we turn to estimate As. For any k € N, by the geometrically doubling condition, there exists a ball
covering { By, ]}j |, with uniform radius 28=3rp,, of INJk(BO) := 28 B\ 2¥~1 B; such that the cardinality
My < No8™. Without loss of generality, we may assume that the centers of the balls in the covering
belong to ﬁk(BO).

Let Ck,l = Bk,l; CkJ = Bk,l\Ulr;il B]“m, l € {2,...,M0} and Dk,l = Ck,l N ﬁk(Bo) for all
Il €{l,...,Mp}. Then we know that {Dk,l}lﬂi‘)l is pairwise disjoint, Ug(By) = Ul]\i‘)l Dy, and, for any
le{l,..., My},

Dy, C2By, C Uk(By) := 2k+230\2k_230.

Thus,
oo My

Z sz XDy, Z Z(Tb)XDk,L'
k=1 I=1

k=1 1=1
From [, b(y)du(y) =0, (4.6), (2.2), (2.1), Holder’s inequality, Definition 3.2(iii), Kg)’g >1,4B;, C
2F1 By and Lemma 2.8(ii), it follows that, for any k € N, j € {1,2} and I € {1,. Mo},

T, s < { /D / |b<y>||K<x,y>—K(x,c3>|du<y>rdu<x>}l/q

s [/D . { Loy, cBngikZ?];(x cB»d“(y)}qu)} N

D /q
< oy O it
)\(CB,TQk—lBO Tok— lB

£ 27 B B g
Jj=1

2
S 2P B S M, )] P
j=1

2
S 270N N[BT Me, ok g, )] TP
j=1
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2

k(S V) e k(5 4y _

$ 27207 om0 N N | [u(4By, )]
j=1

1— l/p[K(Q)p ] 1

x P‘(CB,TQIH'?BO)] 2By, 1,252 By

Let ¢4, independent of b and k, be the implicit positive constant of the above inequality,

2
Ay 1= a2 2004 >l

j=1

and my, | = /\lz,ll(Tb)XDk,z- Then

oo My

=0 M,

k=1 l=1

supp (mg, 1) C 2By, C Ux(Bp) and
k(=Y 4v 1/q—1 1—1 ~(2), _
ok, 1l gy < 27275 (@B )Y e, rarvap, )] P IRED pevap)

Combining the estimates for A; and Ay, we see that Tbis a (p, g, 1, % (0—"Y +v), 2)x-molecular block and

p
2 2 N;—1 2 oo Mo
D LA S DD DL Z lo5.8” 4> el
Hop o (W) =1 j=1 i=1 j=1 k=1 1=1

SIS A, [P B @y
NZ|J| "‘ZZ | %) (K5, Bl
+Zig 2(5—”+V)pZ|>\ P

k=11=1
2
SO I’”rz2 0T rag ZIA |”<Z|A [~ 0002y
j=1 k=1

which completes the proof of Theorem 4.11.

Remark 4.12. It is still unclear whether the range of p in Theorem 4.11 is sharp or not.

5 Boundedness of generalized fractional integrals

In this section, we establish the boundedness of the generalized fractional integral Ts (8 € (0,1)) from
Hrfllb’ ql;%e(u) (or Hftlk;ql’) () into LP2(p) with 1/ps = 1/p; — B, where 6 is some positive constant
depending on T. To this end, we first recall the notion of generalized fractional integrals from [15].

Definition 5.1.  Let 8 € (0,1). A function Kz € L{ (X x X\ {(x,z) : © € X}) is called a generalized
fractional integral kernel if there exists a positive constant C(x ), depending on Kp, such that
(i) for all z, y € X with « # y,

1

|Kp(z, )| < Clxy) Az, d(z, y))]—# (5.1)

(ii) there exist positive constants 6 € (0, 1] and c(x ), depending on Kpg, such that, for all z, 7, y € X
with d(z,y) > ¢k ,)d(z, 7),

Ko, 9) = K@ )|+ 1K0,2) = K. B < Clocy o g o (52)
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A linear operator T3 is called a generalized fractional integral with kernel K satisfying (5.1) and (5.2)
if, for all f € Ly°(p) and = ¢ supp (f),

Ty f(x / K, 9)f (9)du(y). (5.3)

Remark 5.2. It was shown in [15, Remark 1.10(iii)] that there exists a specific example of the gener-
alized fractional integral, which is a natural variant of the so-called Bergman-type operator; see [15] for
the details.

Now we show that the generalized fractional integral T is bounded from ﬁfx’ﬁ)”qp’% % (1) into LP2(p) for
1/p2 = 1/p1 — B. Recall that v := logy C(y) and 6 is as in Definition 5.1.

Theorem 5.3.  Suppose that (X,d, i) is a non-homogeneous metric measure space. Let B € (0,1/2),
p€(Loo), Ny <p1<p2<1<q<1/B,1/p2=1/p1— B and € [1,00). Assume that the generalized
fractional integral Tp defined by (5.3) associated with kernel Kg satisfying (5.1) and (5.2) is bounded
from L9(p) into L9(p), where 1/q:=1/q — B. Then Ty is bounded from Hp1’7q’%9(u) into LP2(p).

Proof.  Let B, p, p1, p2, q, ¢ and « be as in assumptions of Theorem 5.3. For the sake of simplicity,
we take p = 2 and v = 1. With some minor modifications, the arguments here are still valid for general
cases.

Since T is bounded from L9(p) to Li(u) for ¢ € (1,1/8) and 1/q = 1/q — S, by [15, Theorem 1.13],
we know that T is also bounded from L' (1) to weak-LY(=#)(1). By the boundedness of Tjs from L?(u)
into L2/ =28 (1) or from L'(p) into weak-L'/(1=#) (1) and an argument similar to that used in the proof
of Theorem 4.8, to show Theorem 5.3, it suffices to show that, for all (p1,q, 1,6, 2)s-molecular blocks b,

ITbllzra < blgzy g2

Let b = > 00, Zjﬂi"l Ak, jmg, ; be a (p1,¢,1,0,2) \-molecular block, where, for any k € Z; and j €
{1,..., My}, supp (mg, ;) C Bg,j C Ug(B) for some balls B and By, ; as in Definition 4.1. Without loss
of generality, we may assume that M = M in Definition 4.1.

By the linearity of Tz, we write

-5 M .
”TﬁbHLpz(u) S Z/ ( Z)\k jM, j> x)| du(z)
Z(B) k=0 j=1
t+4 M .
+Z/ /3( > ZAk,jmk,j>(x) dpi(x)
Ue(B) k=t—4 j=1
oo M
3 [ (2 S me )| e +z [ TP
Ue(B) k—f45 j—1
= I4+II4+1III+1V.

Now we first estimate III. By (5.1), (2.1), (2.2), Holder’s inequality, (4.1) and 1/py = 1/p1 — 3, we
obtain

Mg
D_ﬂs

I < . |/ s ) ) " (e
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From (5.2), (2.2), (2.1), Holder’s inequality, (4.1) and p1 € (%, 1] and 1/ps = 1/p1 — B, it follows that
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For Iy, the vanishing moment of b, together with (5.1), (2.1), (2.2) and 1/ps = 1/p; — 3, implies that
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co oo M

ST Y D P22 B) D By )P

0=5 k=0—4 j=1
x 27H 0 (2B, )] [N, 2 g 20

0o 0o M M oo k+4
S22 2 G~ 3 3 > 2 Gl
1=5k=0—4 j=1 =1 k=1 ¢=5
M oo p2/p1
ZZM k0p2|)\k P2 < {ZZ'M J|p1} |b|le 2100,
Jj=1k=0 k=0 j=1

Combining I and Iz, we conclude that T < |b|le 010,
m

Then we turn to estimate II. We further write

oo (+4 M

<Y S S el / T3, ) @) ()

(=5 k—0—4 j—1
oo 44 M

SDOD S SETEY S TEIBEIE

(=5 k=0—4 j=1 ks,
oo l+4 M

+ /\k.‘p2/ Ta(my, j)(x)[P2dp(x) =: II; + II,.
D3> el UZ(B)\QBM| B(mi, ;) ()| )

0=5 k=0—4 j=1

By Hélder’s inequality, (L7(p), L(11))-boundedness of Tj, (4.1), (2.1), 1/pa = 1/p1—Band 1/ =1/q—
we see that

Hléi

M
D ki P2 (2B, )P T (e, )1

£=5 k=f—4 j=1
oo fI+4 M -
SZ Z Z|/\k,j|p2[N(QBk,j)]l_p2/quk,j||I£2q(u)
£=5 k=(—4 j=1
oo b+4 M B
SO ST ST e PR [u(2Br ) P T2 R (2B, )] 7P [N (e, 282 )P (1)
0=5 k=(—4 j=1
oo f+4 M
SO 2y IPQ<ZZIMI’”<IbIHM19
0=5k=0—4 j=1 k=0 j=1

For Iy, from (5.1), d(z,y) > d(x,cp, ;) —d(y,cB, ;) > yd(z,cp, ;) for & ¢ 2By, j and y € By j, (2.2),
(2.1), p2(1 — B) < p1, Holder’s inequality, (4.1) and 1/ps = 1/p1 — B, we deduce that
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r1—p2(1—8)
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which, together with the estimate for II;, implies that

<
IS (b7, PR

To estimate IV, observe that

4 4+4 M P2
V < Z/ Tﬁ(ZZAmmkvj) ()| du(zx)
=0 Ue(B) k=0 j=1
4 00 M P2
+ Z/ Tg( Z Z /\kdmk,j) ()] du(z) =1V +1IV,.
¢=0 7 Ue(B) k=045 j=1

By some arguments similar to those used in the estimates for II; and III, we respectively obtain

IVl < |b| and IVQ < |b|

1,6
HEL S0 ()’

P1,9, 1,60
H (1) mb, 2

mb, 2
which, together with the estimates for III, I and II, completes the proof of Theorem 5.3.

Similar to Corollary 4.9, by the proof of Theorem 5.3, we also obtain the following boundedness of
the generalized fractional integral T from Hftlk;ql’) (1) into LP2(p) for 1/ps = 1/p1 — B, the details being
omitted.

Corollary 5.4.  Suppose that (X,d, p) is a non-homogeneous metric measure space. Let 8 € (0,1/2),
p € (1,00), Vg <p1<p2<1<g< 1/8, 1/p2 =1/p1 — B and v € [1,00). Assume that the generalized
fractional integral Ty defined by (5.3) associated with kernel Kg satisfying (5.1) and (5.2) is bounded

from Li(p) into LI(u), where 1/q :=1/q— B. Then Ty is bounded from Hfgt;q’; (1) into LP2(p).

Remark 5.5. (a) When p; = 1, Theorem 5.3 or Corollary 5.4 is a special case of [15, Theorem 1.13]
by the same reasons as those used in Remark 4.10.
(b) For all g € (0,1), f € Ly°(n) and = € X, the fractional integral Igf(x) is defined by

o f(y)
1@ = | Ay, da, )1 W)
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From [15, Section 4], we deduce that, for some ¢ € (0,00), under the weak growth condition as in
Remark 2.4(iii) and the following e-weak reverse doubling condition on the dominating function A: For
all 7 € (0,2diam(&X)) and a € (1,2diam(X)/r), there exists a number C(, € [1,00), depending only on a
and X, such that, for all x € X, A(z,ar) > C(g)A(x,r) and S, [Cwlk)]‘ < o0, the following statements
hold true: '

(b)1 the fractional integral I is a special case of the generalized fractional integral, which is bounded
from L9(y) into LI(y) for all ¢ € (1,1/8) and 1/§ = 1/q — f3;

(b)2 all conclusions of Theorem 5.3 and Corollary 5.4 hold true, if T is replaced by I, where Iz has
the same assumptions as those of T3 in Theorem 5.3 and Corollary 5.4, respectively.

6 Campanato spaces £°7_(p)

In this section, we introduce the Campanato space 5,7 . (1) and show that £ _ () is independent of

the choices of p, 1, v and ¢ under the following assumption of the p-weakly doubling condition.
Definition 6.1. Let p € (1,00). The Borel measure p is said to satisfy the p-weakly doubling condition
if, for all balls B C X, there exists a positive constant C7, depending on p but independent of B, such
that
() ~
N5, <G, (6.1)
where N](; )Ep is defined as in Definition 2.6.

Remark 6.2. (i) Recall that B is totally determined by p and p. Let (X,d, u) be a space of homo-
geneous type and A(x,r) := u(B(x,r)) for all z € X and r € (0,00). Then (X, d, u) satisfies (6.1), since
N](; )Ep ~ 1 for all balls B with equivalent positive constants depending only on p € (1, 00). However, by
Exeimple 6.3 below, there exists a non-doubling measure p on a subset of R satisfying (6.1); by Exam-
ple 6.4 below, there exists a non-doubling measure not satisfying (6.1). In this sense, a measure satisfying

(6.1) is said to be p-weakly doubling.

(p) ~
(ii) From the fact that pNB> Br B = B and (6.1), it follows that there exists a positive constant C'(p Gy

depending on p and 5’1, such that, for any ball B,
T, < C

(p,C1)"'B>

where rp and rg, denote the radii of balls B and E”, respectively. Obviously, we always have rp < 13,.
In the remainder of this section, we always assume that the Borel measure p satisfies the p-weakly

doubling condition.
The following example shows that there exist some non-trivial non-doubling measures satisfying (6.1).

Example 6.3. Let

X :=1[0,1]U (U [2Ze—ﬂ ,ZZe_J +e ¥ D
k=1t j=
Denote [0, 1] by Dg and [2 Ek,é eI, 2 Ek,é e=3* 4e=*] by Dy, for k € N. For any 2 € X and r € (0, 00),
we use B := Bz, r) :={y € X : |y — x| < r} to denote a ball of X. Let p be the Lebesgue measure
restricted to X. Notice that p(B(x,r)) < 2r for all € X and r € (0,00). Thus, u is an upper doubling
measure with A(x,r) := 2r for all x € X and r € (0, c0).
Then we claim that p is a non-doubling measure. Indeed, notice that

) \/7r 2, forall k € Z,

[ee]
R YN
> Ve Sy 2 62)

=kt 1 =1 29 —k* " for all k € N.
€
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Let xj, := 22] o€ =* and 73, := e~ *=1D? Then

1(B(zk, 1)) < <1 * \/27r>ek2 and p(B(zk, 2ry)) = e *7,

Thus,
w(B(w, 2rk)) > 1 2k—1
> e
p(B(wr, k) T 14V
which implies that p is non-doubling.

For any ball B, the smallest doubling ball of the form 27 B with j € Z is denoted by B®. Let N1(32)§(2>

@ ~
be the integer such that 9"5. 50 B = B®) . We claim that

2
N <2 (6.3)

To prove this, we consider the following two cases for k.
Case I. ke {0, 1, 2}. In this case, for all z € Dy, we have

{MB@mDNTNMB@Jﬂ%imfé@ﬂ+¢ﬂ,
w(B(z, ) ~ 1~ pu(B(z, 2r)), forre (2+ /m, c0).

From this, it is easy to deduce that B(z, r) with € Dy, and r € (0,00) is a doubling ball and hence

(2) N .
NB 5@ = 0 in this case.

Case II. ke NN(2, o0). In this case, for all z € Dy, we have
(i) for r € (0, e”“2], w(B(z, 1)) ~ 1
(ii) for r € (e - e_(k_l)z], w(B(z, 1)) ~ e F
(iii) for r € (e=* =% 2e=(:=17) o=F < ju(B(z, r)) < 2e~*17;
(iv) for r € (237 o= k=07 95 o= (h=0)" 4 o= (h=i-1%) with j € {1, ...,k — 2},

p(B(w, ) ~ e,
(v) forre (237, em(k=)? 4 = (h=i=1)?, 257! e~ *=0"] with j e {1,...,k -2},
o3 < u(Bx, 1)) < 20~ kI,

(vi) for r e (230 e (- 0 o0), w(B(z, 1)) ~ 1.

Now we show that ( 3) holds true in Case (i) through (vi).

Indeed, in the case (vi), it is easy to see that B(x, r) is a doubling ball and hence N1(32)§(2) =0 in this
case, i.e., (6.3) holds true in this case. Therefore, we only need to show that (6.3) holds true in Cases (1)
through (v).

In the case (i), since k > 3, we have 2r € (0, e=*=D%]. If 2r € (0, ¢=**], then we have

p(B(x, r)) ~ p(B(x, 2r)) ~1;

k2

if 2r € (e*kQ, e’(k’l)Q], thenr € (°, , e*kQ], which, together with (ii), leads to

(B, 1)) ~ p(Bz, 2r)) ~ e,

It then follows that B(z, r) is a doubling ball, which shows that N](;)

5 = 0 in this case, ie., (6.3) holds

true.

In the case (i), if 2r € (e=*, e=*=1"], then we have u(B(z, r)) ~ u(B(z, 2r)) ~ e~*, which implies
that u(B(x, 7)) is a doubling ball; if 2r € (e~ (*~ 1)2 2¢~(*=1] then, for sufficiently large k, B(x, r) may
be a non-doubling ball, for example, z = 2 Z 0 e and r = e=*=D’ Tn the latter case, if B(x, r) is
a non-doubling ball, we consider the ball B(m 2r). If B(x, 2r) is a doubling ball, namely, there exists
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a positive constant C, independent of = and r, such that p(B(x, 4r)) < Cu(B(z, 2r)), then there is
nothing to prove. Otherwise, we consider the ball B(x, 4r). Notice that 2r € (e~ (F~ 1’ 2e’(’“’1)2]. Then

_ _1)2
e e~(*=1] which, together with k > 3, shows that

we have r € (¢,

26_(k_1)2 <4r < 46_(k_1)2 < 2e_(k_1)2 + e_(k_Q)2

and
267(]671)2 < 8r < 8e*(k*1)2 < 267(]671)2 + e*(k*2)2.

It then follows, from (iv) with j = 1, that pu(B(x, 4r)) ~ pu(B(x, 8r)) ~ e ~(k=1D* \which implies that

B(z, 4r) is a doubling ball. From the above estimate, we conclude that N, 2) 5 S 2in this case.

The argument of the case (111) is similar to that used in the case of 2r € (e (k=1)* "9g=(k=1) ] of (ii).
Moreover, we have N( ) 5 S 1in this case.
Before we deal w1th the case (iv), we first consider the case (v). In the case (v), if B(x, r) is a doubling

ball, then there is nothing to prove. Otherwise, we consider the following two cases for j. If j = k — 2,

we have
J+1 k—1
4r>2r>42e_(k D* 4 9= (k=i-1)* >2) e i? =2) e~ )?,
=1 =1 =1

which, together with (vi), shows that pu(B(z, 4r)) ~ u(B(z, 2r)) ~ 1. Thus, B(z, 2r) is a doubling ball.
If j < k — 3, then, by (6.2), we see that

j+1
63 e~ < o lk=GD-IP,

It then follows that

j+1 j+1 j+1
22363_(’“_")2 <2r <4r < égz:e_(k_i)2 < 22363_(’“_")2 + o [k=G+D)-1]%
i=1 i=1 i=1

This via (iv) shows that u(B(z, 2r)) ~ u(B(x, 4r)) ~ e~(*=3-1%  which implies that B(x, 2r) is a
doubling ball and hence N 2)

In the case (iv), we see that

J
2re<4ze (i 4Ze i)2+2e(kj1)2].

i=1

B S < 1 in this case.

