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Abstract Let (X , d, μ) be a metric measure space satisfying both the geometrically doubling and the upper

doubling conditions. Let ρ ∈ (1,∞), 0 < p � 1 � q � ∞, p �= q, γ ∈ [1,∞) and ε ∈ (0,∞). In this paper, the

authors introduce the atomic Hardy space ˜Hp, q, γ
atb, ρ (μ) and the molecular Hardy space ˜Hp, q, γ, ε

mb, ρ (μ) via the discrete

coefficient ˜K
(ρ), p
B, S , and prove that the Calderón-Zygmund operator is bounded from ˜Hp, q, γ, δ

mb, ρ (μ) (or ˜Hp, q, γ
atb, ρ (μ))

into Lp(μ), and from ˜Hp, q, γ+1
atb, ρ(ρ+1)

(μ) into ˜H
p, q, γ, 1

2
(δ− ν

p
+ν)

mb, ρ (μ). The boundedness of the generalized fractional

integral Tβ (β ∈ (0, 1)) from ˜Hp1, q, γ, θ
mb, ρ (μ) (or ˜Hp1, q, γ

atb, ρ (μ)) into Lp2 (μ) with 1/p2 = 1/p1−β is also established.

The authors also introduce the ρ-weakly doubling condition, with ρ ∈ (1,∞), of the measure μ and construct

a non-doubling measure μ satisfying this condition. If μ is ρ-weakly doubling, the authors further introduce

the Campanato space Eα, q
ρ, η, γ(μ) and show that Eα, q

ρ, η, γ(μ) is independent of the choices of ρ, η, γ and q; the

authors then introduce the atomic Hardy space ̂Hp, q, γ
atb, ρ (μ) and the molecular Hardy space ̂Hp, q, γ, ε

mb, ρ (μ), which

coincide with each other; the authors finally prove that ̂Hp, q, γ
atb, ρ (μ) is the predual of E1/p−1, 1

ρ, ρ, 1 (μ). Moreover, if μ

is doubling, the authors show that Eα, q
ρ, η, γ(μ) and the Lipschitz space Lipα, q(μ) (q ∈ [1,∞)), or ̂Hp, q, γ

atb, ρ (μ) and

the atomic Hardy space Hp, q
at (μ) (q ∈ (1,∞]) of Coifman and Weiss coincide. Finally, if (X , d, μ) is an RD-space

(reverse doubling space) with μ(X ) = ∞, the authors prove that ˜Hp, q, γ
atb, ρ (μ), ˜Hp, q, γ, ε

mb, ρ (μ) and Hp, q
at (μ) coincide

for any q ∈ (1, 2]. In particular, when (X , d, μ) := (RD , | · |, dx) with dx being the D-dimensional Lebesgue

measure, the authors show that spaces ˜Hp, q, γ
atb, ρ (μ), ˜Hp, q, γ, ε

mb, ρ (μ), ̂Hp, q, γ
atb, ρ (μ) and ̂Hp, q, γ, ε

mb, ρ (μ) all coincide with

Hp(RD) for any q ∈ (1,∞).
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1 Introduction

It is well known that the real variable theory of Hardy spaces Hp(RD) on the D-dimensional Euclidean

space RD has many important applications in various fields of analysis such as harmonic analysis and

partial differential equations; see, for example, [12, 48–50]. When p ∈ (1,∞), Lp(RD) and Hp(RD) are

essentially the same; however, when p ∈ (0, 1], the space Hp(RD) is much better adapted to problems
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arising in the theory of the boundedness of operators, since some of singular integrals (for example, Riesz

transforms) are bounded on Hp(RD), but not on Lp(RD). In 1972, Fefferman and Stein [12] showed

that the Hardy space H1(RD) is the predual of the bounded mean oscillation space BMO(RD). Later,

Walsh [61] proved that the dual space of the Hardy space Hp(RD) is the Campanato space introduced

by Campanato [4]. From then on, various characterizations of Hp(RD), including the atomic and the

molecular characterizations, and their applications were studied extensively in harmonic analysis; see, for

example, [5, 8, 9, 16, 32, 38, 40, 51, 64]. Moreover, the atomic and the molecular characterizations enabled

the extension of the real variable theory of Hardy spaces on RD to spaces of homogeneous type in the

sense of Coifman and Weiss [10, 11], which is a far more general setting for function spaces and singular

integrals than Euclidean spaces.

Recall that a metric space (X , d) equipped with a non-negative measure μ is called a space of homo-

geneous type, if (X , d, μ) satisfies the measure doubling condition: There exists a positive constant C(μ)

such that, for all balls B(x, r) := {y ∈ X : d(x, y) < r} with x ∈ X and r ∈ (0,∞),

μ(B(x, 2r)) � C(μ)μ(B(x, r)). (1.1)

This doubling condition on measures is one of the most crucial assumptions in the classical harmonic

analysis. We point out that a space of homogeneous type in [10, 11] is endowed with a quasi-metric.

However, for simplicity, throughout this article, we always assume that a space of homogeneous type is

endowed with a metric.

Nevertheless, in recent years, it has been proved that many results in the classical theory of Hardy

spaces and singular integrals on RD remain valid with the D-dimensional Lebesgue measure replaced

by a non-doubling measure (see, for example, [6, 24, 41, 53–59]). Recall that a Radon measure μ on RD

is called a non-doubling measure, if there exist positive constants C0 and κ ∈ (0, D] such that, for all

x ∈ RD and r ∈ (0,∞),

μ(B(x, r)) � C0r
κ, (1.2)

where B(x, r) := {y ∈ RD : |y − x| < r}. Tolsa [54, 55] introduced the atomic Hardy space H1, q
atb (μ),

for q ∈ (1,∞], and its dual space, RBMO(μ), the space of functions with regularized bounded mean

oscillation, with respect to μ as in (1.2), and proved that Calderón-Zygmund operators are bounded

from H1, q
atb (μ) into L

1(μ). Later, Chen et al. [6] showed that Calderón-Zygmund operators are bounded

on H1, q
atb (μ). Hu et al. [24] established an equivalent characterization of H1, q

atb (μ) to obtain the Lq(μ)-

boundedness of commutators and their endpoint estimates. More research on function spaces, mainly on

Morrey spaces, and their applications related to non-doubling measures can be found in [20, 42–47]. We

point out that the analysis on such non-doubling context plays a striking role in solving several long-

standing problems related to the analytic capacity, like Vitushkin’s conjecture or Painlevé’s problem;

see [56–59].

However, as was pointed out by Hytönen [27], the measure satisfying (1.2) is different from, but

not more general than, the doubling measure. Hytönen [27] introduced a new class of metric measure

spaces satisfying the so-called geometrically doubling and the upper doubling conditions (see, respectively,

Definitions 2.1 and 2.3 below), which are also simply called non-homogeneous metric measure spaces. This

new class of non-homogeneous metric measure spaces includes both spaces of homogeneous type and

metric spaces with non-doubling measures as special cases. It is already known that singular integrals on

non-homogeneous metric measure spaces arise naturally in the study of complex and harmonic analysis

questions in several complex variables (see [29, 60] for the details).

In this new setting, Hytönen [27] introduced the space RBMO(μ) and established the corresponding

John-Nirenberg inequality. Later, Hytönen et al. [30], and Bui and Duong [3], independently, introduced

the atomic Hardy space H1, q
atb (μ) and proved that the dual space of H1, q

atb (μ) is RBMO(μ). Hytönen et

al. [28] and Liu et al. [37] established some equivalent characterizations for the boundedness of Calderón-

Zygmund operators on Lq(μ) with q ∈ (1,∞) and their endpoint boundedness. Fu et al. [13] introduced a

version of the atomic Hardy space H̃1, q
atb (μ) (⊂ H1, q

atb (μ)) via the discrete coefficients K̃
(ρ)
B,S , and showed that

the Calderón-Zygmund operator is bounded on H̃1, q
atb (μ) via establishing a molecular characterization of
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H̃1, q
atb (μ) in this context. Recently, Fu et al. [15] introduced generalized fractional integrals and established

the boundedness of generalized fractional integrals and their commutators in this setting. More research

on the boundedness of various operators on non-homogeneous metric measure spaces can be found in

[1, 26, 34–36]. We refer the reader to the survey [62] and the monograph [63] for more progress on the

theory of Hardy spaces and singular integrals over non-homogeneous metric measure spaces.

We point out that the space H̃1, q
atb (μ) seems to be more useful in the study on the boundedness of

operators, since it was shown in [13, Theorem 1.4] that Calderón-Zygmund operators are bounded on

H̃1, q
atb (μ), but the method does not work for the boundedness of Calderón-Zygmund operators on H1, q

atb (μ)

over general non-homogeneous metric measure spaces defined via the continuous coefficients (see [13,

Remark 2.4] or Remark 4.2(iv) below).

To the best of our knowledge, the theory of the Hardy space Hp on non-homogeneous metric measure

spaces is still unknown, even on Euclidean spaces endowed with non-doubling measures. Let (X , d, μ)
be a non-homogeneous metric measure space in the sense of Hytönen [27]. The main purposes of this

article are two-fold. First, via the discrete coefficients K̃
(ρ), p
B,S , we introduce the atomic Hardy space

H̃p, q, γ
atb, ρ (μ) and the molecular Hardy space H̃p, q, γ, ε

mb, ρ (μ), and give their applications to the boundedness of

Calderón-Zygmund operators and generalized fractional integrals. However, it is still unknown whether

H̃p, q, γ
atb, ρ (μ) is independent of the choices of ρ, γ and q or not even under some additional condition, called

the ρ-weakly doubling condition (see Definition 6.1 below). Moreover, the dual space of H̃p, q, γ
atb, ρ (μ) and

the equivalence between H̃p, q, γ
atb, ρ (μ) and H̃p, q, γ, ε

mb, ρ (μ) are also unclear. Thus, we are forced to turn to

the other goal: Introduce another atomic Hardy space Ĥp, q, γ
atb, ρ (μ) and another molecular Hardy space

Ĥp, q, γ, ε
mb, ρ (μ), and then show that Ĥp, q, γ

atb, ρ (μ) is independent of the choices of ρ and γ under the ρ-weakly

doubling condition. Then we study the Campanato space Eα, q
ρ, η, γ(μ), the dual space of Ĥ

p, q, γ
atb, ρ (μ), and the

equivalence between Ĥp, q, γ
atb, ρ (μ) and Ĥ

p, q, γ, ε
mb, ρ (μ) if μ is ρ-weakly doubling. Moreover, if μ is doubling, we

show that Eα, q
ρ, η, γ(μ) and the Lipschitz space Lipα, q(μ) (q ∈ [1,∞)), or Ĥp, q, γ

atb, ρ (μ) and the atomic Hardy

space Hp, q
at (μ) (q ∈ (1,∞]) introduced by Coifman and Weiss [11] coincide with equivalent quasi-norms.

Finally, if (X , d, μ) is an RD-space (reverse doubling space) with μ(X ) = ∞, we prove that H̃p, q, γ
atb, ρ (μ),

H̃p, q, γ, ε
mb, ρ (μ) and Hp, q

at (μ) coincide for any q ∈ (1, 2], which is still unknown if q ∈ (2,∞]. In particular,

when (X , d, μ) := (RD, | · |, dx) with dx being the D-dimensional Lebesgue measure, we show that the

spaces H̃p, q, γ
atb, ρ (μ), H̃

p, q, γ, ε
mb, ρ (μ), Ĥp, q, γ

atb, ρ (μ) and Ĥ
p, q, γ, ε
mb, ρ (μ) all coincide with Hp(RD) for any q ∈ (1,∞).

The organization of this article is as follows.

In Section 2, we first recall some necessary notation and notions, including the discrete coefficient

K̃
(ρ), p
B, S , and give out some fundamental properties on K̃

(ρ), p
B, S which are crucial to the succeeding content.

In Section 3, we introduce the atomic Hardy space H̃p, q, γ
atb, ρ (μ) via the discrete coefficient K̃

(ρ), p
B, S

(K̃
(ρ), 1
B,S = K̃

(ρ)
B,S), where the dominating function of the considered measure appears in the size condition

of the atomic block, which seems to be well adapted to the study of the boundedness of Caldeón-Zygmund

operators and generalized fractional integrals, and establish a useful property. The key innovation in this

section is the definition of H̃p, q, γ
atb, ρ (μ) as the completeness of a subspace of L2(μ), H̃p, q, γ

atb, ρ(μ), which is a

suitable substitute of the classical fact that the set of all Schwartz functions having infinite order vanishing

moments is dense in the Hardy space Hp(RD).

In Section 4, we introduce the notion of the molecular Hardy space H̃p, q, γ, ε
mb, ρ (μ), and prove that the

Calderón-Zygmund operator is bounded from H̃p, q, γ, δ
mb, ρ (μ) (or H̃p, q, γ

atb, ρ (μ)) into L
p(μ) by borrowing some

ideas from [30, Theorem 4.2] with much more complicated arguments, and from H̃p, q, γ+1
atb, ρ(ρ+1)(μ) into

H̃
p, q, γ, (δ−ν/p+ν)/2
mb, ρ (μ) by using a method similar to that used in the proof of [13, Theorem 1.14] with

some technical modifications.

In Section 5, we establish the boundedness of the generalized fractional integral Tβ (β ∈ (0, 1)) from

H̃p1, q, γ, θ
mb, ρ (μ) (or H̃p1, q, γ

atb, ρ (μ)) into Lp2(μ) with 1/p2 = 1/p1 − β. The proof of the above result is parallel

to that of the conclusion for Calderón-Zygmund operators in Section 4 with slight modifications. For the

sake of the clearness, we present the full details there.



312 Fu X et al. Sci China Math February 2015 Vol. 58 No. 2

Section 6 is mainly devoted to the theory of Campanato spaces. We first introduce an additional

assumption, called the ρ-weakly doubling condition (see (6.1) below), which is satisfied by spaces of ho-

mogeneous type. We also construct a non-trivial example to show that there exist some non-homogeneous

metric measure spaces satisfying the ρ-weakly doubling condition (6.1); see Example 6.3 below. However,

it turns out that there exist many non-homogeneous metric measure spaces which do not satisfy the

ρ-weakly doubling condition; see Example 6.4 below. Then we introduce the Campanato space Eα, q
ρ, η, γ(μ)

and show that Eα, q
ρ, η, γ(μ) is independent of the choices of ρ, η, γ and q under the assumption of ρ-weakly

doubling conditions. Precisely, via a useful property of Eα, q
ρ, η, γ(μ) (see Proposition 6.7(a) below) and

the geometrically doubling condition, we prove that Eα, q
ρ, η, γ(μ) is independent of the choices of ρ and

η, where the ρ-weakly doubling condition plays a decisive role. Then, by establishing an equivalent

characterization of Eα, q
ρ, γ (μ) := Eα, q

ρ, ρ, γ(μ) and a useful lemma (see Lemma 6.12 below), which is analo-

gous to [30, Lemma 2.7], and by borrowing some ideas from the proof of [30, Proposition 2.5], we show

that Eα, q
ρ, γ (μ) is independent of the choice of γ. Next, by the above equivalent characterization of Eα, q

ρ, γ (μ)

and the ρ-weakly doubling condition, we establish the John-Nirenberg inequality for Eα, q
ρ (μ) := Eα, q

ρ, 1 (μ),

which further implies that Eα, q
ρ (μ) is independent of the choice of q. We point out that, on spaces of

homogeneous type, the independence of q of Eα, q
ρ (μ) is due to the coincidence between Eα, q

ρ (μ) and the

Lipschitz space Lipα(μ); see [39]. However, this coincidence is unknown on non-homogeneous metric

measure spaces, even under the ρ-weakly doubling condition. Alternatively, we adopt the method de-

veloped by Hytönen for the proof of the John-Nirenberg inequality for the BMO type space in [27]; see

also [54]. At the end of this section, we establish another useful characterization of Eα
ρ (μ) := Eα, 1

ρ (μ),

which plays important roles in the later context.

In Section 7, we introduce the atomic Hardy space Ĥp, q, γ
atb, ρ (μ) and the molecular Hardy space Ĥp,q,γ,ε

mb,ρ (μ)

and investigate their relation under the ρ-weakly doubling condition. By using a method similar to that

used in the proof of [13, Theorem 1.11], together with some technical modifications, we prove that

Ĥp, q, γ
atb, ρ (μ) and Ĥp, q, γ, ε

mb, ρ (μ) coincide with equivalent quasi-norms. It is still unclear whether the above

result holds true or not on general non-homogeneous metric measure spaces, even on Euclidean spaces

with non-doubling measures.

Section 8 is mainly devoted to investigating the dual space of Ĥp, q, γ
atb, ρ (μ) under the ρ-weakly doubling

condition. To this end, we first show that Ĥp, q, γ
atb, ρ (μ) is independent of the choices of ρ and γ. Precisely,

by the ρ-weakly doubling condition and borrowing some ideas from the proof of [30, Proposition 3.3(ii)],

we first prove that Ĥp, q, γ
atb, ρ (μ) is independent of the choice of ρ. By establishing the corresponding result

(see Lemma 6.11 below) to [54, Lemma 9.2] and constructing a sequence of (ρ, βρ)-doubling balls which

is a refinement of that appearing in the proof of [54, Lemma 9.3], we further show that Ĥp, q, γ
atb, ρ (μ) is

independent of γ. Finally, via the independence of ρ for Ĥp, q, γ
atb, ρ (μ) and the equivalent characterization

of Eα
ρ (μ) := Eα, 1

ρ (μ) established in Section 6 (see Proposition 6.18 below), we show that Ĥp, q, γ
atb, ρ (μ) is

the predual of E1/p−1
ρ (μ). It is still unknown whether the above results hold true or not on general

non-homogeneous metric measure spaces, even on Euclidean spaces with non-doubling measures.

In Section 9, let (X , d, μ) be a space of homogeneous type in the sense of Coifman and Weiss. We

investigate the relations between the Campanato space Eα, q
ρ, η, γ(μ) and the Lipschitz space Lipα, q(μ), or

between Ĥp, q, γ
atb, ρ (μ) and the atomic Hardy space Hp, q

at (μ) introduced by Coifman and Weiss [11]. By

carefully dividing the situation into several parts, constructing a sequence of balls via using a method

similar to that used in the proof of the independence of γ for Ĥp, q, γ
atb, ρ (μ) in Section 6 and adopting some

ideas from [27, Proposition 4.7], we show that, if q ∈ [1,∞), then Eα, q
ρ, η, γ(μ) and Lipα, q(μ) coincide with

equivalent norms. By a method similar to that used in the proof of this result, we also establish the

coincidence of Ĥp, q, γ
atb, ρ (μ) and H

p, q
at (μ) for any q ∈ (1,∞] directly.

In Section 10, suppose that (X , d, μ) is an RD-space with μ(X ) = ∞ and q ∈ (1, 2]. We show that

H̃p, q, γ
atb, ρ (μ), H̃

p, q, γ, ε
mb, ρ (μ) and Hp, q

at (μ) coincide. Let H̃p, q, γ
atb, ρ (μ) and H̃p, q, γ, ε

mb, ρ (μ) be dense subspaces of

H̃p, q, γ
atb, ρ (μ) and H̃

p, q, γ, ε
mb, ρ (μ), respectively (see Definitions 3.2 and 4.1 below). We prove that

(Hp, q
at (μ) ∩ L2(μ)) ⊂ H̃p, q, γ

atb, ρ(μ) ⊂ H̃p, q, γ, ε
mb, ρ (μ) ⊂ (Hp, q

at (μ) ∩ L2(μ))
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by two steps. In Step 1, to show that (Hp, q
at (μ) ∩L2(μ)) ⊂ H̃p, q, γ

atb, ρ(μ) for any q ∈ (1, 2], we first establish

a technical lemma (see Lemma 10.2 below). Then we establish a useful criterion for the boundedness of

some integral operators (see Lemma 10.8 below). Via this, a standard duality argument, the Calderón

reproducing formula and the boundedness of the Littlewood-Paley g-function on L2(μ) obtained in [21],

we give out a key atomic decomposition for all functions fromHp, q
at (μ)∩L2(μ) in L2(μ) (see (10.5) below),

which plays an essential role in the proof of Step 1. In Step 2, via the fact that H̃p, q, γ
atb, ρ (μ) ⊂ H̃p, q, γ, ε

mb, ρ (μ)

(see Proposition 4.3 below) and establishing the boundedness of the Littlewood-Paley S-function from

H̃p, q, γ, ε
mb, ρ (μ) into Lp(μ), we conclude that, for any q ∈ (1,∞),

H̃p, q, γ
atb, ρ (μ) ⊂ H̃p, q, γ, ε

mb, ρ (μ) ⊂ (Hp(μ) ∩ L2(μ)) = (Hp, q
at (μ) ∩ L2(μ)),

where Hp(μ) is defined by the Littlewood-Paley S-function as in [19, 21]. By these two steps and a

standard density argument, we obtain the desired result. Due to the defects of the above boundedness

of the Littlewood-Paley g-function and the criterion for the boundedness of some integral operators, it is

still unclear whether H̃p, q, γ, ε
mb, ρ (μ) (or H̃p, q, γ

atb, ρ (μ)) = Hp, q
at (μ) over RD-spaces (X , d, μ) with μ(X ) = ∞ for

q ∈ (2,∞]. Finally, if (X , d, μ) := (RD, | · |, dx) with dx being the D-dimensional Lebesgue measure, we

prove that the spaces H̃p, q, γ
atb, ρ (μ), H̃

p, q, γ, ε
mb, ρ (μ), Ĥp, q, γ

atb, ρ (μ) and Ĥp, q, γ, ε
mb, ρ (μ) all coincide with Hp(RD) for

any q ∈ (1,∞).

Finally, we make some conventions on notation. Throughout this article, C stands for a positive

constant which is independent of the choices of the main parameters, but it may vary from line to

line. Constants with subscripts, such as C0, do not change in different occurrences. Furthermore, we

use C(ρ,α,...) to denote a positive constant depending on parameters ρ, α, . . . Let N := {1, 2, . . .} and

Z+ := {0} ∪ N. For any ball B, the center and the radius of B are denoted, respectively, by cB and rB.

For any subset E of X , we use χE to denote its characteristic function.

2 Preliminaries

In this section, we recall some necessary notation and notions, including the discrete coefficient K̃
(ρ), p
B, S ,

and give out some fundamental properties on K̃
(ρ), p
B, S in the non-homogeneous context.

The following notion of the geometrically doubling is well known in analysis on metric spaces, which

was originally introduced by Coifman and Weiss [10, pp. 66–67] and is also known as metrically doubling

(see, for example, [23, p. 81]).

Definition 2.1. A metric space (X , d) is said to be geometrically doubling if there exists some N0 ∈ N
such that, for any ball B(x, r) ⊂ X with x ∈ X and r ∈ (0,∞), there exists a finite ball covering

{B(xi, r/2)}i of B(x, r) such that the cardinality of this covering is at most N0.

Remark 2.2. Let (X , d) be a metric space. Hytönen [27] showed that the following statements are

mutually equivalent:

(i) (X , d) is geometrically doubling.

(ii) For any ε ∈ (0, 1) and any ball B(x, r) ⊂ X with x ∈ X and r ∈ (0,∞), there exists a finite ball

covering {B(xi, εr)}i of B(x, r) such that the cardinality of this covering is at most N0ε
−n0 , here and

hereafter, N0 is as in Definition 2.1 and n0 := log2N0.

(iii) For every ε ∈ (0, 1), any ball B(x, r) ⊂ X with x ∈ X and r ∈ (0,∞) contains at most N0ε
−n0

centers of disjoint balls {B(xi, εr)}i.
(iv) There existsM ∈ N such that any ball B(x, r) ⊂ X with x ∈ X and r ∈ (0,∞) contains at mostM

centers {xi}i of disjoint balls {B(xi, r/4)}Mi=1.

Recall that spaces of homogeneous type are geometrically doubling, which was proved by Coifman and

Weiss [10, pp. 66–68].

The following notion of upper doubling metric measure spaces was originally introduced by Hytönen [27]

(see also [28, 37]).



314 Fu X et al. Sci China Math February 2015 Vol. 58 No. 2

Definition 2.3. A metric measure space (X , d, μ) is said to be upper doubling if μ is a Borel measure

on X and there exist a dominating function λ : X × (0,∞) → (0,∞) and a positive constant C(λ),

depending on λ, such that, for each x ∈ X , r → λ(x, r) is non-decreasing and, for all x ∈ X and

r ∈ (0,∞),

μ(B(x, r)) � λ(x, r) � C(λ)λ(x, r/2). (2.1)

A metric measure space (X , d, μ) is called a non-homogeneous metric measure space if (X , d) is geomet-

rically doubling and (X , d, μ) is upper doubling.
Remark 2.4. (i) Obviously, a space of homogeneous type is a special case of upper doubling spaces,

where we take the dominating function λ(x, r) := μ(B(x, r)) for all x ∈ X and r ∈ (0,∞). On the other

hand, the D-dimensional Euclidean space RD with any Radon measure μ as in (1.2) is also an upper

doubling space by taking λ(x, r) := C0r
κ for all x ∈ RD and r ∈ (0,∞).

(ii) Let (X , d, μ) be upper doubling with λ being the dominating function on X × (0,∞) as in Def-

inition 2.3. It was proved in [30] that there exists another dominating function λ̃ such that λ̃ � λ,

C(λ̃) � C(λ) and, for all x, y ∈ X with d(x, y) � r,

λ̃(x, r) � C(λ̃)λ̃(y, r). (2.2)

(iii) It was shown in [52] that the upper doubling condition is equivalent to the weak growth condition:

there exist a dominating function λ : X × (0,∞) → (0,∞), with r → λ(x, r) non-decreasing, positive

constants C(λ), depending on λ, and ε such that

(iii)1 for all r ∈ (0,∞), t ∈ [0, r], x, y ∈ X and d(x, y) ∈ [0, r],

|λ(y, r + t)− λ(x, r)| � C(λ)

[
d(x, y) + t

r

]ε
λ(x, r);

(iii)2 for all x ∈ X and r ∈ (0,∞), μ(B(x, r)) � λ(x, r).

Based on Remark 2.4(ii), from now on, we always assume that (X , d, μ) is a non-homogeneous metric

measure space with the dominating function λ satisfying (2.2).

Though the measure doubling condition is not assumed uniformly for all balls in the non-homogeneous

metric measure space (X , d, μ), it was shown in [27] that there still exist many balls which have the

following (α, β)-doubling property.

Definition 2.5. Let α, β ∈ (1,∞). A ball B ⊂ X is said to be (α, β)-doubling if μ(αB) � βμ(B),

where, for any ball B := B(cB , rB) and ρ ∈ (0,∞), ρB := B(cB, ρrB).

To be precise, it was proved in [27, Lemma 3.2] that, if a metric measure space (X , d, μ) is upper

doubling and α, β ∈ (1,∞) with β > [C(λ)]
log2 α =: αν , then, for any ball B ⊂ X , there exists some

j ∈ Z+ such that αjB is (α, β)-doubling. Moreover, let (X , d) be geometrically doubling, β > αn0 with

n0 := log2N0 and μ a Borel measure on X which is finite on bounded sets. Hytönen [27, Lemma 3.3] also

showed that, for μ-almost every x ∈ X , there exist arbitrary small (α, β)-doubling balls centered at x.

Furthermore, the radii of these balls may be chosen to be of the form α−jr for j ∈ N and any preassigned

number r ∈ (0,∞). Throughout this article, for any α ∈ (1,∞) and ball B, the smallest (α, βα)-doubling

ball of the form αjB with j ∈ Z+ is denoted by B̃α, where

βα := α3(max{n0, ν}) + [max{5α, 30}]n0 + [max{3α, 30}]ν.

Before we introduce the discrete coefficient K̃
(ρ), p
B, S , we first give an assumption on the relation between

two balls B and S, which is supposed to hold true through the whole article:

(A) If B = S, then cB = cS and rB = rS .

Then we claim that, if B ⊂ S, then rB � 2rS . Indeed, assume that rB > 2rS . By this and B ⊂ S,

together with the triangle inequality satisfied by d, we see that S ⊂ B. Thus, B = S, which, together

with the assumption (A), implies that rB = rS . This contradicts to rB > 2rS , which completes the proof

of the above claim.
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On the other hand, we give a simple example to illustrate that, if B � S, then it may happen that

rB > rS . Let (X , d) := ({−1, 1, 3}, | · |), B := {x ∈ {−1, 1, 3} : |x+ 1| < 3} and

S :=

{
x ∈ {−1, 1, 3} : |x− 1| < 5

2

}
.

Obviously, rB > rS and B = {−1, 1} � {−1, 1, 3} = S.

Definition 2.6. For any ρ ∈ (1,∞), p ∈ (0, 1] and any two balls B ⊂ S ⊂ X , let

K̃
(ρ), p
B,S :=

{
1 +

N
(ρ)
B,S∑

k=−�logρ 2�

[
μ(ρkB)

λ(cB, ρkrB)

]p}1/p

, (2.3)

here and hereafter, for any a ∈ R, �a	 represents the biggest integer which is not bigger than a, and N
(ρ)
B,S

is the smallest integer satisfying ρN
(ρ)
B,SrB � rS .

Remark 2.7. (i) By a change of variables and (2.1), we easily conclude that

K̃
(ρ), p
B, S ∼

{
1 +

N
(ρ)
B,S+�logρ 2�+1∑

k=1

[
μ(ρkB)

λ(cB , ρkrB)

]p}1/p

,

where the implicit equivalent positive constants are independent of balls B ⊂ S ⊂ X , but depend on ρ

and p.

(ii) A continuous version,KB,S , of the coefficient in Definition 2.6 when p = 1 was introduced in [27,30]

as follows: For any two balls B ⊂ S ⊂ X ,

KB,S := 1 +

∫
(2S)\B

1

λ(cB , d(x, cB))
dμ(x). (2.4)

It was proved in [30, Lemma 2.2] that KB,S has all properties similar to those for K̃
(ρ), p
B,S as in Lemma 2.8

below. Unfortunately, KB,S and K̃
(ρ), 1
B,S are usually not equivalent, but this is true for (RD, | · |, μ) with μ

as in (1.2); see [13] for more details on this.

Now we give some simple properties of K̃
(ρ), p
B, S defined by (2.3) adapted from [14, Lemma 3.5], in which

ρ = 6 and p = 1. The arguments therein are still valid for the present case. For the sake of reader’s

convenience, we present some details. In what follows, for any a ∈ R, �a� represents the smallest integer

which is not smaller than a.

Lemma 2.8. Let (X , d, μ) be a non-homogeneous metric measure space and p ∈ (0, 1].

(i) For any ρ ∈ (1,∞), there exists a positive constant C(ρ), depending on ρ, such that, for all balls

B ⊂ R ⊂ S, [K̃
(ρ), p
B,R ]p � C(ρ)[K̃

(ρ), p
B, S ]p.

(ii) For any α ∈ [1,∞) and ρ ∈ (1,∞), there exists a positive constant C(α, ρ), depending on α and ρ,

such that, for all balls B ⊂ S with rS � αrB , [K̃
(ρ), p
B, S ]p � C(α, ρ).

(iii) For any ρ ∈ (1,∞), there exists a positive constant C(ρ, p, ν), depending on ρ, p and ν, such that, for

all balls B, [K̃
(ρ), p

B, B̃ρ
]p � C(ρ, p, ν). Moreover, letting α, β ∈ (1,∞), B ⊂ S be any two concentric balls such

that there exists no (α, β)-doubling ball in the form of αkB, with k ∈ N, satisfying B ⊂ αkB ⊂ S, then

there exists a positive constant C(α, β, p, ν), depending on α, β, p and ν, such that [K̃
(α), p
B, S ]p � C(α, β, p, ν).

(iv) For any ρ ∈ (1,∞), there exists a positive constant c(ρ, p, ν), depending on ρ, p and ν, such that,

for all balls B ⊂ R ⊂ S,

[K̃
(ρ), p
B, S ]p � [K̃

(ρ), p
B,R ]p + c(ρ, p, ν)[K̃

(ρ), p
R, S ]p.

(v) For any ρ ∈ (1,∞), there exists a positive constant c̃(ρ, p, ν), depending on ρ, p and ν, such that,

for all balls B ⊂ R ⊂ S, [K̃
(ρ), p
R, S ]p � c̃(ρ, p, ν)[K̃

(ρ), p
B,S ]p.
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Proof. Fix p ∈ (0, 1], ρ ∈ (1,∞) and α ∈ [1,∞). We first show (i). By R ⊂ S, we have rR � 2rS .

Hence,

rR � 2rS � 2ρN
(ρ)
B,SrB � ρ�logρ 2�+N

(ρ)
B,SrB .

Thus, N
(ρ)
B,R � �logρ 2�+N

(ρ)
B,S . By this and (2.1), we see that

[K̃
(ρ), p
B,R ]p � 1 +

�logρ 2�+N
(ρ)
B,S∑

k=−�logρ 2�

[
μ(ρkB)

λ(cB , ρkrB)

]p

� 1 +

N
(ρ)
B,S∑

k=−�logρ 2�

[
μ(ρkB)

λ(cB , ρkrB)

]p
+ �logρ 2� � (1 + �logρ 2�)[K̃(ρ), p

B, S ]p.