Notice that, by (6.2) and j < k — 2, we see that

J

k—1
22 k=" = o Z e < 2e2 e (F=i=)? < o= (h=j=1)?,

i=1 i=k—j
Thus, we consider the following three cases for 2r.
Case (a) 2re(4 23:1 e~ (k=0 225:1 e~ (k=" 4 o=(k=3=1%) 1n this case, it is easy to see that

u(Ba, 2r)) ~ u(Bla, 1)) ~ 0",
which implies that B(x, r) is a doubling ball.
Case (b) 2re (2 Ej e~ (k=" 4 g=(k=j=1)* 9 Efill e~ =91 In this case, by an argument similar

: (2)
to that used in (v), we conclude that NB 5oy S 2

Case (c) 2re (20t e (=0 45 (=D L 9e=(=3=D% In this case, if j = k — 2, we have

k—1
4r > 2r > 22 e_(k_i)Q,
i=1
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which, together with (vi), implies that B(z, 2r) is a doubling ball; if j < k — 3, by (6.2), we know that

J+1 J+1 J+1
ZZe_(k D < op < dr < SZe_(k D 4 go=(h=i=1)? <22 —(k=9)® +6Ze_(k i?
i=1 i=1 i=1 i=1
j+1
< 226_(k_i)2 + e k—G+D-17,
i=1

This via (iv) shows that u(B(z, 2r)) ~ u(B(z, 4r)) ~ e~ *=3=D* which implies that B(z, 2r) is a

. 2
doubling ball and hence NB’ 5

Combining the above estimates, we obtain (6.3), which completes the proof of our claim and hence
the example.

< 1 in the case (iv).

On the other hand, it turns out that there exist many non-homogeneous metric measure spaces which
do not satisfy the p-weakly doubling condition (6.1). We give the following Gauss measure on R as an

example.

Example 6.4. Let (X,|-|,u) := (R,|-|, ), where | - | denotes the Euclidean distance and p is the

Gauss measure on R, ie., du(z) := 7~ é —2"dg for all z € R. As in Example 6.3, for any = € R and
€ (0,00), we use B := B(xz, r) := {y € R: |y — x| < r} to denote a ball of R. First, we show that u

is a non-doubling measure with the dominating function \(z, r) := 2oy Indeed, for all z € R and

€ (0, 00),
x+r

w(B(z, r)) = T2 / e*y2dy <2 ip = Az, 7).

—-r

On the other hand, let z, = 2%* and 7 ; = 2/ with kK € N and j € {1,...,k}. Then, for all k¥ € N and
je{l,...,k}, we observe that

22k +2j

_1 _p2 1 _(92k_5j\2 _:
p(B(zr, 15, 5)) =7 2 e dr < mae” (2 T 20!
22k _9j
and
92k 4 oi+1
_1 _ 2
w(B(zk, 2y, ;) =72 e ¥ dx
22k72‘7‘+1
1 22k 3><27 ' 2 1 2k j—1N2
— — _ _ — J— T
>7 2/ e T dr > ze (BT 3%2T ) 951
22k72‘7‘+1
Thus,

w(B(z, 27%73‘)) > 1622k+j_222j > 1622k+1_222k > 162%71 oo as koo, (6.4)
/L(B({Ek, Tk’j)) 4 4 4
which implies that p is non-doubling.

Now we claim that, for any p € (1,00), there exists a ball B such that the number N](;)gp can be
arbitrarily large. For the sake of simplicity, we only prove our claim for p = 2. With some simple
modifications, the arguments here are still valid for all p € (1, co). Recall that a ball B C R is said to be
(2, B2)-doubling if ;4(2B) < Bop(B) and B® is the smallest (2, 82)-doubling ball of the form 2/B with
jELy. Let ko be the smallest positive integer such that }le22k071 > (5. Then, for all kK € NN [kg, 00), we
have 4e2 S Ba. Let By := B(2% 2). By (6.4), it is easy to see that, for all j € {0,...,k — 1}, 2/ By,
is not a (2, #2)-doubling ball. It then follows, from the definition of N( ) o B2 that

(2)
NBk,B >k —1,

which implies our claim and completes the proof of Example 6.4.

We now state the definition of the Campanato space €57 (11).
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Definition 6.5. Let a € [0,00), 7 € (1,00), p € [n,00) and ¢, v € [1,00). A function f € L (n) is

p
said to belong to the Campanato space 51 (n) if

1 1 . e
ez 0 =50 0 o rpen o110 = M (Dt

imp(f) = ms(f)|

+ sup -
K(ij):gl/(a"rl)]'y

< 00,
BCS:B,S (p,B,)—doubling [\(cg, 7g)]?]

here and hereafter, mp(f) := M(lB) I f(@)dp(x) for all balls B and f € L{, ().

Remark 6.6.  Arguing as in [33, Lemma 3.2], we see that £} () and RBMO,)ﬂ(u) coincide with

equivalent norms, where R/B\M/Opw(u) was introduced in [13]; see also [27,30].

Proposition 6.7.  Suppose that (X,d, ) is a non-homogeneous metric measure space satisfying (6.1).
Let a € [0,00), n € (1,00), p € [n,00) and q, v € [1,00). The following statements hold true:
(a) There exists a positive constant C' such that, for all balls B C S and all functions f € £ _ (i),
(p), 1 1 a
Ima () = mg, (N < CIKEE T M es, 7)) llegg oo

(b) If f,g € £ (1) are real-valued functions, then max{f, g} € €50 (1) and min{ f, g} € E7 ().

Moreover, there exists a positive constant C, independent of f and g, such that

[ max{f, g}lexa () + Imin{f, gtlleca ) < Clllflleaa ) +gllesa ol

Proof.  To show (a), we consider the following two cases:

~ ~ ~ ~ - F
Case (i) r(Bf) < r(SP). It is obvious that B? C 25°. Let Sy := (25°) . By Lemmas 2.8(ii)-2.8(iv)
with p =1/(a+ 1), we have

(p); 1/(a+1)yy 7 (p), 1/ (a+1) 7-(p)s 1/ (at+1)1y
[KSP So ] [KSP 25¢ ]A/ + [KQSP So ] L.

From this and Lemmas 2.8(ii)-2.8(v) with p = 1/(a 4+ 1), it follows that
1/(a+1 1/(a+1
(R0 < [Rp 0y,

p),1/(a+1 ~(p), 1/(a+1 7-(p),1/(a+1
< [K](B,)S /(a+ )]7—|—[K(p) /(a+ )]’Y_‘_[Kéi),so/( + )]’Y

= (p),1/(a+1
< [Kg],)s /(a )]A/.
Thus, by the above two inequalities, Remark 6.2(ii) and (2.1), we have

Img,(f) —mg, ()| < |mg,(f) —ms,(f)] + |mg, (f) —ms,(f)]
<

1 1 1 1 o
{[K Vet (K0 VD N ey, 750) | Fllena

Br, S Sr, So

1 +1
K I N e, ms0)1 0 Fllesa oy

<
e ,1 +1 o
SIELM I N es, )N fllesns -

This finishes the proof of Case (i).

~ ~ < F
Case (ii) 7(S?) < r(B?). Obviously, S? C 2B?. Let By := (2B°) . From Lemmas 2.8(ii)-2.8(iv) with
p=1/(a+ 1), we deduce that

(R /@0y < (11t | (g0 1/ ety <

Br, By Br,2Br 2B¢, By ] ~

By this, S” 5 S 5 B and Lemmas 2.8(iii)-2.8(v) with p = 1/(c + 1), we know that

[K( p), 1/(04+1)]'y < [K(P) 1/(a+1)]7 < [K(P) 1/(a+1)] + [K(P) 1/(a+1)]7 <1
Se, By B, Br Br, By
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Thus, combining the above two inequalities, (2.2), (2.1) and Remark 6.2(ii), we have

|m§p(f) - mgp(f” |m§p(f) - mBo(f)| + |m§p(f) - mBo(f)|

T 1/ (a oyl s a+1 a
R )+ (R M ep, )1

Meso, ro)* 1 flleg g o ~ [Messm80)17 [ £lle

[
[K“’) ”““*”1 P\(CsaTB)]“||f||£,§i’,$,w(u)

—~

&l (1)

@, q

oo, v (1)

AR AR YAV ZAN/AN

CS7TS)]a||f||55,n,?,w(u)'

This finishes the proof of Case (ii) and hence (a).
To prove (b), since max{f, g} = f+g+2|ffg‘ and min{f, g} = f+972|f79‘, it suffices to show that, for

any real-valued function h € €37 (1), [h| € £ () and

Alllegog o S I

To this end, by Definition 6.5, Holder’s inequality, Remark 6.2(ii) and (2.1), we see that, for any ball B,

1 . 1/q
{u(nB) /B 1) = mp, (|h])] du(y)}

1/q
<{ ;B /IIh(y)I—Imgp(h)llqdu(y)} + |[mg, (h)| = mz, ()]

Sa, v ()

1/q
<{ o) 100 = m, )} g (= g, 00

S es ) + Mes, ) Hblless o S e rs)hllesa -

On the other hand, by Definition 6.5, (2.1) and (2.2), we find that, for all (p, 3,)-doubling balls B C S,
imp(|h]) — ms(|h])|

imp(|h]) — [mp ()| + [[ms(R)| — |ms(h)[| + [lms(h)| — ms(|h])|
mp(|h —mp(h)]) + |mp(h) — ms(h)| + ms(|h — mg(h)]|)
{I\cB, 7B)]* + s, )P IE Y V1 + Mes, rs)“ Hibllesa )
Aes, rs)l K85 VPRl gan -

AR YA/

The above two inequalities imply that |h| € €22 _(u) and |||h]

Py, Epmy (1) Sl
the proof of (b) and hence Proposition 6.7.

pyms Y

g4 (), which completes

pyms Y

We now show that the space €57 (1) is independent of the choices of p and 7.

Proposition 6.8.  Suppose that (X,d, 1) is a non-homogeneous metric measure space satisfying (6.1).
Let a € [0,00) and q, v € [1,00). The following statements hold true:

(i) for any mi, m2 and p satisfying 1 < m < m2 < p < oo, EN (1) and E0 (1) coincide with

equivalent norms;

(ii) for any p1, p2 and n satisfying 1 < n < p1, pa < oo, E (1) and E559 . (n) coincide with

equivalent norms.

Proof. ~ We first prove (i). Fix o € [0,00) and ¢,v€[1,00). Let 11, 12 and p satisfy 1<m<n<p<oo.
It is obvious that 37 (1) C €0, () and, for all f € 2 (1), [|fllgoa < fllees -

PN, Y P2, ngw pm'v

Conversely, let f € €51 (1). We show that f € £2 (1) and || f{|go.s ’y(/") < ||f||g o1 (u- To this

end, it suffices to show that, for any ball B,

—mz ad, v < [Xcp,rB)|* a,q ) 6.5
771B |f o (ON%du(y) ¢ < Nes, ) fllecs, (6.5)
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To do so, for any x € B, let B, be the ball centered at x with radius m 17"3. Then 1, B, = 10 rB and
QB C 7713
By the geometrically doubling condition and Remark 2.2(ii), we see that there exist N1 € N, depending
on 71, 2 and (X, d, p), and a finite sequence { By, }M, =: {B;}¥*, of balls such that z; € B for all i €
{1,...,N1} and B C UN1 B;. By this, noB; C mB foralli e {1,..., N1}, (2.1), (2.2), Proposition 6.7(a)
and Lemma 2.8(ii), we conclude that

mB ) [ 1@ = ma, (1t
 JmB) / 1f) = mg (1) dity)

<Zun23 { B /|f mgf(f)|qd#(y)+|m§f(f)_mép(f”q}

<Z{ (BB NS oy gy + 1m0 (F) = e (DI I (1) = 5, (D]}

1/(a+1 1/(a+1
(H){[ (P) /(« )]vq [K(P) /(a )]vq}

S s, mre) Il Bi,m B B,m B
<

PyM2, Y
e o)l s
Ep, 712 Y

which completes the proof of (6.5) and hence (i).
To show (ii), fix a € [0,00) and ¢, v € [1,00). Let p1, p2 and n satisfy 1 < n < p1, p2 < co. By the
symmetry of p1 and ps, it suffices to show that €559 _(n) € €% (k) and || flleea ) S 1 llegye, )

for all fe€&0:4 (u). Assume that f € 509  (u). From the Minkowski mequahty, Holder’s inequality,

Proposition 6.7, p1 > 1, Remark 6.2(ii), Lemmas 2.9 and 2.8(iii), we deduce that

{M(;B) /B £ (y) — 5, (f)lqdu(y)}l/q

1 . 1/q
<{ gy L0 = ()} + g, (1) = g (1)

< s ez, o) + 1Mo (F) = m =02 ()] + [m— 12 () = miz,0 (£)]

1 » 1/q
‘sgiq77,'v(/1«) + {M(népl) /Eﬁl |f(y) - mém” (f)' M(y)}

7 ,1/(a+1
+[RELY P, g1 gy, 00

S [Mes, )] I/

S A e, mB)* + M, rga I HIf llegy s, o0 S Me, mB) I flleg; 2, - 0-
On the other hand, for all (p1, 5,, )-doubling balls B C S, by Hélder’s inequality, Proposition 6.7, p1 > 7,
Lemma 2.9, (2.1) and (2.2), we have

Imp(f) —ms(f)]
< mp(f) = mpe, (NI + 1mpe, (F) = mge, (N + mg,, (f) — ms(f)]

1 1/q ~ .
< {N<B>/B|f(y)—m§m (f)lqdu(y)} + K2 N es, )2 1 lesy e, oo

+{u(15)/If(y)—m§p2(f)|qdu(y)}1/q

= 1 1 a
s ) flles o + S0 P N es, r)] N flless, o

0277"/

<
SIEYY VP N es,rs))° N f

Eps M (1)

which completes the proof of (ii) and hence Proposition 6.8.
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Remark 6.9. (i) By Proposition 6.8, we know that the space £9,9 . (1) is independent of the choices

P,y
of p and . From now on, unless explicitly pointed out, we always assume that p = n in 21 7( ) and
write E521 () simply by g () and its norm || - [[eaa () simply by | - [[e29)-

(ii) It is still unknown Whether Exd(u) is independent of the choices of p and 7 or not on general

non-homogeneous metric measure spaces without the assumption (6.1).

Before we show that Sg’g(u) is independent of the choices of v and ¢, we first give a useful character-
ization of £5(y) which is a variant of [30, Proposition 2.10].

Proposition 6.10.  Suppose that (X,d, 1) is a non-homogeneous metric measure space satisfying (6.1).
Let p € (1,00), a € [0,00) and q, v € [1,00). The following statements are equivalent:

(a) f € E59(1);

(b) there exists a sequence {fp}tp of complex numbers associated with balls B := B(cp,rp), with
cg € X and rp € (0,00), such that

@ — ] 1 1 o o
1700 Bp{H(PB) [Aep, rB)]* /B S = I du(y)}

+ sup |fB — [s]

~ < 00,
BCs [Mes, rs)|o[Kg s V]

where cg € X and rg € (0,00) denote, respectively, the center and the radius of the ball S, and the first
supremum is taking over all balls B C X and the second one all balls B C S C X.
[

Moreover, the norms || - [|ga-a(,y and || - [[i7} are equivalent.

Proof.  Fix p € (1,00), @ € [0,00) and g, v € [1,00). Let f € £(u). We first show that ||f||>(ﬂ)p <
[l fllega(uy- Indeed, for any ball B, let fp := mp,(f). Then Proposition 6.7 implies that, for any two
balls B C S,

1f5 = fs| S es rs) K5
This, together with the fact that, for any ball B,

1 1 . 1/q
{mpB) e ron [, 10~ Tt} <

Eo4 (1)

implies that || f]|.
Conversely, assume that || f H(q < oo. If Bis a (p,,)-doubling ball, then, by Holder’s inequality,

~ Py

we have
1/q
o= ma S {0y 1500 faltdnt) | < emrm* 111 (6:)

which, together with the Minkowski inequality, implies that

1/q
{ ) [ 11w = ma(plrauty >}
1/q
S{M(pB)/BIf(y)—fqudu(y)} 1 = ma()| < Demrm) 19

Thus, by this, the Minkowski inequality, (6.6), Remark 6.2(ii) and Lemma 2.8(iii), we obtain

Ll [ -ma i}

1/q
<{u(pB)/B|f(y)—fB|qdu(y)} s a4 s — s ()

SN, ra)* + e, g K Y5 VT 1),
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< Wes, )| F1149,.
Moreover, by (6.6), (2.1) and (2.2), we conclude that, for all (p, 5,)-doubling balls B C S,
Imp(f) —ms(f)] < Imp(f) — fBl +1fB — fs| +|fs —ms(f)]
< {Mes rB)* + Nes, rs) | [K )5 D
< Pes, ro) NI IR D,

which completes the proof of Proposition 6.10.
To show that £5 (1) is independent of the choice of v € [, 00), we need the following technical lemma,
which is similar to [30, Lemma 2.6] (see also [54, Lemma 9.2]).

Lemma 6.11.  Suppose that (X, d, 1) is a non-homogeneous metric measure space. Let m € NN(1,00),
p € (1,00), p € (0,1] and B := By C --- C By, be concentric balls with center cg and radii of the form
oNrp, where N € Z . If KB'D)’]’;L+ > (34 |log, 2))'/? for any i € {1,...,m — 1}, then

m—1

Kb P < (3+ log, 2)[KW)5 7. (6.7)

z=1

Proof. Fixm € N, p € (1,00) and p € (O7 1]. Assume that, for any i € {1,..., m}, rg, := p"irg

for some N; € Zy. For any i € {1,. — 1}, by Kg)’§7+1 > (3 + [log,2])/?, it is easy to see that
(P) )
Nit1—N; = Ng{ B, 2L 1< Ek 1 i [/\(g;’j;ﬁf;i)]p and N, = Ng)l), p, - From these facts and (2.1),
we deduce that, for any 7 € {1,..., m — 1},
N}(Bp) Bipn
~ ; By 1"
ROr <o llog 2|+ [ p(p”B; }
LTS Sl Wl
N(Bpi)v Biti p
1(p"B;) ]
< (3+ |log,2 {
@rlog2) X[\ n0 0
Nit1 k P
n(p*B)
= (3+ |log,2]) [ } i
2 2 |rep. prn)
Notice that p € (0,1] and N,,, = Ngﬂ B, It then follows that
m—1
DK g < (3 + llog, 2DIKLE 1
i=1

which implies (6.7) and hence completes the proof of Lemma 6.11.

The following lemma is an analogue of [30, Lemma 2.7], whose proof needs to use Lemma 6.11, the
details being omitted.

Lemma 6.12.  Suppose that (X,d, ) is a non-homogeneous metric measure space. Let o € [0,00),
p € (1,00) and p € (0,1]. For a large positive constant C, the following statement holds true: Let x € X
be a fixed point, and {fp}pss some collection of complex numbers associated with balls B > x. If there
exists a positive constant Cm, depending on x, such that, for all balls B and S with x € B C S and
I?;;)’Sp C,lfB—fs] < (p) FNes,rs)], then, for all balls B and S with x € B C S,

|f5 — fs| < CCK ¥ M(es,rs)]”

By Lemma 6.12, now we are ready to state the result that £57(u) is independent of the choice of v,
whose proof is similar to that of [30, Proposition 2.5], the details being omitted.
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Proposition 6.13.  Suppose that (X, d, 1) is a non-homogeneous metric measure space satisfying (6.1).
Let a € [0,00), p, v € (1,00) and q € [1,00). Then E524 () and )\ (p) coincide with equivalent norms.
Remark 6.14. (i) By Proposition 6.13, we know that the space £7(u1) is independent of the choice
of 7. From now on, unless explicitly pointed out, we always assume that v = 1 in £24 (1) and
write g.1(u) simply by E5°9(u).

(ii) It is still unknown whether €7 (u) is independent of the choice of 4 or not on general non-
homogeneous metric measure spaces without the assumption (6.1), even on Euclidean spaces endowed
with non-doubling measures.

In order to show that Sg’q(u) is independent of ¢, we establish the following John-Nirenberg type
inequality which is a generalization of [27, Proposition 6.1]. Hereafter, E;j"l(u) is simply denoted by
&3 (n) and its equivalent norm || - ||i1)p simply by || - ||+, p-

Proposition 6.15.  Suppose that (X,d, 1) is a non-homogeneous metric measure space satisfying (6.1).

Let o € [0,00) and p € (1,00). Then there exists a positive constant ¢ such that, for any f € E7(n),
t € (0,00) and every ball By := B(xo,r) with xo € X and r € (0, 00),

u({x € By: |J[£)(\5(207TJ;]B§| > t}) < 2u(pBo)e Mivs |

where fp, is as in Proposition 6.10(ii) with B replaced by By.

Proof.  Fix a € [0,00) and p € (1,00). Let 0 :=5p, f € £3(n) and L be a large positive constant whose

value will be determined later. We first claim that, for u-almost every x € By with ‘{;f;{;{fg‘ > 2L, there

exists a (o, B,)-doubling ball BY of the form B(z, o 'r), i € N, satisfying

|f}§g _fBo|

EUC By and >
v C VPBo (o, )]

(6.8)

Indeed, from (@ =F50l 5 97, and [27, Corollary 3.6], it follows that there exists a (o, 8, )-doubling ball

A(o,m)]™
B9 of the form B(z,07'r), i € N, such that B C V/PBo and \mfg;iif);ﬂ%o\

Propositions 6.8 and 6.10, (2.1) and (2.2), we conclude that

|f§f _fBo| S |m]§g(f)_f30| B |f]§g _méf(f”

> 2L. Thus, by this,

Ao, m)] = (Ao, )l A(zo, )]
1 1
> 2L — A(zo, 7)™ u(ﬁg) /Bg |f(y) — f§g|d,u(y)
S op _ A@ ¢pr)]aﬁa”f”*w

[Alzo, )]
2 2L = G| fl+,p = L,

provided that L > C1]/f||«,, and C; is a positive constant, which implies the claim.
Now we let B be the biggest (o, 8,)-doubling ball of the form B(z,0~r), i € N, satisfying (6.8). By
(6.8), (2.1) and (2.2), we know that

1 |f(y) - fBo|
W(B?) J R

o
x

|f5. — [Bol 1 If(y) = fg.l
Ao u(Be) /B Ao, r))e V)
)\ «
s OV s L Cilfll, > L2, (6.9)

[)\(.230, r)]a

provided that L > 2C1 || f|l«, »-
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g

o~
~

Then we show that the ball (¢B?) =: B, satisfies

2 . [fze = IBol .
- < L. .
« £ VpPBo or Moo S (6.10)

X0 |fzo—FBol
Indeed, it suffices to prove that, if B, C \/pBy, then Ao rio < L. From Lemma 2.9, B(x,7) C 2,/pBo,

Lemmas 2.8(ii)-2.8(v), it follows that, if B, C VpPBo C 2,/pBy, then

|f§z — fB,] |f§i — f2ypBol | foupBo — FB0

<
Ao, 7)]~ Ao, )]~ Ao, 7))
Ao, 2y/pr)]™ = (p),1/(a+1) | 7(0),1/(a+1)
. K/\p(r, K P); o
N||f|| P [ (1‘077”)] AT,2\/pBo + Bo,2,/pBo ]
(0),1/(a+1) ) 1/(a+1) (0),1/(a+1)
5 ||f||*’pK§g,2\/pB < Hf”* P[ B(r ,B(z,7) + KB(I,’I”),Q\//)BO]

< Collflls,p < L

provided that L C’2|| fll+, » and C5 is a positive constant, which shows (6 10).

Moreover, if B ¢ \/pBo, let o B" be the smallest ball of the form ¢*BZ (k € N) satisfying o7 B" ¢
\/pBo. We easily obtain

—_~—

o —
~ — i Bo
T'oife ™ TBo and B, = (0/B9) ,

where r_; 5, and rp, denote the radii of balls ol Eg and By, respectively. By this, o/ Eg C 30,/pBy,
B C /pBo, Remark 6.2(ii), (2.1), (2.2), Lemmas 2.9, 2.8(ii) and 2.8(iii), we have

|f§: _fBo| . |fA - a?Bﬂ| + |fgj§g _f3a\/pBo| |f30\/PBo _fBo|
Ao, )] [)\(3?0, Bl [A(zo,7)] [A(zo, )]
A5 [A(zo,30y/pr)]* . e
S o, e Mlee® [)(\)(xo e kol R e+ K. 3o,
[)\((E, O'B")]
’S [}\(mo, )] Hf” CBHf”*,ng

provided that L > Cs]|f||+,, and Cs is a positive constant.
Thus, in any case, we have
|f§" — /Bl

Ao, ) S o4y

provided that L > max{Cs, Cs}||f|l+, -

Furthermore, by [23, Theorem 1.2] and [27, Lemma 2.5], we see that there exists a sequence {gg‘c’i}ig
of disjoint balls such that z; € By for any i € I and By C U,cp, BY C U;e; 587, Let B :=5B7 for
any 7 € I. Observe that, for any n € NN [2,00), if © € By and ‘{/\(Zgz;{pﬁo‘ > nL, then there exists i € [

such that z € B and, from (6.11), Remark 6.2(ii), (2.1), Lemmas 2.9 and 2.8(ii)-2.8(v), it follows that
/B, — f§2i| |f§; — fspe |

F(@) ~ Tpol  |f@) ~ fal .
Ao, )]~ Ao, [Mao, )] (Ao, )]
L [/\(l‘i77”§" )] 01/
>nl—L— [)\(xO 7“)] ”f”* P 5B Ba‘,i
z (n=1)L—=Cy|fll+, > (n-2)L, (6.12)

provided that L > C4l|f||«,, and Cy is a positive constant.
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By (6.9), the disjointness of {E;i}ig, Be

Zi

Lemma 2.8(ii) and (2.1), we further see that

i no 285 |f(y) - fBo|
> ulpBY) < Bo Yy m(BL) <) ;/A Azo.r)e W)

el el
284 |f(y) = fypBol |f/oBo — fBol1t(\/pBo)
S {/m Moo PO g, e }

1 (Mo, /pr)]* e
S L [A(()J,‘Q\,/r)]a ”f”*,P{M(pBo) + M(\/pBO)K(Bp(i \1//p(B;_1)}

c 1
< Al pii(pBo) < p(pBo), (6.13)

C /pBo for all i € I, Propositions 6.8(ii), 6.10(b),

provided that L > 2C5]| f||+,, and Cs is a positive constant.
Moreover, for any t € (0, 00), there exists n € Zy such that 2nL <t < 2(n + 1)L. By this and (6.12),
we know that

{meBO: £ () = I >t}c{xeBO: |f(z) = I >2nL}

[A(zo, )] (Ao, )]
z (i) . |f(z) = fpo n—
c LEJI{ e BW . Aol > 2 1)L} . (6.14)

Finally, by (6.13), (6.14), iterating with the balls B®) in place of By and an argument similar to that
used in the proof of [27, Proposition 6.1], we conclude that

L <{x € By : |J[t)(\20”§ﬁf| > t}) < 2u(pBo)e” 1910

with ¢ := 22|/ f|l.,, and L := 2max{C;, : i € {1,...,5}}. This finishes the proof of Proposition 6.15.

By Proposition 6.15, we easily obtain the following conclusion.

Corollary 6.16.  Suppose that (X, d, 1) is a non-homogeneous metric measure space satisfying (6.1).
Let aw € [0,00), p € (1,00) and g € [1,00). Then there exists a positive constant C such that, for any
[ €& (n) and every ball B := B(cp,rp) with cg € X and rp € (0,00),

1 . 1/q .
{u(pB) | 15@ =151 du<w>} < Ol fll, oA en, 7)),

where fp is as in Proposition 6.10(ii).

Remark 6.17. (i) By Corollary 6.16 and Proposition 6.10, together with Holder’s inequality, we know
that &5 () is independent of the choice of ¢, the details being omitted. From now on, unless explicitly
pointed out, we always assume that ¢ = 1in £ (u) and write Epa’l(,u) simply by £ (1) and its norm
- ||g;’v1(u) simply by || - Hsg(u)-

(ii) Tt is still unknown whether €37 (u) is independent of the choice of ¢ or not on general non-
homogeneous metric measure spaces without the assumption (6.1), even on Euclidean spaces endowed

with non-doubling measures.

We establish another characterization of £'(1) which is needed in the later context. To this end, we first
recall the so-called median value of a function on balls in [25,30]. Precisely, let f be a measurable function.
The median value of f on any ball B, denoted by m(B), is defined as follows. If f is real-valued, then,
for any ball B with u(B) # 0, let my(B) be some real number such that inf.cg M(IB) S |f(x) — cldp(x) is
attained. It is known that m;(B) satisfies

u({z € B f(z) > my(B)}) < u(B)/2
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and
u(fo € B f(z) < mp(B)}) < u(B)/2.
For all balls B with p(B) =0, let my(B) = 0. If f is complex-valued, we take

my(B) := [myps(B)] +ilms; (B)],

where i = —1 and, for any complex number z, denote by Rz and Sz its real part and imaginary part,
respectively.
Let a € [0,00), p € [2,00) and ¢, v € [1,00). The norm || f||s,, of a suitable function f is defined by

1
Mlopi=  sup Nemrmje 17 = ms(B)duty)

B (p, B,)-doubling ball w(B) [
Ims(B) — my(5)]

+ sup -~ .
K(Bp,)él/(a'i_l)]'y

BCS:B, S (p, B,)-doubling balls [A(cg, rg)]]

Then we have the following equivalent characterization of 5 (u).

Proposition 6.18.  Suppose that (X, d, ) is a non-homogeneous metric measure space satisfying (6.1).
Let o € [0,00), p € [6/5,00) and q, v € [1,00). Then the norms || ||o,p and || - [[e () are equivalent.

Proof. Fix o € [0,00) and p € [6/5,00). For the sake of simplicity, we assume that v = 1. The
arguments here are still valid for the general case with some minor modifications. Let f € &(n).
Now we show that || flls,, S ||f||ga(u) For any (p, 8,)-doubling ball B, by the definition of ms(B), we
conclude that

ms(B) = ma(NI < [ 196) = my(B)lduty)
/ () = mu(F)lduy) S | Fleg o Men,m5))%, (6.15)

which implies that, for any (p, 5,)-doubling ball B,

) L 1) = ms(B)dnt) 1l en. o))
On the other hand, by (6.15), (2.1) and (2.2), we know that, for all (p, 8,)-doubling balls B C S,

my(B) —mys(S)] < |my(B) —mp(f)] + [mp(f) — ms(f)| + lms(f) — my(9)]
1F g M es, ro K57 D 4 flleg o {IMes, 78)]™ + s, 7s)]°}

<
S

a+l
S Hf“f;‘(u)[ (cs,rs)] K( ) 1/(at1)

Ex(p)
Conversely, let || o, , < 0o. We now prove that HfHE,‘j,# < ||f||o,p For any ball B, if B is (p, 3,)-

doubling, we see that
o) | T =mp(laut) < [ 176) = m(B)duty) + ms(B) = ma )
) L 10 = msB)dnt) S 11l e o)

Thus, we only need to consider the case that B is non-(p, 8,)-doubling.

Assume that B is a non-(p, 5,)-doubling ball. For any = € B, let B, be the biggest (5p, 3,)-doubling
ball centered at z with radius (5p) *rp for some k € N (since By > (5p)" and [27, Lemma 3.3]).
From p > 6/5, it follows casily that 5B, C 2B C (6/5)B C B’. Moreover, by [23, Theorem 1.2]
and [27, Lemma 2.5], we see that there exists a countable disjoint subfamily { B, };=:{B;}; of { By} such
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that @; € B for all i and B C U,cp B C U, 5B;. For any i, by 5B; C B(xi,75) C (6/5)B C pB C B,
and Lemmas 2.8(ii)-2.8(v), we see that

7=(p),1/(a+1) (p) 1/(a+1) 7= (p),1/(a+1) 7o (p); 1/ (at1)
K5B“Bp <K B(z; rB)+KB(;c TB), pB+KpB Be < L.

From this, together with the fact t{lat 5B; is a (p,,)-doubling ball for any i, (2.1) and (2.2), Re-
mark 6.2(ii), 5B; C (6/5)B C pB C B” for any i and the disjointness of {B;};, it follows that

/ F@) = mig, (F)ldn(y)
<X / ~mpGBduy) + 32 6B llmy (5B:) — my (B + my(B?)  m, ()]

€ 1Sl 5B e, 7)) + T H(3B) {||f||o,pwc3,r§p>] RO et
7

1 ne
Aoy Jo, 1T = ms(B )Idu(y)}

S I flle. Zu(Bi){[/\(cB, )] + [Mes, rg,)]" }
S I lle, Zu(Bi)[A(CBWB)]a S I llo, pp(pB)[A(c, 7B)]

On the other hand, for all (p, 8,)-doubling balls B C S, by (2.1) and (2.2), we have

me(f) —ms(f)]
< mp(f) = mg(B)| + |my(B) — my(S)] + |my(S) — ms(f)|
<M m8))” + Mes, rs) K55 4 [Mes, 7))
S fllo, oMes, )] KR F,

These two inequalities show that || f]] gl S o, p, which completes the proof of Proposition 6.18.

We point out that it is still unclear whether the range of p in Proposition 6.18 is sharp or not.

7 Atomic Hardy spaces H:t’g’g(u) and molecular Hardy spaces H?% 7€ (1)

mb, p

In this section, under the assumption of p—weakly doubling conditions, we introduce the atomic Hardy

space Hft’g’p( ) and the molecular Hardy space Hlpn’f’;’ (), and show that the spaces Hft’g’p( ) and

ﬁﬁ{kﬁ’ (1) coincide with equivalent quasi-norms.
Definition 7.1. Let p € (1,00),0<p <1< g< o0, p#qandye€[l,00). A function b € L!(p) is
called a (p, q,7, p)a, 1-atomic block if b satisfies Definitions 3.2(1)-3.2(iii). Moreover, let

|b|ﬁ:€bﬂ{>[j(“) = [Ar] + [A2].

Remark 7.2. Tt is easy to see that any (1, ¢,7, p), 1-atomic block is also a (1, ¢, v, p) x-atomic block and
vice versa. We point out that the difference between the (p, g,, p)x-atomic block and the (p,q,, p)x,1-
atomic blocks exists in that the former is an L?(p) function when p € (0,1), while the latter is only an
L' (u) function.

Observe that, for any (p,q, 7, p)x, 1-atomic block b, there exist some balls B; (j € {1, 2}) and B, and
some numbers \; € (C (7 € {1, 2}) such that supp (b) C B, b = Aja1 + A2a2 and supp (a;) C B; C B,
jed{l, 2}. By fx )du(z) = 0, Proposition 6.7(a), Definition 3.2(iii), (2.1) and (2.2), we know that

\ | e

\ [ 1#@) = mp. (Dalauta)
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:
<y 176 = ma (Dl @)
1/q ,
Z | [, l@rran| | [ 1@ - ma 017 )

J

1/4'

< Z N (B N ep, rp)] PR B
j=1

x { [ / 1) - mg;(f)lq'du(:v)] " (B |m () - mép(f)l}

<

VR

Il
—

N (B A ep, o)) T VPIK R B
J

< AlulpB)M T + (B (K BN, o) P fllgyma

2
S SNy gy ~ Bl ol lepros (7.1)
j=1 '

Thus, a (p, q,7, p)a, 1-atomic block b can be seen as an element in the dual space (Sl/p_l( ))* of Epl/p_l(u).

Definition 7.3. Let 0 <p <1< ¢ < oo and p#q. The atomic Hardy space Hft’g’p( ) is defined as

the subspace of (Epl/pfl(u))* when p < 1 and of L*(x) when p = 1, consisting of those linear functional
admitting an atomic decomposition
[ee]
f=Y b (7.2)
i=1

in (El/p_l(u))* when p < 1 and in L'(x) when p = 1, where {b;}3°, are (p,q,7, p)x, 1-atomic blocks
such that Y22 |b;|" < 00. Moreover, define

HP (1 ’Y(l)
1/p
17z 3= mf{[Z“’ |Hp 20 ] }

where the infimum is taken over all possible decompositions of f as above.

Remark 7.4. (i) It follows from Remark 7.2 that H, ;tg’ (1) is the atomic Hardy space defined via the
discrete coefficients K 1(31))5 introduced in [13], where it was shown that H, ;g’ , (1) is independent of the

choices of ¢, p and ~. Hereafter, HLY® 7(u) is simply denoted by Hatb(u).

atb,
(ii) Let p € (1,00), v € [1,00) and qu (1,00). By Remarks 3.3(ii) and 7.4(i), we know that H;tg (1)
=0 ;tg’ . (1) over general non-homogeneous metric measure spaces.
(iii) Fix p, p and 7 as in Definition 7.1. For 1 < ¢1 < ¢2 < 0o and ¢; > p, we notice that Hfégf;,"(ﬂ)
< Hyl ().

(iv) By the results in [13], we know that the Calderén-Zygmund operator is bounded on ﬁaltb(ﬂ)~

However, when p € (0,1), it is still unclear whether the Calderén-Zygmund operator is bounded on

Hé’t’g:; (u) or not.

We now introduce the notion of the molecular Hardy space ﬁﬁl’}g’;’ () in the non-homogeneous setting
by first presenting the following notion of (p, g, 7, €, p)x, 1-molecular blocks.
Definition 7.5. Let p€ (1,00), 0 <p <1< q¢g< o0, pF#gq,v€E[l,oo)and e € (0,00). A function
b 6 Ll( ) is Called a (p,q,7, € p)x, 1-molecular block if
(i) [y b(x =0; —
(11) there exfl\s/t some ball B and some constants M, M € Nsuch that, forall k € Z; and j € {1,..., My}
with My, := M if k = 0 and My, := M if k € N, there exist functions my, ; supported on some balls
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By, ; C Ug(B) for all k € Z, where Uy(B) := p*B and Uy(B) := p"™2B\p* 2B with k € N, and
Ak, j € C such that b= Y72 Zjﬂi"l Ak, jmy, ; in L'(u) when p = 1 and in both L'(u) and (Epl/pfl(u))*
when p € (0,1),

mi, jllLogn < p~* [H(PBk,j)]l/q_l[/\(C&Pk+27"B)]1_1/p[f(](3p,3fﬁ oeiepl (7.3)
and
oo My
P — 1P
LR kzozl Ak, 5P < oo
—0j=

Remark 7.6.  Observe that any (1, ¢,7, €, p)x, 1-molecular block is also a (1, ¢, v, €, p) x-molecular block
and vice versa.

Definition 7.7. Let0<p <1< ¢g<o0,p# qgande € (0,00). The molecular Hardy space ﬁ,’,’;ﬁ’]’ﬁ(u)

is defined as the subspace of (é‘pl/p*1 (1))* when p < 1 and of L!(11) when p = 1, consisting of those linear

functional admitting a molecular decomposition
[ee]
F=> b (7.4)
i=1

in (8;/;)71(”))* when p < 1 and in L'(u) when p = 1, where {b;}32, are (p, ¢,7, €, p)a, 1-molecular blocks

such that > %, |bi|%”’bq”’e(u) < 0o. Moreover, define

mb, p

e 1/p
. —3 |P
1N g ey = ok { [z; |bl|ﬁpvw’6<u>} }

mb, p

where the infimum is taken over all possible decompositions of f as above.