This shows (i).

Now we prove (ii). By the fact that ρN
(ρ)
B,S−1rB < rS � αrB , we have N

(ρ)
B,S − 1 < logρ α. Thus,

N
(ρ)
B,S − 1 � �logρ α	. From this and (2.1), we deduce that

[K̃
(ρ), p
B, S ]p � 1 +N

(ρ)
B,S + �logρ 2	 � 2 + �logρ α	+ �logρ 2	.

Thus, (ii) holds true.

Let us now prove (iii). To this end, let N be the first integer such that ρNB is (ρ, βρ)-doubling. If B

is (ρ, βρ)-doubling, the conclusion of (iii) holds true trivially. Thus, without loss of generality, we may

assume that B is non-(ρ, βρ)-doubling, which implies that N � 1. For any k ∈ {−�logρ 2	, . . . , N − 1},
we have μ(ρk+1B) > βρμ(ρ

kB). Thus, for any k ∈ {−�logρ 2	, . . . , N − 1}, μ(ρkB) < μ(ρNB)

βN−k
ρ

. By this,

together with (2.1) and the fact that βρ > [C(λ)]
log2 2ρ = (2ρ)ν , we conclude that

[K̃
(ρ), p

B, B̃ρ
]p = [K̃

(ρ), p

B, ρNB
]p � 2 +

N−1∑
k=−�logρ 2�

[
μ(ρkB)

λ(cB , ρkrB)

]p

� 2 +
N−1∑

k=−�logρ 2�

[
(2ρ)ν

βρ

]p(N−k) [
μ(ρNB)

λ(cB , ρNrB)

]p

� 2 +

∞∑
k=1

[
(2ρ)ν

βρ

]pk
� 1,

where the implicit positive constant only depends on ρ, p and ν. Similarly, the other part of (iii) holds

true, the details being omitted. This proves (iii).

Next we show (iv). By (i), N
(ρ)
B,R � N

(ρ)
B,S + �logρ 2�. If N

(ρ)
B,S � N

(ρ)
B,R � N

(ρ)
B,S + �logρ 2�, then

there exists nothing to prove. If N
(ρ)
B,R < N

(ρ)
B,S , from the facts that N

(ρ)
B,S � N

(ρ)
B,R + N

(ρ)
R,S (since

ρN
(ρ)
B,R+N

(ρ)
R,SrB � ρN

(ρ)
R,SrR � rS), ρ

N
(ρ)
B,RrB � rR, ρ

k+N
(ρ)
B,R+1+�logρ 2�B ⊂ ρk+2+�logρ 2�+�logρ 2�R for all

k ∈ Z ∩ [−�logρ 2	,∞), and (2.1), it follows that

[K̃
(ρ), p
B, S ]p � [K̃

(ρ), p
B,R ]p +

N
(ρ)
B,R+N

(ρ)
R,S+1+�logρ 2�∑

k=N
(ρ)
B,R+1

[
μ(ρkB)

λ(cB , ρkrB)

]p

= [K̃
(ρ), p
B,R ]p +

N
(ρ)
R,S∑

k=−�logρ 2�

[
μ(ρk+N

(ρ)
B,R+1+�logρ 2�B)

λ(cB , ρ
k+N

(ρ)
B,R+1+�logρ 2�rB)

]p

� [K̃
(ρ), p
B,R ]p +

N
(ρ)
R,S∑

k=−�logρ 2�

[
μ(ρk+2+�logρ 2�+�logρ 2�R)
λ(cB , ρ

k+1+�logρ 2�rR)

]p
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� [K̃
(ρ), p
B,R ]p + c(ρ, p, ν)

N
(ρ)
R,S∑

k=−�logρ 2�

[
μ(ρk+2+�logρ 2�+�logρ 2�R)

λ(cB , ρ
k+2+�logρ 2�+�logρ 2�rR)

]p

� [K̃
(ρ), p
B,R ]p + c(ρ, p, ν)

N
(ρ)
R,S+2+�logρ 2�+�logρ 2�∑

k=−�logρ 2�

[
μ(ρkR)

λ(cR, ρkrR)

]p
� [K̃

(ρ), p
B,R ]p + c(ρ, p, ν)[K̃

(ρ), p
R, S ]p,

which shows (iv).

For (v), we first prove that N
(ρ)
B,R +N

(ρ)
R,S � N

(ρ)
B,S + 1. Since

rR = ρ−N
(ρ)
R,S+1ρN

(ρ)
R,S−1rR � ρ−N

(ρ)
R,S+1rS � ρ−N

(ρ)
R,S+1ρN

(ρ)
B,SrB = ρN

(ρ)
B,S−N

(ρ)
R,S+1rB ,

we obtain N
(ρ)
B,R � N

(ρ)
B,S −N

(ρ)
R,S + 1. From this,

rR > ρN
(ρ)
B,R−1rB , ρkR ⊂ ρk+�logρ 2�+N

(ρ)
B,RB,

for all k ∈ Z ∩ [−�logρ 2	,∞), (2.1) and (2.2), it follows that

[K̃
(ρ), p
R, S ]p � 1 +

N
(ρ)
R, S∑

k=−�logρ 2�

[
μ(ρk+�logρ 2�+N

(ρ)
B,RB)

λ(cR, ρ
k+N

(ρ)
B,R−1rB)

]p

� 1 +

N
(ρ)
R, S∑

k=−�logρ 2�

[
μ(ρk+�logρ 2�+N

(ρ)
B,RB)

λ(cR, ρ
k+�logρ 2�+N

(ρ)
B,RrB)

]p

∼ 1 +

N
(ρ)
B,R+N

(ρ)
R,S−1∑

k=N
(ρ)
B,R−1−�logρ 2�

[
μ(ρk+1+�logρ 2�B)

λ(cB , ρ
k+1+�logρ 2�rB)

]p

� 1 +

N
(ρ)
B,S+1+�logρ 2�∑
k=−�logρ 2�

[
μ(ρkB)

λ(cB , ρkrB)

]p
� [K̃

(ρ), p
B,S ]p,

where the implicit positive constants depend only on ρ, p and ν. This finishes the proof of (v) and hence

Lemma 2.8.

Now we show that, for any ρ1, ρ2 ∈ (1,∞) and p ∈ (0, 1], K̃
(ρ1), p
B, S ∼ K̃

(ρ2), p
B,S for all balls B ⊂ S.

Lemma 2.9. Let (X , d, μ) be a non-homogeneous metric measure space, ρ1, ρ2 ∈ (1,∞) and p ∈ (0, 1].

Then there exist positive constants c(ρ1, ρ2, p, ν) and C(ρ1, ρ2, p, ν), depending on ρ1, ρ2, ν and p, such that,

for all balls B ⊂ S,

c(ρ1, ρ2, p, ν)K̃
(ρ2), p
B,S � K̃

(ρ1), p
B, S � C(ρ1, ρ2, p, ν)K̃

(ρ2), p
B, S .

Proof. For the sake of simplicity, we only prove this lemma for p = 1. With some slight modifications,

the arguments here are still valid for p ∈ (0, 1). For any ρ1, ρ2 ∈ (1,∞), without loss of generality, we

may assume that ρ1 > ρ2 > 1. For any two fixed balls B ⊂ S, let Nj := N
(ρj)
B,S and K̃

(ρj)
B,S := K̃

(ρj), 1
B,S

(j ∈ {1, 2}). It is obvious that N1 � N2. Now we consider the following two cases:

Case i. ρN1
1 � ρN2

2 . It is easy to see that ρN2−1
2 � ρN1

1 . We first prove that K̃
(ρ1)
B,S � K̃

(ρ2)
B,S .

Indeed, for any n1 ∈ {−�logρ1
2	, . . . , N1}, let n2 be the smallest integer such that ρn2

2 � ρn1
1 . Then

we have

n2 ∈ {−�logρ2
2	, . . . , N2} and ρn2−1

2 < ρn1
1 � ρn2

2 . (2.5)

Consequently, ρn2−1
2 B ⊂ ρn1

1 B ⊂ ρn2
2 B. By some simple calculations, we see that, for any n2 ∈

{−�logρ2
2	, . . . , N2}, there exists at most one n1 satisfying (2.5). By the above facts, −�logρ1

2	 �
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−�logρ2
2	 and (2.1), we obtain

K̃
(ρ1)
B,S � 1 +

N1∑
n1=−�logρ1

2�

μ(ρn2
2 B)

λ(cB , ρ
n2−1
2 rB)

� 1 +

N2∑
n2=−�logρ2

2�

μ(ρn2
2 B)

λ(cB , ρ
n2
2 rB)

∼ K̃
(ρ2)
B,S ,

where the implicit positive constants depend only on ρ1, ρ2 and ν.

On the other hand, for the case N2 < 1, it is obvious that K̃
(ρ2)
B,S � 1 � K̃

(ρ1)
B,S , which completes the

proof of Case i. Thus, without loss of generality, we may assume that N2 � 1. We notice that

K̃
(ρ2)
B,S � 2

[
1 +

N2−1∑
n2=−�logρ2

2�

μ(ρn2
2 B)

λ(cB , ρ
n2
2 rB)

]
.

For any fixed n2 ∈ {−�logρ2
2	, . . . , N2 − 1}, let n1 be the smallest positive integer such that ρn1

1 � ρn2
2 .

Then we have

n1 ∈ {−�logρ1
2	, . . . , N1} and ρn1−1

1 < ρn2
2 � ρn1

1 . (2.6)

Consequently, ρn1−1
1 B ⊂ ρn2

2 B ⊂ ρn1
1 B. By some simple calculations, we see that, for any n1 ∈

{−�logρ1
2	, . . . , N1}, the number of n2 satisfying (2.6) does not exceed � ln ρ1

ln ρ2
�. By the above facts

and (2.1), we know that

K̃
(ρ2)
B,S � 1 +

N2−1∑
n2=−�logρ2

2�

μ(ρn2
2 B)

λ(cB , ρ
n2
2 rB)

∼ 1 +

N1∑
n1=−�logρ1

2�

∑
n2:ρ

n1−1
1 <ρ

n2
2 �ρ

n1
1

μ(ρn2
2 B)

λ(cB, ρ
n2
2 rB)

� 1 +

N1∑
n1=−�logρ1

2�

μ(ρn1
1 B)

λ(cB , ρ
n1
1 rB)

∼ K̃
(ρ1)
B,S ,

where the implicit positive constants depend only on ρ1, ρ2 and ν. This finishes the proof of Case i.

Case ii. ρN2
2 < ρN1

1 . The proof of this case is similar to that of Case i, the details being omitted. This

finishes the proof of Lemma 2.9.

3 Atomic Hardy spaces H̃p, q, γ
atb, ρ (µ)

In this section, we introduce the atomic Hardy space H̃p, q, γ
atb, ρ (μ) and establish a useful property. Before

introducing the notion of H̃p, q, γ
atb, ρ (μ), we first recall some notions related to quasi-Banach spaces; see, for

example, [19].

Definition 3.1. (i) A quasi-Banach space B is a vector space endowed with a quasi-norm ‖ · ‖B which

is non-negative, non-degenerate (namely, ‖f‖B = 0 if and only if f = 0), homogeneous, and obeys the

quasi-triangle inequality, namely, there exists a constant K ∈ [1,∞) such that, for all f, g ∈ B,

‖f + g‖B � K(‖f‖B + ‖g‖B).

(ii) Let r ∈ (0, 1]. A quasi-Banach space Br with the quasi-norm ‖ · ‖Br is called an r-quasi-Banach

space if ‖f + g‖rBr
� ‖f‖rBr

+ ‖g‖rBr
for all f, g ∈ Br. Hereafter, ‖ · ‖rBr

is called the r-quasi-norm of the

r-quasi-Banach space Br.

Then we introduce the notion of H̃p, q, γ
atb, ρ (μ) over general non-homogeneous metric measure spaces.

Definition 3.2. Let ρ ∈ (1,∞), 0 < p � 1 � q � ∞, p �= q and γ ∈ [1,∞). A function b in L2(μ)

when p ∈ (0, 1) and in L1(μ) when p = 1 is called a (p, q, γ, ρ)λ-atomic block if

(i) there exists a ball B such that supp (b) ⊂ B;

(ii)
∫
X b(x)dμ(x) = 0;
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(iii) for any j ∈ {1, 2}, there exist a function aj supported on a ball Bj ⊂ B and a number λj ∈ C
such that b = λ1a1 + λ2a2 and

‖aj‖Lq(μ) � [μ(ρBj)]
1/q−1[λ(cB , rB)]

1−1/p[K̃
(ρ), p
Bj , B

]−γ .

Moreover, let |b|H̃p, q, γ
atb, ρ (μ) := |λ1|+ |λ2|.

A function f is said to belong to the space H̃p, q, γ
atb, ρ(μ) if there exists a sequence of (p, q, γ, ρ)λ-atomic

blocks, {bi}∞i=1, such that f =
∑∞

i=1 bi in L
2(μ) when p ∈ (0, 1) and in L1(μ) when p = 1, and

∞∑
i=1

|bi|pH̃p, q, γ
atb, ρ (μ)

<∞.

Moreover, define

‖f‖H̃p, q, γ
atb, ρ (μ) := inf

{[ ∞∑
i=1

|bi|pH̃p, q, γ
atb, ρ (μ)

]1/p}
,

where the infimum is taken over all possible decompositions of f as above.

The atomic Hardy space H̃p, q, γ
atb, ρ (μ) is then defined as the completion of H̃p, q, γ

atb, ρ (μ) with respect to the

p-quasi-norm ‖ · ‖p
H̃p, q, γ

atb, ρ
(μ)

.

Remark 3.3. (i) By the theorem of completion of Yosida [65, p. 56], we see that H̃p, q, γ
atb, ρ (μ) has a

completion space H̃p, q, γ
atb, ρ (μ), namely, for any f ∈ H̃p, q, γ

atb, ρ (μ), there exists a Cauchy sequence {fk}∞k=1 in

H̃p, q, γ
atb, ρ (μ) such that

lim
k→∞

‖fk − f‖p
H̃p, q, γ

atb, ρ (μ)
= 0. (3.1)

Moreover, if {fk}∞k=1 is a Cauchy sequence in H̃p, q, γ
atb, ρ (μ), then there exists a unique f ∈ H̃p, q, γ

atb, ρ (μ) such

that (3.1) holds true.

(ii) When p = 1, the space H̃1, q, γ
atb, ρ(μ) was introduced in [30] and proved to be a Banach space. Thus,

H̃1, q, γ
atb, ρ (μ) = H̃1, q, γ

atb, ρ(μ); see also [3].

(iii) Fix p, ρ and γ as in Definition 3.2. For 1 � q1 � q2 � ∞, we easily obtain

H̃p, q2, γ
atb, ρ (μ) ⊂ H̃p, q1, γ

atb, ρ (μ).

(iv) In Definition 3.2, it seems natural to assume b ∈ Lq(μ) and to require f =
∑∞

i=1 bi also holds true

in Lq(μ). However, if so, then it is unclear whether (iii) of this remark still holds true or not, which is

crucial in applications (see, for example, Remark 10.11(i)).

Now we show that any element in H̃p, q, γ
atb, ρ (μ) has a decomposition in terms of some (p, q, γ, ρ)λ-atomic

blocks, {bi}∞i=1, in H̃
p, q, γ
atb, ρ (μ).

Proposition 3.4. Let (X , d, μ) be a non-homogeneous metric measure space, ρ ∈ (1,∞), 0 < p � 1

� q � ∞, p �= q and γ ∈ [1,∞). Then f ∈ H̃p, q, γ
atb, ρ (μ) if and only if there exist (p, q, γ, ρ)λ-atomic blocks

{bi}∞i=1 such that

f =

∞∑
i=1

bi in H̃p, q, γ
atb, ρ (μ) (3.2)

and
∑∞

i=1 |bi|pH̃p, q, γ
atb, ρ (μ)

<∞. Moreover,

‖f‖p
H̃p, q, γ

atb, ρ (μ)
= inf

{ ∞∑
i=1

|bi|pH̃p, q, γ
atb, ρ (μ)

}
,

where the infimum is taken over all possible decompositions of f as in (3.2).
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Proof. We first assume that f ∈ H̃p, q, γ
atb, ρ (μ). Observe that, if (3.2) holds true, it is easy to see that

‖f‖p
H̃p, q, γ

atb, ρ (μ)
� inf

{ ∞∑
i=1

|bi|p
H̃p, q, γ

atb, ρ (μ)

}
, (3.3)

where the infimum is taken over all possible decompositions of f as in (3.2). It remains to prove (3.2)

and the reverse inequality of (3.3). For any f ∈ H̃p, q, γ
atb, ρ (μ), we consider the following two cases.

Case i. f ∈ H̃p, q, γ
atb, ρ (μ). By Definition 3.2, there exists a sequence of (p, q, γ, ρ)λ-atomic blocks, {bi}∞i=1,

such that f =
∑∞

i=1 bi in L
2(μ) when p ∈ (0, 1) and in L1(μ) when p = 1 and

∞∑
i=1

|bi|pH̃p, q, γ
atb, ρ (μ)

<∞.

Now we claim that (3.2) holds true.

Indeed, for any M ∈ N, f −∑M
i=1 bi =

∑∞
i=M+1 bi in L

2(μ) when p ∈ (0, 1) and in L1(μ) when p = 1.

Then we know that ∥∥∥∥f −
M∑
i=1

bi

∥∥∥∥p
H̃p, q, γ

atb, ρ (μ)

�
∞∑

i=M+1

|bi|p
H̃p, q, γ

atb, ρ (μ)
→ 0 as M → ∞.

Then the claim holds true. Again, by Definition 3.2 and (3.3), we obtain the desired result for Case i.

Case ii. f ∈ H̃p, q, γ
atb, ρ (μ)\H̃p, q, γ

atb, ρ(μ). By Remark 3.3(i), there exists a Cauchy sequence {fk}∞k=1 in

H̃p, q, γ
atb, ρ (μ) such that

‖f − fk‖pH̃p, q, γ
atb, ρ (μ)

� 2−k−2‖f‖p
H̃p, q, γ

atb, ρ (μ)
.

It is easy to see that f =
∑∞

k=1(fk−fk−1) in H̃
p, q, γ
atb, ρ (μ), where we let f0 := 0. Since fk−fk−1 ∈ H̃p, q, γ

atb, ρ (μ)

for all k ∈ N, by Definition 3.2 and Case i, we see that, for any ε ∈ (0,∞) and any k ∈ N, there exists a

sequence of (p, q, γ, ρ)λ-atomic blocks, {bk, i}∞i=1, such that

fk − fk−1 =
∞∑
i=1

bk, i in both L2(μ) when p ∈ (0, 1), or L1(μ) when p = 1, and H̃p, q, γ
atb, ρ (μ)

and ∞∑
i=1

|bk, i|p
H̃p, q, γ

atb, ρ (μ)
< ‖fk − fk−1‖p

H̃p, q, γ
atb, ρ (μ)

+
ε

2k
.

From this and f =
∑∞

k=1(fk − fk−1) in H̃
p, q, γ
atb, ρ (μ), we further deduce that

f =
∞∑
k=1

(fk − fk−1) =
∞∑
k=1

∞∑
i=1

bk, i in H̃p, q, γ
atb, ρ (μ)

and

∞∑
k=1

∞∑
i=1

|bk, i|p
H̃p, q, γ

atb, ρ (μ)
�

∞∑
k=1

‖fk − fk−1‖p
H̃p, q, γ

atb, ρ (μ)
+

∞∑
k=1

ε

2k

�
∞∑
k=1

[‖fk − f‖p
H̃p, q, γ

atb, ρ (μ)
+ ‖fk−1 − f‖p

H̃p, q, γ
atb, ρ (μ)

] + ε

�
∞∑
k=1

2−k‖f‖p
H̃p, q, γ

atb, ρ (μ)
+ ε = ‖f‖p

H̃p, q, γ
atb, ρ (μ)

+ ε,

which, together with the arbitrariness of ε, completes the proof of Case ii and hence the necessity of

Proposition 3.4.
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Conversely, let f =
∑∞

i=1 bi in H̃
p, q, γ
atb, ρ (μ) and

∞∑
i=1

|bi|pH̃p, q, γ
atb, ρ

(μ)
<∞.

Then, for each k ∈ N, fk =
∑k

i=1 bi ∈ H̃p, q, γ
atb, ρ (μ) and limk→∞ fk = f in H̃p, q, γ

atb, ρ (μ). Thus, f ∈ H̃p, q, γ
atb, ρ (μ),

which completes the proof of the sufficiency and hence Proposition 3.4.

4 Boundedness of Calderón-Zygmund operators

In this section, we introduce the notion of the molecular Hardy space H̃p, q, γ, ε
mb, ρ (μ) and prove that

the Calderón-Zygmund operator T is bounded from H̃p, q, γ, δ
mb, ρ (μ) (or H̃p, q, γ

atb, ρ (μ)) into Lp(μ), and from

H̃p, q, γ+1
atb, ρ(ρ+1)(μ) into H̃

p, q, γ, 1
2 (δ− ν

p+ν)

mb, ρ (μ), where δ is some positive constant depending on T ; see Defini-

tion 4.6 below.

We first introduce the notion of molecular Hardy spaces in a non-homogeneous metric measure space.

Definition 4.1. Let ρ ∈ (1,∞), 0 < p � 1 � q � ∞, p �= q, γ ∈ [1,∞) and ε ∈ (0,∞). A function b

in L2(μ) when p ∈ (0, 1) and in L1(μ) when p = 1 is called a (p, q, γ, ε, ρ)λ-molecular block if

(i)
∫
X b(x)dμ(x) = 0;

(ii) there exist some ball B := B(cB , rB), with cB ∈ X and rB ∈ (0,∞), and some constants M̃, M ∈ N
such that, for all k ∈ Z+ and j ∈ {1, . . . ,Mk} with Mk := M̃ if k = 0 and Mk := M if k ∈ N, there
exist functions mk, j supported on some balls Bk, j ⊂ Uk(B) for all k ∈ Z+, where U0(B) := ρ2B and

Uk(B) := ρk+2B\ρk−2B with k ∈ N, and λk, j ∈ C such that b =
∑∞

k=0

∑Mk

j=1 λk, jmk, j in L2(μ) when

p ∈ (0, 1) and in L1(μ) when p = 1,

‖mk, j‖Lq(μ) � ρ−kε[μ(ρBk, j)]
1/q−1[λ(cB , ρ

k+2rB)]
1−1/p[K̃

(ρ), p

Bk, j , ρk+2B
]−γ (4.1)

and

|b|p
H̃p, q, γ, ε

mb, ρ (μ)
:=

∞∑
k=0

Mk∑
j=1

|λk, j |p <∞.

A function f is said to belong to the space H̃p, q, γ, ε
mb, ρ (μ) if there exists a sequence of (p, q, γ, ε, ρ)λ-

molecular blocks, {bi}∞i=1, such that f =
∑∞

i=1 bi in L2(μ) when p ∈ (0, 1) and in L1(μ) when p = 1,

and ∞∑
i=1

|bi|p
H̃p, q, γ, ε

mb, ρ (μ)
<∞.

Moreover, define

‖f‖H̃p, q, γ, ε
mb, ρ (μ) := inf

{[ ∞∑
i=1

|bi|p
H̃p, q, γ, ε

mb, ρ (μ)

]1/p}
,

where the infimum is taken over all possible decompositions of f as above.

The molecular Hardy space H̃p, q, γ, ε
mb, ρ (μ) is then defined as the completion of H̃p, q, γ, ε

mb, ρ (μ) with respect

to the p-quasi-norm ‖ · ‖p
H̃p, q, γ, ε

mb, ρ (μ)
.

Remark 4.2. (i) From the theorem of completion of Yosida [65, p. 56], it follows that H̃p, q, γ, ε
mb, ρ (μ) has

a completion space H̃p, q, γ, ε
mb, ρ (μ), namely, for any f ∈ H̃p, q, γ, ε

mb, ρ (μ), there exists a Cauchy sequence {fk}∞k=1

in H̃p, q, γ, ε
mb, ρ (μ) such that

lim
k→∞

‖fk − f‖p
H̃p, q, γ, ε

mb, ρ
(μ)

= 0. (4.2)

Moreover, if {fk}∞k=1 is a Cauchy sequence in H̃p, q, γ, ε
mb, ρ (μ), then there exists a unique f ∈ H̃p, q, γ, ε

mb, ρ (μ)

such that (4.2) holds true.
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(ii) It was proved, in [13, Proposition 2.2(i)], that H̃1, q, γ, ε
mb, ρ (μ) is a Banach space and hence

H̃1, q, γ, ε
mb, ρ (μ) = H̃1, q, γ, ε

mb, ρ (μ).

(iii) Fix p, ρ, ε and γ as in Definition 4.1. For 1 � q1 � q2 � ∞, we easily have

H̃p, q2, γ, ε
mb, ρ (μ) ⊂ H̃p, q1, γ, ε

mb, ρ (μ).

(iv) We point out that, via replacing the discrete coefficient K̃
(ρ), 1
B,S in Definitions 3.2 and 4.1 by the

continuous coefficient KB,S as in (2.4), the atomic Hardy space H1, q, γ
atb, ρ (μ) and the molecular Hardy

space H1, q, γ, ε
mb, ρ (μ) were introduced, respectively, in [13,30]. It was proved, in [30, Proposition 3.3(ii) and

Theorem 3.8], that H1, q, γ
atb, ρ (μ) is independent of the choices of ρ, γ and q. Moreover, in [13, Remark 2.3],

it was proved that H1, q, γ
atb, ρ (μ) and H1, q, γ, ε

mb, ρ (μ) coincide with equivalent norms and hence H1, q, γ, ε
mb, ρ (μ)

is independent of the choices of ρ, γ, q and ε. However, H1, q, γ
atb, ρ (μ) and H̃1, q, γ

atb, ρ (μ) (or H1, q, γ, ε
mb, ρ (μ)

and H̃1, q, γ, ε
mb, ρ (μ)) may not coincide (see [13, Remark 1.9]) and the boundedness of Calderón-Zygmund

operators on H1, q, γ
atb, ρ (μ) over general non-homogeneous metric measure spaces is also unclear (see [13,

Remark 2.4]).

By [13, Theorem 1.11], we see that H̃1, q, γ
atb, ρ (μ) = H̃1, q, γ, ε

mb, ρ (μ). For p ∈ (0, 1), we have the following

conclusion.

Proposition 4.3. Suppose that (X , d, μ) is a non-homogeneous metric measure space. Let p ∈ (0, 1),

and ρ, q, γ and ε be as in Definition 4.1. Then H̃p, q, γ
atb, ρ(μ) ⊂ H̃p, q, γ, ε

mb, ρ (μ) ⊂ Lp(μ) and there exist positive

constants C and C̃ such that, for all f ∈ H̃p, q, γ
atb, ρ (μ),

C‖f‖pLp(μ) � ‖f‖p
H̃p, q, γ, ε

mb, ρ (μ)
� C̃‖f‖p

H̃p, q, γ
atb, ρ (μ)

.

Proof. Let ρ, p, q, γ and ε be as in Proposition 4.3. By the Fatou lemma, it suffices to prove that, for

any (p, q, γ, ρ)λ-atomic block b, b is also a (p, q, γ, ε, ρ)λ-molecular block which belongs to Lp(μ) and

‖b‖pLp(μ) � |b|p
H̃p, q, γ, ε

mb, ρ (μ)
� |b|p

H̃p, q, γ
atb, ρ (μ)

. (4.3)

By Definitions 3.2 and 4.1, it is easy to see that, for any (p, q, γ, ρ)λ-atomic block b, b is also a (p, q, γ, ε, ρ)λ-

molecular block and |b|p
H̃p, q, γ, ε

mb, ρ (μ)
� |b|p

H̃p, q, γ
atb, ρ (μ)

.

On the other hand, for any (p, q, γ, ε, ρ)λ-molecular block b with the same notation as in Definition 4.1,

by the Fatou lemma, Hölder’s inequality, (4.1), Bk, j ⊂ ρk+2B and (2.1), we see that

‖b‖pLp(μ) �
∞∑
k=0

Mk∑
j=1

|λk, j |p‖mk, j‖pLp(μ) �
∞∑
k=0

Mk∑
j=1

|λk, j |p‖mk, j‖pLq(μ) [μ(Bk, j)]
1−p/q

�
∞∑
k=0

Mk∑
j=1

|λk, j |p[μ(Bk, j)]
1−p/qρ−kpε[μ(ρBk, j)]

p/q−p[λ(cB , ρ
k+2rB)]

p−1

�
∞∑
k=0

Mk∑
j=1

|λk, j |p ∼ |b|p
H̃p, q, γ, ε

mb, ρ (μ)
,

which completes the proof of Proposition 4.3.

Remark 4.4. Let p ∈ (0, 1), and ρ, q, γ and ε be as in Definition 4.1. By Proposition 4.3, we easily

conclude that there exists a map T from H̃p, q, γ
atb, ρ (μ) to H̃p, q, γ, ε

mb, ρ (μ) such that, for any f ∈ H̃p, q, γ
atb, ρ (μ),

there is a unique element f̃ ∈ H̃p, q, γ, ε
mb, ρ (μ) satisfying Tf = f̃ and ‖f̃‖H̃p, q, γ, ε

mb, ρ (μ) � ‖f‖H̃p, q, γ
atb, ρ (μ), where

the implicit positive constant is independent of f . In this sense, we say that H̃p, q, γ
atb, ρ (μ) ⊂ H̃p, q, γ, ε

mb, ρ (μ),

which is different from the classical inclusion relation of spaces, since it is still unclear whether T is an

injection and ‖f̃‖H̃p, q, γ, ε
mb, ρ (μ) ∼ ‖f‖H̃p, q, γ

atb, ρ (μ) or not.
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Now we show that any element in H̃p, q, γ, ε
mb, ρ (μ) can be decomposed into a sum of a sequence of

(p, q, γ, ε, ρ)λ-molecular blocks, {bj}∞j=1, in H̃
p, q, γ, ε
mb, ρ (μ). The proof is similar to that of Proposition 3.4,

the details being omitted.

Proposition 4.5. Suppose that (X , d, μ) is a non-homogeneous metric measure space. Let p, ρ, q, γ

and ε be as in Definition 4.1. Then f ∈ H̃p, q, γ, ε
mb, ρ (μ) if and only if there exist (p, q, γ, ε, ρ)λ-molecular

blocks {bi}∞i=1 such that

f =

∞∑
i=1

bi in H̃p, q, γ, ε
mb, ρ (μ) (4.4)

and ∞∑
i=1

|bi|p
H̃p, q, γ, ε

mb, ρ (μ)
<∞.

Moreover,

‖f‖p
H̃p, q, γ, ε

mb, ρ (μ)
= inf

{ ∞∑
i=1

|bi|pH̃p, q, γ, ε
mb, ρ (μ)

}
,

where the infimum is taken over all possible decompositions of f as in (4.4).

Now we consider the boundedness of Calderón-Zygmund operators on these atomic and molecular

Hardy spaces. To this end, we first recall the following notion of Calderón-Zygmund operators from [29].

Definition 4.6. A function K ∈ L1
loc ((X ×X )\{(x, x) : x ∈ X}) is called a Calderón-Zygmund kernel

if there exists a positive constant C(K), depending on K, such that

(i) for all x, y ∈ X with x �= y,

|K(x, y)| � C(K)
1

λ(x, d(x, y))
; (4.5)

(ii) there exist positive constants δ ∈ (0, 1] and c(K), depending on K, such that, for all x, x̃, y ∈ X
with d(x, y) � c(K)d(x, x̃),

|K(x, y)−K(x̃, y)|+ |K(y, x)−K(y, x̃)| � C(K)
[d(x, x̃)]δ

[d(x, y)]δλ(x, d(x, y))
. (4.6)

A linear operator T is called a Calderón-Zygmund operator with kernel K satisfying (4.5) and (4.6) if,

for all f ∈ L∞
b (μ) := {f ∈ L∞(μ) : supp (f) is bounded},

Tf(x) :=

∫
X
K(x, y)f(y)dμ(y), x �∈ supp (f). (4.7)

A new example of operators with kernel satisfying (4.6) and (4.7) is the so-called Bergman-type operator

appearing in [60]; see also [29] for an explanation.

We first recall the following useful lemma from [28].

Lemma 4.7. Suppose that (X , d, μ) is a non-homogeneous metric measure space. Let T be a Calderón-

Zygmund operator defined by (4.7) associated with kernel K satisfying (4.5) and (4.6). Then the following

statements are equivalent:

(i) T is bounded on L2(μ);

(ii) T is bounded on Lq(μ) for all q ∈ (1,∞);

(iii) T is bounded from L1(μ) to weak-L1(μ).

Now we prove the boundedness of Calderón-Zygmund operators from H̃p, q, γ, δ
mb, ρ (μ) into Lp(μ). Here-

after, let ν := log2 C(λ), and δ be as in Definition 4.6.