Remark 7.8. (i) It follows from Remark 7.6 that Hit’g”g(u) is the molecular Hardy space defined via
the discrete coefficients I?;;)S introduced in [13].

(ii) Let p, p, ¢, v and € be as in Definition 7.5. Then each (p, q, v, p), 1-atomic block is a (p, ¢, v, €, p)r, 1-

molecular block and hence I?i&’l(u) C ﬁi’é’;’e(u) and, for all f € ﬁfgg:;(u),

L RO )
Moreover, we have the following relation between H w o () and ﬁg’g”;’e(u).
Theorem 7.9.  Suppose that (X,d, ) is a non-homogeneous metric measure space satisfying (6.1).
Let pe (1,00), 0<p<1<qg< o0, p#q, v€E|[l,00) and € € (0,00). Then Hﬁg}fjl(u) and Hﬁl’g,’;’ﬁ(u)
coincide with equivalent quasi-norms.

Proof.  'When p = 1, the conclusion of Theorem 7.9 was obtained in [13, Theorem 1.11] without the
assumption (6.1). Thus, we only need to consider the case p € (0,1). Fix p € (1,00), v € [1,00),
€€ (0,00),0<p<l1<qg<ooandp+#q. Let 11(3”) = N](Bp)g,, for any ball B. By Remark 7.8(ii),

to show Theorem 7.9 in this case, it suffices to prove that I/i\'fl’l’g’;’e(u) C ﬁ;’gg_’;(u) and that, for any

fe N (), fe Hyl ) (u) and HfHﬁfgﬁj,?(u) < ||f||ﬁ;’f,’bq’p”5(u)' To this end, we first show that any

(P, ¢, 7, €, p)a, 1-molecular block b can be decomposed into a sum of some (p, g, 7, p), 1-atomic blocks and
(p, 0,7, p)x, 1-atomic blocks and ”b”ﬁﬁgﬁ’:(u) < |b|ﬁ§,bq’,pm6(m.
For any (p, q,7, €, p)x, 1-molecular block b, by Definition 7.5, we know that

oo My

b=2_> Aejmu; in L'(n) and (/771 ()", (7.5)

k=0 j=1
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where, for any k € Z4 and j € {1,..., My}, A\, ; € C and supp (mg, ;) C By, ; C Ux(B) with the same
notation as in Definition 7.5. Moreover, observe that, by (7.5), Holder’s inequality and (7.3), we have

co My, oo My .
ZZH/\k,jmk,jHLl( \ZZ|/\k ilp e, k+27‘B)]1_1/p[K,(3p,3fﬁpk+23]_7
k=0 j=1 k=0 j=1 '
[ee] Mk p
(ZZW yl”) Mes, )] 1P < o0, (7.6)
k=0 j=1

For each k € Z, let by, := Z]Ai’“l Ak, jMi, j, By, o == p"? B and Bk+2 (pF+2B)2%r. By (7.5), we write

0 X e > Xpr
- [bk— e | bk<y>du<y>} D B )
kzzo M(B£+2) X kZ:oM(BlgH) X
>, XBy > XBy
=S s = ]+ X T [ )
k=0 j=1 (B y2) /B ; im0 H(Biyo) Jx
=: ZZbkﬁZkak— T+11,
k=0 j=1

where, for all k € Z; and j € {1,..., M},

XBr_,
bk, j = Ak,j[mk,j— = / m, i (y)dpu(y) |,
M(Bk+2) By,

Xg0 —
Xk = H(Bk+2) and My = S br(y)du(y). From (7.6), it follows that .2 Zj\i’“l b, ; and Y7 e Mg
k42

both converge in L*(p).

To estimate I, we first show that, for any k € Z andj e {1,..., My}, by j is a (p,q,7, p)a, 1-atomic
block. Noticing that supp (b, ;) C 2§p 4o and S bk, 5 (y)dp(y) = 0, to show this, it only needs to show
that by, ; satisfies Definition 3.2(iii). To this end, we further decompose by, ; into

X '
br,j = Ak, j|me, j — supp (7, 5) / mg, 5 (y)du(y)
By,

M(B£+2)
XBY,,\ supp (mx, ;)
D [ i = )4
M(Bk+2) Br.j

By the Minkowski inequality, Holder’s inequality, (7.3), (2.1), Remark 6.2(ii), Lemmas 2.8(iv) and 2.8(iii),

we know that
[u(supp (my, 7))/ /B“ mk,j(y)du(y)‘}

1AL o < 1w, j|{|mk Moo +

(B )
[(supp (mi, ;)] 9[(By, ;)]
< sl s + ) I el
1(BY )
S Plllmi sllzago S el ™ aloBr )1V Nem g NVPIEENT 5 170

S Peilo ™ o B 1 Nes gy PR o 1

Let ¢, independent of k£ and j, be the implicit positive constant of the above inequality, u,i)j
:= 5|k, jlp ¢ and a&)j = (11) A(l) Then A(l) ug)Ja,(:)J, supp (a,(c )) C By, C 2§£+2 and

() - “Up[R B
a3 leo < loBr )1 New,rapy IR 50 170
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From Holder’s inequality, (7.3), the fact that K(p) P gr =1, the (2p, B2,)-doubling property of §1€+2’
vir Prga
Remark 6.2(ii) and Lemma 2.8(ii), it follows that

[1(BY,,\ supp (mx, ;)]
e )
M(Bk+2) Bk, ;
N, (B )Y I (B, )Y N, 51| L
M 3| [1(BY )Y T (B, DM p*e (o B, )Y [Men,rpe )P

k+2

2
1A gy = k]

<
S
S [l (2pBE )Y R (Nes, rpp )] P

< Pailo ™ 2o BL )Y N em o IR g 17

Let c¢g, independent of k and j, be the implicit positive constant of the above inequality, pu 2

(2)
k, j
:= cg| Ak, j|p~ ¢ and a,(j)j = (12) A(Q) Then A(2 = u,(f)]a,(c )], supp (a,, (2 )) c ZBp 4o and

(2) e 1/q—1 B 1-1/ (p),p —
a2} 1o < n(0BL )1 e mgy VIR e 17

Thus, by, j = uz )Ja,(:)j + u,(f

)j fg )] is a (p,q,7, p)a, 1-atomic block and
—ke
|bk,j|f[:€k§1’v:(u) S e, gle

Moreover, we have

oo My oo My
||I||Hp & ’Y(“) ~ ZZ |>‘k he S ZZ |)‘k’j|p ~ |b|%pybq,%€(“)' (77)
k=0 j=1 k=0 j=1 me

Now we turn to estimate II. Observe that, by (7.6) and Hoélder’s inequality, we have

D IMe[ <Y bkl pr gy < oo
k=0 k=0

For each k € Z, let Ny, := > 7, M;. From Hélder’s inequality and (7.3), it follows that

[ee] oo [ee] oo (o]
ST IxeNklzr < D0 Iadillzigy < D03 Ibill e
k=0

k=0 i=k k=0 i=k
oo oo M;

< >l sl oo (B, )14
k=0 i=k j—1
oo oo M;

<SS il es, o) P
k=0 i=k j=1
[e%s) oo M;
ZP kez [Ai, 51 [A CBaTB)]l_l/p
k=0 i=0 j=1

M;

o] 1/p
S (ZZWH”) Aes,rp)]' P < oo
=0 j

—

Similarly, >°° o [IxkNkt1]l21(4) < 00. By the above facts, we have

o0 oo
> xeMi = xe(Nk — Nip1) = > (xet1 — xk) N1 + XoNo
k=0 k=0
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o0
Z Xk+1 — Xk)Net1
k=0

DD TN xw/ ma, 5 () duy)

k=01i=k+1 j=1 i J

=3 Y S

k=0i=k-+1 j=1

where the summation in the last equality holds in L*(u).

Now we prove that, for any k € Zy, i € {k+1,k+2,...}and j € {1,..., My}, bx, ;i is a (p, 00,7, p)a,1-
atomic block. Observing that supp (bg, ;) C 2§,€+3 and [ by, ;. i(y)du(y) = 0, we only need to show
that by, ; ; satisfies Definition 3.2(iii).

To this end, we further write

bk, j,i :)‘i,ijJrl/B mi,j(y)du(y)—&,m/B mi (y)du(y) = AL — ALY,

From Holder’s inequality, (7.3), the fact that K(p)’p > 1, Remark 6.2(ii) and Lemma 2.8(ii), we

BP

i+2
deduce that
! By, )]V
1AL, e < sl (];,’, Il
k+3
(B

P~ lulpBs )Y Nes, rpe, )TYPIRYNP L, )

> J i, 4 Bita

w(BY5)
S |)‘i,j|Pﬂe[ﬂ(2ka+3)]71[)‘(CBv7"B,‘€’+3)]171/p
S iglo T (n2oBY ) INen o NTVPIESEY s 17

k+3? k+3

Let ¢7, independent of k and j, be the implicit positive constant of the above inequality, ug)] i

i 1 1 1) 1 1 1
= cr| A, jlpT' and a,(c )] ;= (11» ‘A,(C’)j’l Then we see that A,(C i = u,(c,)j’ia,(c’)j’i, supp (a,(c)]z) C 2B,€+3
kji
(1) —1 _ 1-1/p[rc(P),p —
1 i S @B W o PR o )
By an argument similar to that used in the estimate for Ak i We conclude that
1A il < eslhicslo™ o B o)) e oy, I TPIRGRY g 17,
where cg is a positive constant independent of k, j and i. Let ,u,(f)] ;= gl ] p~ ' and
e NG
A, i (2) k,j,i°
k,j,i
2 2 2 2 = o~
Then A,(C)j ;= ,u,(C )j’lagc)j ;» supp (a; ( ) 4i) C2Bp,, C 2By, ;3 and
(2) o) -1 1-1 (p),p -
I, ey < (4(2pBE ) Ny IR o )

Thus, by, j,; = u,i)j i ,(:)j ;T uff)] fﬁ)J is a (p, 00,7, p), 1-atomic block and

—i€

bk, 5. il gz e, v ) S i sle
Moreover, we have

[e%e) o M;

”H”HP oY () ~ Z Z Z|bk ]7'L|HP 07 ()

k=0 i=k+1 j=1
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%) oo M; i—1 M;
S 2 Y Al ZP’”“ZZWH
k=01i=k+1 7j=1 = k=0 j=1
oo M;
SISl ~ bl

Ht b (w)

I
—

7 1

J

From this fact and (7.7), we deduce that both Y72, Zjﬂi’“l br,j and Y207 (307, Zj\il bk, ;4 converge
: 1/p—1 *
in (£3/7 (w))".

Now we claim that

oo My
St S S € )
k=0 j=1 k=01i=k+1 j=1

Indeed, by b=>"72, Ejj\i"l Ak, jMg, ; in (Epl/pfl(u)) we see that, for any g € El/p Y(w),

K My

| Hostwydunta) = 33 [ M @(@)in(o)
K My K N
- Jm 323 | bes@u@inte o)+ Jim 33 | xwl@lgta)duta).

Moreover, by the fact that |Ny| < oo for any k € Z; and Ny = 0, we further write

I;gnszk | xelalgta)dnta)
= lim /Z(Nk—NkH)Xk(x)g(x)dﬂ(x)
k=0

K—oo [y

K-1
= lim ; [Xo(a:)No —xk(@®)Ngi1 + ZNka Z Niy1xe(x } (z)dp(x)
k=0

K—o00
k=1
= - lim_ XXK(x)NK+1g( z)dp(r) + Jim / ZNk-i-l Xk+1(2) = Xk (2)]g()du(x)

A+ Kli_r>noo S / Vi1 (2) — xi(2)]g ) dpz)
k=0 i=K+1

At am 3 Y Z/b,”, du(z).
Koo i 20 iRk =1

Thus, to prove the above claim, it suffices to show that A = 0. To this end, by Holder’s inequality
and (7.3), we conclude that, for any K € N,

Newl< 3 < S [ mwldnty)

1=K+1 i=K+1

<y Zw/ s 50)ld ()

= K+1] 1

Z ZMLMM(B@,J')]I/‘] lms, jll Lau)

ifKJrlj—l

Z Zl&gl WY o= [u(pBs, )M T Mep, p'H2rp)) 1P

i=K+1 j=1
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00 M;
< YD ale K e, oK )P
i=K+1 j=1
P X« 1/p
< o5\ (e, pKH2rp)|t" 1/p( Z Z|)\”|> . (7.8)
i=K+1 j=1
We write
[ e Vicg(@)au(o)| = il (o)

< |NK+1||m§§{(9) - m§5(9)| + |NK+1||m§5(g)|
= I +1lg.

By (7.8), g € L{,. (1) and >, Z]Ai’“l | Ak, j|P < 0o, we know that

/P
I < |me(g)|p_K€[)\(CB,TB 1- 1/;0( Z Z|/\z]|> —0 as K — oc.

i=K+1 j=1

From Proposition 6.7(a), g € El/p Y(w), (7.8) and > oheo E 1| Ak, 57 < o0, we further deduce that

I < [Ngql[K 23 P kiapl” [/\(CvaK”TB)]l/”_l||9Hg;/p—1(u)
<

[N 1| K7\ (e, p5F TB)]l/pﬂ”gHSi/p_l(u)

oo M; 1/p
<pKeK7/P( Z Z|)‘i’j|p) Hg||€;/p_1(“)—>0 as K — oo,

i=K+1 j=1
which, together with the estimate of I, completes the proof of the above claim.
By Remark 7.4(ii) and the estimates for I and II, we see that b € H?*7 (1) and

atb, p
[N [ + (1%

- I
AL 2 ) I

HP q ’Y HP q "r( ) ~ | Hp q ’Y ) + ||II||HT’ N W(IJ«) ~ |b|Hz::b<f,p%6(u)7

which, together with some standard arguments, then completes the proof of Theorem 7.9.

Remark 7.10. (i) As was pointed out in the proof of Theorem 7.9, if p € (1,00), ¢ € (1,00], v € [1, 00)
and € € (0,00), then H;tg (1) and Hrlan’; ‘(1) coincide with equivalent norms, which is just [13,
Theorem 1.11]; namely, in thls case, the assumption (6.1) is superfluous. However, when p € (0,1),
without (6.1), it is still unclear whether Theorem 7.9 holds true or not.

(ii) By Theorem 7.9, we see that ﬁi’g’;’e(u) is independent of the choice of € under the assump-
tion (6.1).

The following result is an easy consequence of Theorem 7.9 and Remark 6.2(i), the details being
omitted.

Corollary 7.11.  Let (X,d,u) be a space of homogeneous type with the dominating function
Mz, r) == p(B(x,r)) forall z € X and r € (0, 0),

and p, p, q, v and € be as in Theorem 7.9. Then the conclusions in Theorem 7.9 and Remark 7.10 also
hold true in this setting.

8 Duality between H:t’g’;’(u) and E}/P71 ()

In this section, we show that El/p Y(1) is the dual space of Hé’t’g ;(,u). To this end, assuming that
(X,d, 1) satisfies the assumption (6.1), we show that Hé’t’g Z(u) is independent of the choices of p and 7.

We point out that all conclusions in this section hold true for the case p = 1 without the assumption (6.1);
see [13,30] for the details. Thus, we mainly focus on p € (0, 1) in this section.



Fu X et al. Sci China Math February 2015 Vol. 58 No.2 357

Proposition 8.1.  Suppose that (X,d, ) is a non-homogeneous metric measure space satisfying (6.1).
Let p € (1,00), 0 <p <1< ¢ <o0andy € [l,00). Then the space HL " (1) is independent of the
choice of p € (1,00).

Proof. TLet0<p<1<g<ooand~y€][l,00). Assume that p > p1 > pa > 1. It is easy to see that

Hiy (1) € HY ), (i) and, for all fe HE ) (),

v <I£1I%, '
W2 o < W

On the other hand, to show that ITIQS’ZQ (n) C ﬁﬁgg’; (w), let

2
b= Naj € HL"? (n)
=1

be a (p,q,7, p2)x, 1-atomic block, where, for any j € {1,2}, a; is a function supported on B; C B for
some balls B; and B as in Definition 7.1.

Now we claim that, without loss of generality, we may assume that B is (p?, fBp2)-doubling. The reasons
are as follows: If B is non-(p?, 8,2 )-doubling, by Lemmas 2.9, 2.8(ii) and 2.8(iv), (2.1) and Remark 6.2(ii),
we see that

lajll oy < [n(paBy)Y 7~ Nem, ra)] '~V IK Y2~

_ aN®?) T _
< (o2 B )Y e, 0 85 ) PR )

< o2 BT Nep g )| PR

Thus, we can replace B by Epz, which shows the claim.
Then, for each j € {1,2}, we have

la;ll Loy < [(p2Bs) Y9~ M e, )] VP S (8.1)

From Remark 2.2(ii), it follows that there exists a sequence { By, ;}4o_, of balls such that

N N po—1
Bic||Bu;=|)Bl(cs, .,. " r )
’ ,H " ,H <B’“" 10po(p1 +1) 7

and cp, ; € Bj for all k € {1,...,N}, where py € (1,p1). Observe that p1poBy,; C p2Bj. For any

ke{l,...,N}, define ay,; == q; ENXB’;; and Ag,; := A;. Then we have
k=1 XBy, j
2 2 N
supp (ax, ) C poBr,; and b= Z)\jaj = ZZA’“JG’“T
j=1 j=1k=1

Moreover, by (8.1), the fact that poB; C 3pB, (2.1), Lemmas 2.9, 2.8(i), 2.8(ii), 2.8(iv) and 2.8(v), and
the fact that poBy,; C pB, we know that

lasll oo < (o2 BT M ep,rp)] VPR

ks llzego < :
< [u(mpoBm)]Uq_l[/\(6137P?‘B)]1_1/”[fﬂga’f,):s’fj_r;]_7
< [1(p1poBr, YT Nep, prp)| VPRSP 170 (8.2)
Let Ci,; = A, j(ar, j + Yk, jXB), Where v ; = —M(lB) fx ak, j(x)dp(x). Now we claim that Cj, ; is

a (p,q,7, p1)x, 1-atomic block. Indeed, supp(Cy,;) C pB and fX Ch, j(z)du(z) = 0. Moreover, since
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By,; C pB, Hélder’s inequality, (8.2), B is (p?, 3,2)-doubling, p > p1, (2.1) and Lemma 2.8(ii), we
conclude that

vk, 5Bl gy < (BT Hlak, | oo (B, ;)]
< [1(p1pB) Y Aep, prp) VP IRYEDT 1
<

[1(p1pB)Y " (Nep, pru)) ~/PIK B

This, together with (8.2), (2.1), Lemma 2.8(ii), implies that |Cj, j|Hp 5 () S < | Ak, j|. Thus, the claim

holds true.
By the above claim and [, b(z)du(z) = 0, we see that

2 N
b= "> Cr ;€ HY N (n) (8.3)

Jj=1k=1

and

2 N 2
HbHHp q ’Y ZZ |Ck7J|Hp a7y z; |/\ |p HP a,y (/1«) (84)
]:

) atb, p1 atb, po

For all f € Hé’t’g ;2 (1), by Proposition 6.8, we know that there exists a sequence {b;}; of (p,q,7, p2)x, 1-

atomic blocks such that f =377, b; in (Eplz,/p_l(u))* = (Epll/p_l(u))* and

Z|b |HPQ’Y ( )N||f||HP<1’Y (l")
i=1

From this fact, (8.3) and (8.4), we further deduce that f =37, Z; 1 Ek G, in (El/p "(1))*, where
{Cy. ;Y4 k are all (p,q,7, p1)x, 1-atomic blocks as in (8.3) satisfying

o0

co 2 N
ZZZ'CIinpqv()Nzwl PQ’Y()NHfHHPQ’Y(l)’

i=1 =1 k1 atb, pq Hiy P2 atb, po

which implies that f € H ;’t’g o, (1) and

. < ~,
1z o S 13m0 G
This finishes the proof of Proposition 8.1.