Theorem 4.8. Suppose that (X , d, μ) is a non-homogeneous metric measure space. Let ρ ∈ (1,∞),
ν

ν+δ < p � 1 < q < ∞ and γ ∈ [1,∞). Assume that the Calderón-Zygmund operator T defined

by (4.7) associated with kernel K satisfying (4.5) and (4.6) is bounded on L2(μ). Then T is bounded

from H̃p, q, γ, δ
mb, ρ (μ) into Lp(μ).
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Proof. Let ρ, p, q and γ be as in the assumptions of Theorem 4.8. For the sake of simplicity, we take

ρ = 2 and γ = 1. With some slight modifications, the arguments here are still valid for general cases. We

first reduce the proof to showing that, for all (p, q, 1, δ, 2)λ-molecular blocks b,

‖Tb‖Lp(μ) � |b|H̃p, q, 1, δ
mb, 2 (μ). (4.8)

Indeed, assume that (4.8) holds true. For any f ∈ H̃p, q, 1, δ
mb, 2 (μ), there exists a sequence {bi}i∈N of

(p, q, 1, δ, 2)λ-molecular blocks such that f =
∑∞

i=1 bi in L
2(μ) when p ∈ (0, 1) and in L1(μ) when p = 1

and ∞∑
i=1

|bi|p
H̃p, q, 1, δ

mb, 2 (μ)
∼ ‖f‖p

H̃p, q, 1, δ
mb, 2 (μ)

.

If f =
∑∞

i=1 bi in L
2(μ), then, by the boundedness of T on L2(μ), we see that, for any N ∈ N,∥∥∥∥ N∑

i=1

T (bi)− Tf

∥∥∥∥
L2(μ)

=

∥∥∥∥T( N∑
i=1

bi − f

)∥∥∥∥
L2(μ)

�
∥∥∥∥ N∑

i=1

bi − f

∥∥∥∥
L2(μ)

→ 0 as N → ∞,

which further implies that, for all η ∈ (0,∞),

μ

({
x ∈ X :

∣∣∣∣ N∑
i=1

T (bi)(x) − Tf(x)

∣∣∣∣ > η

})
→ 0 as N → ∞. (4.9)

If f =
∑∞

i=1 bi in L1(μ), then, by the boundedness of T from L1(μ) to weak-L1(μ), we still know

that (4.9) holds true. Thus, by the Riesz theorem, we know that there exists a subsequence of partial

sums, {∑Nk

i=1 T (bi)}k, such that

Tf = lim
k→∞

Nk∑
i=1

T (bi) μ-almost everywhere on X ,

which, together with the Fatou lemma and (4.8), implies that

‖Tf‖pLp(μ) � lim inf
k→∞

∫
X

Nk∑
i=1

|T (bi)(x)|pdμ(x) �
∞∑
i=1

‖T (bi)‖pLp(μ)

�
∞∑
i=1

|bi|pH̃p, q, 1, δ
mb, 2 (μ)

∼ ‖f‖p
H̃p, q, 1, δ

mb, 2 (μ)
.

Moreover, by a standard density argument, we extend T to be a bounded linear operator from H̃p, q, 1, δ
mb, 2 (μ)

into Lp(μ), which is the desired result.

Now we prove (4.8). Let b =
∑∞

k=0

∑Mk

j=1 λk, jmk, j be a (p, q, 1, δ, 2)λ-molecular block, where, for any

k ∈ Z+ and j ∈ {1, . . . ,Mk}, supp (mk, j) ⊂ Bk, j ⊂ Uk(B) for some balls B and Bk, j as in Definition 4.1.

Without loss of generality, we may assume that M̃ =M in Definition 4.1.

By the linearity of T , we write

‖Tb‖pLp(μ) �
∞∑
=5

∫
U�(B)

∣∣∣∣T( −5∑
k=0

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣pdμ(x)
+

∞∑
=5

∫
U�(B)

∣∣∣∣T( +4∑
k=−4

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣pdμ(x)
+

∞∑
=5

∫
U�(B)

∣∣∣∣T( ∞∑
k=+5

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣pdμ(x) + 4∑
=0

∫
U�(B)

|Tb(x)|pdμ(x)

=: I + II + III + IV.
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Now we first estimate III. By (4.5), (2.1), (2.2), Hölder’s inequality and (4.1), we obtain

III �
∞∑
=5

∞∑
k=+5

M∑
j=1

|λk, j |p
∫
U�(B)

[ ∫
Bk, j

|mk, j(y)||K(x, y)|dμ(y)
]p
dμ(x)

�
∞∑
=5

∞∑
k=+5

M∑
j=1

|λk, j |p
∫
U�(B)

[ ∫
Bk, j

|mk, j(y)|
λ(x, d(x, y))

dμ(y)

]p
dμ(x)

�
∞∑
=5

∞∑
k=+5

M∑
j=1

|λk, j |p
∫
U�(B)

1

[λ(cB , d(x, cB))]p
dμ(x)‖mk, j‖pL1(μ)

�
∞∑
=5

∞∑
k=+5

M∑
j=1

|λk, j |p μ(2+2B)

[λ(cB , 2−2rB)]p
[μ(Bk, j)]

p/q′ ‖mk, j‖pLq(μ)

�
∞∑
=5

∞∑
k=+5

M∑
j=1

|λk, j |p
[
μ
(
2+2B

)]1−p
[μ(Bk, j)]

p/q′

× 2−kδp [μ(2Bk, j)]
−p/q′ [

λ
(
cB , 2

k+2rB
)]p−1

�
∞∑
=5

∞∑
k=+5

M∑
j=1

2−kδp|λk, j |p ∼
M∑
j=1

∞∑
k=10

k−5∑
=5

2−kδp|λk, j |p

�
M∑
j=1

∞∑
k=10

k2−kδp|λk, j |p �
∞∑
k=0

M∑
j=1

|λk, j |p ∼ |b|p
H̃p, q, 1, δ

mb, 2 (μ)
.

In order to estimate I, write

I �
∞∑
=5

∫
U�(B)

∣∣∣∣ ∫X
[ −5∑
k=0

M∑
j=1

λk, jmk, j(y)

]
[K(x, y)−K(x, cB)]dμ(y)

∣∣∣∣pdμ(x)
+

∞∑
=5

∫
U�(B)

∣∣∣∣ ∫X
[ −5∑
k=0

M∑
j=1

λk, jmk, j(y)

]
K(x, cB)dμ(y)

∣∣∣∣pdμ(x) =: I1 + I2.

From (4.6), (2.2), (2.1), Hölder’s inequality, (4.1) and the fact that p ∈ ( ν
ν+δ , 1], it follows that

I1 �
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p
∫
U�(B)

{∫
Bk, j

|mk, j(y)|[d(y, cB)]δ
[d(x, cB)]δλ(cB , d(x, cB))

dμ(y)

}p

dμ(x)

�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p 2(k+2)δprδpB μ(2
+2B)

2(−2)δprδpB [λ(cB , 2−2rB)]p
‖mk, j‖pL1(μ)

�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p2(k−)δp[μ(2+2B)]1−p[μ(Bk, j)]
p/q′‖mk, j‖pLq(μ)

�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p2(k−)δp[μ(2+2B)]1−p[μ(Bk, j)]
p/q′

× 2−kδp[μ(2Bk, j)]
−p/q′ [λ(cB , 2

k+2rB)]
p−1

�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p2−δp[μ(2+2B)]1−p[λ(cB , 2
+2rB)]

p−1[C(λ)]
(−k)(1−p)

�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p2[ν(1−p)−δp]2−kν(1−p) �
∞∑
k=0

M∑
j=1

|λk, j |p ∼ |b|p
H̃p, q, 1, δ

mb, 2 (μ)
.
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For I2, the vanishing moment of b, together with (4.5), (2.1) and (2.2), implies that

I2 =

∞∑
=5

∫
U�(B)

∣∣∣∣ ∫X
[ ∞∑
k=−4

M∑
j=1

λk, jmk, j(y)

]
K(x, cB)dμ(y)

∣∣∣∣pdμ(x)
�

∞∑
=5

∞∑
k=−4

M∑
j=1

|λk, j |p
∫
U�(B)

[ ∫
Bk, j

|mk, j(y)| 1

λ(cB , d(x, cB))
dμ(y)

]p
dμ(x)

�
∞∑
=5

∞∑
k=−4

M∑
j=1

|λk, j |p μ(2+2B)

[λ(cB , 2−2rB)]p
‖mk, j‖pL1(μ)

�
∞∑
=5

∞∑
k=−4

M∑
j=1

|λk, j |p[μ(2+2B)]1−p[μ(Bk, j)]
p/q′‖mk, j‖pLq(μ)

�
∞∑
=5

∞∑
k=−4

M∑
j=1

|λk, j |p[μ(2+2B)]1−p[μ(Bk, j)]
p/q′

× 2−kδp[μ(2Bk, j)]
−p/q′ [λ(cB , 2

k+2rB)]
p−1

�
∞∑
=5

∞∑
k=−4

M∑
j=1

2−kδp|λk, j |p ∼
M∑
j=1

∞∑
k=1

k+4∑
=5

2−kδp|λk, j |p

�
M∑
j=1

∞∑
k=0

k2−kδp|λk, j |p �
∞∑
k=0

M∑
j=1

|λk, j |p ∼ |b|p
H̃p, q, 1, δ

mb, 2 (μ)
.

Combining I1 and I2, we conclude that I � |b|p
H̃p, q, 1, δ

mb, 2 (μ)
.

Then we turn to estimate II. We further write

II �
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p
∫
U�(B)

|Tmk, j(x)|pdμ(x)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p
∫
2Bk, j

|Tmk, j(x)|pdμ(x)

+
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p
∫
U�(B)\2Bk, j

· · · =: II1 + II2.

By Hölder’s inequality, L2(μ)-boundedness of T , Lemma 4.7, (4.1) and (2.1), we see that

II1 �
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p[μ(2Bk, j)]
1−p/q‖Tmk, j‖pLq(μ)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p[μ(2Bk, j)]
1−p/q‖mk, j‖pLq(μ)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p[μ(2Bk, j)]
1−p/q2−kδp[μ(2Bk, j)]

−p/q′ [λ(cB , 2
k+2rB)]

p−1

�
∞∑
=5

+4∑
k=−4

M∑
j=1

2−kδp|λk, j |p �
∞∑
k=0

M∑
j=1

|λk, j |p ∼ |b|p
H̃p, q, 1, δ

mb, 2 (μ)
.

For II2, from (4.5),

d(x, y) � d(x, cBk, j
)− d(y, cBk, j

) � 1

2
d(x, cBk, j

)
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for x /∈ 2Bk, j and y ∈ Bk, j , (2.2), (2.1), Hölder’s inequality and (4.1), we deduce that

II2 �
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p
∫
U�(B)\2Bk, j

[∫
Bk, j

|mk, j(y)|
λ(cBk, j

, d(x, cBk, j
))
dμ(y)

]p
dμ(x)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p
∫
2k+6B\Bk, j

1

[λ(cBk, j
, d(x, cBk, j

))]p
dμ(x)‖mk, j‖pL1(μ)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p‖mk, j‖pL1(μ)

N
(2)

Bk, j, 2
k+5B

+1∑
i=0

μ(2i+1Bk, j)

[λ(cBk, j
, 2irBk, j

)]p

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p‖mk, j‖pL1(μ)[μ(2
N

(2)

Bk, j, 2
k+5B

+2
Bk, j)]

1−p[K̃
(2), p

Bk, j , 2k+5B
]p

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p[μ(Bk, j)]
p/q′‖mk, j‖pLq(μ)[μ(2

k+9B)]1−p[K̃
(2), p

Bk, j , 2k+5B
]p

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p[μ(Bk, j)]
p/q′2−kδp[μ(2Bk, j)]

−p/q′ [λ(cB , 2
k+2rB)]

p−1

× [K̃
(2), p

Bk, j , 2k+2B
]−p[μ(2k+9B)]1−p[K̃

(2), p

Bk, j , 2k+5B
]p

�
∞∑
=5

+4∑
k=−4

M∑
j=1

2−kδp|λk, j |p �
∞∑
k=0

M∑
j=1

|λk, j |p ∼ |b|p
H̃p, q, γ, ε

mb, ρ (μ)
,

which, together with the estimate for II1, implies that II � |b|p
H̃p, q, γ, ε

mb, ρ (μ)
.

To estimate IV, observe that

IV �
4∑

=0

∫
U�(B)

∣∣∣∣T( +4∑
k=0

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣pdμ(x)
+

4∑
=0

∫
U�(B)

∣∣∣∣T( ∞∑
k=+5

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣pdμ(x) =: IV1 + IV2.

By some arguments similar to those used in the estimates for II1 and III, we respectively obtain

IV1 � |b|p
H̃p, q, 1, δ

mb, 2 (μ)
and IV2 � |b|p

H̃p, q, 1, δ
mb, 2 (μ)

,

which, together with the estimates for I–III, completes the proof of Theorem 4.8.

Now we show the boundedness of Calderón-Zygmund operators from H̃p, q, γ
atb, ρ (μ) into L

p(μ).

Corollary 4.9. Suppose that (X , d, μ) is a non-homogeneous metric measure space. Let ρ ∈ (1,∞),
ν

ν+δ < p � 1 < q < ∞ and γ ∈ [1,∞). Assume that the Calderón-Zygmund operator T defined

by (4.7) associated with kernel K satisfying (4.5) and (4.6) is bounded on L2(μ). Then T is bounded

from H̃p, q, γ
atb, ρ (μ) into Lp(μ).

Proof. Let ρ, p, q, γ and δ be as in assumptions of Corollary 4.9. For the sake of simplicity, we take

ρ = 2 and γ = 1. By an argument similar to that used in the proof of Theorem 4.8, it suffices to show

that, for any (p, q, 1, 2)λ-atomic block b,

‖Tb‖Lp(μ) � |b|H̃p, q, 1
atb, 2

(μ),

which is an easy consequence of the facts that b is also a (p, q, 1, δ, 2)λ-molecular block and |b|H̃p, q, 1, δ
mb, 2 (μ)

� |b|H̃p, q, 1
atb, 2 (μ) (see (4.3)), together with (4.8) from the proof of Theorem 4.8. This finishes the proof of

Corollary 4.9.
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Remark 4.10. When p = 1, Theorem 4.8 or Corollary 4.9 is a special case of [30, Theorem 4.1], since,

for any q ∈ (1,∞], ρ ∈ (1,∞), γ ∈ [1,∞) and ε ∈ (0,∞), H̃1, q, γ
atb, ρ (μ) ⊂ H1, q, γ

atb, ρ (μ), where H
1, q, γ
atb, ρ (μ)

is introduced in [30] (see [13, Remark 1.9(i)]), and, by [13, Theorem 1.11 and Remark 1.9(i)], we know

that H̃1, q, γ
atb, ρ (μ) is independent of the choices of q, ρ and γ, and H̃1, q, γ

atb, ρ (μ) and H̃
1, q, γ, ε
mb, ρ (μ) coincide with

equivalent norms.

Now we establish the (H̃p, q, γ+1
atb, ρ(ρ+1)(μ), H̃

p, q, γ, 1
2 (δ− ν

p+ν)

mb, ρ (μ))-boundedness of Calderón-Zygmund oper-

ators. In what follows, for T as in Corollary 4.9, T is said to satisfy T ∗1 = 0 if, for all h ∈ L∞
b (μ) with∫

X h(y)dμ(y) = 0, ∫
X
Th(y)dμ(y) = 0.

Observe that, for such T and h, by Corollary 4.9, we have Th ∈ L1(μ).

Theorem 4.11. Suppose that (X , d, μ) is a non-homogeneous metric measure space. Let ρ ∈ [2,∞),
ν

ν+δ < p � 1 < q < ∞ and γ ∈ [1,∞). Assume that the Calderón-Zygmund operator T defined by (4.7)

associated with kernel K satisfying (4.5) and (4.6) is bounded on L2(μ) and T ∗1 = 0. Then T is bounded

from H̃p, q, γ+1
atb, ρ(ρ+1)(μ) into H̃

p, q, γ, 1
2 (δ− ν

p+ν)

mb, ρ (μ).

Proof. Observe that, when p = 1, Theorem 4.11 is a special case of [13, Theorem 1.14], since it was

shown, by [13, Theorem 1.11 and Remark 1.9(i)], that, for any q ∈ (1,∞], ρ ∈ (1,∞), γ ∈ [1,∞) and

ε ∈ (0,∞), H̃1, q, γ
atb, ρ (μ) and H̃

1, q, γ, ε
mb, ρ (μ) coincide with equivalent norms, and H̃1, q, γ

atb, ρ (μ) is independent of

the choices of q, ρ and γ. Thus, to show Theorem 4.11, we only need to consider the case p ∈ ( ν
ν+δ , 1).

Moreover, for the sake of simplicity, we assume that γ = 1 and ρ = 2. Via some slight modifications,

the arguments here are still valid for general cases. We first reduce our proof to showing that, for any

(p, q, 2, 6)λ-atomic block, Tb is a (p, q, 1, 12 (δ − ν
p + ν), 2)λ-molecular block and

|Tb|
H̃

p, q, 1, 1
2
(δ− ν

p
+ν)

mb, 2 (μ)
� |b|H̃p, q, 2

atb, 6
(μ). (4.10)

Indeed, assume that (4.10) holds true. For any H̃p, q, 2
atb, 6(μ), there exists a sequence {bi}i∈N of (p, q, 2, 6)λ-

atomic blocks such that f =
∑∞

i=1 bi in L
2(μ) and

∞∑
i=1

|bi|p
H̃p, q, 2

atb, 6 (μ)
∼ ‖f‖p

H̃p, q, 2
atb, 6 (μ)

.

By the boundedness of T on L2(μ), we see that∥∥∥∥ N∑
i=1

T (bi)− Tf

∥∥∥∥
L2(μ)

=

∥∥∥∥T( N∑
i=1

bi − f

)∥∥∥∥
L2(μ)

�
∥∥∥∥ N∑

i=1

bi − f

∥∥∥∥
L2(μ)

→ 0 as N → ∞.

Thus, Tf =
∑∞

i=1 T (bi) in L2(μ). Moreover, by (4.10), T (bi) is a (p, q, 1, 12 (δ − ν
p + ν), 2)λ-molecular

block for any i ∈ N, we know that

‖Tf‖p
H̃

p, q, 1, 1
2
(δ− ν

p
+ν)

mb, 2 (μ)

�
∞∑
i=1

|T (bi)|p
H̃

p, q, 1, 1
2
(δ− ν

p
+ν)

mb, 2 (μ)

�
∞∑
i=1

|bi|pH̃p, q, 2
atb, 6 (μ)

∼ ‖f‖p
H̃p, q, 2

atb, 6 (μ)
.

Furthermore, by a standard density argument, we extend T to be a bounded linear operator from

H̃p, q, 2
atb, 6 (μ) into H̃

p, q, 1, 1
2 (δ− ν

p+ν)

mb, 2 (μ).

Now we show that (4.10) holds true. Let b be a (p, q, 2, 6)λ-atomic block. Then b :=
∑2

j=1 λjaj , where,

for any j ∈ {1, 2}, supp (aj) ⊂ Bj ⊂ B for some balls Bj and B as in Definition 3.2. Let B0 := 8B. We

write

Tb = (Tb)χB0 +

∞∑
k=1

(Tb)χ2kB0\2k−1B0
=: A1 +A2.



Fu X et al. Sci China Math February 2015 Vol. 58 No. 2 329

We first estimate A1. Since Bj ⊂ B, we have 3Bj ⊂ 8B = B0. Let Nj := N
(2)
2Bj , B0

. Obviously,

Nj � −1. Without loss of generality, we may assume that Nj � 3. For the case Nj ∈ [−1, 3), we easily

observe that 2Bj ⊂ B0 ⊂ 25Bj , which can be reduced to the case Nj � 3. We further decompose

A1 =

2∑
j=1

λj(Taj)χ2Bj +

2∑
j=1

Nj−2∑
i=1

λj(Taj)χ2i+1Bj\2iBj
+

2∑
j=1

λj(Taj)χB0\2Nj−1Bj

=: A1,1 +A1,2 +A1,3.

To estimate A1,1, by Definition 3.2(iii), the boundedness of T on L2(μ), Lemmas 4.7, 2.8(v), 2.8(iv),

2.8(ii) and 2.9, and K̃
(2), p
3Bj , B0

� 1, we see that, for any j ∈ {1, 2},

‖(Taj)χ2Bj‖Lq(μ) � ‖aj‖Lq(μ) � [μ(6Bj)]
1/q−1[λ(cB, rB)]

1−1/p[K̃
(6), p
Bj , B

]−2

� [μ(6Bj)]
1/q−1[λ(cB , 8rB)]

1−1/p[K̃
(2), p
3Bj , 8B

]−2

� [μ(6Bj)]
1/q−1[λ(cB0 , r4B0 )]

1−1/p[K̃
(2), p
3Bj , 4B0

]−1,

here and hereafter, cB and cB0 denote the centers of B and B0, and rB and r4B0 denote the radii of B and

4B0, respectively. Let c1, independent of aj and j, be the implicit positive constant of the above inequality,

σj, 1 := c1λj and nj, 1 := c−1
1 (Taj)χ2Bj . Then A1, 1 =

∑2
j=1 σj, 1nj, 1, supp (nj, 1) ⊂ 3Bj ⊂ B0 and

‖nj, 1‖Lq(μ) � [μ(6Bj)]
1/q−1[λ(cB0 , r4B0 )]

1−1/p[K̃
(2), p
3Bj , 4B0

]−1.

For A1,3, we observe that rB0 ∼ r2Nj−1Bj
, where rB0 and r2Nj−1Bj

denote the radii of B0 and 2Nj−1Bj,

respectively. For any j ∈ {1, 2}, let xj and rj be the center and the radius of Bj , respectively. By (4.5),

(2.2), (2.1), Hölder’s inequality, Definition 3.2(iii), K̃
(6), p
Bj , B

� 1, B0 ⊂ 2Nj+3Bj , Lemmas 2.8(ii) and 2.9,

we obtain

‖(Taj)χB0\2Nj−1Bj
‖Lq(μ) �

{∫
8B\2Nj−1Bj

[ ∫
Bj

|aj(y)|
λ(x, d(x, y))

dμ(y)

]q
dμ(x)

}1/q

�
{∫

8B\2Nj−1Bj

[ ∫
Bj

|aj(y)|
λ(xj , d(x, xj))

dμ(y)

]q
dμ(x)

}1/q

� [μ(8B\2Nj−1Bj)]
1/q

λ(xj , 2Nj−1rj)
[μ(Bj)]

1/q′‖aj‖Lq(μ)

� [μ(32B)]1/q−1[λ(cB , rB)]
1−1/p[K̃

(6), p
Bj , B

]−2

� [μ(4B0)]
1/q−1[λ(cB0 , r4B0)]

1−1/p[K̃
(2), p
2B0, 4B0

]−1.

Let c2, independent of aj and j, be the implicit positive constant of the above inequality, σj, 3 := c2λj
and nj, 3 := c−1

2 (Taj)χB0\2Nj−1Bj
. Then A1, 3 =

∑2
j=1 σj, 3nj, 3, supp (nj, 3) ⊂ 16B = 2B0 and

‖nj, 3‖Lq(μ) � [μ(4B0)]
1/q−1[λ(cB0 , r4B0)]

1−1/p[K̃
(2), p
2B0, 4B0

]−1.

We now estimate A1, 2. By (4.5), (2.2), (2.1), Definition 3.2(iii), Hölder’s inequality, Lemmas 2.8(v),

2.8(iv), 2.8(ii) and 2.9, we conclude that

‖(Taj)χ2i+1Bj\2iBj
‖Lq(μ)

�
{∫

2i+1Bj\2iBj

[ ∫
Bj

|aj(y)|
λ(x, d(x, y))

dμ(y)

]q
dμ(x)

}1/q

�
{∫

2i+1Bj\2iBj

[ ∫
Bj

|aj(y)|
λ(xj , d(x, xj))

dμ(y)

]q
dμ(x)

}1/q
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� [λ(xj , 2
irj)]

1/q−1‖aj‖L1(μ)

[∫
2i+1Bj\2iBj

1

λ(xj , 2irj)
dμ(x)

]1/q
� [λ(xj , 2

irj)]
1/q−1‖aj‖Lq(μ)[μ(Bj)]

1/q′
[
μ(2i+1Bj)

λ(xj , 2irj)

]1/q
� μ(2i+3Bj)

λ(xj , 2irj)
[K̃

(2), p
Bj, B

]−1[μ(2i+3Bj)]
1/q−1[λ(cB0 , r4B0)]

1−1/p[K̃
(2), p
2i+2Bj , 4B0

]−1.

Let c3, independent of aj , j and i, be the implicit positive constant of the above inequality,

σ
(i)
j, 2 := c3λj

μ(2i+3Bj)

λ(xj , 2irj)
[K̃

(2), p
Bj , B

]−1

and

n
(i)
j, 2 :=

[
c3
μ(2i+3Bj)

λ(xj , 2irj)

]−1

K̃
(2), p
Bj , B

(Taj)χ2i+1Bj\2iBj
.

Then

A1, 2 =
2∑

j=1

Nj−2∑
i=1

σ
(i)
j, 2n

(i)
j, 2,

supp (n
(i)
j, 2) ⊂ 2i+2Bj ⊂ 2B0 and

‖n(i)
j, 2‖Lq(μ) � [μ(2(2i+2Bj))]

1/q−1[λ(cB0 , r4B0)]
1−1/p[K̃

(2), p
2i+2Bj , 4B0

]−1.

Now we turn to estimate A2. For any k ∈ N, by the geometrically doubling condition, there exists a ball

covering {Bk, j}M0

j=1, with uniform radius 2k−3rB0 , of Ũk(B0) := 2kB0\2k−1B0 such that the cardinality

M0 � N08
n. Without loss of generality, we may assume that the centers of the balls in the covering

belong to Ũk(B0).

Let Ck, 1 := Bk, 1, Ck, l := Bk, l\
⋃l−1

m=1Bk,m, l ∈ {2, . . . ,M0} and Dk, l := Ck, l ∩ Ũk(B0) for all

l ∈ {1, . . . ,M0}. Then we know that {Dk, l}M0

l=1 is pairwise disjoint, Ũk(B0) =
⋃M0

l=1Dk, l and, for any

l ∈ {1, . . . ,M0},
Dk, l ⊂ 2Bk, l ⊂ Uk(B0) := 2k+2B0\2k−2B0.

Thus,

A2 =

∞∑
k=1

Tb

M0∑
l=1

χDk, l
=

∞∑
k=1

M0∑
l=1

(Tb)χDk, l
.

From
∫
X b(y)dμ(y) = 0, (4.6), (2.2), (2.1), Hölder’s inequality, Definition 3.2(iii), K̃

(2), p
Bj , B

� 1, 4Bk, l ⊂
2k+1B0 and Lemma 2.8(ii), it follows that, for any k ∈ N, j ∈ {1, 2} and l ∈ {1, . . . ,M0},

‖(Tb)χDk, l
‖Lq(μ) �

{∫
Dk, l

[ ∫
B

|b(y)||K(x, y)−K(x, cB)|dμ(y)
]q
dμ(x)

}1/q

�
[ ∫

Dk, l

{∫
B

|b(y)| [d(y, cB)]
δ

[d(x, cB)]δλ(cB, d(x, cB))
dμ(y)

}q

dμ(x)

]1/q
� rδB [μ(Dk, l)]

1/q

λ(cB , r2k−1B0
)(r2k−1B0

)δ

∫
B

|b(y)|dμ(y)

� 2−kδ[μ(2k+1B0)]
1/q−1

2∑
j=1

|λj |[μ(Bj)]
1/q′‖aj‖Lq(μ)

� 2−kδ[μ(2k+1B0)]
1/q−1

2∑
j=1

|λj |[λ(cB , rB)]1−1/p

� 2−kδ[C(λ)]
(k+2)( 1

p−1)
2∑

j=1

|λj |[μ(4Bk, l)]
1/q−1[λ(cB , r2k+2B0

)]1−1/p



Fu X et al. Sci China Math February 2015 Vol. 58 No. 2 331

� 2−
k
2 (δ− ν

p+ν)2−
k
2 (δ− ν

p+ν)
2∑

j=1

|λj |[μ(4Bk, l)]
1/q−1

× [λ(cB, r2k+2B0
)]1−1/p[K̃

(2), p

2Bk, l, 2k+2B0
]−1.

Let c4, independent of b and k, be the implicit positive constant of the above inequality,

λk, l := c42
− k

2 (δ− ν
p+ν)

2∑
j=1

|λj |

and mk, l := λ−1
k, l(Tb)χDk, l

. Then

A2 =

∞∑
k=1

M0∑
l=1

λk, lmk, l,

supp (mk, l) ⊂ 2Bk, l ⊂ Uk(B0) and

‖mk, l‖Lq(μ) � 2−
k
2 (δ− ν

p+ν) [μ(2(2Bk, l))]
1/q−1

[λ(cB , r2k+2B0
)]
1−1/p

[K̃
(2), p

2Bk, l, 2k+2B0
]−1.

Combining the estimates for A1 and A2, we see that Tb is a (p, q, 1,
1
2 (δ− ν

p+ν), 2)λ-molecular block and

|Tb|p
H̃

p, q, 1, 1
2
(δ− ν

p
+ν)

mb, 2
(μ)

=

2∑
j=1

|σj, 1|p +
2∑

j=1

Nj−1∑
i=1

|σ(i)
j, 2|p +

2∑
j=1

|σj, 3|p +
∞∑
k=1

M0∑
l=1

|λk, l|p

�
2∑

j=1

|λj |p +
2∑

j=1

Nj−2∑
i=1

|λj |p
[
μ(2i+3Bj)

λ(xj , 2irj)

]p
[K̃

(2), p
Bj , B

]−p

+

∞∑
k=1

M0∑
l=1

2−
k
2 (δ− ν

p+ν)p
2∑

j=1

|λj |p

�
2∑

j=1

|λj |p +
∞∑
k=1

2−
k
2 (δ− ν

p+ν)pM0

2∑
j=1

|λj |p �
2∑

j=1

|λj |p ∼ |b|p
H̃p, q, 2

atb, 6
(μ)
,

which completes the proof of Theorem 4.11.

Remark 4.12. It is still unclear whether the range of ρ in Theorem 4.11 is sharp or not.

5 Boundedness of generalized fractional integrals

In this section, we establish the boundedness of the generalized fractional integral Tβ (β ∈ (0, 1)) from

H̃p1, q, γ, θ
mb, ρ (μ) (or H̃p1, q, γ

atb, ρ (μ)) into Lp2(μ) with 1/p2 = 1/p1 − β, where θ is some positive constant

depending on Tβ . To this end, we first recall the notion of generalized fractional integrals from [15].

Definition 5.1. Let β ∈ (0, 1). A function Kβ ∈ L1
loc(X ×X \ {(x, x) : x ∈ X}) is called a generalized

fractional integral kernel if there exists a positive constant C(Kβ), depending on Kβ , such that

(i) for all x, y ∈ X with x �= y,

|Kβ(x, y)| � C(Kβ)
1

[λ(x, d(x, y))]1−β
; (5.1)

(ii) there exist positive constants θ ∈ (0, 1] and c(Kβ), depending on Kβ, such that, for all x, x̃, y ∈ X
with d(x, y) � c(Kβ)d(x, x̃),

|Kβ(x, y)−Kβ(x̃, y)|+ |Kβ(y, x)−Kβ(y, x̃)| � C(Kβ)
[d(x, x̃)]θ

[d(x, y)]θ[λ(x, d(x, y))]1−β
. (5.2)
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A linear operator Tβ is called a generalized fractional integral with kernel Kβ satisfying (5.1) and (5.2)

if, for all f ∈ L∞
b (μ) and x �∈ supp (f),

Tβf(x) :=

∫
X
Kβ(x, y)f(y)dμ(y). (5.3)

Remark 5.2. It was shown in [15, Remark 1.10(iii)] that there exists a specific example of the gener-

alized fractional integral, which is a natural variant of the so-called Bergman-type operator; see [15] for

the details.

Now we show that the generalized fractional integral Tβ is bounded from H̃p1, q, γ, θ
mb, ρ (μ) into Lp2(μ) for

1/p2 = 1/p1 − β. Recall that ν := log2 C(λ) and θ is as in Definition 5.1.

Theorem 5.3. Suppose that (X , d, μ) is a non-homogeneous metric measure space. Let β ∈ (0, 1/2),

ρ ∈ (1,∞), ν
ν+θ < p1 < p2 � 1 < q < 1/β, 1/p2 = 1/p1 − β and γ ∈ [1,∞). Assume that the generalized

fractional integral Tβ defined by (5.3) associated with kernel Kβ satisfying (5.1) and (5.2) is bounded

from Lq(μ) into Lq̃(μ), where 1/q̃ := 1/q − β. Then Tβ is bounded from H̃p1, q, γ, θ
mb, ρ (μ) into Lp2(μ).