Proposition 8.2. ILetpe (1,0), 0<p <1< ¢g< oo andy € [1,00). Then the space Hf:gg 2 (w) is

independent of the choice of v € [1,00).
Proof.  Assume that 1 < 3 < 2. Notice that [f(](;)ép]_w < [f((p)’sp]_Vl for all balls B C S. From this,

we deduce that Hft’g”;’z (u) C Hﬂg’;“ (n) and, for all f € Hﬂg’;’z (n), f € Hﬂg’;“ () and

”f”HP 9 'Vl () Hf”HP q, 72 (n)°

Now we consider the following converse inclusion that H?: st (w) € H, ;’t’g 27 (u). Let

2
b3 Nay € AL ()

be a (p, ¢, y1, p)», 1-atomic block, where, for any j € {1,2}, a; is a function supported on B; C B for
some balls B; and B as in Definition 7.1. We first show that any (p,q,71,p)x, 1-atomic block can be
decomposed into a sum of some (p, g, ¥2, p)x, 1-atomic blocks and

1ol 7,022y S 1Bl - (8.5)
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To prove (8.5), we consider the following four cases:
Case (I) For any j € {1, 2}, I?};;)”g < [(3+ [log, 2])C(,)]'/?, where C,) is as in Lemma 2.8(i).
Case (I) Ky"% > [(3+ [log,2])C(,)]"/? and K% < [(3 + [log, 2])C,)]"/?.
Case (IIT)  KW¥)'5 <[(3+ [log, 2])C,)]"/? and K5 > [(3 + [log, 2])C(,)] /7.
Case (IV) Forany j € {1, 2}, K% > [(3 + [log, 2))C(,)]"/7.

In Case (I), for any j € {1, 2}, we have

K51 < 1= (3 + [log, 2))Ci,) /7 [(3 + [log, 2))C | /7
< (3 + Llog, 2))C() /P [K ) )72,

For any j € {1, 2}, let Xj = [(3 + [log, 2])C(y]2/PA; and @; = [(3 + |log, 2])C(,)]7*/Pa;. Then
b= X{dl + Xgag. From this, it is easy to see that b is a (p, ¢, Y2, p)x, 1-atomic block, which implies that

be HLl ) (1) and

16l 7,072 (y < (3 + Llog, 2DCpI ™7 (A0l + Aal) ~ Bl

in this case.
The proofs of Cases (ITI)~(IV) are similar. For brevity, we only prove Case (II).
In Case (II), we have I?g)”g > [(3+ [log,, 2] )C(p)]l/”. We now choose a sequence {B;z)}g’lo of balls with

(»)
certain m € N as follows. Let BEO) := By and By := (pNBph BBl)p2. To choose Bgl), let N7 be the smallest
P sofoi o 7o (p)s 1 . _
positive integer satisfying KB?O)I’)le 5O > [(3+|log, 2] )C(p)]l/p, If T(pwfl\B?O))p? > rp,, then we let By’ :=

By and the selection process terminates. Otherwise, we let Bgl) = (pM B;O))pz. To choose B;Q), if, for

any N € N, f(g)f)p N S (3 + [log, 2])C(,)]*7, let B?) := By and the selection process terminates.
1P By
Otherwise, let Ny be the smallest positive integer satisfying Kj(;;l’)’ijz B > [(3 + [log, 2])C,)]HP.

( ﬁl)) , = T'B,, then we let Bgz) := By and the selection process terminates. Otherwise, we let
pN2 B )P

Bf) = (pN2 B;l))”z. We continue as long as this selection process is possible; clearly, finally the condition

7“( [oys (02 < rpg, is violated after finitely many steps. Without loss of generality, we may assume that
p? 1 )P

the process will stop after m (m € NN (1, 00)) steps. Now we conclude that {Bgi)}ﬁo have the following
properties:

(i) B§O) = B, Bgi) = (pNiBY_l))p2 for any ¢ € {1,...,m — 1}, and Bim) = By;
(ii) for any i € {1,..., m — 1}, by Lemma 2.8(i) and the definition of IV;, we have

() p —1/p =(p),p 1/p .
KBg—n,Bg) > [Cp)] KBg—l),pNiBii—l) > (3+ [log,2]) 5
(iii) there exists a positive constant C' such that, for any i € {1,..., m}, IN{](;),;’_’)U B < C. Indeed,
1 ? 1
if, for any N € N, K;{;gl),p,\,Binfl < [(3 + [log,, 2J)C(p)]1/”, then, from the choice of B§m), we have
IN{](;(),,;LZ) B < 1. Otherwise, by Lemmas 2.9, 2.8(ii)-2.8(iv), and the definition of NV;, we see that, for
1 ? 1
any i € {1,...,m},
(), p < ol-p[(P):p o (p),p
KBgifl), Bii) S2 [KB§i71)7PNi Biifl) * o, V)KpNiBfi—l), (pN:EEi/—l)),g

1-prg-(P),p - (p);p .
<2 [KBY*U’pNi—lBSL'*l) + <, V)KpNi—lei*l)’pNiBfi*l) + o] <G
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(iv) by (ii), Lemma 6.11, the fact that B*~' ¢ B{™ ¢ 2p2C1+1 B, Lemmas 2.8(i), 2.8(ii) and 2.8(iv),
where C is as in (6.1), we know that

(m 2 + 2< Z K;’p())pgﬂ +2< (3 + Ung J)[K(p) g’” l]p +2
( ), =(p), (p), i)
SIRYE ol SREEE + RY 0 S RSP

Let C be the implicit positive constant of the above inequality, (éb)p =C [IZ'](;I),’ 2JP and ¢ := Cyay. For

any 1 € {1,...,m}, let
- Xp(
aim P B,
u(By") Jx
If i = 0, by Definition 3.2(iii), (2.2), o) < PO, (2.1) and (iii), we have
1

< (B T N (e, rp)) TVPIK R BT
< [ulpBY 9 N (ep,  rp)] P
<

0 _ 11 (p), _
B N ) PR ) (56)

101l L y2)

where the implicit positive constant is independent of I?g?,’ g. For i = 1, by Hélder’s inequality, Defi-

nition 3.2(iii), (2.2), the facts that r < p261+17“3 and Bfl) is doubling, (2.1) and Lemma 2.8(ii), we

B
1
conclude that

16 Loy < BN I~ (B~ Chan | Loy
< B (B (anP/q*l[A(cB,rB>11*1/p[f<§3’?;§r%“
< BV N (e, rp)]) 1P
< ln(p* BV lchl, rpo PR T (8.7)

Similar to (8.6) and (8.7), respectively, for any i € {2,...,m}, we have

~ i—1 _ _
I@itllzeg S o BY YT N emy mpsp PR T (8:)
and A
Il Loy S (o BY M Ny rm)) VPRS00, (8.9)
pPBy 7, pBY
For any i € {1,...,m}, let ¢; := é; (¢i—1 —¢;). Then supp (¢;) C pB( and

/X () du(z) = 0,

which, together with (8.8) and (8.9), implies that ¢; is a (p, ¢, 72, p), 1-atomic block associated with the
ball pB\” and
< 1Al

& (8.10)

|C7'|Hp q, ’YQ (H)

Now we see that
" A
b:ZCi+ ~1Em+)\2a2.
i=1 Cy
Notice that [, b(z)du(z) =0 and [, c¢;(x)du(x) = 0. It then follows that

/X P} Cm (@) + sz(ﬂ?)} dp(z) = 0.

Cy
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On the other hand, we have supp (¢,,) C pBYn) C 2p61+23 = B rp = 2p51+2r3 < 2p61+27"3(m> and
supp (a2) C By C B’. An argument similar to that used in the estimate of (8.7) shows that

1eml Loy S (BN M (e, rp) PR 6 7702,

From Definition 3.2(iii), (2.1), I?ggpz)”lg < [(3+log, 2])C(,)]/P, B = 2pC1+2 B, Lemmas 2.8(ii) and 2.8(iv),
it follows that
S llpB) " A ew, ) PR
< [ulpB2)) 77 Nem, ) T PR ) )

HaQHLq(u)

A+ Noag is a (p, ¢, 72, p)x, 1-atomic block associated with the ball B’ and

Thus, ¢pt1 = o

|Cm+1|ﬁ:€g)v:2 () S |AL| + [A2].

By this fact, the definition of Cj, (8.10) and (iv), we obtain b= 3" ¢; € H% %7 (11) and

atb, p
m+1
”b”Hpq'vz S Z |ci|Hpqw2( )N(|)‘1|+|)‘2|) |b|HPL1’Y1 ()’
i=1

where the implicit positive constant is independent of m. This finishes the proof of (8.5).
Let f € Hft’g’;“ (). Then, by Proposition 6.13 and Definition 7.1, there exists a sequence {b;}; of

(p,q,71, p)r, 1-atomic blocks such that f = E(;; by in (EX9 (p))* = (€59 (w))* and

P71 P72

Db o o S 1100

From this fact and (8.5), we further deduce that f =377, Zmﬁl cji in (E0A (n))*, where {c;,i}; i are
all (p, ¢, 72, p)x, 1-atomic blocks as in (8.5) satisfying

mj+1 [eS)
il < Z 1P < || FII%
Z Z: |C];Z|H:€t§1)s;2 (n) ~ |b]|H:tabL1Ys/;Yl (n) ~ ||f||H;T:tvgyv/;Yl (“)7

j=1 =1

which implies that f € H ;’t’g )7 () and

Iy e gy S IFgze -

This finishes the proof of Proposition 8.2.

1/p- (1) is the dual space of Hft’g’p ().

Theorem 8.3. Letp e (0,1], p € (1,00), v € [1,00) and q € (1,00). Then
)P () = (HI" ) (1))

Proof. ~ When p = 1, by [13, Remark 2.6(iii)], the conclusion of Theorem 8.3 holds true without the
assumption (6.1). Thus, it remains to consider the case when p € (0,1). Let p € (0,1), p € (1,00),

v €[1,00) and ¢q € (1,00). We first show that 81 =) (H;’t’g ,(n))*. To this end, let f € Epl/p_l(u).

Recall that any h € Hft’g’p( ) is, by Definition 7.3, a continuous linear functional in (Sé/p_l(u))*.

Let us write (h, f) to denote the value of the linear functional h at f € Sl/p 1(,u). Then the mapping
Uy :h — (h, f) is a well-defined linear functional on Hptg’p (p). It h =322 b; is an atomic decomposition
of h in terms of (p,q,7,p)a,1-atomic blocks {b;}; such that > 2 [b;[% < [|h|)% by (7.1),

Now we are ready to show that &,

Hpbq ’Y( HPLI’Y( )7

we then have

[(h, )| = ()
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S 1/p
[ tann] Wlreos S Wl o lyrosg:
i=1 "’

Therefore, we conclude that
L] S g3y 1l -

This shows that Eé/pfl( ) C (H;’t’g’p ())*.
To see the converse, for any ¢ € (1,00), we first claim that, if £ € (ﬁé’gS’Z(u))*, then there exists a

function f € L]OC( ) such that, for all g € Jz L{(B),

:/f@M@W@L
X

where, for all balls B C X, L{(B) denotes the subspace of LI(B) consisting of functions having integral
zero. Indeed, let {By}r be an increasing sequence of balls which exhausts X. For each k, let C(By)
denote the space of functions those are constants on Bj. Suppose that ¢ € (1,00) and £ € (Hp’q’ (p))*.

atb, p
Then / € (L§(B))* = LY (Bi)/C(By). Indeed, if g € LE(By), then g € HZ 7 (1) and

— 1/p—
||9||ﬁ§g,j;[j(u) < BV A (e )" 9l Lo
We further see that

DN < Wz - 19z
S ||€H(ﬁ§;g;;(u))* [(pB)] 1 Nes, re )P gl pag-

Hence, by the Riesz representation theorem, there exists a unique f, € L7 (Bk)/C(By) such that, for
every g € L{(By),

Ug)= [ fre(x)g(z)dp(z).

By,

Since { By} is increasing, by a standard argument, we see that there exists a unique function f € LIOC( )
such that, for all g € g L3(B),
- [ s@at@ina).
This proves the claim.
We now show that, if f € LIOC( ) such that ¢ € (Hft’g’p( ))*, then f € Eﬁ/p_l(u) and
1 g1 S Wl v

To this end, by Proposition 6.18, it suffices to show that, for any (p, 5,)-doubling ball B,

u(;B) e rlB)]l/H /B |f (@) = my(B)ldu(@) S 116l gz, 7)) (8.11)

and, for all (p, 8,)-doubling balls B C S,

my(B) = mp(S)| € 1l g v~ (K55 Nes, 7s)]V/P (8.12)

atb,

We first prove (8.11). Let B be a (p, 5,)-doubling ball. Assume that

/ 1) = m (B du(e)
{z€B:f(x)>my(B)}
) f() = my(B)IY du(x). (3.13)
{z€B:f(x)<my(B)}
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Consider
|A]f(at:)—mf(B)|q/_17 ifze{reB: f(x)>msB)},
a(z) :== 4 Cp, ifee{zeB: f(x) <ms(B)},

0, otherwise,

where Cg denotes the constant such that S a(x)dp(z) = 0. By the definition of my(B), we have

p{z € B: f(z) >ms(B)}) < u(B)/2 < p({z € B: f(z) <my(B)}). (8.14)

From this fact, we deduce that supp (a) C \/pB, a is a (p,q,7, /p)r-atomic block and

lall gz, sy < lallzago (Vo x VB Nep, ra)] /P~

< [u(pB)Y (Aep,rp)] /P [ /{ |f(z) — ms(B)|7 du(x)

zeB:f(x)>mys(B)}

- 1/q
+ [ |cB|Qdu<x>} |
{z€B:f(z)<my(B)}

By (8.14), the definition of Cp and Hélder’s inequality, we have

/ Caltdu(z)
{zeB:f(z)<my(B)}
q

[u({z € B: f(z) <my(B)})]' 1

q

[u(B)]'

éBdu(x)

/{zeB:f<z><mf<B>}
| (x) = my(B)|* dp(x)

|
{z€B:f(x)>my(B)}

< / (@) — my(B)| du(z).
{zeB:f(xz)>my(B)}

From this, supp (a) C \/pB and Proposition 8.1, it follows that
lall goa 2y ~ ||a|\ﬁ:gg;;p(u)

1/q

S[u(ﬂB)]l/q'[/\(CB,TB)]l/”1{/{ |f(2) = my(B)| du(x)| . (815)

zeB:f(x)>mys(B)}

On the other hand, by the definition of a and (8.13), we see that

/ f(@)a(z)dp(z) = / [f(z) = my(B)la(z)du(x)
B B

> z) — m(B)|Y du(z
/{zer >mf(B)}|f() (B du(x)
/|f (B)|7 d(z),

which, together with (8.15), implies that

1/q
{/ If(z (B)|9 dpu(x )] ||a||ﬁ§ttg;;(u)

< (B Aep,rp)]) /P /B |f(z) — ms(B)|7 du(x)
< [u(pB) 7 A(ep, rp) /P! /B f(@)a(x)dp(x)

< BNV Nes o) n 7 -

ol -



364 Fu X et al. Sci China Math February 2015 Vol. 58 No.?2

From this and Holder’s inequality, it then follows that

1 1
1(pB) [A(cB )] 1/p—1/ |f(z) —my(B)|du(z)
[u( -1/q 1/q
) WCB rp)]t/rt U /(@ B du(@)| < el -

Thus, (8.11) holds true.
To show (8.12), for all (p, 8,)-doubling balls B C 5, let

ar = |f_mf(5)|Q/X{ €S:f(x)#ms(S)}
f=my(s) Meesswrn

and ay := Csxs, where C'g denotes the constant such that Jyla1(z) + az(z)]du(z) = 0. Observe that

- 1/q
s < [u(S)] (B 1/‘1[ / (@) — mp(S)7 du(z)| . (8.16)

From this, together with the fact that B and S are (p, 8,)-doubling and Proposition 8.1, it follows that

supp (8) C (2y/p+1)S,
b= )\161+>\252€Hp’q’ ( )CHp,q, (/L)

atb, \/p atb, p
and
18l 72y ~ WDl S (B2 X VBT es, Ty 77
1
R sl | [ -] e
VB, (2\/p+1)S AT , .
where
—1/q
oo [ 1760) = my()Y dut)|
[K‘j,iB” sl A, rwms)}l*“fz
a2 = [u(pS))| T Nes rayprns)] KD o sl XS
1/q _
wim | [ 1) = mg S )| RGE sl oD
x [A(es, T(z\/p+1)s)]1/p_1
and

A2 = Csp(pS)M@s, rizyprns) P HE DL o penys]

Then supp (a1) C /pB C (2/p+1)S and supp (a2) C \/pS C (24/p +1)S. By the definition of a;, the
(p, B,)-doubling property of B and S, the vanishing moment of b, (8.16), (8.11) and (8.17), we see that

[ 17@) = my (S duta)
/ L(@)[f (@) — mp(S)]dpu(a)
<| [ remwau)| +18 [ 116 - mss)anto

b||f{§;b4;;(“) + |CS|||£||(ﬁ:£g;;(u))*ﬂ(PS)P\(CSa rs)]/P

5 ||£||<ﬁ:;:::<u>>*

, 1/q
e | [ 1) = ms S dut)| R B s, o

)
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This implies that

1/q _
|15 = mp) )| S 16 g0 R IBNs, rs

Thus, from this, (8.11), the (p, 8,)-doubling property of B and S, and Hélder’s inequality, it follows that
ms(B) = my(S) = o [ ims(B) = ms($)ld(o)
By [ 1@ =msBlau) [ 17— my()ldn

< [ 150 = m B dnta ﬂ”q o /|f (SN (o)

~ H€||(Hp > ’Y(N))* [A(CB) TB)]l/p_l + [)\(CS TS)]l/p ! K ] H€||(HP a, ’Y(H))*

atb,

S Wes, )P HELET I @y

which implies (8.12), and hence completes the proof of Theorem 8.3.

Remark 8.4. It is still unclear whether Theorem 8.3 holds true or not for ¢ = 1 and p € (0,1),
or ¢ = oo and p € (0,1] on non-homogeneous metric measure spaces satisfying the p-weakly doubling
condition (6.1).

9 Relations between £7(u) and Lip, ,(u) or between gt’g(u) and HY;(u)

In this section, we investigate the relations between 57 (1) and Lip, ,(x), and between H;’g’p (1)

and the atomic Hardy space HY; ?(u) introduced by Coifman and Weiss [11] over spaces of homogeneous
type.