Proof. Let β, ρ, p1, p2, q, q̃ and γ be as in assumptions of Theorem 5.3. For the sake of simplicity,

we take ρ = 2 and γ = 1. With some minor modifications, the arguments here are still valid for general

cases.

Since Tβ is bounded from Lq(μ) to Lq̃(μ) for q ∈ (1, 1/β) and 1/q̃ = 1/q − β, by [15, Theorem 1.13],

we know that Tβ is also bounded from L1(μ) to weak-L1/(1−β)(μ). By the boundedness of Tβ from L2(μ)

into L2/(1−2β)(μ) or from L1(μ) into weak-L1/(1−β)(μ) and an argument similar to that used in the proof

of Theorem 4.8, to show Theorem 5.3, it suffices to show that, for all (p1, q, 1, θ, 2)λ-molecular blocks b,

‖Tβb‖Lp2(μ) � |b|
H̃

p1, q, 1, θ

mb, 2
(μ)
.

Let b =
∑∞

k=0

∑Mk

j=1 λk, jmk, j be a (p1, q, 1, θ, 2)λ-molecular block, where, for any k ∈ Z+ and j ∈
{1, . . . ,Mk}, supp (mk, j) ⊂ Bk, j ⊂ Uk(B) for some balls B and Bk, j as in Definition 4.1. Without loss

of generality, we may assume that M̃ =M in Definition 4.1.

By the linearity of Tβ , we write

‖Tβb‖p2

Lp2(μ) �
∞∑
=5

∫
U�(B)

∣∣∣∣Tβ( −5∑
k=0

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣p2

dμ(x)

+

∞∑
=5

∫
U�(B)

∣∣∣∣Tβ( +4∑
k=−4

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣p2

dμ(x)

+

∞∑
=5

∫
U�(B)

∣∣∣∣Tβ( ∞∑
k=+5

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣p2

dμ(x) +

4∑
=0

∫
U�(B)

|Tβb(x)|p2dμ(x)

=: I + II + III + IV.

Now we first estimate III. By (5.1), (2.1), (2.2), Hölder’s inequality, (4.1) and 1/p2 = 1/p1 − β, we

obtain

III �
∞∑
=5

∞∑
k=+5

M∑
j=1

|λk, j |p2

∫
U�(B)

[ ∫
Bk, j

|mk, j(y)||Kβ(x, y)|dμ(y)
]p2

dμ(x)

�
∞∑
=5

∞∑
k=+5

M∑
j=1

|λk, j |p2

∫
U�(B)

{∫
Bk, j

|mk, j(y)|
[λ(x, d(x, y))]1−β

dμ(y)

}p2

dμ(x)

�
∞∑
=5

∞∑
k=+5

M∑
j=1

|λk, j |p2

∫
U�(B)

1

[λ(cB , d(x, cB))]p2(1−β)
dμ(x)‖mk, j‖p2

L1(μ)
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�
∞∑
=5

∞∑
k=+5

M∑
j=1

|λk, j |p2
μ(2+2B)

[λ(cB , 2−2rB)]p2(1−β)
[μ(Bk, j)]

p2/q
′‖mk, j‖p2

Lq(μ)

�
∞∑
=5

∞∑
k=+5

M∑
j=1

|λk, j |p2 [μ(2+2B)]1−p2(1−β)[μ(Bk, j)]
p2/q

′

× 2−kθp2 [μ(2Bk, j)]
−p2/q

′ [
λ
(
cB, 2

k+2rB
)]p2(1−1/p1)

�
∞∑
=5

∞∑
k=+5

M∑
j=1

2−kθp2 |λk, j |p2 ∼
M∑
j=1

∞∑
k=10

k−5∑
=5

2−kθp2 |λk, j |p2

�
M∑
j=1

∞∑
k=10

k2−kθp2 |λk, j |p2 �
{ ∞∑

k=0

M∑
j=1

|λk, j |p1

}p2/p1

∼ |b|p2

H̃
p1, q, 1, θ

mb, 2 (μ)
.

In order to estimate I, write

I �
∞∑
=5

∫
U�(B)

∣∣∣∣ ∫X
[ −5∑
k=0

M∑
j=1

λk, jmk, j(y)

]
[Kβ(x, y)−Kβ(x, cB)]dμ(y)

∣∣∣∣p2

dμ(x)

+

∞∑
=5

∫
U�(B)

∣∣∣∣ ∫X
[ −5∑
k=0

M∑
j=1

λk, jmk, j(y)

]
Kβ(x, cB)dμ(y)

∣∣∣∣p2

dμ(x) =: I1 + I2.

From (5.2), (2.2), (2.1), Hölder’s inequality, (4.1) and p1 ∈ ( ν
ν+θ , 1] and 1/p2 = 1/p1 − β, it follows that

I1 �
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p2

∫
U�(B)

{∫
Bk, j

|mk, j(y)|[d(y, cB)]θ
[d(x, cB)]θ[λ(cB, d(x, cB))]1−β

dμ(y)

}p2

dμ(x)

�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p2
2(k+2)θp2rθp2

B μ(2+2B)

2(−2)θp2rθp2

B [λ(cB , 2−2rB)]p2(1−β)
‖mk, j‖p2

L1(μ)

�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p22(k−)θp2 [μ(2+2B)]1−p2(1−β)[μ(Bk, j)]
p2/q

′‖mk, j‖p2

Lq(μ)

�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p22−θp2[μ(2+2B)]1−p2(1−β)[λ(cB , 2
k+2rB)]

p2(1−1/p1)

�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p22−θp2[μ(2+2B)]1−p2(1−β)[λ(cB , 2
+2rB)]

p2(1−1/p1)[C(λ)]
(−k)(p2/p1−p2)

�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p22[ν(p2/p1−p2)−θp2]2−kν(p2/p1−p2) �
∞∑
k=0

M∑
j=1

|λk, j |p2 � |b|p2

H̃
p1, q, 1, θ

mb, 2 (μ)
.

For I2, the vanishing moment of b, together with (5.1), (2.1), (2.2) and 1/p2 = 1/p1 − β, implies that

I2 =
∞∑
=5

∫
U�(B)

∣∣∣∣ ∫X
[ ∞∑
k=−4

M∑
j=1

λk, jmk, j(y)

]
Kβ(x, cB)dμ(y)

∣∣∣∣p2

dμ(x)

�
∞∑
=5

∞∑
k=−4

M∑
j=1

|λk, j |p2

∫
U�(B)

{∫
Bk, j

|mk, j(y)| 1

[λ(cB , d(x, cB))]1−β
dμ(y)

}p2

dμ(x)

�
∞∑
=5

∞∑
k=−4

M∑
j=1

|λk, j |p2
μ(2+2B)

[λ(cB , 2−2rB)]p2(1−β)
‖mk, j‖p2

L1(μ)

�
∞∑
=5

∞∑
k=−4

M∑
j=1

|λk, j |p2 [μ(2+2B)]1−p2(1−β)[μ(Bk, j)]
p2/q

′‖mk, j‖p2

Lq(μ)
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�
∞∑
=5

∞∑
k=−4

M∑
j=1

|λk, j |p2 [μ(2+2B)]1−p2(1−β)[μ(Bk, j)]
p2/q

′

× 2−kθp2 [μ(2Bk, j)]
−p2/q

′
[λ(cB , 2

k+2rB)]
p2(1−1/p1)

�
∞∑
=5

∞∑
k=−4

M∑
j=1

2−kθp2 |λk, j |p2 ∼
M∑
j=1

∞∑
k=1

k+4∑
=5

2−kθp2 |λk, j |p2

�
M∑
j=1

∞∑
k=0

k2−kθp2 |λk, j |p2 �
{ ∞∑

k=0

M∑
j=1

|λk, j |p1

}p2/p1

∼ |b|p2

H̃
p1, q, 1, θ

mb, 2 (μ)
.

Combining I1 and I2, we conclude that I � |b|p2

H̃
p1, q, 1, θ

mb, 2 (μ)
.

Then we turn to estimate II. We further write

II �
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2

∫
U�(B)

|Tβ(mk, j)(x)|p2dμ(x)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2

∫
2Bk, j

|Tβ(mk, j)(x)|p2dμ(x)

+
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2

∫
U�(B)\2Bk, j

|Tβ(mk, j)(x)|p2dμ(x) =: II1 + II2.

By Hölder’s inequality, (Lq(μ), Lq̃(μ))-boundedness of Tβ, (4.1), (2.1), 1/p2 = 1/p1−β and 1/q̃ = 1/q−β,
we see that

II1 �
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2 [μ(2Bk, j)]
1−p2/q̃‖Tβ(mk, j)‖p2

Lq̃(μ)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2 [μ(2Bk, j)]
1−p2/q̃‖mk, j‖p2

Lq(μ)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2 [μ(2Bk, j)]
1−p2/q̃2−kθp2 [μ(2Bk, j)]

−p2/q
′
[λ(cB , 2

k+2rB)]
p2(1−1/p1)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

2−kθp2 |λk, j |p2 �
∞∑
k=0

M∑
j=1

|λk, j |p2 � |b|p2

H̃
p1, q, 1, θ

mb, 2 (μ)
.

For II2, from (5.1), d(x, y) � d(x, cBk, j
)− d(y, cBk, j

) � 1
2d(x, cBk, j

) for x /∈ 2Bk, j and y ∈ Bk, j , (2.2),

(2.1), p2(1 − β) < p1, Hölder’s inequality, (4.1) and 1/p2 = 1/p1 − β, we deduce that

II2 �
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2

∫
U�(B)\2Bk, j

{∫
Bk, j

|mk, j(y)|
[λ(cBk, j

, d(x, cBk, j
))]1−β

dμ(y)

}p2

dμ(x)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2

∫
2k+6B\Bk, j

1

[λ(cBk, j
, d(x, cBk, j

))]p2(1−β)
dμ(x)‖mk, j‖p2

L1(μ)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2

{∫
2k+6B\Bk, j

1

[λ(cBk, j
, d(x, cBk, j

))]p1
dμ(x)

} p2(1−β)

p1

× [μ(2k+6B)]
p1−p2(1−β)

p1 ‖mk, j‖p2

L1(μ)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2

{N
(2)

Bk, j, 2
k+5B

+1∑
i=0

μ(2i+1Bk, j)

[λ(cBk, j
, 2irBk, j

)]p1

} p2(1−β)
p1
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× [μ(2k+6B)]
p1−p2(1−β)

p1 ‖mk, j‖p2

L1(μ)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2 [μ(2
N

(2)

Bk, j, 2
k+5B

+2
Bk, j)]

(1−p1)
p2(1−β)

p1

×
{N

(2)

Bk, j, 2
k+5B

+1∑
i=0

[
μ(2i+1Bk, j)

λ(cBk, j
, 2irBk, j

)

]p1
} p2(1−β)

p1

[μ(2k+6B)]
p1−p2(1−β)

p1 ‖mk, j‖p2

L1(μ)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2‖mk, j‖p2

L1(μ)[μ(2
N

(2)

Bk, j, 2
k+5B

+2
Bk, j)]

(1−p1)
p2(1−β)

p1

× [μ(2k+6B)]
p1−p2(1−β)

p1 [K̃
(2), p1

Bk, j , 2k+5B
]p2(1−β)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2 [μ(Bk, j)]
p2/q

′‖mk, j‖p2

Lq(μ)[μ(2
k+9B)]1−p2(1−β)[K̃

(2), p1

Bk, j , 2k+5B
]p2(1−β)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2 [μ(Bk, j)]
p2/q

′
2−kθp2 [μ(2Bk, j)]

−p2/q
′

× [λ(cB , 2
k+2rB)]

p2(1−1/p1)[K̃
(2), p1

Bk, j , 2k+2B
]−p2 [μ(2k+9B)]1−p2(1−β)[K̃

(2), p1

Bk, j , 2k+5B
]p2

�
∞∑
=5

+4∑
k=−4

M∑
j=1

2−kθp2 |λk, j |p2 �
∞∑
k=0

M∑
j=1

|λk, j |p2 � |b|p2

H̃
p1, q, 1, θ

mb, 2 (μ)
,

which, together with the estimate for II1, implies that

II � |b|p2

H̃
p1, q, 1, θ

mb, 2 (μ)
.

To estimate IV, observe that

IV �
4∑

=0

∫
U�(B)

∣∣∣∣Tβ( +4∑
k=0

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣p2

dμ(x)

+

4∑
=0

∫
U�(B)

∣∣∣∣Tβ( ∞∑
k=+5

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣p2

dμ(x) =: IV1 + IV2.

By some arguments similar to those used in the estimates for II1 and III, we respectively obtain

IV1 � |b|p2

H̃
p1, q, 1, θ

mb, 2 (μ)
and IV2 � |b|p2

H̃
p1, q, 1, θ

mb, 2 (μ)
,

which, together with the estimates for III, I and II, completes the proof of Theorem 5.3.

Similar to Corollary 4.9, by the proof of Theorem 5.3, we also obtain the following boundedness of

the generalized fractional integral Tβ from H̃p1, q, γ
atb, ρ (μ) into Lp2(μ) for 1/p2 = 1/p1 − β, the details being

omitted.

Corollary 5.4. Suppose that (X , d, μ) is a non-homogeneous metric measure space. Let β ∈ (0, 1/2),

ρ ∈ (1,∞), ν
ν+θ < p1 < p2 � 1 < q < 1/β, 1/p2 = 1/p1 − β and γ ∈ [1,∞). Assume that the generalized

fractional integral Tβ defined by (5.3) associated with kernel Kβ satisfying (5.1) and (5.2) is bounded

from Lq(μ) into Lq̃(μ), where 1/q̃ := 1/q − β. Then Tβ is bounded from H̃p1, q, γ
atb, ρ (μ) into Lp2(μ).

Remark 5.5. (a) When p1 = 1, Theorem 5.3 or Corollary 5.4 is a special case of [15, Theorem 1.13]

by the same reasons as those used in Remark 4.10.

(b) For all β ∈ (0, 1), f ∈ L∞
b (μ) and x ∈ X , the fractional integral Iβf(x) is defined by

Iβf(x) :=

∫
X

f(y)

[λ(y, d(x, y))]1−β
dμ(y).
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From [15, Section 4], we deduce that, for some ε ∈ (0,∞), under the weak growth condition as in

Remark 2.4(iii) and the following ε-weak reverse doubling condition on the dominating function λ: For

all r ∈ (0, 2 diam(X )) and a ∈ (1, 2 diam(X )/r), there exists a number C(a) ∈ [1,∞), depending only on a

and X , such that, for all x ∈ X , λ(x, ar) � C(a)λ(x, r) and
∑∞

k=1
1

[C
(ak)

]ε <∞, the following statements

hold true:

(b)1 the fractional integral Iβ is a special case of the generalized fractional integral, which is bounded

from Lq(μ) into Lq̃(μ) for all q ∈ (1, 1/β) and 1/q̃ = 1/q − β;

(b)2 all conclusions of Theorem 5.3 and Corollary 5.4 hold true, if Tβ is replaced by Iβ , where Iβ has

the same assumptions as those of Tβ in Theorem 5.3 and Corollary 5.4, respectively.

6 Campanato spaces Eα, q
ρ, η, γ(µ)

In this section, we introduce the Campanato space Eα, q
ρ, η, γ(μ) and show that Eα, q

ρ, η, γ(μ) is independent of

the choices of ρ, η, γ and q under the following assumption of the ρ-weakly doubling condition.

Definition 6.1. Let ρ ∈ (1,∞). The Borel measure μ is said to satisfy the ρ-weakly doubling condition

if, for all balls B ⊂ X , there exists a positive constant C̃1, depending on ρ but independent of B, such

that

N
(ρ)

B, B̃ρ
� C̃1, (6.1)

where N
(ρ)

B, B̃ρ
is defined as in Definition 2.6.

Remark 6.2. (i) Recall that B̃ρ is totally determined by μ and ρ. Let (X , d, μ) be a space of homo-

geneous type and λ(x, r) := μ(B(x, r)) for all x ∈ X and r ∈ (0,∞). Then (X , d, μ) satisfies (6.1), since
N

(ρ)

B, B̃ρ
∼ 1 for all balls B with equivalent positive constants depending only on ρ ∈ (1,∞). However, by

Example 6.3 below, there exists a non-doubling measure μ on a subset of R satisfying (6.1); by Exam-

ple 6.4 below, there exists a non-doubling measure not satisfying (6.1). In this sense, a measure satisfying

(6.1) is said to be ρ-weakly doubling.

(ii) From the fact that ρ
N

(ρ)

B, B̃ρB = B̃ρ and (6.1), it follows that there exists a positive constant C(ρ, C̃1)
,

depending on ρ and C̃1, such that, for any ball B,

rB̃ρ � C(ρ, C̃1)
rB ,

where rB and rB̃ρ denote the radii of balls B and B̃ρ, respectively. Obviously, we always have rB � rB̃ρ .

In the remainder of this section, we always assume that the Borel measure μ satisfies the ρ-weakly

doubling condition.

The following example shows that there exist some non-trivial non-doubling measures satisfying (6.1).

Example 6.3. Let

X := [0, 1] ∪
( ∞⋃

k=1

[
2
k−1∑
j=0

e−j2 , 2
k−1∑
j=0

e−j2 + e−k2

])
.

Denote [0, 1] byD0 and [2
∑k−1

j=0 e
−j2 , 2

∑k−1
j=0 e

−j2+e−k2

] byDk for k ∈ N. For any x ∈ X and r ∈ (0,∞),

we use B := B(x, r) := {y ∈ X : |y − x| < r} to denote a ball of X . Let μ be the Lebesgue measure

restricted to X . Notice that μ(B(x, r)) � 2r for all x ∈ X and r ∈ (0,∞). Thus, μ is an upper doubling

measure with λ(x, r) := 2r for all x ∈ X and r ∈ (0,∞).

Then we claim that μ is a non-doubling measure. Indeed, notice that

∞∑
j=k+1

e−j2 = e−k2
∞∑
j=1

e−2kj−j2 �

⎧⎪⎪⎨⎪⎪⎩
√
π

2
e−k2

, for all k ∈ Z+,
√
π

e22
e−k2

, for all k ∈ N.
(6.2)
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Let xk := 2
∑k−1

j=0 e
−j2 and rk := e−(k−1)2 . Then

μ(B(xk, rk)) �
(
1 +

√
π

2

)
e−k2

and μ(B(xk, 2rk)) � e−(k−1)2 .

Thus,
μ(B(xk, 2rk))

μ(B(xk, rk))
� 1

1 +
√
π
2

e2k−1 → ∞ as k → ∞,

which implies that μ is non-doubling.

For any ball B, the smallest doubling ball of the form 2jB with j ∈ Z+ is denoted by B̃(2). Let N
(2)

B, B̃(2)

be the integer such that 2
N

(2)

B, B̃(2)B = B̃(2). We claim that

N
(2)

B, B̃(2)
� 2. (6.3)

To prove this, we consider the following two cases for k.

Case I. k ∈ {0, 1, 2}. In this case, for all x ∈ Dk, we have{
μ(B(x, r)) ∼ r ∼ μ(B(x, 2r)), for r ∈ (0, 2 +

√
π ],

μ(B(x, r)) ∼ 1 ∼ μ(B(x, 2r)), for r ∈ (2 +
√
π, ∞).

From this, it is easy to deduce that B(x, r) with x ∈ Dk and r ∈ (0,∞) is a doubling ball and hence

N
(2)

B, B̃(2)
= 0 in this case.

Case II. k ∈ N ∩ (2, ∞). In this case, for all x ∈ Dk, we have

(i) for r ∈ (0, e−k2

], μ(B(x, r)) ∼ r;

(ii) for r ∈ (e−k2

, e−(k−1)2 ], μ(B(x, r)) ∼ e−k2

;

(iii) for r ∈ (e−(k−1)2 , 2e−(k−1)2 ], e−k2 � μ(B(x, r)) < 2e−(k−1)2 ;

(iv) for r ∈ (2
∑j

i=1 e
−(k−i)2 , 2

∑j
i=1 e

−(k−i)2 + e−(k−j−1)2 ] with j ∈ {1, . . . , k − 2},

μ(B(x, r)) ∼ e−(k−j)2 ;

(v) for r ∈ (2
∑j

i=1 e
−(k−i)2 + e−(k−j−1)2 , 2

∑j+1
i=1 e

−(k−i)2 ] with j ∈ {1, . . . , k − 2},

e−(k−j)2 � μ(B(x, r)) < 2e−(k−j−1)2 ;

(vi) for r ∈ (2
∑k−1

i=1 e−(k−i)2 , ∞), μ(B(x, r)) ∼ 1.

Now we show that (6.3) holds true in Case (i) through (vi).

Indeed, in the case (vi), it is easy to see that B(x, r) is a doubling ball and hence N
(2)

B, B̃(2)
= 0 in this

case, i.e., (6.3) holds true in this case. Therefore, we only need to show that (6.3) holds true in Cases (i)

through (v).

In the case (i), since k � 3, we have 2r ∈ (0, e−(k−1)2 ]. If 2r ∈ (0, e−k2

], then we have

μ(B(x, r)) ∼ μ(B(x, 2r)) ∼ r;

if 2r ∈ (e−k2

, e−(k−1)2 ], then r ∈ ( e
−k2

2 , e−k2

], which, together with (ii), leads to

μ(B(x, r)) ∼ μ(B(x, 2r)) ∼ e−k2

.

It then follows that B(x, r) is a doubling ball, which shows that N
(2)

B, B̃(2)
= 0 in this case, i.e., (6.3) holds

true.

In the case (ii), if 2r ∈ (e−k2

, e−(k−1)2 ], then we have μ(B(x, r)) ∼ μ(B(x, 2r)) ∼ e−k2

, which implies

that μ(B(x, r)) is a doubling ball; if 2r ∈ (e−(k−1)2 , 2e−(k−1)2 ], then, for sufficiently large k, B(x, r) may

be a non-doubling ball, for example, x = 2
∑k−1

j=0 e
−j2 and r = e−(k−1)2 . In the latter case, if B(x, r) is

a non-doubling ball, we consider the ball B(x, 2r). If B(x, 2r) is a doubling ball, namely, there exists
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a positive constant C, independent of x and r, such that μ(B(x, 4r)) � Cμ(B(x, 2r)), then there is

nothing to prove. Otherwise, we consider the ball B(x, 4r). Notice that 2r ∈ (e−(k−1)2 , 2e−(k−1)2 ]. Then

we have r ∈ ( e
−(k−1)2

2 , e−(k−1)2 ], which, together with k � 3, shows that

2e−(k−1)2 < 4r � 4e−(k−1)2 < 2e−(k−1)2 + e−(k−2)2

and

2e−(k−1)2 < 8r � 8e−(k−1)2 < 2e−(k−1)2 + e−(k−2)2 .

It then follows, from (iv) with j = 1, that μ(B(x, 4r)) ∼ μ(B(x, 8r)) ∼ e−(k−1)2 , which implies that

B(x, 4r) is a doubling ball. From the above estimate, we conclude that N
(2)

B, B̃(2)
� 2 in this case.

The argument of the case (iii) is similar to that used in the case of 2r ∈ (e−(k−1)2 , 2e−(k−1)2 ] of (ii).

Moreover, we have N
(2)

B, B̃(2)
� 1 in this case.

Before we deal with the case (iv), we first consider the case (v). In the case (v), if B(x, r) is a doubling

ball, then there is nothing to prove. Otherwise, we consider the following two cases for j. If j = k − 2,

we have

4r > 2r > 4

j∑
i=1

e−(k−i)2 + 2e−(k−j−1)2 > 2

j+1∑
i=1

e−(k−i)2 = 2

k−1∑
i=1

e−(k−i)2 ,

which, together with (vi), shows that μ(B(x, 4r)) ∼ μ(B(x, 2r)) ∼ 1. Thus, B(x, 2r) is a doubling ball.

If j � k − 3, then, by (6.2), we see that

6

j+1∑
i=1

e−(k−i)2 < e−[k−(j+1)−1]2 .

It then follows that

2

j+1∑
i=1

e−(k−i)2 < 2r < 4r � 8

j+1∑
i=1

e−(k−i)2 < 2

j+1∑
i=1

e−(k−i)2 + e−[k−(j+1)−1]2 .

This via (iv) shows that μ(B(x, 2r)) ∼ μ(B(x, 4r)) ∼ e−(k−j−1)2 , which implies that B(x, 2r) is a

doubling ball and hence N
(2)

B, B̃(2)
� 1 in this case.

In the case (iv), we see that

2r ∈
(
4

j∑
i=1

e−(k−i)2 , 4

j∑
i=1

e−(k−i)2 + 2e−(k−j−1)2
]
.

Notice that, by (6.2) and j � k − 2, we see that

2

j∑
i=1

e−(k−i)2 = 2

k−1∑
i=k−j

e−i2 � 2
√
π

2e2
e−(k−j−1)2 < e−(k−j−1)2 .

Thus, we consider the following three cases for 2r.

Case (a) 2r ∈ (4
∑j

i=1 e
−(k−i)2 , 2

∑j
i=1 e

−(k−i)2 + e−(k−j−1)2 ]. In this case, it is easy to see that

μ(B(x, 2r)) ∼ μ(B(x, r)) ∼ e−(k−j)2 ,

which implies that B(x, r) is a doubling ball.

Case (b) 2r ∈ (2
∑j

i=1 e
−(k−i)2 + e−(k−j−1)2 , 2

∑j+1
i=1 e

−(k−i)2 ]. In this case, by an argument similar

to that used in (v), we conclude that N
(2)

B, B̃(2)
� 2.

Case (c) 2r ∈ (2
∑j+1

i=1 e
−(k−i)2 , 4

∑j
i=1 e

−(k−i)2 + 2e−(k−j−1)2 ]. In this case, if j = k − 2, we have

4r > 2r > 2
k−1∑
i=1

e−(k−i)2 ,
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which, together with (vi), implies that B(x, 2r) is a doubling ball; if j � k − 3, by (6.2), we know that

2

j+1∑
i=1

e−(k−i)2 < 2r < 4r � 8

j∑
i=1

e−(k−i)2 + 4e−(k−j−1)2 < 2

j+1∑
i=1

e−(k−i)2 + 6

j+1∑
i=1

e−(k−i)2

< 2

j+1∑
i=1

e−(k−i)2 + e−[k−(j+1)−1]2 .

This via (iv) shows that μ(B(x, 2r)) ∼ μ(B(x, 4r)) ∼ e−(k−j−1)2 , which implies that B(x, 2r) is a

doubling ball and hence N
(2)

B, B̃(2)
� 1 in the case (iv).

Combining the above estimates, we obtain (6.3), which completes the proof of our claim and hence

the example.

On the other hand, it turns out that there exist many non-homogeneous metric measure spaces which

do not satisfy the ρ-weakly doubling condition (6.1). We give the following Gauss measure on R as an

example.

Example 6.4. Let (X , | · |, μ) := (R, | · |, μ), where | · | denotes the Euclidean distance and μ is the

Gauss measure on R, i.e., dμ(x) := π− 1
2 e−x2

dx for all x ∈ R. As in Example 6.3, for any x ∈ R and

r ∈ (0,∞), we use B := B(x, r) := {y ∈ R : |y − x| < r} to denote a ball of R. First, we show that μ

is a non-doubling measure with the dominating function λ(x, r) := 2π− 1
2 r. Indeed, for all x ∈ R and

r ∈ (0,∞),

μ(B(x, r)) = π− 1
2

∫ x+r

x−r

e−y2

dy � 2π− 1
2 r = λ(x, r).

On the other hand, let xk = 22k and rk, j = 2j with k ∈ N and j ∈ {1, . . . , k}. Then, for all k ∈ N and

j ∈ {1, . . . , k}, we observe that

μ(B(xk , rk, j)) = π− 1
2

∫ 22k+2j

22k−2j
e−x2

dx � π− 1
2 e−(22k−2j)22j+1

and

μ(B(xk, 2rk, j)) = π− 1
2

∫ 22k+2j+1

22k−2j+1

e−x2

dx

� π− 1
2

∫ 22k−3×2j−1

22k−2j+1

e−x2

dx � π− 1
2 e−(22k−3×2j−1)22j−1.

Thus,
μ(B(xk, 2rk, j))

μ(B(xk, rk, j))
� 1

4
e2

2k+j− 5
4 2

2j � 1

4
e2

2k+1− 5
42

2k � 1

4
e2

2k−1 → ∞ as k → ∞, (6.4)

which implies that μ is non-doubling.

Now we claim that, for any ρ ∈ (1,∞), there exists a ball B such that the number N
(ρ)

B, B̃ρ
can be

arbitrarily large. For the sake of simplicity, we only prove our claim for ρ = 2. With some simple

modifications, the arguments here are still valid for all ρ ∈ (1, ∞). Recall that a ball B ⊂ R is said to be

(2, β2)-doubling if μ(2B) � β2μ(B) and B̃(2) is the smallest (2, β2)-doubling ball of the form 2jB with

j ∈ Z+. Let k0 be the smallest positive integer such that 1
4e

22k0−1

> β2. Then, for all k ∈ N∩ [k0,∞), we

have 1
4e

22k−1

> β2. Let Bk := B(22k, 2). By (6.4), it is easy to see that, for all j ∈ {0, . . . , k − 1}, 2jBk

is not a (2, β2)-doubling ball. It then follows, from the definition of N
(2)

Bk, B̃2
k

, that

N
(2)

Bk, B̃2
k

> k − 1,

which implies our claim and completes the proof of Example 6.4.

We now state the definition of the Campanato space Eα, q
ρ, η, γ(μ).
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Definition 6.5. Let α ∈ [0,∞), η ∈ (1,∞), ρ ∈ [η,∞) and q, γ ∈ [1,∞). A function f ∈ L1
loc(μ) is

said to belong to the Campanato space Eα, q
ρ, η, γ(μ) if

‖f‖Eα,q
ρ, η, γ(μ) := sup

B

{
1

μ(ηB)

1

[λ(cB , rB)]αq

∫
B

|f(y)−mB̃ρ(f)|qdμ(y)
}1/q

+ sup
B⊂S:B,S (ρ, βρ)−doubling

|mB(f)−mS(f)|
[λ(cS , rS)]α[K̃

(ρ), 1/(α+1)
B,S ]γ

<∞,

here and hereafter, mB(f) :=
1

μ(B)

∫
B f(x)dμ(x) for all balls B and f ∈ L1

loc(μ).

Remark 6.6. Arguing as in [33, Lemma 3.2], we see that E0, 1
ρ, ρ, γ(μ) and R̃BMOρ, γ(μ) coincide with

equivalent norms, where R̃BMOρ, γ(μ) was introduced in [13]; see also [27, 30].

Proposition 6.7. Suppose that (X , d, μ) is a non-homogeneous metric measure space satisfying (6.1).

Let α ∈ [0,∞), η ∈ (1,∞), ρ ∈ [η,∞) and q, γ ∈ [1,∞). The following statements hold true:

(a) There exists a positive constant C such that, for all balls B ⊂ S and all functions f ∈ Eα, q
ρ, η, γ(μ),

|mB̃ρ(f)−mS̃ρ(f)| � C[K̃
(ρ), 1/(α+1)
B,S ]γ [λ(cS , rS)]

α‖f‖Eα,q
ρ, η, γ(μ).

(b) If f, g ∈ Eα, q
ρ, η, γ(μ) are real-valued functions, then max{f, g} ∈ Eα, q

ρ, η, γ(μ) and min{f, g} ∈ Eα, q
ρ, η, γ(μ).

Moreover, there exists a positive constant C, independent of f and g, such that

‖max{f, g}‖Eα,q
ρ,η, γ(μ) + ‖min{f, g}‖Eα,q

ρ, η, γ(μ) � C[‖f‖Eα, q
ρ, η, γ(μ) + ‖g‖Eα,q

ρ, η, γ(μ)].

Proof. To show (a), we consider the following two cases:

Case (i) r(B̃ρ) < r(S̃ρ). It is obvious that B̃ρ ⊂ 2S̃ρ. Let S0 := (̃2S̃ρ)
ρ

. By Lemmas 2.8(ii)–2.8(iv)

with p = 1/(α+ 1), we have

[K̃
(ρ), 1/(α+1)

S̃ρ, S0
]γ � [K̃

(ρ), 1/(α+1)

S̃ρ, 2S̃ρ
]γ + [K̃

(ρ), 1/(α+1)

2S̃ρ, S0
]γ � 1.

From this and Lemmas 2.8(ii)–2.8(v) with p = 1/(α+ 1), it follows that

[K̃
(ρ), 1/(α+1)

B̃ρ, S0
]γ � [K̃

(ρ), 1/(α+1)
B,S0

]γ

� [K̃
(ρ), 1/(α+1)
B,S ]γ + [K̃

(ρ), 1/(α+1)

S, S̃ρ
]γ + [K̃

(ρ), 1/(α+1)

S̃ρ, S0
]γ

� [K̃
(ρ), 1/(α+1)
B,S ]γ .

Thus, by the above two inequalities, Remark 6.2(ii) and (2.1), we have

|mB̃ρ(f)−mS̃ρ(f)| � |mB̃ρ(f)−mS0(f)|+ |mS̃ρ(f)−mS0(f)|
� {[K̃(ρ), 1/(α+1)

B̃ρ, S0
]γ + [K̃

(ρ), 1/(α+1)

S̃ρ, S0
]γ}[λ(cS0 , rS0)]

α‖f‖Eα,q
ρ, η, γ(μ)

� [K̃
(ρ), 1/(α+1)
B,S ]γ [λ(cS0 , rS0)]

α‖f‖Eα, q
ρ, η, γ(μ)

� [K̃
(ρ), 1/(α+1)
B,S ]γ [λ(cS , rS)]

α‖f‖Eα,q
ρ, η, γ(μ).

This finishes the proof of Case (i).

Case (ii) r(S̃ρ) � r(B̃ρ). Obviously, S̃ρ ⊂ 2B̃ρ. Let B0 := (̃2B̃ρ)
ρ

. From Lemmas 2.8(ii)–2.8(iv) with

p = 1/(α+ 1), we deduce that

[K̃
(ρ), 1/(α+1)

B̃ρ, B0
]γ � [K̃

(ρ), 1/(α+1)

B̃ρ, 2B̃ρ
]γ + [K̃

(ρ), 1/(α+1)

2B̃ρ, B0
]γ � 1.

By this, S̃ρ ⊃ S ⊃ B and Lemmas 2.8(iii)–2.8(v) with p = 1/(α+ 1), we know that

[K̃
(ρ), 1/(α+1)

S̃ρ, B0
]γ � [K̃

(ρ), 1/(α+1)
B,B0

]γ � [K̃
(ρ), 1/(α+1)

B, B̃ρ
]γ + [K̃

(ρ), 1/(α+1)

B̃ρ, B0
]γ � 1.
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Thus, combining the above two inequalities, (2.2), (2.1) and Remark 6.2(ii), we have

|mB̃ρ(f)−mS̃ρ(f)| � |mB̃ρ(f)−mB0(f)|+ |mS̃ρ(f)−mB0(f)|
� {[K̃(ρ), 1/(α+1)

B̃ρ, B0
]γ + [K̃

(ρ), 1/(α+1)

S̃ρ, B0
]γ}[λ(cB0 , rB0)]

α‖f‖Eα, q
ρ, η, γ(μ)

� [λ(cB0 , rB0)]
α‖f‖Eα,q

ρ, η, γ(μ) ∼ [λ(cS , rB0)]
α‖f‖Eα,q

ρ, η, γ(μ)

� [K̃
(ρ), 1/(α+1)
B,S ]γ [λ(cS , rB)]

α‖f‖Eα,q
ρ,η, γ(μ)

� [K̃
(ρ), 1/(α+1)
B,S ]γ [λ(cS , rS)]

α‖f‖Eα,q
ρ,η, γ(μ).

This finishes the proof of Case (ii) and hence (a).

To prove (b), since max{f, g} = f+g+|f−g|
2 and min{f, g} = f+g−|f−g|

2 , it suffices to show that, for

any real-valued function h ∈ Eα, q
ρ, η, γ(μ), |h| ∈ Eα, q

ρ, η, γ(μ) and

‖|h|‖Eα, q
ρ, η, γ(μ) � ‖h‖Eα,q

ρ, η, γ(μ).

To this end, by Definition 6.5, Hölder’s inequality, Remark 6.2(ii) and (2.1), we see that, for any ball B,{
1

μ(ηB)

∫
B

||h(y)| −mB̃ρ(|h|)|qdμ(y)
}1/q

�
{

1

μ(ηB)

∫
B

||h(y)| − |mB̃ρ(h)||qdμ(y)
}1/q

+ ||mB̃ρ(h)| −mB̃ρ(|h|)|

�
{

1

μ(ηB)

∫
B

|h(y)−mB̃ρ(h)|qdμ(y)
}1/q

+mB̃ρ(|h−mB̃ρ(h)|)

� {[λ(cB, rB)]α + [λ(cB , rB̃ρ)]
α}‖h‖Eα,q

ρ, η, γ(μ) � [λ(cB , rB)]
α‖h‖Eα, q

ρ, η, γ(μ).

On the other hand, by Definition 6.5, (2.1) and (2.2), we find that, for all (ρ, βρ)-doubling balls B ⊂ S,

|mB(|h|)−mS(|h|)|
� |mB(|h|)− |mB(h)||+ ||mB(h)| − |mS(h)||+ ||mS(h)| −mS(|h|)|
� mB(|h−mB(h)|) + |mB(h)−mS(h)|+mS(|h−mS(h)|)
� {[λ(cB, rB)]α + [λ(cS , rS)]

α[K̃
(ρ), 1/(α+1)
B,S ]γ + [λ(cS , rS)]

α}‖h‖Eα,q
ρ,η, γ(μ)

� [λ(cS , rS)]
α[K̃

(ρ), 1/(α+1)
B,S ]γ‖h‖Eα,q

ρ, η, γ(μ).

The above two inequalities imply that |h| ∈ Eα, q
ρ, η, γ(μ) and ‖|h|‖Eα, q

ρ, η, γ(μ) � ‖h‖Eα, q
ρ, η, γ(μ), which completes

the proof of (b) and hence Proposition 6.7.

We now show that the space Eα, q
ρ, η, γ(μ) is independent of the choices of ρ and η.

Proposition 6.8. Suppose that (X , d, μ) is a non-homogeneous metric measure space satisfying (6.1).

Let α ∈ [0,∞) and q, γ ∈ [1,∞). The following statements hold true:

(i) for any η1, η2 and ρ satisfying 1 < η1 < η2 � ρ < ∞, Eα, q
ρ, η1, γ(μ) and Eα, q

ρ, η2, γ(μ) coincide with

equivalent norms;

(ii) for any ρ1, ρ2 and η satisfying 1 < η � ρ1, ρ2 < ∞, Eα, q
ρ1, η, γ(μ) and Eα, q

ρ2, η, γ(μ) coincide with

equivalent norms.

Proof. We first prove (i). Fix α ∈ [0,∞) and q, γ∈ [1,∞). Let η1, η2 and ρ satisfy 1 < η1 < η2 � ρ <∞.

It is obvious that Eα, q
ρ, η1, γ(μ) ⊂ Eα, q

ρ, η2, γ(μ) and, for all f ∈ Eα, q
ρ, η1, γ(μ), ‖f‖Eα, q

ρ, η2, γ(μ) � ‖f‖Eα,q
ρ,η1, γ(μ).

Conversely, let f ∈ Eα, q
ρ, η2, γ(μ). We show that f ∈ Eα, q

ρ, η1, γ(μ) and ‖f‖Eα,q
ρ, η1, γ(μ) � ‖f‖Eα, q

ρ, η2, γ(μ). To this

end, it suffices to show that, for any ball B,{
1

μ(η1B)

∫
B

|f(y)−mB̃ρ(f)|qdμ(y)
}1/q

� [λ(cB , rB)]
α‖f‖Eα, q

ρ, η2, γ(μ). (6.5)
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To do so, for any x ∈ B, let Bx be the ball centered at x with radius η1−1
10η2

rB. Then rη2Bx = η1−1
10 rB and

η2Bx ⊂ η1B.

By the geometrically doubling condition and Remark 2.2(ii), we see that there exist N1 ∈ N, depending
on η1, η2 and (X , d, μ), and a finite sequence {Bxi}N1

i=1 =: {Bi}N1

i=1 of balls such that xi ∈ B for all i ∈
{1, . . . , N1} and B ⊂ ⋃N1

i=1 Bi. By this, η2Bi ⊂ η1B for all i ∈ {1, . . . , N1}, (2.1), (2.2), Proposition 6.7(a)

and Lemma 2.8(ii), we conclude that

1

μ(η1B)

∫
B

|f(y)−mB̃ρ(f)|qdμ(y)

�
N1∑
i=1

1

μ(η1B)

∫
Bi

|f(y)−mB̃ρ(f)|qdμ(y)

�
N1∑
i=1

μ(η2Bi)

μ(η1B)

{
1

μ(η2Bi)

∫
Bi

|f(y)−mB̃ρ
i
(f)|qdμ(y) + |mB̃ρ

i
(f)−mB̃ρ(f)|q

}

�
N1∑
i=1

{[λ(cBi , rBi)]
αq‖f‖qEα, q

ρ, η2, γ(μ)
+ |mB̃ρ

i
(f)−m

(̃η1B)
ρ(f)|q + |m

(̃η1B)
ρ(f)−mB̃ρ(f)|q}

� [λ(cB , η1rB)]
αq‖f‖qEα, q

ρ, η2, γ(μ)
{[K̃(ρ), 1/(α+1)

Bi, η1B
]γq + [K̃

(ρ), 1/(α+1)
B,η1B

]γq}
� [λ(cB , rB)]

αq‖f‖qEα,q
ρ, η2, γ(μ)

,

which completes the proof of (6.5) and hence (i).

To show (ii), fix α ∈ [0,∞) and q, γ ∈ [1,∞). Let ρ1, ρ2 and η satisfy 1 < η � ρ1, ρ2 < ∞. By the

symmetry of ρ1 and ρ2, it suffices to show that Eα, q
ρ2, η, γ(μ) ⊂ Eα, q

ρ1, η, γ(μ) and ‖f‖Eα, q
ρ1, η, γ(μ) � ‖f‖Eα, q

ρ2, η, γ(μ)

for all f ∈ Eα, q
ρ2, η, γ(μ). Assume that f ∈ Eα, q

ρ2, η, γ(μ). From the Minkowski inequality, Hölder’s inequality,

Proposition 6.7, ρ1 � η, Remark 6.2(ii), Lemmas 2.9 and 2.8(iii), we deduce that{
1

μ(ηB)

∫
B

|f(y)−mB̃ρ1
(f)|qdμ(y)

}1/q

�
{

1

μ(ηB)

∫
B

|f(y)−mB̃ρ2
(f)|qdμ(y)

}1/q

+ |mB̃ρ1
(f)−mB̃ρ2

(f)|

� [λ(cB, rB)]
α‖f‖Eα,q

ρ2, η, γ(μ) + |mB̃ρ1
(f)−m˜̃

Bρ1
ρ2 (f)|+ |m˜̃

Bρ1
ρ2 (f)−mB̃ρ2

(f)|

� [λ(cB, rB)]
α‖f‖Eα,q

ρ2, η, γ(μ) +

{
1

μ(ηB̃ρ1 )

∫
B̃ρ1

|f(y)−m˜̃
Bρ1

ρ2 (f)|qdμ(y)
}1/q

+ [K̃
(ρ2), 1/(α+1)

B, B̃ρ1
]γ [λ(cB , rB̃ρ1

)]α‖f‖Eα,q
ρ2, η, γ(μ)

� {[λ(cB, rB)]α + [λ(cB, rB̃ρ1
)]α}‖f‖Eα,q

ρ2, η, γ(μ) � [λ(cB, rB)]
α‖f‖Eα,q

ρ2, η, γ(μ).

On the other hand, for all (ρ1, βρ1)-doubling balls B ⊂ S, by Hölder’s inequality, Proposition 6.7, ρ1 � η,

Lemma 2.9, (2.1) and (2.2), we have

|mB(f)−mS(f)|
� |mB(f)−mB̃ρ2

(f)|+ |mB̃ρ2
(f)−mS̃ρ2

(f)|+ |mS̃ρ2
(f)−mS(f)|

�
{

1

μ(B)

∫
B

|f(y)−mB̃ρ2
(f)|qdμ(y)

}1/q

+ [K̃
(ρ2), 1/(α+1)
B,S ]γ [λ(cS , rS)]

α‖f‖Eα, q
ρ2, η, γ(μ)

+

{
1

μ(S)

∫
S

|f(y)−mS̃ρ2
(f)|qdμ(y)

}1/q

� [λ(cB , rB)]
α‖f‖Eα,q

ρ2, η, γ(μ) + [K̃
(ρ1), 1/(α+1)
B,S ]γ [λ(cS , rS)]

α‖f‖Eα,q
ρ2, η, γ(μ)

� [K̃
(ρ1), 1/(α+1)
B,S ]γ [λ(cS , rS)]

α‖f‖Eα, q
ρ2, η, γ(μ),

which completes the proof of (ii) and hence Proposition 6.8.
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Remark 6.9. (i) By Proposition 6.8, we know that the space Eα, q
ρ, η, γ(μ) is independent of the choices

of ρ and η. From now on, unless explicitly pointed out, we always assume that ρ = η in Eα, q
ρ, η, γ(μ) and

write Eα, q
ρ, η, γ(μ) simply by Eα, q

ρ, γ (μ) and its norm ‖ · ‖Eα, q
ρ, η, γ(μ) simply by ‖ · ‖Eα, q

ρ, γ (μ).

(ii) It is still unknown whether Eα, q
ρ, η, γ(μ) is independent of the choices of ρ and η or not on general

non-homogeneous metric measure spaces without the assumption (6.1).

Before we show that Eα, q
ρ, γ (μ) is independent of the choices of γ and q, we first give a useful character-

ization of Eα, q
ρ, γ (μ) which is a variant of [30, Proposition 2.10].

Proposition 6.10. Suppose that (X , d, μ) is a non-homogeneous metric measure space satisfying (6.1).

Let ρ ∈ (1,∞), α ∈ [0,∞) and q, γ ∈ [1,∞). The following statements are equivalent:

(a) f ∈ Eα, q
ρ, γ (μ);

(b) there exists a sequence {fB}B of complex numbers associated with balls B := B(cB , rB), with

cB ∈ X and rB ∈ (0,∞), such that

‖f‖(q)∗, ρ := sup
B

{
1

μ(ρB)

1

[λ(cB , rB)]αq

∫
B

|f(y)− fB|qdμ(y)
}1/q

+ sup
B⊂S

|fB − fS |
[λ(cS , rS)]α[K̃

(ρ), 1/(α+1)
B,S ]γ

<∞,

where cS ∈ X and rS ∈ (0,∞) denote, respectively, the center and the radius of the ball S, and the first

supremum is taking over all balls B ⊂ X and the second one all balls B ⊂ S ⊂ X .

Moreover, the norms ‖ · ‖Eα, q
ρ, γ (μ) and ‖ · ‖(q)∗, ρ are equivalent.

Proof. Fix ρ ∈ (1,∞), α ∈ [0,∞) and q, γ ∈ [1,∞). Let f ∈ Eα, q
ρ, γ (μ). We first show that ‖f‖(q)∗, ρ �

‖f‖Eα,q
ρ, γ (μ). Indeed, for any ball B, let fB := mB̃ρ(f). Then Proposition 6.7 implies that, for any two

balls B ⊂ S,

|fB − fS | � [λ(cS , rS)]
α[K̃

(ρ), 1/(α+1)
B,S ]γ‖f‖Eα,q

ρ,γ (μ).

This, together with the fact that, for any ball B,{
1

μ(ρB)

1

[λ(cB , rB)]αq

∫
B

|f(y)− fB|qdμ(y)
}1/q

� ‖f‖Eα, q
ρ, γ (μ)

implies that ‖f‖(q)∗, ρ � ‖f‖Eα,q
ρ,γ (μ).

Conversely, assume that ‖f‖(q)∗, ρ < ∞. If B is a (ρ, βρ)-doubling ball, then, by Hölder’s inequality,

we have

|fB −mB(f)| �
{

1

μ(ρB)

∫
B

|f(y)− fB|qdμ(y)
}1/q

� [λ(cB , rB)]
α‖f‖(q)∗, ρ, (6.6)

which, together with the Minkowski inequality, implies that{
1

μ(B)

∫
B

|f(y)−mB(f)|qdμ(y)
}1/q

�
{

1

μ(ρB)

∫
B

|f(y)− fB|qdμ(y)
}1/q

+ |fB −mB(f)| � [λ(cB , rB)]
α‖f‖(q)∗, ρ.

Thus, by this, the Minkowski inequality, (6.6), Remark 6.2(ii) and Lemma 2.8(iii), we obtain{
1

μ(ρB)

∫
B

|f(y)−mB̃ρ(f)|qdμ(y)
}1/q

�
{

1

μ(ρB)

∫
B

|f(y)− fB|qdμ(y)
}1/q

+ |fB − fB̃ρ |+ |fB̃ρ −mB̃ρ(f)|

� {[λ(cB, rB)]α + [λ(cB, rB̃ρ)]
α[K̃

(ρ), 1/(α+1)

B, B̃ρ
]γ}‖f‖(q)∗, ρ
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� [λ(cB, rB)]
α‖f‖(q)∗, ρ.

Moreover, by (6.6), (2.1) and (2.2), we conclude that, for all (ρ, βρ)-doubling balls B ⊂ S,

|mB(f)−mS(f)| � |mB(f)− fB|+ |fB − fS |+ |fS −mS(f)|
� {[λ(cB, rB)]α + [λ(cS , rS)]

α[K̃
(ρ), 1/(α+1)
B,S ]γ}‖f‖(q)∗, ρ

� [λ(cS , rS)]
α‖f‖(q)∗, ρ[K̃

(ρ), 1/(α+1)
B,S ]γ ,

which completes the proof of Proposition 6.10.

To show that Eα, q
ρ, γ (μ) is independent of the choice of γ ∈ [1,∞), we need the following technical lemma,

which is similar to [30, Lemma 2.6] (see also [54, Lemma 9.2]).

Lemma 6.11. Suppose that (X , d, μ) is a non-homogeneous metric measure space. Let m ∈ N∩(1,∞),

ρ ∈ (1,∞), p ∈ (0, 1] and B := B1 ⊂ · · · ⊂ Bm be concentric balls with center cB and radii of the form

ρNrB, where N ∈ Z+. If K̃
(ρ), p
Bi, Bi+1

> (3 + �logρ 2	)1/p for any i ∈ {1, . . . ,m− 1}, then
m−1∑
i=1

[K̃
(ρ), p
Bi, Bi+1

]p < (3 + �logρ 2	)[K̃(ρ), p
B1, Bm

]p. (6.7)

Proof. Fix m ∈ N, ρ ∈ (1,∞) and p ∈ (0, 1]. Assume that, for any i ∈ {1, . . . , m}, rBi := ρNirB
for some Ni ∈ Z+. For any i ∈ {1, . . . ,m − 1}, by K̃(ρ), p

Bi, Bi+1
> (3 + �logρ 2	)1/p, it is easy to see that

Ni+1 −Ni = N
(ρ)
Bi, Bi+1

� 1, 1 <
∑N

(ρ)
Bi, Bi+1

k=1 [ μ(ρkBi)
λ(cB , ρkrBi

)
]p and Nm = N

(ρ)
B1, Bm

. From these facts and (2.1),

we deduce that, for any i ∈ {1, . . . , m− 1},

[K̃
(ρ), p
Bi, Bi+1

]p � 2 + �logρ 2	+
N

(ρ)
Bi,Bi+1∑
k=1

[
μ(ρkBi)

λ(cB , ρkrBi)

]p

< (3 + �logρ 2	)
N

(ρ)
Bi,Bi+1∑
k=1

[
μ(ρkBi)

λ(cB , ρkrBi)

]p

= (3 + �logρ 2	)
Ni+1∑

k=Ni+1

[
μ(ρkB)

λ(cB , ρkrB)

]p
.

Notice that p ∈ (0, 1] and Nm = N
(ρ)
B1, Bm

. It then follows that

m−1∑
i=1

[K̃
(ρ), p
Bi, Bi+1

]p < (3 + �logρ 2	)[K̃(ρ), p
B1, Bm

]p,

which implies (6.7) and hence completes the proof of Lemma 6.11.

The following lemma is an analogue of [30, Lemma 2.7], whose proof needs to use Lemma 6.11, the

details being omitted.

Lemma 6.12. Suppose that (X , d, μ) is a non-homogeneous metric measure space. Let α ∈ [0,∞),

ρ ∈ (1,∞) and p ∈ (0, 1]. For a large positive constant C, the following statement holds true: Let x ∈ X
be a fixed point, and {fB}B�x some collection of complex numbers associated with balls B � x. If there

exists a positive constant Cx, depending on x, such that, for all balls B and S with x ∈ B ⊂ S and

K̃
(ρ), p
B, S � C, |fB − fS| � CxK̃

(ρ), p
B, S [λ(cS , rS)]

α, then, for all balls B and S with x ∈ B ⊂ S,

|fB − fS | � CCxK̃
(ρ), p
B, S [λ(cS , rS)]

α.

By Lemma 6.12, now we are ready to state the result that Eα, q
ρ, γ (μ) is independent of the choice of γ,

whose proof is similar to that of [30, Proposition 2.5], the details being omitted.
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Proposition 6.13. Suppose that (X , d, μ) is a non-homogeneous metric measure space satisfying (6.1).

Let α ∈ [0,∞), ρ, γ ∈ (1,∞) and q ∈ [1,∞). Then Eα, q
ρ, γ (μ) and Eα, q

ρ, 1 (μ) coincide with equivalent norms.

Remark 6.14. (i) By Proposition 6.13, we know that the space Eα, q
ρ, γ (μ) is independent of the choice

of γ. From now on, unless explicitly pointed out, we always assume that γ = 1 in Eα, q
ρ, γ (μ) and

write Eα, q
ρ, γ (μ) simply by Eα, q

ρ (μ).

(ii) It is still unknown whether Eα, q
ρ, η, γ(μ) is independent of the choice of γ or not on general non-

homogeneous metric measure spaces without the assumption (6.1), even on Euclidean spaces endowed

with non-doubling measures.

In order to show that Eα, q
ρ (μ) is independent of q, we establish the following John-Nirenberg type

inequality which is a generalization of [27, Proposition 6.1]. Hereafter, Eα, 1
ρ (μ) is simply denoted by

Eα
ρ (μ) and its equivalent norm ‖ · ‖(1)∗, ρ simply by ‖ · ‖∗, ρ.

Proposition 6.15. Suppose that (X , d, μ) is a non-homogeneous metric measure space satisfying (6.1).

Let α ∈ [0,∞) and ρ ∈ (1,∞). Then there exists a positive constant c such that, for any f ∈ Eα
ρ (μ),

t ∈ (0,∞) and every ball B0 := B(x0, r) with x0 ∈ X and r ∈ (0,∞),

μ

({
x ∈ B0 :

|f(x)− fB0 |
[λ(x0, r)]α

> t

})
� 2μ(ρB0)e

− ct
‖f‖∗, ρ ,

where fB0 is as in Proposition 6.10(ii) with B replaced by B0.

Proof. Fix α ∈ [0,∞) and ρ ∈ (1,∞). Let σ := 5ρ, f ∈ Eα
ρ (μ) and L be a large positive constant whose

value will be determined later. We first claim that, for μ-almost every x ∈ B0 with
|f(x)−fB0 |
[λ(x0,r)]α

> 2L, there

exists a (σ, βσ)-doubling ball B̂σ
x of the form B(x, σ−ir), i ∈ N, satisfying

B̂σ
x ⊂ √

ρB0 and
|fB̂σ

x
− fB0 |

[λ(x0, r)]α
> L. (6.8)

Indeed, from
|f(x)−fB0 |
[λ(x0,r)]α

> 2L and [27, Corollary 3.6], it follows that there exists a (σ, βσ)-doubling ball

B̂σ
x of the form B(x, σ−ir), i ∈ N, such that B̂σ

x ⊂ √
ρB0 and

|mB̂σ
x
(f)−fB0 |

[λ(x0,r)]α
> 2L. Thus, by this,

Propositions 6.8 and 6.10, (2.1) and (2.2), we conclude that

|fB̂σ
x
− fB0 |

[λ(x0, r)]α
�

|mB̂σ
x
(f)− fB0 |

[λ(x0, r)]α
−

|fB̂σ
x
−mB̂σ

x
(f)|

[λ(x0, r)]α

> 2L− 1

[λ(x0, r)]α
1

μ(B̂σ
x )

∫
B̂σ

x

|f(y)− fB̂σ
x
|dμ(y)

� 2L− [λ(x,
√
ρr)]α

[λ(x0, r)]α
βσ‖f‖∗,√ρ

� 2L− C1‖f‖∗, ρ � L,

provided that L � C1‖f‖∗, ρ and C1 is a positive constant, which implies the claim.

Now we let B̂σ
x be the biggest (σ, βσ)-doubling ball of the form B(x, σ−ir), i ∈ N, satisfying (6.8). By

(6.8), (2.1) and (2.2), we know that

1

μ(B̂σ
x )

∫
B̂σ

x

|f(y)− fB0 |
[λ(x0, r)]α

dμ(y)

�
|fB̂σ

x
− fB0 |

[λ(x0, r)]α
− 1

μ(B̂σ
x )

∫
B̂σ

x

|f(y)− fB̂σ
x
|

[λ(x0, r)]α
dμ(y)

> L− [λ(x,
√
ρr)]α

[λ(x0, r)]α
βσ‖f‖∗,√ρ � L− C1‖f‖∗, ρ � L/2, (6.9)

provided that L � 2C1‖f‖∗, ρ.
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Then we show that the ball (̃σB̂σ
x )

σ

=:
̂̂
B

σ

x satisfies

̂̂
B

σ

x �⊂ √
ρB0 or

|f ̂̂
B

σ

x

− fB0 |
[λ(x0, r)]α

� L. (6.10)

Indeed, it suffices to prove that, if
̂̂
B

σ

x ⊂ √
ρB0, then

|f ̂̂
B

σ
x
−fB0 |

[λ(x0,r)]α
� L. From Lemma 2.9, B(x, r) ⊂ 2

√
ρB0,

Lemmas 2.8(ii)–2.8(v), it follows that, if
̂̂
B

σ

x ⊂ √
ρB0 ⊂ 2

√
ρB0, then

|f ̂̂
B

σ

x

− fB0 |
[λ(x0, r)]α

�
|f ̂̂

B
σ

x

− f2√ρB0
|

[λ(x0, r)]α
+

|f2√ρB0
− fB0 |

[λ(x0, r)]α

� ‖f‖∗, ρ
[λ(x0, 2

√
ρr)]α

[λ(x0, r)]α
[K̃

(ρ), 1/(α+1)̂̂
B

σ

x , 2
√
ρB0

+ K̃
(ρ), 1/(α+1)
B0, 2

√
ρB0

]

� ‖f‖∗, ρK̃(σ), 1/(α+1)

B̂σ
x , 2

√
ρB0

� ‖f‖∗, ρ[K̃(σ), 1/(α+1)

B̂σ
x , B(x, r)

+ K̃
(σ), 1/(α+1)
B(x, r), 2

√
ρB0

]

� C2‖f‖∗, ρ � L,

provided that L � C2‖f‖∗, ρ and C2 is a positive constant, which shows (6.10).

Moreover, if
̂̂
B

σ

x �⊂ √
ρB0, let σ

jB̂σ
x be the smallest ball of the form σkB̂σ

x (k ∈ N) satisfying σjB̂σ
x �⊂√

ρB0. We easily obtain

rσj B̂σ
x
∼ rB0 and

̂̂
B

σ

x =
˜
(σjB̂σ

x )
σ

,

where rσj B̂σ
x
and rB0 denote the radii of balls σjB̂σ

x and B0, respectively. By this, σjB̂σ
x ⊂ 3σ

√
ρB0,

B̂σ
x ⊂ √

ρB0, Remark 6.2(ii), (2.1), (2.2), Lemmas 2.9, 2.8(ii) and 2.8(iii), we have

|f ̂̂
B

σ

x

− fB0 |
[λ(x0, r)]α

�
|f ̂̂

B
σ

x

− fσj B̂σ
x
|

[λ(x0, r)]α
+

|fσjB̂σ
x
− f3σ√ρB0

|
[λ(x0, r)]α

+
|f3σ√ρB0

− fB0 |
[λ(x0, r)]α

�
[λ(x, r ̂̂

B
σ

x

)]α

[λ(x0, r)]α
‖f‖∗, ρ +

[λ(x0, 3σ
√
ρr)]α

[λ(x0, r)]α
‖f‖∗, ρ[K̃(ρ), 1/(α+1)

σjB̂σ
x , 3σ

√
ρB0

+ K̃
(ρ), 1/(α+1)
B0, 3σ

√
ρB0

]

�
[λ(x, rσB̂σ

x
)]α

[λ(x0, r)]α
‖f‖∗, ρ + ‖f‖∗, ρ � C3‖f‖∗, ρ � L,

provided that L � C3‖f‖∗, ρ and C3 is a positive constant.

Thus, in any case, we have
|f ̂̂

B
σ

x

− fB0 |
[λ(x0, r)]α

� L, (6.11)

provided that L � max{C2, C3}‖f‖∗, ρ.
Furthermore, by [23, Theorem 1.2] and [27, Lemma 2.5], we see that there exists a sequence {B̂σ

xi
}i∈I

of disjoint balls such that xi ∈ B0 for any i ∈ I and B0 ⊂ ⋃
x∈B0

B̂σ
x ⊂ ⋃

i∈I 5B̂
σ
xi
. Let B(i) := 5B̂σ

xi
for

any i ∈ I. Observe that, for any n ∈ N ∩ [2,∞), if x ∈ B0 and
|f(x)−fB0 |
[λ(x0,r)]α

> nL, then there exists i ∈ I

such that x ∈ B(i) and, from (6.11), Remark 6.2(ii), (2.1), Lemmas 2.9 and 2.8(ii)–2.8(v), it follows that

|f(x)− fB(i) |
[λ(x0, r)]α

� |f(x) − fB0 |
[λ(x0, r)]α

−
|fB0 − f ̂̂

B
σ

xi

|
[λ(x0, r)]α

−
|f ̂̂

B
σ

xi

− f5B̂σ
xi

|
[λ(x0, r)]α

> nL− L−
[λ(xi, r ̂̂

B
σ

xi

)]α

[λ(x0, r)]α
‖f‖∗, ρK̃(ρ), 1/(α+1)

5B̂σ
xi

,
̂̂
B

σ

xi

� (n− 1)L− C4‖f‖∗, ρ � (n− 2)L, (6.12)

provided that L � C4‖f‖∗, ρ and C4 is a positive constant.
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By (6.9), the disjointness of {B̂σ
xi
}i∈I , B̂

σ
xi

⊂ √
ρB0 for all i ∈ I, Propositions 6.8(ii), 6.10(b),

Lemma 2.8(ii) and (2.1), we further see that

∑
i∈I

μ(ρB(i)) � βσ
∑
i∈I

μ(B̂σ
xi
) � 2βσ

L

∑
i∈I

∫
B̂σ

xi

|f(y)− fB0 |
[λ(x0, r)]α

dμ(y)

� 2βσ
L

{∫
√
ρB0

|f(y)− f√ρB0
|

[λ(x0, r)]α
dμ(y) +

|f√ρB0
− fB0 |μ(√ρB0)

[λ(x0, r)]α

}
� 1

L

[λ(x0,
√
ρr)]α

[λ(x0, r)]α
‖f‖∗, ρ{μ(ρB0) + μ(

√
ρB0)K̃

(ρ), 1/(α+1)
B0,

√
ρB0

}

� C5

L
‖f‖∗, ρμ(ρB0) �

1

2
μ(ρB0), (6.13)

provided that L � 2C5‖f‖∗, ρ and C5 is a positive constant.

Moreover, for any t ∈ (0,∞), there exists n ∈ Z+ such that 2nL � t < 2(n+ 1)L. By this and (6.12),

we know that {
x ∈ B0 :

|f(x)− fB0 |
[λ(x0, r)]α

> t

}
⊂
{
x ∈ B0 :

|f(x) − fB0 |
[λ(x0, r)]α

> 2nL

}
⊂
⋃
i∈I

{
x ∈ B(i) :

|f(x)− fB(i) |
[λ(x0, r)]α

> 2(n− 1)L

}
. (6.14)

Finally, by (6.13), (6.14), iterating with the balls B(i) in place of B0 and an argument similar to that

used in the proof of [27, Proposition 6.1], we conclude that

μ

({
x ∈ B0 :

|f(x)− fB0 |
[λ(x0, r)]α

> t

})
� 2μ(ρB0)e

− ct
‖f‖∗, ρ

with c := ln 2
2L ‖f‖∗, ρ and L := 2max{Ci : i ∈ {1, . . . , 5}}. This finishes the proof of Proposition 6.15.

By Proposition 6.15, we easily obtain the following conclusion.

Corollary 6.16. Suppose that (X , d, μ) is a non-homogeneous metric measure space satisfying (6.1).

Let α ∈ [0,∞), ρ ∈ (1,∞) and q ∈ [1,∞). Then there exists a positive constant C such that, for any

f ∈ Eα
ρ (μ) and every ball B := B(cB , rB) with cB ∈ X and rB ∈ (0,∞),

{
1

μ(ρB)

∫
B

|f(x)− fB|qdμ(x)
}1/q

� C‖f‖∗, ρ[λ(cB , rB)]α,

where fB is as in Proposition 6.10(ii).

Remark 6.17. (i) By Corollary 6.16 and Proposition 6.10, together with Hölder’s inequality, we know

that Eα, q
ρ (μ) is independent of the choice of q, the details being omitted. From now on, unless explicitly

pointed out, we always assume that q = 1 in Eα, q
ρ (μ) and write Eα, 1

ρ (μ) simply by Eα
ρ (μ) and its norm

‖ · ‖Eα, 1
ρ (μ) simply by ‖ · ‖Eα

ρ (μ).