Let (X, d, 1) be a space of homogeneous type with A\(x,r) := u(B(z,r)) for all z € X and r € (0, c0).
Recall that (6.1) holds true in spaces of homogeneous type. Thus, all the results obtained in Sections 6-8
are still valid in this setting and we denote £ (1) simply by £7(u). We first establish an equivalent
characterization of £(x1). To this end, we recall the notions of spaces Lip,, ,(¢) and Lip,,(x) in [39]. To
be precise, let a € [0,00), ¢ € [1,00), p € (1,00) and ¢ be a quasi-distance on X. A function ¢ is said to

be in the Lipschitz space Lip,, ,(i;9) if

1/q
1619, = S;P{MB;)]HW /| If(y)—mBa(f)lqdu(y)} < oo,

where the supremum is taken over all balls Bs from (X, 4, ), and a function 1) is said to be in the space
Lip,, (p; 0) if

Hw”(é) := sup W(a?) - w(y” < o0, (9.1)

T#y [(5(1[,’, y)]a

Then we let Lip, ,(¢) := Lip, ,(¢;d) and Lip,(u) := Lip, (p; d), respectively.

Remark 9.1. By [39, Theorem 5], we see that, for any a € (0, 00), there exists a quasi-distance §
on X, defined by setting, for all z, y € X,

d(z,y) := inf{u(B) : B is a ball containing = and y}

such that (X, 0, ) is a normal space. Namely, there exist two positive constants, cg and c¢19, such that
cor < p(Bs(x,r)) < cior for every x € X, r € (pu(z), u(X)) and

Bs(z,r) :={z € X : d(x,y) <r}



366 Fu X et al. Sci China Math February 2015 Vol. 58 No.2

and, for any ¢ € [1,00), a function ¢ is in the Lipschitz space Lip, ,(u) of (X,d, ) if and only if there
exists a function 1 in the space Lip,(u;9d) of (X,0,u) such that ¢ = ¢ for p-almost every z € X.
M (d) (8)

oreover, |[@lla,q ~ [[¥]la”.

Hereafter, we always let 6 be as in Remark 9.1.
Now we discuss the relation between (1) and Lip,, ().

Proposition 9.2.  Suppose that (X,d, ) is a space of homogeneous type, o € [0,00), p € (1,00) and
q € [1,00). Then E(n) and Lip, ,(p) coincide with equivalent norms.

Proof. Fix a € [0,00) and ¢ € [1,00). By Proposition 6.8(ii), without loss of generality, We may assume

that p = 2. By Definition 6.5, we know that £ (u) C Lip, ,(p) and, for all f € E5(u), ||f||a q < [ fllesqw-
Conversely, by Definition 6.5, it suffices to prove that, for all f € Lip,, q(u) and balls B C S,
mp(f) = ms(N] S WIS KL (S (9:2)

To this end, we consider the following two cases.

Case (I) u(S) <4C(,yu(B), where C(, is as in (1.1). Thus, by this and Holder’s inequality, we have
1
mlf) =ms(NI< ) [ 1) =ms(7ldna [ 1#@) = ms(7)ldn(o)
1/q

S ) 1/q[/lf ()| dp( >] < AL,

which implies (9.2) in Case (I).
Case (II)

u(S) > 4Cyu(B). (9.3)
Now we show (9.2). Let N be the smallest integer such that 2Nrp > rg. Let B, := 2N+t1B. Then
S C B. C 6S, which implies that

p(S) < p(Bs) < p(6S) < [Cppy]’u(S). (9-4)
Furthermore, let B(Y) := B. By (9.3) and (9.4), we see that
p(2NHB) = u(B.) = u(S) > 4C()u(B) > 2u(BY).

Thus, let BY = 2MBO) N, € N, be the smallest ball in the form of 2*B(®) (k € N) such that
w(28B©)) > 2,(B©)). Moreover, by (9.3) and (9.4), we know that rza) < rp, and

u(BW) < Ciyp(27' BY) <20,y n(B?).

We further consider the following two subcases.

Subcase (i) There exists k € N such that u(2°BM) > 2u(BM). In this case, we let 22BN, € N,
be the smallest ball in the form of 2 B!, k € N, such that u(2*B®M) > 2u(BW). Now we divide this
subcase into two parts:

(a) rova gy < rp.. Let B® :=2N2BW Then p(B®) < C(,yn(27'B®) < 2C(,)u(BWY).

(b) rony gy > rp,. Let B := B,. Then u(B®) < 2u(BW)
in this subcase.
Subcase (ii) For any k € N, u(2*BM) < 2u(BW). Let B?) := B,. Then u(B®) < 2u(B™M) and we
terminate the construction in this subcase.

, where we terminate the construction

We continue to choose the balls {B(*}; in this way. Clearly, finally the condition ToNii1 gty K TB.
(7 € N) is violated after finitely many steps. Without loss of generality, we may assume that the process
stops after m (m € NN (1,00)) steps. Then we obtain a sequence of balls, { B®} = such that

(i) B=:BY c...c B .= B,;
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(i) for any i € {1,...,m — 1}, 2u(BU~1) < u(B® ) QCUW( BG=D);

(i) (BI™) < 2C(u(B™ ) and u(S) < p(BI™) < [C Pu(S).
Observe that m < N + 1. Thus, by the fact that S C B, C 65, Holder’s inequality and (i)—(iii),
we have

imp(f) —ms(f)]

NE

< [mpa-u(f) —mpe ()] + |mge (f) —ms(f)]
i=1
< Zu(B(lz 1) /BU_U |f(z) —mpe (f)|du(z /|f — mpom (f)|du(z)

1

.
I

! 1
(10 J 1 =700 V) iy [ 1560) = ()

A
Ms

s
Il
i

1 1/q

1/q
[ ) foy @ = m (D@ [ 100 = mes (D at2)

(BN, + (B I FIEL,
1

+m) (BN NI, S (1 +m)[u6S) (115,
N[O 1S, ~ KPS F1IE,
This finishes the proof of (9.2) in Case (IT) and hence Proposition 9.2.

Remark 9.3.  When a = 0, Proposition 9.2 is just [27, Proposition 4.7] with A(z,r) = pu(B(x,r)) for
all x € X and r € (0, 00).

Now we recall the notion of the atomic Hardy space HE; ?(u) from [11]. Suppose that p € (0,1] and

A
Ms

i=1

A
Ms

S
S

= o
=l

q € [1,00] N (p,00]. A function a on X is called a (p, q)-atom if
(i) supp (a) C B for some ball B C X;

(ii) ”a”L‘l(u) [u(B)]l/qfl/p;

(i) [ a( ) =0.
A functlon f 6 Ll( ) or a linear functional f € (Lip;/,_1(p))* when p € (0,1) is said to be in the

Hardy space Hy; (1) when p = 1 or HZ (1) when p € (0,1) if there exist (p, ¢)-atoms {a;}52, and
{Ai}52, € C such that
F= Xaj,

JEN
which converges in L'(u) when p =1 or in (Lipy /p—1 (1)) when p € (0,1), and
D INIP < oo
JEN

Moreover, the norm of f in HY ?(u) with p € (0,1] and ¢ € [1,00] N (p, 0] is defined by

1/p
Ty :—mf{(Zw) }

jEN
where the infimum is taken over all possible decompositions of f as above.
Coifman and Weiss [11] proved that HY ?(n) and HE *°(n) coincide with equivalent norms for all
p € (0,1] and g € [1,00) N (p,00). Thus, we denote HE; ¥ (1) simply by HE (u).
Let p € (0,1], g € (1,00], v € [1,00) and p € (1,00). Recall that the space HP: 0 (1) is independent

atb, I3
of the choices of v € [1, 00) and p € (1, 00); see Propositions 8.1 and 8.2. Denote Hftg’p( ) simply by
H ;’t’b( ). Moreover, without loss of generality, we may let v = 1/p and p = 2.

Now we show that H”:

Pod(pn) and HY, (p) coincide with equivalent quasi-norms.
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Theorem 9.4.  Let (X,d,u) be a space of homogeneous type, p € (0, 1] and ¢ € (1,00]. Then the
spaces Hf;t’b( ) and HY, (1) coincide with equivalent quasi-norms.

Proof.  Letp e (0,1] and ¢ € (1,00]. We first show that H, (1) C H”?(u). To this end, let f € HE, (u).
Then there exist sequences of (p, ¢)-atoms, {by.}7° |, and numbers, {A\;}32; C C, such that f =377 Apby

in (Lipy /, 1 (p36))" and
P S U - (9.5)

k=1

We then claim that, for each k, A\yby is a (p, q, p, 2), 1-atomic block and
|)‘kbk|ﬁ:€g(u) S Akl (9.6)

Indeed, let p € (1,00) and v € [1l,00). It suffices to prove that, if b is a (p,q)-atom, then b is a
(p,q,1/p,2)x 1-atomic block. Suppose that supp (b) C B(cp, rg) =: B, then

HbHLQ(M) < [,U(B)]l/‘l—l/p.

Let

/q—1
u(pB) " ~(p),p1—1/
= = K ’ p
= [mm} K sl

and

L[ u(B) }1/111 =(p): P11
A=A = Kyhe,
b [u(pB) s 5

It then follows that supp (a1) C By := B, supp (a2) C By := B, b= \a1 + \2aq and, for j € {1,2},
lajl g < lpB) I~ w(B) VPR B P,
which further implies that b is a (p, ¢, 1/p, 2), 1-atomic block and, moreover,
|b|ﬁftg1121/p(u) - |)\1| + |)\2| S 1.

This finishes the proof of the above claim. Moreover, from Remark 9.1 and Proposition 9.2, we deduce that
f=>r0  Aebi in (Spl/pfl(,u))*, which, together with (9.5) and (9.6), further implies that f € Hgtg( )
and || fll ge. oy S 11|z, 0

Now we con51der the converse inclusion that Hf;t’b (u) C HY (). Let b= E?zl Ajajbea(p,q,1/p,2)x 1-
atomic block, where, for any j € {1, 2}, a; is a function supported on B; C B for some balls B; and B
as in Definition 7.1, and

lall oy < (2B I~ u(B) VPR 5174, (9.7)

We consider the following four cases:
Case (I) Forany j€ {1, 2}, * u(B ) < 4C(,), where C,) is as in (1.1);

Case (1) 17 >4C,) and /(D) <4,
Case (IT1) M) <4C(,) and [ > 4C(H),

Case (IV) For any j € {1, 2}, &(g) > 40,
In Case (I), we see that

18]l Laguy < Aalllarllpagey + [Aelllazlizagey < ACuI 1A ] + e u(B)] 97,
which implies that [4C(,)]Y 971 (|A1| + |A2|)"2b is a (p, ¢)-atom and

ITACI (] + [A2)) bl gz, < 1.
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The proofs of Cases (ITI)~(IV) are similar. For brevity, we only prove Case (II).

In Case (II), 5((51)) > 4C,y and /7((1]3’3;)) < 4C(,). We now choose a sequence of balls, {By)}ﬁo with

2
certain m € N, as follows. Let B%O) = B; and By := 2N521v 5B Then B C By C 6B, which, together
with (1.1), shows that
p(B) < p(Boy) < p(6B) < [Cip)*(B). (9:8)

To choose BP, let N1 be the smallest positive integer satisfying ,u(ZNlBEO)) > 2,u(B§O)). We let
Bgl) = 2NIB§O). By (9.8), (1.1) and the choice of Bgl), we have r ;1) <rp, and
1
0 1 150 0
2u(B}") < u(B{Y) < Cyu@ ' BiY) < 20,y u(B).

To choose B§2), if, for any N € N, M(ZNB§1)) < 2u(B§1)), let B§2) := By and the selection process
terminates. Otherwise, let Ny be the smallest positive integer satisfying ,u(ZNQBED) > 2u(B§1)). If
(2)

Tony g 2 TBy) then we let B§2) := By and the selection process terminates. Otherwise, we let Bl2
1

= 2NzB§1). We continue as long as this selection process is possible; clearly, finally the condition
Tonii1 g < TB, is violated after finitely many steps. Without loss of generality, we may assume that
1

the process stops after m (m € NN (1, Ngl{ g +1]) steps. Then we obtain a family of balls, {By)}g’;l,
such that A ‘

(1) B§0) :=B; C B, Bgz) = 2N"’B§271) C B§m) := By C 6B foranyic {1,...,m—1};

(ii) for any i € {1,..., m — 1}, by (1.1) and the definition of N;, we have

2u(B{' V) < u(BY) < 2Cyu(BYY);

(iif) p(B{™) < 200 u(By~) and p(B) < p(B™) < [Co*u(B);

(iv) from the above selection process and the definition of K 5321)” &, we conclude that

m< NG g+ 1< [1+Ng) ]V KRG = [ColP. (9.9)
Let ¢ := Cyay. For any ¢ € {1,...,m}, let
_ Xp® _
G oo | st
For i € {1,...,m}, we claim that
[Ei—1llpagey S [w(BYVOY?P (9.10)
and
Gl Loy S [(BY)] 9P, (9.11)

where the implicit positive constant is independent of éb and hence By, By and B. Indeed, we prove (9.10)
and (9.11) by induction. By (9.7), B§1) S By C 6B, (1.1) and (ii), we have

~ 0 - - ~(2),p1— 1 _
[Zoll gy S (@B (B =P[R B~ e /e < [( B Y a1/,

For i = 1, by Holder’s inequality, (9.7), B;l) S By C 6B, (1.1) and (ii), we conclude that

@0 pagey < l(BEY I (B9 Char || Lo
< BV (B Y a2 B Y (B)) VPR ) B e
S (B,

Moreover, by (ii) (if m = 2, we use (iii)), we have

~ 2 _
@1 oy S (B a=1/r,
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Now, we assume that (9.10) and (9.11) hold true for ¢ € NN [1, m). It then follows, from Holder’s
inequality, (9.11) and (ii) (if i + 1 = m, we use (iii)), that

[u(BYFY Y4 (B Y& | g
(B Y=L (B ey (BO)| Va1 < [u(BiFL) a1/

lCit1llLaguy S
S
and, moreover, if ¢ + 1 < m, we further have

lcivillLam S [u(ByT2) et

By induction, we conclude that (9.10) and (9.11) hold true.
For i € {1,...,m}, let cz .= [C]71(¢i—1 — &), where C is a positive constant to be fixed later. Then

supp (¢;) C 23(1) and [ ¢;(z)dpu(xz) = 0, which, together with (9.10), (9.11) and (1.1), implies that ¢; is

a multiple of a (p, ¢)-atom associated with the ball 2B; () provided that Cis large enough. We now write

CA
b= 12 i + Acm+>\2a2

Let cm+1 = [~(|)\1| + |)\2|)]*1(2\11 Cm + A2az). Notice that [, b(z)du(x) = 0 and, for each i € {1,...,m},
Sy cilz = 0. It then follows that [ ¢pq1(2)dp(z) = 0. On the other hand, we have supp (¢,) C
2B§m) C 12B =: B, u(B’) ~ u(B) and supp (az) C B2 C B’. By (9.11), (iii) and u(B’) ~ p(B), we have

@l zage S (B2 S [u(BY] 4=,

From (9.7), ;7((332)) <4C ) and p(B') ~ pu(B), it follows that

_ A 2), )
lasll ooy S (@B Y4~ u(BY VP[RS EI P < [u(BY)] M,
Let C be a positive constant, which is independent of C, and m, such that
HCiHLq(M) < é[u(Bi+2)]1/q_1/p

for each i € {1,...,m}, and

A
Al Cm + A2a2
b

< C(Aal + o) (B et e,
La(p)

Then we see that ¢,,+1 is a (p, ¢)-atom associated with the ball B’. From this and (iv), we conclude that

O & ~
b= 51 Zci + C(|A1] + [Xe])ems1 € HE (1)

b =1
and

AP
16117,y S 2 [Cl] + (Al + P2} S (Al + 2P ~ b5, 0

where the implicit positive constant is independent of éb and m.
Moreover, for any f € Hutb( ), by Definition 7.3 with v = 1/p and p = 2, we know that there exists a

sequence {by }xen of (p,q,1/p,2)x, 1-atomic blocks such that f =), bk in (Epl/p_l(u))* and

Z| k|HP Q( ) ~ ||f||Hpﬁ?(H) (913)

keN

(9.12)

For each k, assume that by = Ag 1ar,1 + Ak, 2ak,2, where supp (by) C By, supp (ar,j) C B, ; for
j e {1, 2}. Let [@]P = f(gg’ﬁBk. From Remark 9.1 and Proposition 9.2, (9.9), (9.12) and (9.13), we
deduce that

A O, ~
EDIUED S b DR WER P e
i=1

keN keN
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in (&7 (1)* = (Lipy /1 (1:))* and

>y

keEN Fi=1

p
Ak, 1

~

Pl < A < |I£II% )
+ (k1 + A, 2]) ] S %m}mm S5

This implies that f € HE (1) and || f|| gz () S ”f”ﬁ,féf(u)’ which completes the proof of Theorem 9.4.

Remark 9.5. (i) Theorem 9.4 implies that, if (X, d, u) is a space of homogeneous type with

Ae,r) = p(B(x,r)

for all z € X and r € (0,00), then ﬁ;tb(u) and H}, (1) coincide with equivalent norms. We notice that
it is not a paradox of the example given by Tolsa [54, Example 5.6] since A(z,r) ~ r for all z € X and
r € (0,/2], which is not equivalent to u(B(z,7)) ~ r2, in that example.
(i) Let p € (1,00), v € [1,0) and ¢ € (1, 00]. Combining Theorem 9.4 and Remark 7.4(ii), we obtain
Hyi ) = Ha ) = Hi 3 )

atb, p atb, p

over spaces of homogeneous type.
(ii) From Theorem 9.4 and [11, Theorem Al, it follows that H%?(x) is independent of the choice of ¢

in spaces of homogeneous type with A(x,r) := u(B(x,r)) for all x € X and r € (0, c0).

—~

10 Relation between HZ;" (pn) and HJ (p) over RD-spaces

In this section, we investigate the relations among ﬁ;’t’g:;(u), ﬁﬁlbq; “(u) and HE; %(u) over RD-spaces.

As a corollary, the relations among ﬁ;’t’g,’;(u), ﬁﬁl’}f”;’e(u), HP(RP), ﬁ;’t’g:;(u) and ﬁﬁ;}g’;’e(u) over
Euclidean spaces (R, |- |) endowed with the D-dimensional Lebesgue measure dz are also presented.
Let (X,d, 1) be a space of homogeneous type with \(x,r) := u(B(z,r)) for all z € X and r € (0, 00).
The following notion of RD-spaces was introduced by Han et al. [22]. A space of homogeneous type
is called an RD-space if there exist constants x € (0, v] and C € [1, 0o0) such that, for all € X,

r € (0, diam (X)/2) and A € [1, diam (&X)/(2r)),
CIN(B(2,1)) < (Bl Ar)) < OX p(B(z, 1), (10.1)

where diam (X) := sup, ,cy d(z,y) and v := log, C(y) is as in Section 1. We point out that the RD-space
is also a space of homogeneous type. In the remainder of this section, we always assume that (X,d, p) is
an RD-space with p(X) = oo and let V,.(z) := u(B(x,r)) and V(z,y) := pu(B(z,d(z,y))) for all z, y € X
and r € (0, 00).

The following space of test functions on X was introduced by Han et al. [21,22]. Throughout this
section, we fix 1 € X.

Let 8 € (0,1] and v € (0,00). A function f on X is said to belong to the space of test functions,
G(B,7), if there exists a non-negative constant C such that

(A1) for all x € X,

~ 1 1 K
<C ;
OISOy ) 4 Vi o) [1+d(a:1,a:)}
(A2) for all o, y € X satisfying d(z,y) < (1 + d(x1,x))/2,

d(z,y) 1

=g <[, 0 1 ) v [

Moreover, for f € G(8,7), its norm is defined by

I fllg(s.) := inf{C : C satisfies (A1) and (A2)}.
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The space _C’:(ﬁ,'y) is deﬁneda as the set of all functions f € G(3,v) satisfying [, f(x)dy(x) = 0.
Moreover, we endow the space G(3,~) with the same norm as the space G(8,~). Furthermore, G(3,7) is
a Banach space.