(ii) It is still unknown whether Eα, q
ρ, η, γ(μ) is independent of the choice of q or not on general non-

homogeneous metric measure spaces without the assumption (6.1), even on Euclidean spaces endowed

with non-doubling measures.

We establish another characterization of Eα
ρ (μ) which is needed in the later context. To this end, we first

recall the so-called median value of a function on balls in [25,30]. Precisely, let f be a measurable function.

The median value of f on any ball B, denoted by mf (B), is defined as follows. If f is real-valued, then,

for any ball B with μ(B) �= 0, let mf (B) be some real number such that infc∈R
1

μ(B)

∫
B
|f(x)− c|dμ(x) is

attained. It is known that mf (B) satisfies

μ({x ∈ B : f(x) > mf (B)}) � μ(B)/2
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and

μ({x ∈ B : f(x) < mf (B)}) � μ(B)/2.

For all balls B with μ(B) = 0, let mf (B) = 0. If f is complex-valued, we take

mf (B) := [mf (B)] + i[m�f (B)],

where i2 = −1 and, for any complex number z, denote by �z and �z its real part and imaginary part,

respectively.

Let α ∈ [0,∞), ρ ∈ [2,∞) and q, γ ∈ [1,∞). The norm ‖f‖◦, ρ of a suitable function f is defined by

‖f‖◦, ρ := sup
B:B (ρ, βρ)-doubling ball

1

μ(B)

1

[λ(cB, rB)]α

∫
B

|f(y)−mf (B)|dμ(y)

+ sup
B⊂S:B,S (ρ, βρ)-doubling balls

|mf (B)−mf (S)|
[λ(cS , rS)]α[K̃

(ρ), 1/(α+1)
B,S ]γ

.

Then we have the following equivalent characterization of Eα
ρ (μ).

Proposition 6.18. Suppose that (X , d, μ) is a non-homogeneous metric measure space satisfying (6.1).

Let α ∈ [0,∞), ρ ∈ [6/5,∞) and q, γ ∈ [1,∞). Then the norms ‖ · ‖◦, ρ and ‖ · ‖Eα
ρ (μ) are equivalent.

Proof. Fix α ∈ [0,∞) and ρ ∈ [6/5,∞). For the sake of simplicity, we assume that γ = 1. The

arguments here are still valid for the general case with some minor modifications. Let f ∈ Eα
ρ (μ).

Now we show that ‖f‖◦, ρ � ‖f‖Eα
ρ (μ). For any (ρ, βρ)-doubling ball B, by the definition of mf (B), we

conclude that

|mf (B)−mB(f)| � 1

μ(B)

∫
B

|f(y)−mf (B)|dμ(y)

� 1

μ(B)

∫
B

|f(y)−mB(f)|dμ(y) � ‖f‖Eα
ρ (μ)[λ(cB , rB)]

α, (6.15)

which implies that, for any (ρ, βρ)-doubling ball B,

1

μ(B)

∫
B

|f(y)−mf (B)|dμ(y) � ‖f‖Eα
ρ (μ)[λ(cB, rB)]

α.

On the other hand, by (6.15), (2.1) and (2.2), we know that, for all (ρ, βρ)-doubling balls B ⊂ S,

|mf (B) −mf (S)| � |mf (B)−mB(f)|+ |mB(f)−mS(f)|+ |mS(f)−mf(S)|
� ‖f‖Eα

ρ (μ)[λ(cS , rS)]
αK̃

(ρ), 1/(α+1)
B,S + ‖f‖Eα

ρ (μ){[λ(cB, rB)]α + [λ(cS , rS)]
α}

� ‖f‖Eα
ρ (μ)[λ(cS , rS)]

αK̃
(ρ), 1/(α+1)
B,S .

Combining these two inequalities, we conclude that ‖f‖◦, ρ � ‖f‖Eα
ρ (μ).

Conversely, let ‖f‖◦, ρ < ∞. We now prove that ‖f‖Eα,q
ρ, γ (μ) � ‖f‖◦, ρ. For any ball B, if B is (ρ, βρ)-

doubling, we see that

1

μ(ρB)

∫
B

|f(y)−mB(f)|dμ(y) � 1

μ(B)

∫
B

|f(y)−mf (B)|dμ(y) + |mf (B)−mB(f)|

� 1

μ(B)

∫
B

|f(y)−mf (B)|dμ(y) � ‖f‖◦, ρ[λ(cB , rB)]α.

Thus, we only need to consider the case that B is non-(ρ, βρ)-doubling.

Assume that B is a non-(ρ, βρ)-doubling ball. For any x ∈ B, let Bx be the biggest (5ρ, βρ)-doubling

ball centered at x with radius (5ρ)−krB for some k ∈ N (since βρ > (5ρ)n0 and [27, Lemma 3.3]).

From ρ � 6/5, it follows easily that 5Bx ⊂ 2B ⊂ (6/5)B ⊂ B̃ρ. Moreover, by [23, Theorem 1.2]

and [27, Lemma 2.5], we see that there exists a countable disjoint subfamily {Bxi}i=:{Bi}i of {Bx}x such
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that xi ∈ B for all i and B ⊂ ⋃
x∈B Bx ⊂ ⋃

i 5Bi. For any i, by 5Bi ⊂ B(xi, rB) ⊂ (6/5)B ⊂ ρB ⊂ B̃ρ,

and Lemmas 2.8(ii)–2.8(v), we see that

K̃
(ρ), 1/(α+1)

5Bi, B̃ρ
� K̃

(ρ), 1/(α+1)
5Bi, B(xi,rB) + K̃

(ρ), 1/(α+1)
B(xi,rB), ρB + K̃

(ρ), 1/(α+1)

ρB, B̃ρ
� 1.

From this, together with the fact that 5Bi is a (ρ, βρ)-doubling ball for any i, (2.1) and (2.2), Re-

mark 6.2(ii), 5Bi ⊂ (6/5)B ⊂ ρB ⊂ B̃ρ for any i and the disjointness of {Bi}i, it follows that∫
B

|f(y)−mB̃ρ(f)|dμ(y)

�
∑
i

∫
5Bi

|f(y)−mf (5Bi)|dμ(y) +
∑
i

μ(5Bi)[|mf (5Bi)−mf (B̃
ρ)|+ |mf (B̃

ρ)−mB̃ρ(f)|]

� ‖f‖◦, ρ
∑
i

μ(5ρBi)[λ(cBi , rBi)]
α +

∑
i

μ(5Bi)

{
‖f‖◦, ρ[λ(cB, rB̃ρ)]

α[K̃
(ρ), 1/(α+1)

5Bi, B̃ρ
]

+
1

μ(B̃ρ)

∫
B̃ρ

|f(y)−mf (B̃
ρ)|dμ(y)

}
� ‖f‖◦, ρ

∑
i

μ(Bi){[λ(cB , rB)]α + [λ(cB , rB̃ρ)]
α}

� ‖f‖◦, ρ
∑
i

μ(Bi)[λ(cB , rB)]
α � ‖f‖◦, ρμ(ρB)[λ(cB , rB)]

α.

On the other hand, for all (ρ, βρ)-doubling balls B ⊂ S, by (2.1) and (2.2), we have

|mB(f)−mS(f)|
� |mB(f)−mf (B)|+ |mf (B)−mf (S)|+ |mf (S)−mS(f)|
� {[λ(cB, rB)]α + [λ(cS , rS)]

αK̃
(ρ), 1/(α+1)
B,S + [λ(cS , rS)]

α}‖f‖◦, ρ
� ‖f‖◦, ρ[λ(cS , rS)]αK̃(ρ), 1/(α+1)

B,S .

These two inequalities show that ‖f‖Eα
ρ (μ) � ‖f‖◦, ρ, which completes the proof of Proposition 6.18.

We point out that it is still unclear whether the range of ρ in Proposition 6.18 is sharp or not.

7 Atomic Hardy spaces Ĥp, q, γ
atb, ρ (µ) and molecular Hardy spaces Ĥp, q, γ, ε

mb, ρ (µ)

In this section, under the assumption of ρ-weakly doubling conditions, we introduce the atomic Hardy

space Ĥp, q, γ
atb, ρ (μ) and the molecular Hardy space Ĥp, q, γ, ε

mb, ρ (μ), and show that the spaces Ĥp, q, γ
atb, ρ (μ) and

Ĥp, q, γ, ε
mb, ρ (μ) coincide with equivalent quasi-norms.

Definition 7.1. Let ρ ∈ (1,∞), 0 < p � 1 � q � ∞, p �= q and γ ∈ [1,∞). A function b ∈ L1(μ) is

called a (p, q, γ, ρ)λ, 1-atomic block if b satisfies Definitions 3.2(i)–3.2(iii). Moreover, let

|b|Ĥp, q, γ
atb, ρ (μ) := |λ1|+ |λ2|.

Remark 7.2. It is easy to see that any (1, q, γ, ρ)λ, 1-atomic block is also a (1, q, γ, ρ)λ-atomic block and

vice versa. We point out that the difference between the (p, q, γ, ρ)λ-atomic block and the (p, q, γ, ρ)λ, 1-

atomic blocks exists in that the former is an L2(μ) function when p ∈ (0, 1), while the latter is only an

L1(μ) function.

Observe that, for any (p, q, γ, ρ)λ, 1-atomic block b, there exist some balls Bj (j ∈ {1, 2}) and B, and

some numbers λj ∈ C (j ∈ {1, 2}) such that supp (b) ⊂ B, b = λ1a1 + λ2a2 and supp (aj) ⊂ Bj ⊂ B,

j ∈ {1, 2}. By ∫X b(x)dμ(x) = 0, Proposition 6.7(a), Definition 3.2(iii), (2.1) and (2.2), we know that∣∣∣∣ ∫X f(x)b(x)dμ(x)
∣∣∣∣ = ∣∣∣∣ ∫X [f(x)−mB̃ρ(f)]b(x)dμ(x)

∣∣∣∣
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�
2∑

j=1

|λj |
∫
Bj

|f(x) −mB̃ρ(f)||aj(x)|dμ(x)

�
2∑

j=1

|λj |
[ ∫

Bj

|aj(x)|qdμ(x)
]1/q[∫

Bj

|f(x)−mB̃ρ(f)|q′dμ(x)
]1/q′

�
2∑

j=1

|λj |[μ(ρBj)]
1/q−1[λ(cB , rB)]

1−1/p[K̃
(ρ), p
Bj , B

]−γ

×
{[∫

Bj

|f(x)−mB̃ρ
j
(f)|q′dμ(x)

]1/q′
+ [μ(Bj)]

1/q′ |mB̃ρ
j
(f)−mB̃ρ(f)|

}

�
2∑

j=1

|λj |[μ(ρBj)]
1/q−1[λ(cB , rB)]

1−1/p[K̃
(ρ), p
Bj , B

]−γ

× {[μ(ρBj)]
1/q′ + [μ(Bj)]

1/q′ [K̃
(ρ), p
Bj , B

]γ}[λ(cB, rB)]1/p−1‖f‖E1/p−1
ρ (μ)

�
2∑

j=1

|λj |‖f‖E1/p−1
ρ (μ)

∼ |b|Ĥp, q, γ
atb, ρ

(μ)‖f‖E1/p−1
ρ (μ)

. (7.1)

Thus, a (p, q, γ, ρ)λ, 1-atomic block b can be seen as an element in the dual space (E1/p−1
ρ (μ))∗ of E1/p−1

ρ (μ).

Definition 7.3. Let 0 < p � 1 � q � ∞ and p �= q. The atomic Hardy space Ĥp, q, γ
atb, ρ (μ) is defined as

the subspace of (E1/p−1
ρ (μ))∗ when p < 1 and of L1(μ) when p = 1, consisting of those linear functional

admitting an atomic decomposition

f =
∞∑
i=1

bi (7.2)

in (E1/p−1
ρ (μ))∗ when p < 1 and in L1(μ) when p = 1, where {bi}∞i=1 are (p, q, γ, ρ)λ, 1-atomic blocks

such that
∑∞

i=1 |bi|pĤp, q, γ
atb, ρ (μ)

<∞. Moreover, define

‖f‖Ĥp, q, γ
atb, ρ (μ) := inf

{[ ∞∑
i=1

|bi|pĤp, q, γ
atb, ρ (μ)

]1/p}
,

where the infimum is taken over all possible decompositions of f as above.

Remark 7.4. (i) It follows from Remark 7.2 that Ĥ1, q, γ
atb, ρ (μ) is the atomic Hardy space defined via the

discrete coefficients K̃
(ρ)
B,S introduced in [13], where it was shown that Ĥ1, q, γ

atb, ρ (μ) is independent of the

choices of q, ρ and γ. Hereafter, Ĥ1, q, γ
atb, ρ (μ) is simply denoted by Ĥ1

atb(μ).

(ii) Let ρ ∈ (1,∞), γ ∈ [1,∞) and q ∈ (1,∞). By Remarks 3.3(ii) and 7.4(i), we know that Ĥ1, q, γ
atb, ρ (μ)

= H̃1, q, γ
atb, ρ (μ) over general non-homogeneous metric measure spaces.

(iii) Fix p, ρ and γ as in Definition 7.1. For 1 � q1 � q2 � ∞ and q1 > p, we notice that Ĥp, q2, γ
atb, ρ (μ)

⊂ Ĥp, q1, γ
atb, ρ (μ).

(iv) By the results in [13], we know that the Calderón-Zygmund operator is bounded on Ĥ1
atb(μ).

However, when p ∈ (0, 1), it is still unclear whether the Calderón-Zygmund operator is bounded on

Ĥp, q, γ
atb, ρ (μ) or not.

We now introduce the notion of the molecular Hardy space Ĥp, q, γ, ε
mb, ρ (μ) in the non-homogeneous setting

by first presenting the following notion of (p, q, γ, ε, ρ)λ, 1-molecular blocks.

Definition 7.5. Let ρ ∈ (1,∞), 0 < p � 1 � q � ∞, p �= q, γ ∈ [1,∞) and ε ∈ (0,∞). A function

b ∈ L1(μ) is called a (p, q, γ, ε, ρ)λ, 1-molecular block if

(i)
∫
X b(x)dμ(x) = 0;

(ii) there exist some ballB and some constants M̃, M ∈ N such that, for all k ∈ Z+ and j ∈ {1, . . . ,Mk}
with Mk := M̃ if k = 0 and Mk := M if k ∈ N, there exist functions mk, j supported on some balls
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Bk, j ⊂ Uk(B) for all k ∈ Z+, where U0(B) := ρ2B and Uk(B) := ρk+2B\ρk−2B with k ∈ N, and

λk, j ∈ C such that b =
∑∞

k=0

∑Mk

j=1 λk, jmk, j in L1(μ) when p = 1 and in both L1(μ) and (E1/p−1
ρ (μ))∗

when p ∈ (0, 1),

‖mk, j‖Lq(μ) � ρ−kε[μ(ρBk, j)]
1/q−1[λ(cB , ρ

k+2rB)]
1−1/p[K̃

(ρ), p

Bk, j , ρk+2B
]−γ (7.3)

and

|b|p
Ĥp, q, γ, ε

mb, ρ (μ)
:=

∞∑
k=0

Mk∑
j=1

|λk, j |p <∞.

Remark 7.6. Observe that any (1, q, γ, ε, ρ)λ, 1-molecular block is also a (1, q, γ, ε, ρ)λ-molecular block

and vice versa.

Definition 7.7. Let 0 < p � 1 � q � ∞, p �= q and ε ∈ (0,∞). The molecular Hardy space Ĥp, q, γ, ε
mb, ρ (μ)

is defined as the subspace of (E1/p−1
ρ (μ))∗ when p < 1 and of L1(μ) when p = 1, consisting of those linear

functional admitting a molecular decomposition

f =

∞∑
i=1

bi (7.4)

in (E1/p−1
ρ (μ))∗ when p < 1 and in L1(μ) when p = 1, where {bi}∞i=1 are (p, q, γ, ε, ρ)λ, 1-molecular blocks

such that
∑∞

i=1 |bi|pĤp, q, γ, ε
mb, ρ (μ)

<∞. Moreover, define

‖f‖Ĥp, q, γ, ε
mb, ρ

(μ) := inf

{[ ∞∑
i=1

|bi|p
Ĥp, q, γ, ε

mb, ρ (μ)

]1/p}
,

where the infimum is taken over all possible decompositions of f as above.

Remark 7.8. (i) It follows from Remark 7.6 that H1, q, γ
atb, ρ (μ) is the molecular Hardy space defined via

the discrete coefficients K̃
(ρ)
B,S introduced in [13].

(ii) Let ρ, p, q, γ and ε be as in Definition 7.5. Then each (p, q, γ, ρ)λ, 1-atomic block is a (p, q, γ, ε, ρ)λ, 1-

molecular block and hence Ĥp, q, γ
atb, ρ (μ) ⊂ Ĥp, q, γ, ε

mb, ρ (μ) and, for all f ∈ Ĥp, q, γ
atb, ρ (μ),

‖f‖Ĥp, q, γ, ε
mb, ρ (μ) � ‖f‖Ĥp, q, γ

atb, ρ (μ).

Moreover, we have the following relation between Ĥp, q, γ
atb, ρ (μ) and Ĥ

p, q, γ, ε
mb, ρ (μ).

Theorem 7.9. Suppose that (X , d, μ) is a non-homogeneous metric measure space satisfying (6.1).

Let ρ ∈ (1,∞), 0 < p � 1 � q � ∞, p �= q, γ ∈ [1,∞) and ε ∈ (0,∞). Then Ĥp, q, γ
atb, ρ (μ) and Ĥp, q, γ, ε

mb, ρ (μ)

coincide with equivalent quasi-norms.

Proof. When p = 1, the conclusion of Theorem 7.9 was obtained in [13, Theorem 1.11] without the

assumption (6.1). Thus, we only need to consider the case p ∈ (0, 1). Fix ρ ∈ (1,∞), γ ∈ [1,∞),

ε ∈ (0,∞), 0 < p < 1 � q � ∞ and p �= q. Let I
(ρ)
B := N

(ρ)

B, B̃ρ
for any ball B. By Remark 7.8(ii),

to show Theorem 7.9 in this case, it suffices to prove that Ĥp, q, γ, ε
mb, ρ (μ) ⊂ Ĥp, q, γ

atb, ρ (μ) and that, for any

f ∈ Ĥp, q, γ, ε
mb, ρ (μ), f ∈ Ĥp, q, γ

atb, ρ (μ) and ‖f‖Ĥp, q, γ
atb, ρ (μ) � ‖f‖Ĥp, q, γ, ε

mb, ρ (μ). To this end, we first show that any

(p, q, γ, ε, ρ)λ, 1-molecular block b can be decomposed into a sum of some (p, q, γ, ρ)λ, 1-atomic blocks and

(p,∞, γ, ρ)λ, 1-atomic blocks and ‖b‖Ĥp, q, γ
atb, ρ

(μ) � |b|Ĥp, q, γ, ε
mb, ρ

(μ).

For any (p, q, γ, ε, ρ)λ, 1-molecular block b, by Definition 7.5, we know that

b =

∞∑
k=0

Mk∑
j=1

λk, jmk, j in L1(μ) and (E1/p−1
ρ (μ))∗, (7.5)
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where, for any k ∈ Z+ and j ∈ {1, . . . ,Mk}, λk, j ∈ C and supp (mk, j) ⊂ Bk, j ⊂ Uk(B) with the same

notation as in Definition 7.5. Moreover, observe that, by (7.5), Hölder’s inequality and (7.3), we have

∞∑
k=0

Mk∑
j=1

‖λk, jmk, j‖L1(μ) �
∞∑
k=0

Mk∑
j=1

|λk, j |ρ−kε[λ(cB , ρ
k+2rB)]

1−1/p[K̃
(ρ), p

Bk, j , ρk+2B
]−γ

�
( ∞∑

k=0

Mk∑
j=1

|λk, j |p
)1/p

[λ(cB , rB)]
1−1/p <∞. (7.6)

For each k ∈ Z+, let bk :=
∑Mk

j=1 λk, jmk, j , B
ρ
k+2 := ρk+2B and B̃ρ

k+2 := ˜(ρk+2B)2ρ. By (7.5), we write

b =
∞∑
k=0

[
bk −

χB̃ρ
k+2

μ(B̃ρ
k+2)

∫
X
bk(y)dμ(y)

]
+

∞∑
k=0

χB̃ρ
k+2

μ(B̃ρ
k+2)

∫
X
bk(y)dμ(y)

=

∞∑
k=0

Mk∑
j=1

λk, j

[
mk, j −

χB̃ρ
k+2

μ(B̃ρ
k+2)

∫
Bk, j

mk, j(y)dμ(y)

]
+

∞∑
k=0

χB̃ρ
k+2

μ(B̃ρ
k+2)

∫
X
bk(y)dμ(y)

=:

∞∑
k=0

Mk∑
j=1

bk, j +

∞∑
k=0

χkM̃k =: I + II,

where, for all k ∈ Z+ and j ∈ {1, . . . ,Mk},

bk, j := λk, j

[
mk, j −

χB̃ρ
k+2

μ(B̃ρ
k+2)

∫
Bk, j

mk, j(y)dμ(y)

]
,

χk :=
χB̃

ρ
k+2

μ(B̃ρ
k+2)

and M̃k :=
∫
X bk(y)dμ(y). From (7.6), it follows that

∑∞
k=0

∑Mk

j=1 bk, j and
∑∞

k=0 χkM̃k

both converge in L1(μ).

To estimate I, we first show that, for any k ∈ Z+ and j ∈ {1, . . . ,Mk}, bk, j is a (p, q, γ, ρ)λ, 1-atomic

block. Noticing that supp (bk, j) ⊂ 2B̃ρ
k+2 and

∫
X bk, j(y)dμ(y) = 0, to show this, it only needs to show

that bk, j satisfies Definition 3.2(iii). To this end, we further decompose bk, j into

bk, j = λk, j

[
mk, j −

χ supp (mk, j)

μ(B̃ρ
k+2)

∫
Bk, j

mk, j(y)dμ(y)

]
− λk, j

χB̃ρ
k+2\ supp (mk, j)

μ(B̃ρ
k+2)

∫
Bk, j

mk, j(y)dμ(y) =: A
(1)
k, j −A

(2)
k, j .

By the Minkowski inequality, Hölder’s inequality, (7.3), (2.1), Remark 6.2(ii), Lemmas 2.8(iv) and 2.8(iii),

we know that

‖A(1)
k, j‖Lq(μ) � |λk, j |

{
‖mk, j‖Lq(μ) +

[μ( supp (mk, j))]
1/q

μ(B̃ρ
k+2)

∣∣∣∣ ∫
Bk, j

mk, j(y)dμ(y)

∣∣∣∣}

� |λk, j |
{
‖mk, j‖Lq(μ) +

[μ( supp (mk, j))]
1/q[μ(Bk, j)]

1/q′

μ(B̃ρ
k+2)

‖mk, j‖Lq(μ)

}
� |λk, j |‖mk, j‖Lq(μ) � |λk, j |ρ−kε[μ(ρBk, j)]

1/q−1[λ(cB , rBρ
k+2

)]1−1/p[K̃
(ρ), p

Bk, j , B
ρ
k+2

]−γ

� |λk, j |ρ−kε[μ(ρBk, j)]
1/q−1[λ(cB , r2B̃ρ

k+2
)]1−1/p[K̃

(ρ), p

Bk, j , 2B̃
ρ
k+2

]−γ .

Let c5, independent of k and j, be the implicit positive constant of the above inequality, μ
(1)
k, j

:= c5|λk, j |ρ−kε and a
(1)
k, j :=

1

μ
(1)
k, j

A
(1)
k, j . Then A

(1)
k, j = μ

(1)
k, ja

(1)
k, j , supp (a

(1)
k, j) ⊂ Bk, j ⊂ 2B̃ρ

k+2 and

‖a(1)k, j‖Lq(μ) � [μ(ρBk, j)]
1/q−1[λ(cB , r2B̃ρ

k+2
)]1−1/p[K̃

(ρ), p

Bk, j , 2B̃
ρ
k+2

]−γ .
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From Hölder’s inequality, (7.3), the fact that K̃
(ρ), p

Bk, j , B
ρ
k+2

� 1, the (2ρ, β2ρ)-doubling property of B̃ρ
k+2,

Remark 6.2(ii) and Lemma 2.8(ii), it follows that

‖A(2)
k, j‖Lq(μ) = |λk, j |

[μ(B̃ρ
k+2\ supp (mk, j))]

1/q

μ(B̃ρ
k+2)

∣∣∣∣ ∫
Bk, j

mk, j(y)dμ(y)

∣∣∣∣
� |λk, j |[μ(B̃ρ

k+2)]
1/q−1[μ(Bk, j)]

1/q′‖mk, j‖Lq(μ)

� |λk, j |[μ(B̃ρ
k+2)]

1/q−1[μ(Bk, j)]
1/q′ρ−kε[μ(ρBk, j)]

1/q−1[λ(cB , rBρ
k+2

)]1−1/p

� |λk, j |[μ(2ρB̃ρ
k+2)]

1/q−1ρ−kε[λ(cB , rBρ
k+2

)]1−1/p

� |λk, j |ρ−kε[μ(2ρB̃ρ
k+2)]

1/q−1[λ(cB , r2B̃ρ
k+2

)]1−1/p[K̃
(ρ), p

2B̃ρ
k+2, 2B̃

ρ
k+2

]−γ .

Let c6, independent of k and j, be the implicit positive constant of the above inequality, μ
(2)
k, j

:= c6|λk, j |ρ−kε and a
(2)
k, j :=

1

μ
(2)
k, j

A
(2)
k, j . Then A

(2)
k, j = μ

(2)
k, ja

(2)
k, j , supp (a

(2)
k, j) ⊂ 2B̃ρ

k+2 and

‖a(2)k, j‖Lq(μ) � [μ(2ρB̃ρ
k+2)]

1/q−1[λ(cB , r2B̃ρ
k+2

)]1−1/p[K̃
(ρ), p

2B̃ρ
k+2, 2B̃

ρ
k+2

]−γ .

Thus, bk, j = μ
(1)
k, ja

(1)
k, j + μ

(2)
k, ja

(2)
k, j is a (p, q, γ, ρ)λ, 1-atomic block and

|bk, j |Ĥp, q, γ
atb, ρ (μ) � |λk, j |ρ−kε.

Moreover, we have

‖I‖p
Ĥp, q, γ

atb, ρ (μ)
�

∞∑
k=0

Mk∑
j=1

|λk, j |pρ−kpε �
∞∑
k=0

Mk∑
j=1

|λk, j |p ∼ |b|p
Ĥp, q, γ, ε

mb, ρ (μ)
. (7.7)

Now we turn to estimate II. Observe that, by (7.6) and Hölder’s inequality, we have

∞∑
k=0

|M̃k| �
∞∑
k=0

‖bk‖L1(μ) <∞.

For each k ∈ Z+, let Nk :=
∑∞

i=k M̃i. From Hölder’s inequality and (7.3), it follows that

∞∑
k=0

‖χkNk‖L1(μ) �
∞∑
k=0

∞∑
i=k

‖χkM̃i‖L1(μ) �
∞∑
k=0

∞∑
i=k

‖bi‖L1(μ)

�
∞∑
k=0

∞∑
i=k

Mi∑
j=1

|λi, j |‖mi, j‖Lq(μ)[μ(Bi, j)]
1/q′

�
∞∑
k=0

∞∑
i=k

Mi∑
j=1

|λi, j |ρ−iε[λ(cB , ρ
i+2rB)]

1−1/p

�
∞∑
k=0

ρ−kε
∞∑
i=0

Mi∑
j=1

|λi, j |[λ(cB , rB)]1−1/p

�
( ∞∑

i=0

Mi∑
j=1

|λi, j |p
)1/p

[λ(cB, rB)]
1−1/p <∞.

Similarly,
∑∞

k=0 ‖χkNk+1‖L1(μ) <∞. By the above facts, we have

∞∑
k=0

χkM̃k =

∞∑
k=0

χk(Nk −Nk+1) =

∞∑
k=0

(χk+1 − χk)Nk+1 + χ0N0
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=
∞∑
k=0

(χk+1 − χk)Nk+1

=

∞∑
k=0

∞∑
i=k+1

Mi∑
j=1

λi, j(χk+1 − χk)

∫
Bi, j

mi, j(y)dμ(y)

=:

∞∑
k=0

∞∑
i=k+1

Mi∑
j=1

bk, j, i,

where the summation in the last equality holds in L1(μ).

Now we prove that, for any k ∈ Z+, i ∈ {k+1, k+2, . . .} and j ∈ {1, . . . ,Mk}, bk, j, i is a (p,∞, γ, ρ)λ,1-

atomic block. Observing that supp (bk, j, i) ⊂ 2B̃ρ
k+3 and

∫
X bk, j, i(y)dμ(y) = 0, we only need to show

that bk, j, i satisfies Definition 3.2(iii).

To this end, we further write

bk, j, i = λi, jχk+1

∫
Bi, j

mi, j(y)dμ(y)− λi, jχk

∫
Bi, j

mi, j(y)dμ(y) =: A
(1)
k, j, i −A

(2)
k, j, i.

From Hölder’s inequality, (7.3), the fact that K̃
(ρ), p

Bi, j , B
ρ
i+2

� 1, Remark 6.2(ii) and Lemma 2.8(ii), we

deduce that

‖A(1)
k, j, i‖L∞(μ) � |λi, j | [μ(Bi, j)]

1/q′

μ(B̃ρ
k+3)

‖mi, j‖Lq(μ)

� |λi, j | [μ(Bi, j)]
1/q′

μ(B̃ρ
k+3)

ρ−iε[μ(ρBi, j)]
1/q−1[λ(cBi , rBρ

i+2
)]1−1/p[K̃

(ρ), p

Bi, j , B
ρ
i+2

]−γ

� |λi, j |ρ−iε[μ(2ρB̃ρ
k+3)]

−1[λ(cB , rBρ
k+3

)]1−1/p

� |λi, j |ρ−iε[μ(2ρB̃ρ
k+3)]

−1[λ(cB , r2B̃ρ
k+3

)]1−1/p[K̃
(ρ), p

2B̃ρ
k+3, 2B̃

ρ
k+3

]−γ .

Let c7, independent of k and j, be the implicit positive constant of the above inequality, μ
(1)
k, j, i

:= c7|λi, j |ρ−iε and a
(1)
k, j, i :=

1

μ
(1)
k, j, i

A
(1)
k, j, i. Then we see that A

(1)
k, j, i = μ

(1)
k, j, ia

(1)
k, j, i, supp (a

(1)
k, j, i) ⊂ 2B̃ρ

k+3

and ‖a(1)k, j, i‖L∞(μ) � [μ(2ρB̃ρ
k+3)]

−1[λ(cB, r2B̃ρ
k+3

)]1−1/p[K̃
(ρ), p

2B̃ρ
k+3, 2B̃

ρ
k+3

]−γ .

By an argument similar to that used in the estimate for A
(1)
k, j, i, we conclude that

‖A(2)
k, j, i‖L∞(μ) � c8|λi, j |ρ−iε[μ(2ρB̃ρ

k+2)]
−1[λ(cB , r2B̃ρ

k+3
)]1−1/p[K̃

(ρ), p

2B̃ρ
k+2, 2B̃

ρ
k+3

]−γ ,

where c8 is a positive constant independent of k, j and i. Let μ
(2)
k, j, i := c8|λi, j |ρ−iε and

a
(2)
k, j, i :=

1

μ
(2)
k, j, i

A
(2)
k, j, i.

Then A
(2)
k, j, i = μ

(2)
k, j, ia

(2)
k, j, i, supp (a

(2)
k, j, i) ⊂ 2B̃ρ

k+2 ⊂ 2B̃ρ
k+3 and

‖a(2)k, j, i‖L∞(μ) � [μ(2ρB̃ρ
k+2)]

−1[λ(cB , r2B̃ρ
k+3

)]1−1/p[K̃
(ρ), p

2B̃ρ
k+2, 2B̃

ρ
k+3

]−γ .

Thus, bk, j, i = μ
(1)
k, j, ia

(1)
k, j, i + μ

(2)
k, j, ia

(2)
k, j, i is a (p,∞, γ, ρ)λ, 1-atomic block and

|bk, j, i|Ĥp, ∞, γ
atb, ρ (μ) � |λi, j |ρ−iε.

Moreover, we have

‖II‖p
Hp,∞, γ

atb (μ)
�

∞∑
k=0

∞∑
i=k+1

Mi∑
j=1

|bk, j, i|pĤp, ∞, γ
atb, ρ

(μ)
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�
∞∑
k=0

∞∑
i=k+1

ρ−ipε
Mi∑
j=1

|λi, j |p ∼
∞∑
i=1

ρ−ipε
i−1∑
k=0

Mi∑
j=1

|λi, j |p

�
∞∑
i=1

Mi∑
j=1

|λi, j |p ∼ |b|p
Ĥp, q, γ, ε

mb, ρ (μ)
.

From this fact and (7.7), we deduce that both
∑∞

k=0

∑Mk

j=1 bk, j and
∑∞

k=0

∑∞
i=k+1

∑Mi

j=1 bk, j, i converge

in (E1/p−1
ρ (μ))∗.

Now we claim that

b =

∞∑
k=0

Mk∑
j=1

bk, j +

∞∑
k=0

∞∑
i=k+1

Mi∑
j=1

bk, j, i in (E1/p−1
ρ (μ))∗.

Indeed, by b =
∑∞

k=0

∑Mk

j=1 λk, jmk, j in (E1/p−1
ρ (μ))∗, we see that, for any g ∈ E1/p−1

ρ (μ),∫
X
b(x)g(x)dμ(x) = lim

K→∞

K∑
k=0

Mk∑
j=1

∫
X
λk, jmk, j(x)g(x)dμ(x)

= lim
K→∞

K∑
k=0

Mk∑
j=1

∫
X
bk, j(x)g(x)dμ(x) + lim

K→∞

K∑
k=0

M̃k

∫
X
χk(x)g(x)dμ(x).

Moreover, by the fact that |Nk| <∞ for any k ∈ Z+ and N0 = 0, we further write

lim
K→∞

K∑
k=0

M̃k

∫
X
χk(x)g(x)dμ(x)

= lim
K→∞

∫
X

K∑
k=0

(Nk −Nk+1)χk(x)g(x)dμ(x)

= lim
K→∞

∫
X

[
χ0(x)N0 − χK(x)NK+1 +

K∑
k=1

Nkχk(x) −
K−1∑
k=0

Nk+1χk(x)

]
g(x)dμ(x)

= − lim
K→∞

∫
X
χK(x)NK+1g(x)dμ(x) + lim

K→∞

∫
X

K−1∑
k=0

Nk+1[χk+1(x)− χk(x)]g(x)dμ(x)

=: A + lim
K→∞

K−1∑
k=0

∞∑
i=K+1

M̃i

∫
X
[χk+1(x) − χk(x)]g(x)dμ(x)

= A + lim
K→∞

K−1∑
k=0

∞∑
i=K+1

Mi∑
j=1

∫
X
bk, j, i(x)g(x)dμ(x).

Thus, to prove the above claim, it suffices to show that A = 0. To this end, by Hölder’s inequality

and (7.3), we conclude that, for any K ∈ N,

|NK+1| �
∞∑

i=K+1

|M̃i| �
∞∑

i=K+1

∫
X
|bi(y)|dμ(y)

�
∞∑

i=K+1

Mi∑
j=1

|λi, j |
∫
Bi, j

|mi, j(y)|dμ(y)

�
∞∑

i=K+1

Mi∑
j=1

|λi, j |[μ(Bi, j)]
1/q′‖mi, j‖Lq(μ)

�
∞∑

i=K+1

Mi∑
j=1

|λi, j |[μ(Bi, j)]
1/q′ρ−iε[μ(ρBi, j)]

1/q−1[λ(cB , ρ
i+2rB)]

1−1/p
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�
∞∑

i=K+1

Mi∑
j=1

|λi, j |ρ−Kε[λ(cB , ρ
K+2rB)]

1−1/p

� ρ−Kε[λ(cB , ρ
K+2rB)]

1−1/p

( ∞∑
i=K+1

Mi∑
j=1

|λi, j|p
)1/p

. (7.8)

We write ∣∣∣∣ ∫X χK(x)NK+1g(x)dμ(x)

∣∣∣∣ = |NK+1||mB̃ρ
K
(g)|

� |NK+1||mB̃ρ
K
(g)−mB̃ρ

0
(g)|+ |NK+1||mB̃ρ

0
(g)|

=: IK + IIK .

By (7.8), g ∈ L1
loc (μ) and

∑∞
k=0

∑Mk

j=1 |λk, j |p <∞, we know that

IIK � |mB̃ρ
0
(g)|ρ−Kε[λ(cB , rB)]

1−1/p

( ∞∑
i=K+1

Mi∑
j=1

|λi, j |p
)1/p

→ 0 as K → ∞.

From Proposition 6.7(a), g ∈ E1/p−1
ρ (μ), (7.8) and

∑∞
k=0

∑Mk

j=1 |λk, j |p <∞, we further deduce that

IK � |NK+1|[K̃(ρ), p

ρ2B, ρK+2B
]γ [λ(cB , ρ

K+2rB)]
1/p−1‖g‖E1/p−1

ρ (μ)

� |NK+1|Kγ/p[λ(cB , ρ
K+2rB)]

1/p−1‖g‖E1/p−1
ρ (μ)

� ρ−KεKγ/p

( ∞∑
i=K+1

Mi∑
j=1

|λi, j |p
)1/p

‖g‖E1/p−1
ρ (μ)

→ 0 as K → ∞,

which, together with the estimate of IK , completes the proof of the above claim.

By Remark 7.4(ii) and the estimates for I and II, we see that b ∈ Ĥp, q, γ
atb, ρ (μ) and

‖b‖p
Ĥp, q, γ

atb, ρ (μ)
� ‖I‖p

Ĥp, q, γ
atb, ρ (μ)

+ ‖II‖p
Ĥp, q, γ

atb, ρ (μ)
� ‖I‖p

Ĥp, q, γ
atb, ρ (μ)

+ ‖II‖p
Hp,∞, γ

atb (μ)
� |b|p

Ĥp, q, γ, ε
mb, ρ (μ)

,

which, together with some standard arguments, then completes the proof of Theorem 7.9.

Remark 7.10. (i) As was pointed out in the proof of Theorem 7.9, if ρ ∈ (1,∞), q ∈ (1,∞], γ ∈ [1,∞)

and ε ∈ (0,∞), then Ĥ1, q, γ
atb, ρ (μ) and Ĥ1, q, γ, ε

mb, ρ (μ) coincide with equivalent norms, which is just [13,

Theorem 1.11]; namely, in this case, the assumption (6.1) is superfluous. However, when p ∈ (0, 1),

without (6.1), it is still unclear whether Theorem 7.9 holds true or not.

(ii) By Theorem 7.9, we see that Ĥp, q, γ, ε
mb, ρ (μ) is independent of the choice of ε under the assump-

tion (6.1).

The following result is an easy consequence of Theorem 7.9 and Remark 6.2(i), the details being

omitted.

Corollary 7.11. Let (X , d, μ) be a space of homogeneous type with the dominating function

λ(x, r) := μ(B(x, r)) for all x ∈ X and r ∈ (0,∞),

and ρ, p, q, γ and ε be as in Theorem 7.9. Then the conclusions in Theorem 7.9 and Remark 7.10 also

hold true in this setting.

8 Duality between Ĥp, q, γ
atb, ρ (µ) and E1/p−1

ρ (µ)

In this section, we show that E1/p−1
ρ (μ) is the dual space of Ĥp, q, γ

atb, ρ (μ). To this end, assuming that

(X , d, μ) satisfies the assumption (6.1), we show that Ĥp, q, γ
atb, ρ (μ) is independent of the choices of ρ and γ.

We point out that all conclusions in this section hold true for the case p = 1 without the assumption (6.1);

see [13, 30] for the details. Thus, we mainly focus on p ∈ (0, 1) in this section.
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Proposition 8.1. Suppose that (X , d, μ) is a non-homogeneous metric measure space satisfying (6.1).

Let ρ ∈ (1,∞), 0 < p < 1 � q � ∞ and γ ∈ [1,∞). Then the space Ĥp, q, γ
atb, ρ (μ) is independent of the

choice of ρ ∈ (1,∞).

Proof. Let 0 < p < 1 � q � ∞ and γ ∈ [1,∞). Assume that ρ � ρ1 > ρ2 > 1. It is easy to see that

Ĥp, q, γ
atb, ρ1

(μ) ⊂ Ĥp, q, γ
atb, ρ2

(μ) and, for all f ∈ Ĥp, q, γ
atb, ρ1

(μ),

‖f‖p
Ĥp, q, γ

atb, ρ2
(μ)

� ‖f‖p
Ĥp, q, γ

atb, ρ1
(μ)
.

On the other hand, to show that Ĥp, q, γ
atb, ρ2

(μ) ⊂ Ĥp, q, γ
atb, ρ1

(μ), let

b =

2∑
j=1

λjaj ∈ Ĥp, q, γ
atb, ρ2

(μ)

be a (p, q, γ, ρ2)λ, 1-atomic block, where, for any j ∈ {1, 2}, aj is a function supported on Bj ⊂ B for

some balls Bj and B as in Definition 7.1.

Now we claim that, without loss of generality, we may assume that B is (ρ2, βρ2)-doubling. The reasons

are as follows: If B is non-(ρ2, βρ2)-doubling, by Lemmas 2.9, 2.8(ii) and 2.8(iv), (2.1) and Remark 6.2(ii),

we see that

‖aj‖Lq(μ) � [μ(ρ2Bj)]
1/q−1[λ(cB , rB)]

1−1/p[K̃
(ρ2), p
Bj , B

]−γ

� [μ(ρ2Bj)]
1/q−1[λ(cB , ρ

2N
(ρ2)

B, B̃ρ2 rB)]
1−1/p[K̃

(ρ2), p

Bj , B̃ρ2
]−γ

� [μ(ρ2Bj)]
1/q−1[λ(cB , rB̃ρ2 )]

1−1/p[K̃
(ρ2), p

Bj , B̃ρ2
]−γ .

Thus, we can replace B by B̃ρ2

, which shows the claim.

Then, for each j ∈ {1, 2}, we have

‖aj‖Lq(μ) � [μ(ρ2Bj)]
1/q−1[λ(cB , rB)]

1−1/p[K̃
(ρ2), p
Bj , B

]−γ . (8.1)

From Remark 2.2(ii), it follows that there exists a sequence {Bk, j}Nk=1 of balls such that

Bj ⊂
N⋃

k=1

Bk, j :=

N⋃
k=1

B

(
cBk, j

,
ρ2 − 1

10ρ0(ρ1 + 1)
rBj

)
and cBk, j

∈ Bj for all k ∈ {1, . . . , N}, where ρ0 ∈ (1, ρ1). Observe that ρ1ρ0Bk, j ⊂ ρ2Bj . For any

k ∈ {1, . . . , N}, define ak, j := aj
χBk, j∑N

k=1 χBk, j

and λk, j := λj . Then we have

supp (ak, j) ⊂ ρ0Bk, j and b =
2∑

j=1

λjaj =
2∑

j=1

N∑
k=1

λk, jak, j .

Moreover, by (8.1), the fact that ρ2Bj ⊂ 3ρB, (2.1), Lemmas 2.9, 2.8(i), 2.8(ii), 2.8(iv) and 2.8(v), and

the fact that ρ0Bk, j ⊂ ρB, we know that

‖ak, j‖Lq(μ) � ‖aj‖Lq(μ) � [μ(ρ2Bj)]
1/q−1[λ(cB , rB)]

1−1/p[K̃
(ρ2), p
Bj , B

]−γ

� [μ(ρ1ρ0Bk, j)]
1/q−1[λ(cB , ρrB)]

1−1/p[K̃
(ρ1), p
Bj , 3ρB

]−γ

� [μ(ρ1ρ0Bk, j)]
1/q−1[λ(cB , ρrB)]

1−1/p[K̃
(ρ1), p
ρ0Bk, j , ρB

]−γ . (8.2)

Let Ck, j := λk, j(ak, j + γk, jχB), where γk, j := − 1
μ(B)

∫
X ak, j(x)dμ(x). Now we claim that Ck, j is

a (p, q, γ, ρ1)λ, 1-atomic block. Indeed, supp (Ck, j) ⊂ ρB and
∫
X Ck, j(x)dμ(x) = 0. Moreover, since
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Bk, j ⊂ ρB, Hölder’s inequality, (8.2), B is (ρ2, βρ2)-doubling, ρ > ρ1, (2.1) and Lemma 2.8(ii), we

conclude that

‖γk, jχB‖Lq(μ) � [μ(B)]1/q−1‖ak, j‖Lq(μ)[μ(Bk, j)]
1−1/q

� [μ(ρ1ρB)]1/q−1[λ(cB , ρrB)]
1−1/p[K̃

(ρ1), p
Bk, j , ρB

]−γ

� [μ(ρ1ρB)]1/q−1[λ(cB , ρrB)]
1−1/p[K̃

(ρ1), p
ρB, ρB]

−γ .

This, together with (8.2), (2.1), Lemma 2.8(ii), implies that |Ck, j |Ĥp, q, γ
atb, ρ1

(μ) � |λk, j |. Thus, the claim

holds true.

By the above claim and
∫
X b(x)dμ(x) = 0, we see that

b =
2∑

j=1

N∑
k=1

Ck, j ∈ Ĥp, q, γ
atb, ρ1

(μ) (8.3)

and

‖b‖p
Ĥp, q, γ

atb, ρ1
(μ)

�
2∑

j=1

N∑
k=1

|Ck, j |pĤp, q, γ
atb, ρ1

(μ)
�

2∑
j=1

|λj |p ∼ |b|p
Ĥp, q, γ

atb, ρ2
(μ)
. (8.4)

For all f ∈ Ĥp, q, γ
atb, ρ2

(μ), by Proposition 6.8, we know that there exists a sequence {bi}i of (p, q, γ, ρ2)λ, 1-
atomic blocks such that f =

∑∞
i=1 bi in (E1/p−1

ρ2 (μ))∗ = (E1/p−1
ρ1 (μ))∗ and

∞∑
i=1

|bi|p
Ĥp, q, γ

atb, ρ2
(μ)

� ‖f‖p
Ĥp, q, γ

atb, ρ2
(μ)
.

From this fact, (8.3) and (8.4), we further deduce that f =
∑∞

i=1

∑2
j=1

∑N
k=1 C

i
k, j in (E1/p−1

ρ1 (μ))∗, where
{Ci

k, j}i, j, k are all (p, q, γ, ρ1)λ, 1-atomic blocks as in (8.3) satisfying

∞∑
i=1

2∑
j=1

N∑
k=1

|Ci
k, j |pĤp, q, γ

atb, ρ1
(μ)

�
∞∑
i=1

|bi|p
Ĥp, q, γ

atb, ρ2
(μ)

� ‖f‖p
Ĥp, q, γ

atb, ρ2
(μ)
,

which implies that f ∈ Ĥp, q, γ
atb, ρ1

(μ) and

‖f‖Ĥp, q, γ
atb, ρ1

(μ) � ‖f‖Ĥp, q, γ
atb, ρ2

(μ).

This finishes the proof of Proposition 8.1.

Proposition 8.2. Let ρ ∈ (1,∞), 0 < p < 1 � q � ∞ and γ ∈ [1,∞). Then the space Ĥp, q, γ
atb, ρ (μ) is

independent of the choice of γ ∈ [1,∞).

Proof. Assume that 1 � γ1 < γ2. Notice that [K̃
(ρ), p
B,S ]−γ2 � [K̃

(ρ), p
B, S ]−γ1 for all balls B ⊂ S. From this,

we deduce that Ĥp, q, γ2

atb, ρ (μ) ⊂ Ĥp, q, γ1

atb, ρ (μ) and, for all f ∈ Ĥp, q, γ2

atb, ρ (μ), f ∈ Ĥp, q, γ1

atb, ρ (μ) and

‖f‖Ĥp, q, γ1
atb, ρ

(μ) � ‖f‖Ĥp, q, γ2
atb, ρ

(μ).

Now we consider the following converse inclusion that Ĥp, q, γ1

atb, ρ (μ) ⊂ Ĥp, q, γ2

atb, ρ (μ). Let

b =
2∑

j=1

λjaj ∈ Ĥp, q, γ1

atb, ρ (μ)

be a (p, q, γ1, ρ)λ, 1-atomic block, where, for any j ∈ {1, 2}, aj is a function supported on Bj ⊂ B for

some balls Bj and B as in Definition 7.1. We first show that any (p, q, γ1, ρ)λ, 1-atomic block can be

decomposed into a sum of some (p, q, γ2, ρ)λ, 1-atomic blocks and

‖b‖Ĥp, q, γ2
atb, ρ (μ) � |b|Ĥp, q, γ1

atb, ρ (μ). (8.5)
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To prove (8.5), we consider the following four cases:

Case (I) For any j ∈ {1, 2}, K̃(ρ), p
Bj , B

� [(3 + �logρ 2	)C(ρ)]
1/p, where C(ρ) is as in Lemma 2.8(i).

Case (II) K̃
(ρ), p
B1, B

> [(3 + �logρ 2	)C(ρ)]
1/p and K̃

(ρ), p
B2, B

� [(3 + �logρ 2	)C(ρ)]
1/p.

Case (III) K̃
(ρ), p
B1, B

� [(3 + �logρ 2	)C(ρ)]
1/p and K̃

(ρ), p
B2, B

> [(3 + �logρ 2	)C(ρ)]
1/p.

Case (IV) For any j ∈ {1, 2}, K̃(ρ), p
Bj, B

> [(3 + �logρ 2	)C(ρ)]
1/p.

In Case (I), for any j ∈ {1, 2}, we have

[K̃
(ρ), p
Bj, B

]−γ1 < 1 = [(3 + �logρ 2	)C(ρ)]
γ2/p[(3 + �logρ 2	)C(ρ)]

−γ2/p

� [(3 + �logρ 2	)C(ρ)]
γ2/p[K̃

(ρ), p
Bj, B

]−γ2 .

For any j ∈ {1, 2}, let λ̃j := [(3 + �logρ 2	)C(ρ)]
γ2/pλj and ãj := [(3 + �logρ 2	)C(ρ)]

−γ2/paj . Then

b = λ̃1ã1 + λ̃2ã2. From this, it is easy to see that b is a (p, q, γ2, ρ)λ, 1-atomic block, which implies that

b ∈ Ĥp, q, γ2

atb, ρ (μ) and

‖b‖Ĥp, q, γ2
atb, ρ (μ) � [(3 + �logρ 2	)C(ρ)]

γ2/p(|λ1|+ |λ2|) ∼ |b|Ĥp, q, γ1
atb, ρ (μ)

in this case.

The proofs of Cases (II)–(IV) are similar. For brevity, we only prove Case (II).

In Case (II), we have K̃
(ρ), p
B1, B

> [(3+�logρ 2	)C(ρ)]
1/p. We now choose a sequence {B(i)

1 }mi=0 of balls with

certain m ∈ N as follows. Let B
(0)
1 := B1 and B0 := (

˜
ρN

(ρ)
B1, BB1)

ρ2

. To choose B
(1)
1 , let N1 be the smallest

positive integer satisfying K̃
(ρ), p

B
(0)
1 , ρN1B

(0)
1

> [(3+�logρ 2	)C(ρ)]
1/p. If r

(
˜

ρN1B
(0)
1 )ρ2

� rB0 , then we let B
(1)
1 :=

B0 and the selection process terminates. Otherwise, we let B
(1)
1 := (

˜
ρN1B

(0)
1 )ρ

2

. To choose B
(2)
1 , if, for

any N ∈ N, K̃(ρ), p

B
(1)
1 , ρNB

(1)
1

� [(3 + �logρ 2	)C(ρ)]
1/p, let B

(2)
1 := B0 and the selection process terminates.

Otherwise, let N2 be the smallest positive integer satisfying K̃
(ρ), p

B
(1)
1 , ρN2B

(1)
1

> [(3 + �logρ 2	)C(ρ)]
1/p.

If r
(

˜
ρN2B

(1)
1 )ρ2

� rB0 , then we let B
(2)
1 := B0 and the selection process terminates. Otherwise, we let

B
(2)
1 := (

˜
ρN2B

(1)
1 )ρ

2

. We continue as long as this selection process is possible; clearly, finally the condition

r
(

˜
ρNi+1B

(i)
1 )ρ2

< rB0 is violated after finitely many steps. Without loss of generality, we may assume that

the process will stop after m (m ∈ N∩ (1,∞)) steps. Now we conclude that {B(i)
1 }mi=0 have the following

properties:

(i) B
(0)
1 := B1, B

(i)
1 := (

˜
ρNiB

(i−1)
1 )ρ

2

for any i ∈ {1, . . . ,m− 1}, and B(m)
1 := B0;

(ii) for any i ∈ {1, . . . , m− 1}, by Lemma 2.8(i) and the definition of Ni, we have

K̃
(ρ), p

B
(i−1)
1 , B

(i)
1

�
[
C(ρ)

]−1/p
K̃

(ρ), p

B
(i−1)
1 , ρNiB

(i−1)
1

>
(
3 + �logρ 2	

)1/p
;

(iii) there exists a positive constant C such that, for any i ∈ {1, . . . , m}, K̃(ρ), p

B
(i−1)
1 , B

(i)
1

� C. Indeed,

if, for any N ∈ N, K̃(ρ), p

B
(m−1)
1 , ρNBm−1

1

� [(3 + �logρ 2	)C(ρ)]
1/p, then, from the choice of B

(m)
1 , we have

K̃
(ρ), p

B
(m−1)
1 , B

(m)
1

� 1. Otherwise, by Lemmas 2.9, 2.8(ii)–2.8(iv), and the definition of Ni, we see that, for

any i ∈ {1, . . . ,m},

K̃
(ρ), p

B
(i−1)
1 , B

(i)
1

� 21−p[K̃
(ρ), p

B
(i−1)
1 , ρNiB

(i−1)
1

+ c(ρ, p, ν)K̃
(ρ), p

ρNiB
(i−1)
1 , (

˜
ρNiB

(i−1)
1 )ρ2

]

� 21−p[K
(ρ), p

B
(i−1)
1 , ρNi−1B

(i−1)
1

+ c(ρ, p, ν)K̃
(ρ), p

ρNi−1B
(i−1)
1 , ρNiB

(i−1)
1

+ c(ρ, p, ν)] � C;



360 Fu X et al. Sci China Math February 2015 Vol. 58 No. 2

(iv) by (ii), Lemma 6.11, the fact that Bm−1
1 ⊂ B

(m)
1 ⊂ 2ρ2C̃1+1B, Lemmas 2.8(i), 2.8(ii) and 2.8(iv),

where C̃1 is as in (6.1), we know that

m = (m− 2) + 2 �
m−2∑
i=1

[K̃
(ρ), p

B
(i)
1 , Bi+1

1

]p + 2 < (3 + �logρ 2	)[K̃(ρ), p

B1, B
m−1
1

]p + 2

� [K̃
(ρ), p

B1, 2ρ2C̃1+1B
]p � [K̃

(ρ), p
B1, B

]p + [K̃
(ρ), p

B, 2ρ2C̃1+1B
]p � [K̃

(ρ), p
B1, B

]p.

Let C be the implicit positive constant of the above inequality, (C̃b)
p := C[K̃

(ρ), p
B1, B

]p and c̃0 := C̃ba1. For

any i ∈ {1, . . . ,m}, let
c̃i :=

χ
B

(i)
1

μ(B
(i)
1 )

∫
X
c̃i−1(y)dμ(y).

If i = 0, by Definition 3.2(iii), (2.2), r
B

(1)
1

� ρ2C̃1+1rB , (2.1) and (iii), we have

‖c̃0‖Lq(μ) � [μ(ρB1)]
1/q−1[λ(cB , rB)]

1−1/p[K̃
(ρ), p
B1, B

]−γ1+1

� [μ(ρB
(0)
1 )]1/q−1[λ(cB1 , rB)]

1−1/p

� [μ(ρB
(0)
1 )]1/q−1[λ(cB1 , rρB(1)

1
)]1−1/p[K̃

(ρ), p

B0
1 , ρB

(1)
1

]−γ2 , (8.6)

where the implicit positive constant is independent of K̃
(ρ), p
B1, B

. For i = 1, by Hölder’s inequality, Defi-

nition 3.2(iii), (2.2), the facts that r
B

(1)
1

� ρ2C̃1+1rB and B
(1)
1 is doubling, (2.1) and Lemma 2.8(ii), we

conclude that

‖c̃1‖Lq(μ) � [μ(B
(1)
1 )]1/q−1[μ(B1)]

1−1/q‖C̃ba1‖Lq(μ)

� [μ(B
(1)
1 )]1/q−1[μ(B1)]

1−1/q[μ(ρB1)]
1/q−1[λ(cB , rB)]

1−1/p[K̃
(ρ), p
B1, B

]−γ1+1

� [μ(B
(1)
1 )]1/q−1[λ(cB1 , rB)]

1−1/p

� [μ(ρ2B
(1)
1 )]1/q−1[λ(cB1 , rρB(1)

1
)]1−1/p[K̃

(ρ), p

ρB
(1)
1 , ρB

(1)
1

]−γ2 . (8.7)

Similar to (8.6) and (8.7), respectively, for any i ∈ {2, . . . ,m}, we have

‖c̃i−1‖Lq(μ) � [μ(ρ2B
(i−1)
1 )]1/q−1[λ(cB1 , rρBi

1
)]1−1/p[K̃

(ρ), p

ρB
(i−1)
1 , ρBi

1

]−γ2 (8.8)

and

‖c̃i‖Lq(μ) � [μ(ρ2B
(i)
1 )]1/q−1[λ(cB1 , rρBi

1
)]1−1/p[K̃

(ρ), p

ρB
(i)
1 , ρBi

1

]−γ2 . (8.9)

For any i ∈ {1, . . . ,m}, let ci := λ1

C̃b
(c̃i−1 − c̃i). Then supp (ci) ⊂ ρB

(i)
1 and∫

X
ci(x)dμ(x) = 0,

which, together with (8.8) and (8.9), implies that ci is a (p, q, γ2, ρ)λ, 1-atomic block associated with the

ball ρB
(i)
1 and

|ci|Ĥp, q, γ2
atb, ρ

(μ) �
|λ1|
C̃b

. (8.10)

Now we see that

b =

m∑
i=1

ci +
λ1

C̃b

c̃m + λ2a2.

Notice that
∫
X b(x)dμ(x) = 0 and

∫
X ci(x)dμ(x) = 0. It then follows that∫
X

[
λ1

C̃b

c̃m(x) + λ2a2(x)

]
dμ(x) = 0.
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On the other hand, we have supp (c̃m) ⊂ ρB
(m)
1 ⊂ 2ρC̃1+2B =: B′, rB′ = 2ρC̃1+2rB � 2ρC̃1+2r

B
(m)
1

and

supp (a2) ⊂ B2 ⊂ B′. An argument similar to that used in the estimate of (8.7) shows that

‖c̃m‖Lq(μ) � [μ(ρB
(m)
1 )]1/q−1[λ(cB1 , rB′)]1−1/p[K̃

(ρ), p
Bm

1 , B′ ]
−γ2 .

From Definition 3.2(iii), (2.1), K̃
(ρ), p
B2, B

� [(3+�logρ 2	)C(ρ)]
1/p, B′ = 2ρC̃1+2B, Lemmas 2.8(ii) and 2.8(iv),

it follows that

‖a2‖Lq(μ) � [μ(ρB2)]
1/q−1[λ(cB, rB)]

1−1/p[K̃
(ρ), p
B2, B

]−γ2

� [μ(ρB2)]
1/q−1[λ(cB, rB′)]1−1/p[K̃

(ρ), p
B2, B′ ]

−γ2 .

Thus, cm+1 := λ1

C̃b
c̃m + λ2a2 is a (p, q, γ2, ρ)λ, 1-atomic block associated with the ball B′ and

|cm+1|Ĥp, q, γ2
atb, ρ (μ) � |λ1|+ |λ2|.

By this fact, the definition of C̃b, (8.10) and (iv), we obtain b =
∑m+1

i=1 ci ∈ Ĥp, q, γ2

atb, ρ (μ) and

‖b‖p
Ĥ

p, q, γ2
atb, ρ (μ)

�
m+1∑
i=1

|ci|pĤp, q, γ2
atb, ρ (μ)

� (|λ1|+ |λ2|)p ∼ |b|p
Ĥ

p, q, γ1
atb, ρ (μ)

,

where the implicit positive constant is independent of m. This finishes the proof of (8.5).

Let f ∈ Ĥp, q, γ1

atb, ρ (μ). Then, by Proposition 6.13 and Definition 7.1, there exists a sequence {bj}j of

(p, q, γ1, ρ)λ, 1-atomic blocks such that f =
∑∞

j=1 bj in (Eα, q
ρ, γ1

(μ))∗ = (Eα, q
ρ, γ2

(μ))∗ and

∞∑
j=1

|bj |pĤp, q, γ1
atb, ρ (μ)

� ‖f‖p
Ĥ

p, q, γ1
atb, ρ (μ)

.

From this fact and (8.5), we further deduce that f =
∑∞

j=1

∑mj+1
i=1 cj, i in (Eα, q

ρ, γ2
(μ))∗, where {cj, i}j, i are

all (p, q, γ2, ρ)λ, 1-atomic blocks as in (8.5) satisfying

∞∑
j=1

mj+1∑
i=1

|cj, i|pĤp, q, γ2
atb, ρ (μ)

�
∞∑
j=1

|bj |pĤp, q, γ1
atb, ρ (μ)

� ‖f‖p
Ĥ

p, q, γ1
atb, ρ (μ)

,

which implies that f ∈ Ĥp, q, γ2

atb, ρ (μ) and

‖f‖Ĥp, q, γ2
atb, ρ (μ) � ‖f‖Ĥp, q, γ1

atb, ρ (μ).

This finishes the proof of Proposition 8.2.

Now we are ready to show that E1/p−1
ρ (μ) is the dual space of Ĥp, q, γ

atb, ρ (μ).

Theorem 8.3. Let p ∈ (0, 1], ρ ∈ (1,∞), γ ∈ [1,∞) and q ∈ (1,∞). Then

E1/p−1
ρ (μ) = (Ĥp, q, γ

atb, ρ (μ))
∗.

Proof. When p = 1, by [13, Remark 2.6(iii)], the conclusion of Theorem 8.3 holds true without the

assumption (6.1). Thus, it remains to consider the case when p ∈ (0, 1). Let p ∈ (0, 1), ρ ∈ (1,∞),

γ ∈ [1,∞) and q ∈ (1,∞). We first show that E1/p−1
ρ (μ) ⊂ (Ĥp, q, γ

atb, ρ (μ))
∗. To this end, let f ∈ E1/p−1

ρ (μ).

Recall that any h ∈ Ĥp, q, γ
atb, ρ (μ) is, by Definition 7.3, a continuous linear functional in (E1/p−1

ρ (μ))∗.

Let us write 〈h, f〉 to denote the value of the linear functional h at f ∈ E1/p−1
ρ (μ). Then the mapping

�f : h→ 〈h, f〉 is a well-defined linear functional on Ĥp, q, γ
atb, ρ (μ). If h =

∑∞
i=1 bi is an atomic decomposition

of h in terms of (p, q, γ, ρ)λ, 1-atomic blocks {bi}i such that
∑∞

i=1 |bi|pĤp, q, γ
atb, ρ (μ)

� ‖h‖p
Ĥp, q, γ

atb, ρ (μ)
, by (7.1),

we then have

|〈h, f〉| =
∣∣∣∣ ∞∑
i=1

∫
X
bi(x)f(x)dμ(x)

∣∣∣∣
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�
[ ∞∑

i=1

|bi|pĤp, q, γ
atb, ρ (μ)

]1/p
‖f‖E1/p−1

ρ (μ)
� ‖h‖Ĥp, q, γ

atb, ρ (μ)‖f‖E1/p−1
ρ (μ)

.

Therefore, we conclude that

|�f (h)| � ‖f‖E1/p−1
ρ (μ)

‖h‖Ĥp, q, γ
atb, ρ (μ).

This shows that E1/p−1
ρ (μ) ⊂ (Ĥp, q, γ

atb, ρ (μ))
∗.

To see the converse, for any q ∈ (1,∞), we first claim that, if � ∈ (Ĥp, q, γ
atb, ρ (μ))

∗, then there exists a

function f ∈ Lq′
loc(μ) such that, for all g ∈ ⋃B L

q
0(B),

�(g) =

∫
X
f(x)g(x)dμ(x),

where, for all balls B ⊂ X , Lq
0(B) denotes the subspace of Lq(B) consisting of functions having integral

zero. Indeed, let {Bk}k be an increasing sequence of balls which exhausts X . For each k, let C(Bk)

denote the space of functions those are constants on Bk. Suppose that q ∈ (1,∞) and � ∈ (Ĥp, q, γ
atb, ρ (μ))

∗.
Then � ∈ (Lq

0(Bk))
∗ = Lq′(Bk)/C(Bk). Indeed, if g ∈ Lq

0(Bk), then g ∈ Ĥp, q, γ
atb, ρ (μ) and

‖g‖Ĥp, q, γ
atb, ρ

(μ) � [μ(ρBk)]
1−1/q [λ (cBk

, rBk
)]1/p−1 ‖g‖Lq(μ).

We further see that

|�(g)| � ‖�‖(Ĥp, q, γ
atb, ρ (μ))∗‖g‖Ĥp, q, γ

atb, ρ (μ)

� ‖�‖(Ĥp, q, γ
atb, ρ (μ))∗ [μ(ρBk)]

1−1/q [λ(cBk
, rBk

)]1/p−1‖g‖Lq(μ).