For any given e € (0, 1], let ég(ﬁ,y) be the completion of the set QD(G, €) in g“(ﬁ,y) when 3,v € (0, €.

Moreover, if f € G§(8,7), we then define || f| GeB) = 1fllg(p,)- We define the dual space (G5(B,7))" to

be the set of all continuous linear functionals £ from gg (8,7) to C, and endow it with the weak™* topology.

Suppose that €; € (0,1] and €2, €3 € (0,00). Let {Ds}ie(0,00) be a family of bounded linear operators
on L?(u) such that, for all t € (0,00), Dy(x,y), the kernel of Dy, is a measurable function from X x X
to C satisfying the following estimates: There exists a positive constant Lo such that, for all ¢t € (0, 00)
and all z, 7, y € X with d(z,7) < [t + d(z,9)]/2,

(A3) |Dy(z,y)| < Lo V,,(gc)+Vf,(1y)+V(:E,y2 [t+d€x7y)]62§

(AL) |D(,y) = D@ )| < Lol L)1 viay v+ vy Lty

(A5) Property (A4) also holds true with the roles of  and y interchanged;

(A6) [y De(w,y)dp(z) = 0;

Now we recall the following Calderdn reproducing formula which is a continuous variant of [22, Theo-
rem 3.10]. Hereafter, we let a A b := min{a, b} and a V b := max{a,b} for all a, b € R.

]63.
)

Lemma 10.1.  Let € := 1, €2, €3 € (0,00), € € (0,e1 A€e2) and {Di}ie(0,00) be as above. Then there
exists a family {Di}ic(0,00) 0f linear operators such that, for all f € ég(ﬁ,y) with B, v € (0,¢),

[= /Ooof)tDt(f) Cit

in _C’;S(B, v) and in Li(p) for all ¢ € (1,00). Moreover, the kernels of the operators D, satisfy the conditions
(A3), (A4), (A6) and (AT) with €1 and €3 replaced by € € (e,€e1 A €32).

To the best of our knowledge, the following useful property is well known but there exists no complete
proof. We present full details here.

Lemma 10.2.  Let €1 be as in (Ad), e € (0,e1], 8, v € (0,¢] and ¢ € (1,00). Then ég(ﬁ,y) is dense in
Li(p).

To prove this lemma, we need the following two technical conclusions. Hereafter, for any e € (0, 00),

we denote || - ||£d), which is as in (9.1) with ¢ and « replaced respectively by d and ¢, simply by || - ||.

Lemma 10.3.  Lete € (0,1], F be a nonempty closed set and G an open set containing F'. Then there
exists f € Lip.(p) such that
f=1on F, supp(f)CcG, 0<f<1 on X,

where, for any set A C X, A represents the smallest closed set containing A.

Proof. For z € X, let
d(x, G%  7°
d(x, F)+d(z, GC)

here and hereafter, for any two sets A, B C X, AC = X\ A and

fz) =

d(A, B) :=inf{d(a,b) : a € A and b € B}.

It is easy to show that f has all the required properties in Lemma 10.3 with || f]|. < a which

1
(F,GO)e”
completes the proof of Lemma 10.3.

Moreover, we have the following conclusion.

Lemma 10.4. Let e € (0,1]. For any ball B(xg,19) and n € (0,00), there exists

h € Lip, ,(p) == {f € Lip (1) : supp (f) is bounded}
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such that
supp (h) C (B(xo,ro))c, /Xh(x)du(x) =1 and |[hllLe) <7
Proof.  For any k € N, let Fj, := B(xo,k+ ro+ 1)\B(xo,70 + 1) and
Gy = B((Eo, k4 ryg+ 2)\3(1’0, 7’0).

From [22, Remark 1.2(i)], it follows that Gy D F} # 0 for some sufficiently large k. By Lemma 10.3 with F’
and G replaced by Fy, and Gy, respectively, we conclude that there exists hj, € Lip,(p) (||hk|\6 < 1) such

that Ek =1 on Fj, supp (%k) C G and 0 < hk 1on X. Let hy := }J]Z’ where J}, = fx hk Ydp(z).
Then [, hi(z)dp(xr) =1 and

Ji = /F dp(x) = p(B(zo, k + 1o + 1)\ B(zo, 70 + 1)). (10.2)

We only need to show that limy_; oo Hhk”%q(m = 0. By (10.2) and 0 < hy < 1 on X, we have

1 w(B(xo, k +ro+ 3)\B(xo,70)) 1
P S 1w(B(zo, k +ro + 1)\B(zo, 10 + 1)) [W(B(zo, k + 10 + 1)\B(z0,70 + 1))]77"

Noticing that p(X) = oo, we obtain

[~k

1
li =0,
Koo [u(B(zo, k + 70+ 1)\B(zo, o + 1))]a-1
which reduces the proof to the fact that
Jim sup w(B(zo, k + 1o + 3)\B(z0,70)) <c
kooo M(B(xo,k+710+ D\B(x0,70 + 1))
where C'is as in (10.1).
Indeed, from p(X) = oo and (10.1), we deduce that
Jimn sup w(B(zg, k 4+ ro + 3)\B(x0,70))
koo M(B(zo, k+ 1o+ 1)\B(x0, 70 + 1))
B B 1
<1+ limsup w(B(zo, k +ro + 3)\B(xo, k+ 19+ 1))
koo M(B(zo,k+ 1o 4+ 1)\B(z0,70 + 1))
C(Ftrot3yy _11u(B(xo, k410 + 1
1 g OGN Bl ko 1) _
k—s 00 /L(B((Eo, k+ro+ 1)\3(1’0, ro + 1))
where v and C are as in (10.1). This finishes the proof of Lemma 10.4.
Now we are ready to prove Lemma 10.2.

Proof of Lemma 10.2. By some arguments as in [22, p. 19], we know that

Lip, (1) = {fe Liveo(): [ f(x)du(x)—o}cé<e,e>cg°5<6,v>cL2<u>.

Thus, to show Lemma 10.2, it suffices to prove that Loip@b(u) is dense in L7(u). By the fact that
Lip, () is dense in L9(u) (see, for example, [22, Corollary 2.11(ii)]), we know that, for any n € (0, c0)
and f € L9(u), there exists g € Lip, ,(u) such that [|g — f|pe(u) < 1/2. Now we show that there exists
g€ Loipej () such that H§ — fllza(w) < n. We consider the following two cases:

Case (i) [, g(z = 0. The result holds true immediately.
Case (ii) fXg = A #0. Let a ball B(xo,ro) D supp (¢9). By Lemma 10.4, there exists
h € Lip, ,(u) such that supp (h) C (B(x0,70)) fx =1 and ||h| Lagy < 2‘74‘, which implies

that g :== g — Ah € Loipe,b(u) and

15 = 9llzagey < Nf = gllzagn + 1AllAl gy < RV =1

2IAI
This, together with Case (i), finishes the proof of Lemma 10.2.
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Recall that the Littlewood-Paley S-function S(f)(z) for any f € LI(u) with ¢ € (1,00) and z € X is
defined by

du(y)dt }1/ ?

aﬁuw={A@JmumeW@H

where
I(z) :={(y,t) € X x (0,00) : d(y, z) < t}

generalizes the notion of a cone with vertex at = and aperture 1.
In RD-spaces, Han et al. [21] introduced the Hardy space HP(u) defined by

HP () := {f € (G5(8,7))" : S(f) € LP ()}

endowed with the quasi-norm

”f”HP(u) = HS(f)HLP(M)-

Moreover, Grafakos et al. [19] proved that HY (X) and HP(u) coincide with equivalent quasi-norms.
Before dealing with the relation between H[" (1) and Hy, (11), we need the following construction of

dyadic cubes on spaces of homogeneous type from [7]; see also [21].

Lemma 10.5. Let X be a space of homogeneous type. Then there exist a collection
{(Qhcx:keZ Beli}

of open subsets, where Ij; is some index set, and positive constants 6 € (0,1) and Ly, Lo such that
(i) u(X\Upg Q) = 0 for each fixed k, and Qf N Q% =0 if 3 # ;

ii) for any 3, «y, k and [ with [ > k, either le c Qg or le N Qg = (;

iii) for each (k, 8) and each I < k, there exists a unique 7 such that Qg C Qi,;

iv) diam (Qg) < L%,

v) each Qg contains some ball B(z’ﬁ“, Lyd%), where zlg eX.

~ o~~~

We further introduce some notation from [21]. Let
R:={Q5CX:keZ Bel}.

For any k € Z, let Qi := {x € X : S(f)(z) > 2*} and
R = {QE R u(QNR) > Lu(@) and W@ Dir) < Q).

Moreover, for any Qg €R, let

Q\g ={(z,t) € ¥ x (0,00) : x € Q’g. and L10% <t < L6871},
Rie :z{QERk:if@DQandCNQER, then@%Rk},

and, for any Q¢ € R},

= |J @

QERL, QCQy*

here and hereafter, “mc” means mazimal cubes.
We need the following useful lemma.

Lemma 10.6. Letk, j€Z and k < j. Then

(LY @)y &)

QII;ICERII:C ijnc ERIJ_DC
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Proof. Let k,j € Z and k < j. To prove this lemma, it suffices to prove that, for any two dyadic
cubes @ and P satisfying @ € Ry, Q@ C Q)'° € R, P € R; and P C Q' € R}, it holds true that
QNP = (). We prove it by contradiction. Suppose that Q N P # (. Then QNP # (). By Lemma 10.5(ii),
Q C Por P C Q. Without loss of generality, we may assume that () C P. Let @ = Q' and P = Q7 for
some m, n € Z, B € I, and v € I,,. If m # n, then Q NP = (), which contradicts to the assumption that
CAQ np # (). Thus, m = n, which, together with Lemma 10.5(i), implies that QF = QY. Moreover, from
Q € Ry, it follows that pu(Q N Q) > ;/.L(Q) and 1(Q N Qpy1) < ;M(Q). On the other hand, by P € R,
we see that u(P N Q) > Ju(P) and p(P N Q1) < spu(P). Meanwhile, k < j implies that Q; C Q441
and hence p(P N Qgy1) > éu(P). Thus, P # @, which contradicts to the fact that Q@ = QF = Q) =P
This finishes the proof of Lemma 10.6.

Now we introduce some useful decompositions of l~)t(a:, y) in Lemma 10.1 which are easy consequences
of [22, Proposition 2.9], the details being omitted.
Lemma 10.7. Let ¢; € (0,1], €2 € (0,00), € € (0,¢1 Aea), € € (¢,€1 A €2) and {5t}t€(0,oo) be as in
Lemma 10.1. Then, for any N € (0,¢], t € (0,00) and x, y € X,

o0

Dy(z,y) Z Mg (,y),
=0

where pqey(z,y) is an adjust bump function in x associated with the ball B(y, 2°t), which means that there
exists a positive constant C such that, for all t € (0,00) and y € X,

(i) supp (wars (- 9)) C By, 2°1);
(ii) |paes(z,y)| < CV2e1(y) for all x € X;
(ii) oo p)lle < CRUY™, L for all 0 < g <&
2l y)
(iv) [y waei(z, y)dp(z) = 0.
Then we introduce a useful criterion for the boundedness of some integral operators. Hereafter, we
denote the inner product of L?(u) by (-,-).

Lemma 10.8.  Let Ky(:,-) fort € (0,00) be a measurable function from X x X to C and {K¢}ic(0,00)
a set of L*(u)-bounded linear operators defined by

/ Ki(z,y)f(y)du(y) for all t € (0,00), x € X and f € L*(p).

If there exist positive constants €1, €2 and C such that, for all x, y € X and s, t € (0,00),

1

t 2
'm“ﬂ”gcmumwuw+vww[uwuwﬂ’ (103)

and

(10.4)

t 1 tV
Kkl <c(fn] P

t) Vivs(®) + Vivs(y) + V(z, y) tV8+d(x7y)} ’

where K[ denotes the adjoint operator of K. Then there exists a positive constant C such that, for all
feL?(p), B
IG(z2y < CllfllL2(u)

aue ={ [ miper )

Proof.  For any f € L?(u1), by Fubini’s theorem, we write

1G22 = (G //‘mz @ % du(a)

where, for all x € X,
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oo N
[ [ isn@Put) ) = gim [ . K)
0 X

N—o00 1/N t

dt
t

N
— lim / N /X K7 Ky(f) () () du(e)

N—o00

. N dt , N dt
= Jim K{K(f)(@) | f(z)du(z) = lim KiK«(f), . f)-
—oo Jx 1/N t N—o00 1 t
Moreover, from (10.3), (10.4) and the Schur lemma (see [17, p.457]), we deduce that, for all s, ¢ € (0, 00),
K} and K}* = K are bounded on L?(x) and

* * * t S !
| KK KK 2y -2 ) S KK 2 n20) S <5 A t> :

By the above two inequalities and [18, p. 237, Exercise 8.5.8], we conclude that

K{K(f)

2 < T
HG(f)||L2(H) < 1}\r]n1nf U ,

— 00

’N dt

If 12y S IFINZ2 00
L2(p)

which completes the proof of Lemma 10.8.

Before showing the main result of this section, we introduce another technical lemma which gives a
sufficient condition to the fact that f = g in L?(u) for all f, g € (G§(3,7))*.

Lemma 10.9. Let €; be as in (A4) and B,y € (0,e1). If f, g € L*(n) and f = g in (g“g(ﬂ,y))*, then
f=gin L)
Proof.  For any f, g € L*(u), let

(f.9) = /X f(@)g(@)dp(z).

Now we claim that (f,-) is a bounded functional on G§(3,~) C L2(x). Indeed, by (A1) and Holder’s
inequality, we conclude that, for any f € L?(u) and h € g°5 (B,7),

I(f.1)] < /X (@) h() | dpu()

1 1 K
< Irllocen /X Vi) + V (a1, ) [1 +d(z, xl)} (=) ldu()

Stz | [ {00 v | +d(1x,x1>]v}2d“(”)]

S Ihllgsmll Fllzz

1
2

1

. {/B(zl,l) {Vl(lxl)rdﬂ(x) - Vl(lﬂ?l) /X\B(zl,l) V(xllaa?) {d(ﬂ%lxl)]%dﬂ(x)}z

1

which implies the claim.
From this, a density argument, Lemma 10.2 and f = g in (G§(5,7))*, it follows that

If = glle2u) = sup{|(f — g, W[ = 1Bl L2y < 1}
= sup{|(f —g,h)| : h € G5(B,7) and ||| 12 < 1}
= sup{|(f,h) = (9. 1)| : h € G5(B,7) and ||k p2(uy < 1} =0,

which completes the proof of Lemma 10.9.
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Now we are ready to prove the following main result of this section.

Theorem 10.10.  Let (X,d, p) be an RD-space with p(X) = oo, i <p<s<1l<g<2pe (1, 00),
v € [1,00) and € € (0,00), where v is as in (10.1). Then ﬁfx’l’}g’;’e(u), H”®7 (1) and HP, (1) coincide

atb, p
with equivalent quasi-norms.

Proof.  Let p, q, p, v and € be as in assumptions of Theorem 10.10. We first claim that HZ, ()N L?(u) is
dense in H}, (p1). Indeed, for any f € Hy (1), by Theorem 9.4, we have f = 377, A;b; in (Lipy 1 (1)),
where {b;}; is a sequence of (p,2)-atoms, supp (b;) C B; for some ball B; and ||b;||r2(.) < [(B;)]Y/21/P.
Let fy := Zi\il A\ibi, N € N. Then fy € L?(u) for all N € N. Meanwhile, f — fy = Z;’iNH Aib; in
(Lipy /1 (p)*, and || f — fN”Z;I,ft(u) < YN AP = 0as N — oo. Thus, HE (u) N L?(p) is dense in
HP, (1), which completes the proof of this claim.

We easily observe that L2(1) C (G5(8,7))*. By [19, Remark 5.5(ii)], we know that H? (u) = HP(u)
with equivalent quasi-norms. By this, the above claim and a standard density argument, to show Theo-
rem 10.10, it suffices to prove that

(HZ, (1) N L2 () C HZ 27 (1) € HEWE () © (HP (1) 0 L2 (1)),

We show this by two steps.

Step 1.  Now we show that (HE, (1) N L?(u)) C ]ﬁlg;g:;’(u). By Remark 3.3(iii) and ¢ € (1, 2], it suffices

to show that (HZ (u)NL*(u)) C ]ﬁlg;g:;(u). To this end, by Lemma 10.1 and an argument similar to that

used in the proof of [22, p. 1524, (2.30)], we know that, for any f € (_C’:S(ﬂ,'y))* with 0 < 3, v < e < 1Aeq,
€3 € (0,00) and € € (¢,1 Aea) (e2 and €3 are as in (A4)),

TEEDIE0 DD Dl MR L TG R L TCR R

=0 kEZ Qe eRYC

where ¢qe,(2,y) is as in Lemma 10.7. Then we show that, for any f € HE (1) N L?(p),

mc mc e t
kEZ QPCER], k

> du(y)dt
=32 S [ entenninwm M w2, (10.5
£=0
By Lemma 10.9, it suffices to prove that

Z 2~ Z Z /~ paet (- y) De(f) () dﬂ(?)dt

< Q.
L2(p)

mc

=0 kez Queerme ” Qx

To this end, for any =, y € X, t, s € (0,00) and f € L?(u), let

oo (f) (@) = /X o, ) f(2)du(2).
Then
() (x) = /X a2 2) f(2)du(2)

and

05t (T,Y) :=/Xsazet(z,w)<p21t(z7y)du(2)-

By a duality method, Lemma 10.2, Fubini’s theorem, Holder’s inequality, Lemma 10.6 and [21, Proposi-
tion 2.14], we obtain

Z 2~ Z Z /~ Paee (- y) De(f) () du(?)dt
£=0

keZ QeeRme Y Qi

L2(p)



378 Fu X et al. Sci China Math February 2015 Vol. 58 No.?2

du(y)dt
= (e s [ et )
12l L2 ) <1 keZ QreeRrme Y QR
heds(8:7)
N du(y)dt
= w32 S ([ taininm )|
Pllp2 0 <11 =g kEZ QreeRIe e
hegs(B,7)
_ du(y)dt
- s s ] e oo |
Pll2 0 ST =0 kEZ QreeRIe
hegs(B,7)
—N¢ du(y)dt
< sup 22 >y _ paer (@, y)h(z)du(z)| De(f)(y)
”h“L2(“)\ /=0 kGZQmCERmC [,:C X

1/2 1/2
o Sl [ [ ain) | [ [ oo a)
”h”L2<m<12 -0

NC/2 NZQ th Yz
s s Soaverf [T aog)p Yaun )1l

7llL2 0y <L =0

where, in the third equality of the above equation, we used the fact that, for any Q¥ € R, f € L?(u)
and h € G5(8,7),

0i= [ [ lesla ) M@IDUHG Y duy)d(z) < .

Indeed, let Q3¢ := Qgg for some ko € Z and some Sy € Ij,. By Fubini-Tonelli theorem, Lemmas 10.7(i)

and 10.7(ii), and (A1), @glc C QZ‘; x (0, L16%0~1] (see [21, p. 1524]) and [21, Proposition 2.14], we conclude
that

dt

, dn(y)

o= [ [ / |¢zzt<x,y>||h<x>|du<x>}|Dt<f><y>|

Qe

|h(x)] dt
: /NZ’C [/B(y,ﬂt) Vaei (y) du(x)} DN t dply)

1 dt
S PO duty

(
(1331) [/ch itdu(y)} v {[ﬂ D)) itdﬂ(y)] 1/2

1 dt 1/2
< Hh"gué(ﬁﬁ)vl(xl)[ (Qko 14 §ho— 1 1/2|:/ / |Dt 2 (y):|

1
HICRINY (21)

~ |

1

Iz (QkO)L 52 £l 2y < o0,

which implies the desired result.
Let

00 1/2
s ={ [ e mwe |

for all y € X. To prove (10.5), we only need to show that

[@e(M) L2y S NPllE2(u)s (10.6)

where the implicit positive constant is independent of £.
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By Lemma 10.8, we need to show that {ya¢;}1e(0,00) satisfy (10.3) and (10.4). From Lemma 10.7, we
easily deduce that (10.3) holds true for {(a¢;}iec(0,00)- Thus, it suffices to show that, for all =, y € &,
s, t € (0,00),

|(27NZ/2802/-’7:)* (27]”/2502‘-’3)(% y)l

<<t/\s>" 1 { tVs }N/Q
~M\s  t) Vivs(@)+ Vivs(y) + V(z,y) [tV s+ d(x,y) '

Due to the symmetry of ¢ and s, without loss of generality, we may assume that s < ¢t. Thus, we only
need to show that, for all z, y € X', 0 < s <t < o0,

S

* . ’ N/2
Papaes (@ 0)| 5 W(t> Vi) + Vily) + V() [Hdww} '

By Lemma 10.7(iv), we write

(e ats (@, 9)] < /X (oet (2, 2) — 9aea(y, )2 (2, 9)]du(2)

< |p2ee (2, 2) = 200 (y, ) |lpaes (2, y)dpu(2)

/{zeX:d(z,yK QZH;(”:’H) }

+ / (@32, 2) [ aes (2, ) d(2)
(2€X:d(z,y)> 2 AV '

+ [@oei(y, ) laes (2, )| dp(z)
! {zEX:d(z,y)>2[t+;(x’y)}

=1 +L+1s.

We first estimate I;. Observe that, if z € B(w,2%) and 24“‘;(”’1’) > d(y,z) = d(z,y) — d(z, z), then
y € B(x,22t); if d(z,y) < 2¢+%¢, then

. N/2 . N
(i)™ k) 27
t+d(z,y) t+d(z,y)) ~

From the above two facts, Lemmas 10.7(i)-10.7(iii) and Remark 2.4(ii), it follows that

XB(y,Qfs)(Z)
I < ne d n d
1S /{zE/Y:d(z,y)gze”‘;(””’y)} @2t (s @)llaldly, 2 "Xp w22 ()3 =y dinl2)

</ 1 XB(x,QeJrzt)(y) nXB(y,Qes)(z)
~ {zEX:d(z,y)S2Zt+g(x’y)} (QZt)'f] ‘/2‘415(33) ‘/2‘7'5(:1/)

< (s)"/ XB(z,2¢+2t) (Y) XB(y,2¢5)(2) du(2)
13 {zEX:d(z,y)<2£t+g(m’y)} ‘/2Z+2t(x) ‘/QZS(y)

- <5>n XB(z,2¢+21) (V)

~ A\t V2e+2t(l‘) + V2e+2t(y) + V(J?, y)

$2(3) iy v+ Vi L+ dix,m]m'

(2's) (=)

Now we turn to estimate Is. Observe that, if {z € X : d(z,y) > 2Zt+g(x’y)} # 0 and z € B(z,2%)
N B(y,2), then y € B(x,27'¢) and 1 < (§)7. By the above facts, Lemmas 10.7(i) and 10.7(ii), and
some arguments similar to those used in the estimate for Iy, we further have

XB(z,2¢0) (2) XB(y,2¢5) (%)

I, < / dp(z
{zEX:d(z,y)>2lt+g(m’y)} ‘/2['15(]") ‘/QES(y) ( )
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< XB(x,24+1t)(y)/ XB(y,zfs)(Z)du(z)
Voer1y ((E) {zeX:d(z,y)>2et+‘é(x’y) } Ve (y)

<(1) 1

~ A\t ) Vorry (@) + Ve (y) + Vi, y)

S 1 t N/z
< 9N¢ )
- (t) Vi(@) + Viy) + V(z,y) L+ d(x,y)]
For I3, by some arguments similar to those used in the estimate for Iy, we see that
I < XB(z,2¢t)(Y) / XB(y,2¢t) (%)
‘/2“( ) {ZEX:d(z,y)>2M+Z(‘T’y)} ‘/ées(y)
() vy i v o]
~ t) Vi(x)+Vily) + V(z,y) [t +d(z,y)
Combining the estimates for Iy, I and I5, we finish the proof of (10.6) and hence (10.5).

Moreover, from the proof of [21, Theorem 2.21], it follows that, for any f € HE, ()N L?(p), there exists
a positive constant L3 such that

f= ZZ_NEZ Z /\chanc in L%(u),

keZ cheRmc

dp(2)

where

1/2
e = Lalupe 2| [ pne )

Qe = Q. BP® = B(z, (5 + 1)L126*) and, for all z € X,

1 dp(y)dt
¢ .
agpe(x) : )\ég;;m ;

| eralenDilhHw)

is a (p,2)-atom supported on B;*°. By an argument similar to that used in the proof of (9.6), we
Thus, f €

further conclude that a%.me is also a (p, 2,7, p)a-atomic block and |a%me
Qk Qk

H;p ) () and

N < |\
a2y S Agpel-

g2 10 S 170
which completes the proof of Step 1.
Step 2. In this step, we show that Hp;;g’p( ) C Hﬁ;g’;” (n) C (HP(u) N L?(w)) for any q € (1,00).

By Proposition 4.3, we see that Hp;;g’p( ) C Hfﬁg’;” (u) for any ¢ € (1,00). Thus, to prove the desired

conclusion, it suffices to show that Hﬁ;g’;” () C (HP(u) N L%(p)) for any q € (1, 00).
We first reduce the proof to showing that, if b is a (p, ¢, 7, €, p)»-molecular block, then

S®) € 17 and  [S®)lrgo S g eg: (10.7

Indeed, assume that (10.7) holds true. For any f € Iﬁlﬁ;g:;‘(u), by Definition 4.1, we know that there
exists a sequence {b; };en of (p,q,7, €, p)x-molecular blocks such that f =377, b; in L?(u) and

[e e}

Z |b |HP qs ’Y E(/"’) ||f||HP a7, 5 'u) (108)

‘ mb mb, p
i=1

Notice that Dy(y,-) € L?(u) for any y € X and t € (0,00). Thus, for any y € X, we have

|Dt( )( )|_|(Dt y7 7 Z|Dt y7 7 i Z

i=0 =0
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From this, the Fatou lemma, (10.7) and (10.8), we deduce that

o0

[ee]
< P
”S LP(H) ZHS LT’(H) ;|b1|ﬁg>b?,pw,e( ) ||f||Hp q, 'Y 5(1)
which completes the proof of Step 2.

Now we prove (10.7) by following the ideas of the proof of Theorem 4.8. For the sake of simplicity,
we assume that v =1 and p=2. Let b= Y77, Z;Vi"l Ak, jak, j be a (p,q,1, €, 2)y-molecular block as in
Definition 4.1 with v = 1 and p = 2, where, for any k € Z; and j € {1,..., My}, supp (ax,j) C By, ;
C Ug(B) for some By, j and Ug(B) as in Definition 4.1. Without loss of generality, we may assume that
M = M in Definition 4.1. Since S is sublinear, we write

oo (-5 M
150 <3 [ [5( 3 M) @) duta)
¢=5 "7 Ue(B) k=0 j=1
[e%e] +4 M
+Z/ S( Z)\kjmkj) d,u()
¢=5 7 Ue(B) k=t—4 j=1
o) M 4
+z (2 s ) )+ Y [ iSO
Ue(B) k=0+5 j=1 ¢=0 7/ Ue(B)

=1+ 1T+ III+1IV.

Now we first estimate III. For any = € U;(B) and £ € NN[5,00), by the Minkowski inequality, we see that

5< i f: /\k,jmk,j> (x)

k=045 j=1

> iIA’”'{/M [/X 'm’fvj@”Dt(y,z>ldu<z>rdg;(é))it}m

k=0+5 j—l

(]2 o dp(y)dt 1/2
H+5;|Am| L L mstRog 2 ] e
e’} M

<D gl/ m,  (2)|[Mi (2, 2) + Ma(z, 2)]du(2),

k=0+5 j=1

where, for all z € X and z € By, ; with k e NN[{ +5,00) and j € {1,..., M},

dpu(y)dt]"/?
M (z,z2) = . |Di(y, 2)I”
(@)
(5, )€ XX (0,00):1< d(a;,z)} ‘/t(x)t
and
du(y)dt]"*
- 2
M (z, 2) = [ o | D (y, 2)] Vi(z)t

{(y, Dexx(0,00):> 1523

For any z, y, z € X satisfying d(y,x) < t and t < d(z, z)/2, it is easy to see that

Ay, 2) > dz, ) — d(y,z) > d(z,2).

It then follows, from this, (A3) and (10.1), that

iy [ o ) o) 4] 5
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and

5[ L U W) st
2

5v<;,z>[/d:,z>/z[<(2t>2ﬂ]t ] ST

Moreover, by z € By, ; C 28P2B\28 2B, k > (45, x € 272B\272B, we have d(z,cp) < 2"rp,
d(z,c) = 28 "2rg > 243rp and

d(x,2) > d(z,cp) —d(x,cp) = 3y — o2 — o2, d(z,cp),
where c¢p and rp denote the center and the radius of B, respectively. Thus, for all x € X,

( S S ) 5> Dw Il (10.9)

k=0+5 j=1 k=0+5 j=1

From (10.9), Holder’s inequality, (4.1) and (10.1), we deduce that

—~

1
A P d . pl
| k7]| /UZ(B) [V(CL’,CB)]p /J/(x)HkaHL (p,)

‘/21€+2TB (CB)
Vae-2 (cB)]P

III

WK
WE

j=1

~
Il
o
I
I
~
i
IS)
<
Il

[M]¢
NE

Ak, 517 vk, 517 oy [ (B, )17

T
<
i
~
-+
o
~
I
—

|>‘k,j|p[‘/2‘+2r3 (CB)]lip2ikep[>\(CB, 2k+27“3)]p71

NE
M=

T
<
i
~
-+
o
~
I
—

hE
NE

M oo k-5
2—kep|>\k Z Z Z k€p|>\k
j=1 k=10 (=5

co M
k2~ kep|>\k ]|p S ZZ |>\k ]|p |b|%p,q,1,€(
10 k=0 j=1 mbs 2

~
Il
o
I
I
~
i
IS)
<
I
—

Mz
WK

, w

k

<
Il
—

In order to estimate I, for all x € X', we write

{—5 M

s < Z Z Ak, jmk,j) ()
k=0 j—1
L L EE im0~ om0
{/ /X:sz;/\k i, (2)De(y; cp)dp(z) d‘i((i:))it }1/2 =: Mz (z) + My(z).

To estimate Ms(x), by the Minkowski inequality, we further write, for all x € X,

-5 M 2 1/2
My ><k0jZI|Ak,J|{/F(I)[/BM| D 2) = Dilemian=)| VN

-5 M 1/2

_ c 5 du(y)dt 5
<Xy be [ imesel{ [ 002 - arenP YOI s
-5 M
<> el Imi, j(2)|[Ms,1(2, 2) + M3, 2(z, 2)]dp(2),
k=0 j=1 Bk, j
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where, for all z € X and z € By, ; with k € Z N[0,/ —5] and j € {1,..., M},

d dt 1/2
Ms, 1 (z,2) = . Du(y, =) — Du(y, )2 éﬁy) :
N d(z,c ()t
{(y, ) EX X (0,00):t< ( éB)}
and
D du(y)dt]"?
= — 2
3,0(z, 2) := Foyn |Dyi(y, z) — Dy(y, c)| o '

{(w, XX (0,000:8> 1T 2B) y

Now we give some observations. For any z € By ; C 2"2B\2*2B, k € Z, N[0,/ — 5], je{l,...,M}
and y € I'(z), we have d(z,cp) < 2872rp and d(y,cg) > d(z,cp) — d(y,z) > 2°"2rp — t and hence

d(y,cp) +1>2"2rpg > 2"Prp > 2d(z, cp).
Meanwhile, for any y € I'(z) N {(y, t) € X x (0,00) : t < d(xéCB) }, we have

d(z, 7
Ay,cp) > da,cn) — d(w,9) > d(w,ep) — ) = Tata ).

From these observations, (A5) and (10.1), it follows that, for all 2 € X and z € By, ; with k € Z N[0, {—5]
and j € {1,..., M},

& d(x,cp) e3—1 1/2
mmw52@{ 8 / Lo MW%
d(.l?, CB) 0 B(z,t) [V(CBa J))] [d(]}, CB)]E3 Vi (]})
QkTB 1

~

d(xz,cp) V(ep,x)

and

k 0o 1/2
My 5(, 2) < 2%rg {/ / 1 i du(y)dt}
d(.]?,CB) d(m’SCB) B(x,t) [W(CB)] ‘/t(x)t
1

- QkTB /oo t 72th 1/2
~d(z,cp) Ve, ) | Jow o |d(z,cB) t

2krp 1
d(z,cp) V(cp,z)
Combining the estimates of M3 1(x,z) and M3 (2, z), we find that, for all z € X,
-5 M &
2 rB 1
Ma) § 33 sl
-

— = x,cp) Vicp, )

By this, Holder’s inequality, (4.1), (10.1) and p > L1, we conclude that

iw])\ 7| kA / 2kPry ! dp(z)
E j m ’ ] ‘LL x
L 1P a DI 3L o) [ o (d(, )P [V(ep, )P

N iZiM P[u(B )]p/q’H 2 2RPr D Vousa, . (cB)
, , _—
S ' kgl (D, j k,j LG(H)Q(Z—Q)PT% [Vaea,, (cB)]P

M
Z Ak, 5[P27FP2*=OP [V ()PP [N(ep, 2821 p) Pt
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A
WK

T

o
~

Il
oo

2
NE

<

WK

~

I
M= Il
i

=~
I
=

~
Il

By [, b(x)du(x) = 0 and some arguments similar to those used in the estimate of (10.9), we see that,

U

00 M
N Z Z | Ak, sl o, JHLl(u)V( z)’
{—

for all x € X,

M4 ((E)

k=

[$28

[
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M
[|po—kepo(k—L)po(L—k)(1-p)v
| Ak, ;172 2 2
J

I
—

A, j[P2kepo(=RI(A—p)v—r]

M-

.|P P
Nesl? o bl

k=(—4 j=1

4 5=1

58

/X Z Z)‘k Mk, j(2)Di(y, cp)dp(z)

No. 2

® dp(y)dt }1/ ’
Vi(z)t

Again, by some arguments similar to those used in the estimate of III, we know that

Thus,

Ii/ M (2)]Pdps(x +Z/

=5

o0

Then we turn to estimate II. We first write

By Hélder’s inequality, the L9(u)-boundedness (¢ € (1,00)) of S(f) and (4.1

To estimate Iy, fix e NN[5,00), k€ {{—4,....0+4},j€{1,...,M} and = € Uy(B)\2By, ;. Notice

=5 k=0—4 j=1 Ue(B)\2Bk, ;

M Pq < |plP. .
D ] A S Pl

)Pdu(z) < P

1,e€ .
Hf;qu,é' (1)

M
> st [ (i) @)Pdpu() = 11, + 11,

), we conclude that

e} M
SO0 D Pl @Be ) IS (e )
—0—

e} M
SO D el I @B )] sl

M
Zp\k |p2—kep < ZZp\k P~

=5 k=(—4 j=1 k=0 j=1

that, for any z € By, ; and x ¢ 2By, ;,

1
d(x,z) = d(z,cp, ;) —d(z,cB, ;) = )

)

b7

T 1,e€ .
HEwhy ()

d(z,cp, ;).
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By this, the Minkowski inequality and an argument similar to that used in the estimate of (10.9), we
further obtain

/ e ) [ / . |Dt<y,z>|2d;‘.f$)ft} )

) ||mk7jHL1(p,)-

N

2 J

oco bl+4 M )
Il < Y1 dp() || me, |2 )
;k§4; ’ Ue(B)\2Bk, ; [V(J%ch’J)]p JULT ()
oo £+4 M . )
S )\k, . |P |:/ d/l, T U 2@—}-23 1-p
gégk:zf4j£;| d 20+7B\2By,, ; V(x,cp, ;) ()] )

M
S PG o P22 )

J
(cp, 22 )P K WP s )77

which, together with the estimate for IT;, implies that 1T < |b|

P
P41, .
A2 ()

To estimate IV, observe that

4
IV < Z/
=0

Ue(B)

4
M
;) Ue(B)

By some arguments similar to those used in the estimates for II; and III, we respectively obtain

dp(x)

S < Zf iw: Ak,jmk,j) (z)

k=0 j=1

5< i ikk,jmk,j)(ﬂﬂ)

k=0+5 j=1

P
du(z) =1V, + IVa.

IVl 5 |b| and IVQ 5 |b|

b
prmlye(pl)’

P
p,a, 1,
HP b (1) oy

mb, 2
which, together with the estimates for I-11I, completes the proof of Step 2 and hence Theorem 10.10.

Remark 10.11. (i) Let p € (1,00), v € [1,00) and )/, <p <1 < ¢ < 2. Combining Propositions 8.1
and 8.2, and Theorems 10.10 and 9.4, we finally obtain

HE () = Hy (p) = Hipd Y () = Hiph < ()

over an RD-space (X, d, p) with pu(X) = cc.

(ii) Tt is still unclear whether ﬁft’g”g(u) (or HY, (u)) and ﬁig:;’(u) (or I?f’n’kz’;”s(u)) coincide or not

for any ¢ € (2, 00] over RD-spaces (X, d, u) with u(X) = oo.
(iii) Let (X, d, ) := (RP,|-|,dr) with the D-dimensional Lebesgue measure dx, p € (1,00), v € [1, 00),
)

pii <P <1<g<ooande e (0,00). By Theorem 9.4, we see that ﬁfgﬁj}(u = HP?(RP). Now
[

we deal with the relation between ﬁi’g&’l(u) and HP(RP). To this end, consider [2, Theorem 5.4] with

o(z,t) =t (p € (0,1]) and L = —A, we notice that HfA(RD) = HP(RP) (see [12]), q(¢) = 1,
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r(p) = oo, L(p) = p = i(p), ¢ € (1,00) and p_a = 1 therein. By e'1 = 1, —A satisfying [2, (H1)
and (H2)] and [2, p. 107, (6.16)] (see also [31, Remark 5.1]), we conclude that, for any (p, ¢, M')r-atom a
defined in [2, Definition 5.2],

/RD a(x)dz = 0.

Thus, a is a (p, ¢)-atom. From this, Step 2 of the proof of Theorem 10.10 and the proof of [2, Theorem 5.4],
we deduce that

(HP(RP) N LX(RP)) = B (1), (10.10)

Thus, HP(RP) = H %7 ().

atb, p

Moveover, by Step 2 of the proof of Theorem 10.10 and (10.10), we know that

HE & () C HED () € HP(RP) N LP(RP) = HEE Y ().

Thus, by this and Theorems 9.4 and 7.9, we have

AL 7<) = HE ) () = HY(RP) = B0 n) = B2 ().

atb, p atb, p
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