Hence, by the Riesz representation theorem, there exists a unique fk ∈ Lq′(Bk)/C(Bk) such that, for

every g ∈ Lq
0(Bk),

�(g) =

∫
Bk

fk(x)g(x)dμ(x).

Since {Bk}k is increasing, by a standard argument, we see that there exists a unique function f ∈ Lq′
loc(μ)

such that, for all g ∈ ⋃B L
q
0(B),

�(g) =

∫
X
f(x)g(x)dμ(x).

This proves the claim.

We now show that, if f ∈ Lq′
loc(μ) such that � ∈ (Ĥp, q, γ

atb, ρ (μ))
∗, then f ∈ E1/p−1

ρ (μ) and

‖f‖E1/p−1
ρ (μ)

� ‖�‖(Ĥp, q, γ
atb, ρ (μ))∗ .

To this end, by Proposition 6.18, it suffices to show that, for any (ρ, βρ)-doubling ball B,

1

μ(ρB)

1

[λ(cB , rB)]1/p−1

∫
B

|f(x)−mf(B)|dμ(x) � ‖�‖(Ĥp, q, γ
atb, ρ (μ))∗ (8.11)

and, for all (ρ, βρ)-doubling balls B ⊂ S,

|mf (B)−mf (S)| � ‖�‖(Ĥp, q, γ
atb, ρ (μ))∗ [K̃

(ρ), p
B,S ]γ [λ(cS , rS)]

1/p−1. (8.12)

We first prove (8.11). Let B be a (ρ, βρ)-doubling ball. Assume that∫
{x∈B:f(x)>mf(B)}

|f(x)−mf (B)|q′dμ(x)

�
∫
{x∈B:f(x)<mf(B)}

|f(x)−mf (B)|q′dμ(x). (8.13)
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Consider

a(x) :=

⎧⎪⎪⎨⎪⎪⎩
|f(x)−mf (B)|q′−1, if x ∈ {x ∈ B : f(x) > mf (B)},
C̃B, if x ∈ {x ∈ B : f(x) < mf (B)},
0, otherwise,

where C̃B denotes the constant such that
∫
X a(x)dμ(x) = 0. By the definition of mf (B), we have

μ({x ∈ B : f(x) > mf (B)}) � μ(B)/2 � μ({x ∈ B : f(x) � mf (B)}). (8.14)

From this fact, we deduce that supp (a) ⊂ √
ρB, a is a (p, q, γ,

√
ρ)λ-atomic block and

‖a‖H̃p, q, γ
atb,

√
ρ
(μ) � ‖a‖Lq(μ)[μ(

√
ρ×√

ρB)]1/q
′
[λ(cB , rB)]

1/p−1

� [μ(ρB)]1/q
′
[λ(cB , rB)]

1/p−1

[∫
{x∈B:f(x)>mf(B)}

|f(x)−mf (B)|q′dμ(x)

+

∫
{x∈B:f(x)�mf(B)}

|C̃B|qdμ(x)
]1/q

.

By (8.14), the definition of C̃B and Hölder’s inequality, we have∫
{x∈B:f(x)�mf(B)}

|C̃B|qdμ(x)

=

∣∣∣∣ ∫{x∈B:f(x)�mf(B)}
C̃Bdμ(x)

∣∣∣∣q[μ({x ∈ B : f(x) � mf (B)})]1−q

�
∣∣∣∣ ∫{x∈B:f(x)>mf(B)}

|f(x)−mf (B)|q′−1dμ(x)

∣∣∣∣q[μ(B)]1−q

�
∫
{x∈B:f(x)>mf(B)}

|f(x)−mf (B)|q′dμ(x).

From this, supp (a) ⊂ √
ρB and Proposition 8.1, it follows that

‖a‖Ĥp, q, γ
atb, ρ (μ) ∼ ‖a‖Ĥp, q, γ

atb,
√

ρ
(μ)

� [μ(ρB)]1/q
′
[λ(cB , rB)]

1/p−1

[ ∫
{x∈B:f(x)>mf(B)}

|f(x)−mf (B)|q′dμ(x)
]1/q

. (8.15)

On the other hand, by the definition of a and (8.13), we see that∫
B

f(x)a(x)dμ(x) =

∫
B

[f(x)−mf (B)]a(x)dμ(x)

�
∫
{x∈B:f(x)>mf(B)}

|f(x)−mf(B)|q′dμ(x)

� 1

2

∫
B

|f(x)−mf (B)|q′dμ(x),

which, together with (8.15), implies that[ ∫
B

|f(x)−mf (B)|q′dμ(x)
]1/q′

‖a‖Ĥp, q, γ
atb, ρ (μ)

� [μ(ρB)]1/q
′
[λ(cB , rB)]

1/p−1

∫
B

|f(x)−mf (B)|q′dμ(x)

� [μ(ρB)]1/q
′
[λ(cB , rB)]

1/p−1

∫
B

f(x)a(x)dμ(x)

� [μ(ρB)]1/q
′
[λ(cB , rB)]

1/p−1‖�‖(Ĥp, q, γ
atb, ρ (μ))∗‖a‖Ĥp, q, γ

atb, ρ (μ).
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From this and Hölder’s inequality, it then follows that

1

μ(ρB)

1

[λ(cB , rB)]1/p−1

∫
B

|f(x)−mf (B)|dμ(x)

� [μ(ρB)]−1/q′

[λ(cB , rB)]1/p−1

[ ∫
B

|f(x)−mf (B)|q′dμ(x)
]1/q′

� ‖�‖(Ĥp, q, γ
atb, ρ (μ))∗ .

Thus, (8.11) holds true.

To show (8.12), for all (ρ, βρ)-doubling balls B ⊂ S, let

a1 :=
|f −mf (S)|q′
f −mf (S)

χ{x∈S:f(x) �=mf(S)}

and a2 := C̃SχS , where C̃S denotes the constant such that
∫
X [a1(x) + a2(x)]dμ(x) = 0. Observe that

|C̃S | � [μ(S)]−1[μ(B)]1−1/q

[ ∫
B

|f(x)−mf (S)|q′dμ(x)
]1/q

. (8.16)

From this, together with the fact that B and S are (ρ, βρ)-doubling and Proposition 8.1, it follows that

supp (b) ⊂ (2
√
ρ+ 1)S,

b := λ1ã1 + λ2ã2 ∈ Ĥp, q, γ
atb,

√
ρ(μ) ⊂ Ĥp, q, γ

atb, ρ (μ)

and

‖b‖Ĥp, q, γ
atb, ρ (μ) ∼ ‖b‖Ĥp, q, γ

atb,
√

ρ
(μ) � [μ(

√
ρ×√

ρB)]1−1/q[λ(cS , r(2√ρ+1)S)]
1/p−1

× [K̃
(ρ), p√
ρB, (2

√
ρ+1)S ]

γ

[ ∫
B

|f(x)−mf (S)|q′dμ(x)
]1/q

, (8.17)

where

ã1 := a1[μ(ρB)]1/q−1

[∫
B

|f(x)−mf (S)|q′dμ(x)
]−1/q

× [K̃
(ρ), p√
ρB, (2

√
ρ+1)S ]

−γ [λ(cS , r(2√ρ+1)S)]
1−1/p,

ã2 := [μ(ρS)]−1[λ(cS , r(2√ρ+1)S)]
1−1/p[K̃

(ρ), p√
ρS, (2

√
ρ+1)S ]

−γχS ,

λ1 :=

[ ∫
B

|f(x)−mf (S)|q′dμ(x)
]1/q

[K̃
(ρ), p√
ρB, (2

√
ρ+1)S ]

γ [μ(ρB)]1−1/q

× [λ(cS , r(2√ρ+1)S)]
1/p−1

and

λ2 := C̃Sμ(ρS)[λ(xS , r(2√ρ+1)S)]
1/p−1[K̃

(ρ), p√
ρS, (2

√
ρ+1)S ]

γ .

Then supp (ã1) ⊂ √
ρB ⊂ (2

√
ρ+ 1)S and supp (ã2) ⊂ √

ρS ⊂ (2
√
ρ+ 1)S. By the definition of a1, the

(ρ, βρ)-doubling property of B and S, the vanishing moment of b, (8.16), (8.11) and (8.17), we see that∫
B

|f(x)−mf (S)|q′dμ(x)

=

∫
B

a1(x)[f(x) −mf (S)]dμ(x)

�
∣∣∣∣ ∫X f(x)b(x)dμ(x)

∣∣∣∣ + |C̃S |
∫
S

|f(x) −mf(S)|dμ(x)

� ‖�‖(Ĥp, q, γ
atb, ρ (μ))∗‖b‖Ĥp, q, γ

atb, ρ (μ) + |C̃S |‖�‖(Ĥp, q, γ
atb, ρ (μ))∗μ(ρS)[λ(cS , rS)]

1/p−1

� ‖�‖(Ĥp, q, γ
atb, ρ (μ))∗

[ ∫
B

|f(x)−mf (S)|q′dμ(x)
]1/q

[K̃
(ρ), p
B, S ]γ [μ(B)]1−1/q [λ(cS , rS)]

1/p−1.
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This implies that[ ∫
B

|f(x)−mf (S)|q′dμ(x)
]1/q′

� ‖�‖(Ĥp, q, γ
atb, ρ (μ))∗ [K̃

(ρ), p
B,S ]γ [μ(B)]1−1/q[λ(cS , rS)]

1/p−1.

Thus, from this, (8.11), the (ρ, βρ)-doubling property of B and S, and Hölder’s inequality, it follows that

|mf (B)−mf (S)| = 1

μ(B)

∫
B

|mf (B)−mf (S)|dμ(x)

� 1

μ(B)

∫
B

|f(x)−mf (B)|dμ(x) + 1

μ(B)

∫
B

|f(x)−mf (S)|dμ(x)

�
[

1

μ(B)

∫
B

|f(x)−mf (B)|q′dμ(x)
]1/q′

+

[
1

μ(B)

∫
B

|f(x)−mf (S)|q′dμ(x)
]1/q′

� ‖�‖(Ĥp, q, γ
atb, ρ (μ))∗ [λ(cB, rB)]

1/p−1 + [λ(cS , rS)]
1/p−1[K̃

(ρ), p
B, S ]γ‖�‖(Ĥp, q, γ

atb, ρ (μ))∗

� [λ(cS , rS)]
1/p−1[K̃

(ρ), p
B, S ]γ‖�‖(Ĥp, q, γ

atb, ρ (μ))∗ ,

which implies (8.12), and hence completes the proof of Theorem 8.3.

Remark 8.4. It is still unclear whether Theorem 8.3 holds true or not for q = 1 and p ∈ (0, 1),

or q = ∞ and p ∈ (0, 1] on non-homogeneous metric measure spaces satisfying the ρ-weakly doubling

condition (6.1).

9 Relations between Eα
ρ (µ) and Lipα, q(µ) or between Ĥp, q

atb (µ) and Hp, q
at (µ)

In this section, we investigate the relations between Eα, q
ρ, η, γ(μ) and Lipα, q(μ), and between Ĥp, q, γ

atb, ρ (μ)

and the atomic Hardy space Hp, q
at (μ) introduced by Coifman and Weiss [11] over spaces of homogeneous

type.

Let (X , d, μ) be a space of homogeneous type with λ(x, r) := μ(B(x, r)) for all x ∈ X and r ∈ (0,∞).

Recall that (6.1) holds true in spaces of homogeneous type. Thus, all the results obtained in Sections 6–8

are still valid in this setting and we denote Eα, q
ρ, η, γ(μ) simply by Eα

ρ (μ). We first establish an equivalent

characterization of Eα
ρ (μ). To this end, we recall the notions of spaces Lipα, q(μ) and Lipα(μ) in [39]. To

be precise, let α ∈ [0,∞), q ∈ [1,∞), ρ ∈ (1,∞) and δ be a quasi-distance on X . A function φ is said to

be in the Lipschitz space Lipα, q(μ; δ) if

‖φ‖(δ)α, q := sup
Bδ

{
1

[μ(Bδ)]1+qα

∫
Bδ

|f(y)−mBδ
(f)|qdμ(y)

}1/q

<∞,

where the supremum is taken over all balls Bδ from (X , δ, μ), and a function ψ is said to be in the space

Lipα(μ; δ) if

‖ψ‖(δ)α := sup
x �=y

|ψ(x)− ψ(y)|
[δ(x, y)]α

<∞. (9.1)

Then we let Lipα, q(μ) := Lipα, q(μ; d) and Lipα(μ) := Lipα(μ; d), respectively.

Remark 9.1. By [39, Theorem 5], we see that, for any α ∈ (0,∞), there exists a quasi-distance δ

on X , defined by setting, for all x, y ∈ X ,

δ(x, y) := inf{μ(B) : B is a ball containing x and y}

such that (X , δ, μ) is a normal space. Namely, there exist two positive constants, c9 and c10, such that

c9r � μ(Bδ(x, r)) � c10r for every x ∈ X , r ∈ (μ(x), μ(X )) and

Bδ(x, r) := {x ∈ X : δ(x, y) < r}
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and, for any q ∈ [1,∞), a function φ is in the Lipschitz space Lipα, q(μ) of (X , d, μ) if and only if there

exists a function ψ in the space Lipα(μ; δ) of (X , δ, μ) such that φ = ψ for μ-almost every x ∈ X .

Moreover, ‖φ‖(d)α, q ∼ ‖ψ‖(δ)α .

Hereafter, we always let δ be as in Remark 9.1.

Now we discuss the relation between Eα
ρ (μ) and Lipα, q(μ).

Proposition 9.2. Suppose that (X , d, μ) is a space of homogeneous type, α ∈ [0,∞), ρ ∈ (1,∞) and

q ∈ [1,∞). Then Eα
ρ (μ) and Lipα, q(μ) coincide with equivalent norms.

Proof. Fix α ∈ [0,∞) and q ∈ [1,∞). By Proposition 6.8(ii), without loss of generality, we may assume

that ρ = 2. By Definition 6.5, we know that Eα
ρ (μ) ⊂ Lipα, q(μ) and, for all f ∈ Eα

ρ (μ), ‖f‖(d)α, q � ‖f‖Eα
ρ (μ).

Conversely, by Definition 6.5, it suffices to prove that, for all f ∈ Lipα, q(μ) and balls B ⊂ S,

|mB(f)−mS(f)| � ‖f‖(d)α, qK̃
(ρ), p
B,S [μ(S)]α. (9.2)

To this end, we consider the following two cases.

Case (I) μ(S) � 4C(μ)μ(B), where C(μ) is as in (1.1). Thus, by this and Hölder’s inequality, we have

|mB(f)−mS(f)| � 1

μ(B)

∫
B

|f(x)−mS(f)|dμ(x) � 1

μ(S)

∫
S

|f(x)−mS(f)|dμ(x)

� 1

[μ(S)]1/q

[ ∫
S

|f(x)−mS(f)|qdμ(x)
]1/q

� [μ(S)]α‖f‖(d)α, q,

which implies (9.2) in Case (I).

Case (II)

μ(S) > 4C(μ)μ(B). (9.3)

Now we show (9.2). Let N be the smallest integer such that 2NrB � rS . Let B∗ := 2N+1B. Then

S ⊂ B∗ ⊂ 6S, which implies that

μ(S) � μ(B∗) � μ(6S) � [C(μ)]
3μ(S). (9.4)

Furthermore, let B(0) := B. By (9.3) and (9.4), we see that

μ(2N+1B) = μ(B∗) � μ(S) > 4C(μ)μ(B) > 2μ(B(0)).

Thus, let B(1) := 2N1B(0), N1 ∈ N, be the smallest ball in the form of 2kB(0) (k ∈ N) such that

μ(2kB(0)) > 2μ(B(0)). Moreover, by (9.3) and (9.4), we know that rB(1) � rB∗ and

μ(B(1)) � C(μ)μ(2
−1B(1)) � 2C(μ)μ(B

(0)).

We further consider the following two subcases.

Subcase (i) There exists k ∈ N such that μ(2kB(1)) > 2μ(B(1)). In this case, we let 2N2B(1), N2 ∈ N,
be the smallest ball in the form of 2kB(1), k ∈ N, such that μ(2kB(1)) > 2μ(B(1)). Now we divide this

subcase into two parts:

(a) r2N2B(1) � rB∗ . Let B
(2) := 2N2B(1). Then μ(B(2)) � C(μ)μ(2

−1B(2)) � 2C(μ)μ(B
(1)).

(b) r2N2B(1) > rB∗ . Let B(2) := B∗. Then μ(B(2)) � 2μ(B(1)), where we terminate the construction

in this subcase.

Subcase (ii) For any k ∈ N, μ(2kB(1)) � 2μ(B(1)). Let B(2) := B∗. Then μ(B(2)) � 2μ(B(1)) and we

terminate the construction in this subcase.

We continue to choose the balls {B(i)}i in this way. Clearly, finally the condition r2Ni+1B(i) � rB∗
(i ∈ N) is violated after finitely many steps. Without loss of generality, we may assume that the process

stops after m (m ∈ N ∩ (1,∞)) steps. Then we obtain a sequence of balls, {B(i)}mi=0, such that

(i) B =: B(0) ⊂ · · · ⊂ B(m) := B∗;
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(ii) for any i ∈ {1, . . . ,m− 1}, 2μ(B(i−1)) < μ(B(i)) � 2C(μ)μ(B
(i−1));

(iii) μ(B(m)) � 2C(μ)μ(B
(m−1)) and μ(S) � μ(B(m)) � [C(μ)]

3μ(S).

Observe that m � N + 1. Thus, by the fact that S ⊂ B∗ ⊂ 6S, Hölder’s inequality and (i)–(iii),

we have

|mB(f)−mS(f)|

�
m∑
i=1

|mB(i−1)(f)−mB(i)(f)|+ |mB(m)(f)−mS(f)|

�
m∑
i=1

1

μ(B(i−1))

∫
B(i−1)

|f(x) −mB(i)(f)|dμ(x) + 1

μ(S)

∫
S

|f(x)−mB(m)(f)|dμ(x)

�
m∑
i=1

1

μ(B(i))

∫
B(i)

|f(x)−mB(i)(f)|dμ(x) + 1

μ(B(m))

∫
B(m)

|f(x)−mB(m)(f)|dμ(x)

�
m∑
i=1

[
1

μ(B(i))

∫
B(i)

|f(x)−mB(i)(f)|qdμ(x)
]1/q

+

[
1

μ(B(m))

∫
B(m)

|f(x)−mB(m)(f)|qdμ(x)
]1/q

�
m∑
i=1

[μ(B(i))]α‖f‖(d)α, q + [μ(B(m))]α‖f‖(d)α, q

� (1 +m)[μ(B(m))]α‖f‖(d)α, q � (1 +m)[μ(6S)]α‖f‖(d)α, q

� (1 +N)[μ(6S)]α‖f‖(d)α, q ∼ [K̃
(ρ), p
B,S ]p[μ(S)]α‖f‖(d)α, q.

This finishes the proof of (9.2) in Case (II) and hence Proposition 9.2.

Remark 9.3. When α = 0, Proposition 9.2 is just [27, Proposition 4.7] with λ(x, r) = μ(B(x, r)) for

all x ∈ X and r ∈ (0,∞).

Now we recall the notion of the atomic Hardy space Hp, q
at (μ) from [11]. Suppose that p ∈ (0, 1] and

q ∈ [1,∞] ∩ (p,∞]. A function a on X is called a (p, q)-atom if

(i) supp (a) ⊂ B for some ball B ⊂ X ;

(ii) ‖a‖Lq(μ) � [μ(B)]1/q−1/p;

(iii)
∫
X a(x) dμ(x) = 0.

A function f ∈ L1(μ) or a linear functional f ∈ (Lip1/p−1(μ))
∗ when p ∈ (0, 1) is said to be in the

Hardy space H1, q
at (μ) when p = 1 or Hp, q

at (μ) when p ∈ (0, 1) if there exist (p, q)-atoms {aj}∞j=1 and

{λj}∞j=1 ⊂ C such that

f =
∑
j∈N

λjaj,

which converges in L1(μ) when p = 1 or in (Lip1/p−1(μ))
∗ when p ∈ (0, 1), and∑

j∈N

|λj |p <∞.

Moreover, the norm of f in Hp, q
at (μ) with p ∈ (0, 1] and q ∈ [1,∞] ∩ (p,∞] is defined by

‖f‖Hp, q
at (μ) := inf

{(∑
j∈N

|λj |p
)1/p}

,

where the infimum is taken over all possible decompositions of f as above.

Coifman and Weiss [11] proved that Hp, q
at (μ) and Hp,∞

at (μ) coincide with equivalent norms for all

p ∈ (0, 1] and q ∈ [1,∞) ∩ (p,∞). Thus, we denote Hp, q
at (μ) simply by Hp

at(μ).

Let p ∈ (0, 1], q ∈ (1,∞], γ ∈ [1,∞) and ρ ∈ (1,∞). Recall that the space Ĥp, q, γ
atb, ρ (μ) is independent

of the choices of γ ∈ [1, ∞) and ρ ∈ (1, ∞); see Propositions 8.1 and 8.2. Denote Ĥp, q, γ
atb, ρ (μ) simply by

Ĥp, q
atb (μ). Moreover, without loss of generality, we may let γ = 1/p and ρ = 2.

Now we show that Ĥp, q
atb (μ) and H

p
at(μ) coincide with equivalent quasi-norms.
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Theorem 9.4. Let (X , d, μ) be a space of homogeneous type, p ∈ (0, 1] and q ∈ (1,∞]. Then the

spaces Ĥp, q
atb (μ) and H

p
at(μ) coincide with equivalent quasi-norms.

Proof. Let p ∈ (0, 1] and q ∈ (1,∞]. We first show that Hp
at(μ) ⊂ Ĥp, q

atb (μ). To this end, let f ∈ Hp
at(μ).

Then there exist sequences of (p, q)-atoms, {bk}∞k=1, and numbers, {λk}∞k=1 ⊂ C, such that f =
∑∞

k=1 λkbk
in (Lip1/p−1(μ; δ))

∗ and
∞∑
k=1

|λk|p � ‖f‖p
Hp

at(μ)
. (9.5)

We then claim that, for each k, λkbk is a (p, q, 1p , 2)λ, 1-atomic block and

|λkbk|Ĥp, q
atb (μ) � |λk|. (9.6)

Indeed, let ρ ∈ (1,∞) and γ ∈ [1,∞). It suffices to prove that, if b is a (p, q)-atom, then b is a

(p, q, 1/p, 2)λ, 1-atomic block. Suppose that supp (b) ⊂ B(cB , rB) =: B, then

‖b‖Lq(μ) � [μ(B)]1/q−1/p.

Let

a1 = a2 :=

[
μ(ρB)

μ(B)

]1/q−1

[K̃
(ρ), p
B,B ]−1/pb

and

λ1 = λ2 :=
1

2

[
μ(B)

μ(ρB)

]1/q−1

[K̃
(ρ), p
B,B ]1/p.

It then follows that supp (a1) ⊂ B1 := B, supp (a2) ⊂ B2 := B, b = λ1a1 + λ2a2 and, for j ∈ {1, 2},

‖aj‖Lq(μ) � [μ(ρBj)]
1/q−1[μ(B)]1−1/p[K̃

(ρ), p
Bj, B

]−1/p,

which further implies that b is a (p, q, 1/p, 2)λ, 1-atomic block and, moreover,

|b|
Ĥ

p, q, 1/p
atb, 2 (μ)

= |λ1|+ |λ2| � 1.

This finishes the proof of the above claim. Moreover, from Remark 9.1 and Proposition 9.2, we deduce that

f =
∑∞

k=1 λkbk in (E1/p−1
ρ (μ))∗, which, together with (9.5) and (9.6), further implies that f ∈ Ĥp, q

atb (μ)

and ‖f‖Ĥp, q
atb (μ) � ‖f‖Hp

at(μ)
.

Now we consider the converse inclusion that Ĥp, q
atb (μ) ⊂ Hp

at(μ). Let b =
∑2

j=1 λjaj be a (p, q, 1/p, 2)λ, 1-

atomic block, where, for any j ∈ {1, 2}, aj is a function supported on Bj ⊂ B for some balls Bj and B

as in Definition 7.1, and

‖aj‖Lq(μ) � [μ(2Bj)]
1/q−1[μ(B)]1−1/p[K̃

(2), p
Bj , B

]−1/p. (9.7)

We consider the following four cases:

Case (I) For any j ∈ {1, 2}, μ(B)
μ(Bj)

� 4C(μ), where C(μ) is as in (1.1);

Case (II) μ(B)
μ(B1)

> 4C(μ) and
μ(B)
μ(B2)

� 4C(μ);

Case (III) μ(B)
μ(B1)

� 4C(μ) and
μ(B)
μ(B2)

> 4C(μ);

Case (IV) For any j ∈ {1, 2}, μ(B)
μ(Bj)

> 4C(μ).

In Case (I), we see that

‖b‖Lq(μ) � |λ1|‖a1‖Lq(μ) + |λ2|‖a2‖Lq(μ) � [4C(μ)]
1−1/q(|λ1|+ |λ2|)[μ(B)]1/q−1/p,

which implies that [4C(μ)]
1/q−1(|λ1|+ |λ2|)−1b is a (p, q)-atom and

‖[4C(μ)]
1/q−1(|λ1|+ |λ2|)−1b‖Hp

at(μ)
� 1.
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The proofs of Cases (II)–(IV) are similar. For brevity, we only prove Case (II).

In Case (II), μ(B)
μ(B1)

> 4C(μ) and μ(B)
μ(B2)

� 4C(μ). We now choose a sequence of balls, {B(i)
1 }mi=0 with

certain m ∈ N, as follows. Let B(0)
1 := B1 and B0 := 2N

(2)
B1, B

+1B1. Then B ⊂ B0 ⊂ 6B, which, together

with (1.1), shows that

μ(B) � μ(B0) � μ(6B) � [C(μ)]
3μ(B). (9.8)

To choose B
(1)
1 , let N1 be the smallest positive integer satisfying μ(2N1B

(0)
1 ) > 2μ(B

(0)
1 ). We let

B
(1)
1 := 2N1B

(0)
1 . By (9.8), (1.1) and the choice of B

(1)
1 , we have r

B
(1)
1
< rB0 and

2μ(B
(0)
1 ) < μ(B

(1)
1 ) � C(μ)μ(2

−1B
(1)
1 ) � 2C(μ)μ(B

(0)
1 ).

To choose B
(2)
1 , if, for any N ∈ N, μ(2NB(1)

1 ) � 2μ(B
(1)
1 ), let B

(2)
1 := B0 and the selection process

terminates. Otherwise, let N2 be the smallest positive integer satisfying μ(2N2B
(1)
1 ) > 2μ(B

(1)
1 ). If

r
2N2B

(1)
1

� rB0 , then we let B
(2)
1 := B0 and the selection process terminates. Otherwise, we let B

(2)
1

:= 2N2B
(1)
1 . We continue as long as this selection process is possible; clearly, finally the condition

r
2Ni+1B

(i)
1

< rB0 is violated after finitely many steps. Without loss of generality, we may assume that

the process stops after m (m ∈ N ∩ (1, N
(2)
B1, B

+ 1]) steps. Then we obtain a family of balls, {B(i)
1 }mi=1,

such that

(i) B
(0)
1 := B1 ⊂ B, B

(i)
1 := 2NiB

(i−1)
1 ⊂ B

(m)
1 := B0 ⊂ 6B for any i ∈ {1, . . . ,m− 1};

(ii) for any i ∈ {1, . . . , m− 1}, by (1.1) and the definition of Ni, we have

2μ(B
(i−1)
1 ) < μ(B

(i)
1 ) � 2C(μ)μ(B

(i−1)
1 );

(iii) μ(B
(m)
1 ) � 2C(μ)μ(B

m−1
1 ) and μ(B) � μ(B

(m)
1 ) � [C(μ)]

3μ(B);

(iv) from the above selection process and the definition of K̃
(2), p
B1, B

, we conclude that

m � N
(2)
B1, B

+ 1 � [1 +N
(2)
B1, B

]1/p � K̃
(2), p
B1, B

=: [Ĉb]
p. (9.9)

Let c̃0 := Ĉba1. For any i ∈ {1, . . . ,m}, let

c̃i :=
χ
B

(i)
1

μ(B
(i)
1 )

∫
X
c̃i−1(y)dμ(y).

For i ∈ {1, . . . ,m}, we claim that

‖c̃i−1‖Lq(μ) � [μ(Bi
1)]

1/q−1/p (9.10)

and

‖c̃i‖Lq(μ) � [μ(Bi
1)]

1/q−1/p, (9.11)

where the implicit positive constant is independent of Ĉb and hence B1, B2 and B. Indeed, we prove (9.10)

and (9.11) by induction. By (9.7), B
(1)
1 � B0 ⊂ 6B, (1.1) and (ii), we have

‖c̃0‖Lq(μ) � [μ(2B
(0)
1 )]1/q−1[μ(B)]1−1/p[K̃

(2), p
B1, B

]−1/p+1/p � [μ(B
(1)
1 )]1/q−1/p.

For i = 1, by Hölder’s inequality, (9.7), B
(1)
1 � B0 ⊂ 6B, (1.1) and (ii), we conclude that

‖c̃1‖Lq(μ) � [μ(B
(1)
1 )]1/q−1[μ(B

(0)
1 )]1−1/q‖Ĉba1‖Lq(μ)

� [μ(B
(1)
1 )]1/q−1[μ(B

(0)
1 )]1−1/q[μ(2B

(0)
1 )]1/q−1[μ(B)]1−1/p[K̃

(2), p
B1, B

]−1/p+1/p

� [μ(B
(1)
1 )]1/q−1/p.

Moreover, by (ii) (if m = 2, we use (iii)), we have

‖c̃1‖Lq(μ) � [μ(B
(2)
1 )]1/q−1/p.
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Now, we assume that (9.10) and (9.11) hold true for i ∈ N ∩ [1, m). It then follows, from Hölder’s

inequality, (9.11) and (ii) (if i+ 1 = m, we use (iii)), that

‖c̃i+1‖Lq(μ) � [μ(Bi+1
1 )]1/q−1[μ(B

(i)
1 )]1−1/q‖c̃i‖Lq(μ)

� [μ(Bi+1
1 )]1/q−1[μ(B

(i)
1 )]1−1/q[μ(B

(i)
1 )]1/q−1/p � [μ(Bi+1

1 )]1/q−1/p

and, moreover, if i+ 1 < m, we further have

‖c̃i+1‖Lq(μ) � [μ(Bi+2
1 )]1/q−1/p.

By induction, we conclude that (9.10) and (9.11) hold true.

For i ∈ {1, . . . ,m}, let ci := [C̃]−1(c̃i−1 − c̃i), where C̃ is a positive constant to be fixed later. Then

supp (ci) ⊂ 2B
(i)
1 and

∫
X ci(x)dμ(x) = 0, which, together with (9.10), (9.11) and (1.1), implies that ci is

a multiple of a (p, q)-atom associated with the ball 2B
(i)
1 provided that C̃ is large enough. We now write

b =
C̃λ1

Ĉb

m∑
i=1

ci +
λ1

Ĉb

c̃m + λ2a2.

Let cm+1 := [C̃(|λ1|+ |λ2|)]−1( λ1

Ĉb
c̃m + λ2a2). Notice that

∫
X b(x)dμ(x) = 0 and, for each i ∈ {1, . . . ,m},∫

X ci(x)dμ(x) = 0. It then follows that
∫
X cm+1(x)dμ(x) = 0. On the other hand, we have supp (c̃m) ⊂

2B
(m)
1 ⊂ 12B =: B′, μ(B′) ∼ μ(B) and supp (a2) ⊂ B2 ⊂ B′. By (9.11), (iii) and μ(B′) ∼ μ(B), we have

‖c̃m‖Lq(μ) � [μ(B
(m)
1 )]1/q−1/p � [μ(B′)]1/q−1/p.

From (9.7), μ(B)
μ(B2)

� 4C(μ) and μ(B
′) ∼ μ(B), it follows that

‖a2‖Lq(μ) � [μ(2B2)]
1/q−1[μ(B)]1−1/p[K̃

(2), p
B2,B

]−1/p � [μ(B′)]1/q−1/p.

Let C̃ be a positive constant, which is independent of Ĉb and m, such that

‖ci‖Lq(μ) � C̃[μ(Bi+2
1 )]1/q−1/p

for each i ∈ {1, . . . ,m}, and∥∥∥∥λ1
Ĉb

c̃m + λ2a2

∥∥∥∥
Lq(μ)

� C̃(|λ1|+ |λ2|)[μ(B′)]1/q−1/p.

Then we see that cm+1 is a (p, q)-atom associated with the ball B′. From this and (iv), we conclude that

b =
C̃λ1

Ĉb

m∑
i=1

ci + C̃(|λ1|+ |λ2|)cm+1 ∈ Hp
at(μ)

and

‖b‖p
Hp

at(μ)
� m

|λ1|p
[Ĉb]p

+ (|λ1|+ |λ2|)p � (|λ1|+ |λ2|)p ∼ |b|p
Ĥp, q

atb (μ)
, (9.12)

where the implicit positive constant is independent of Ĉb and m.

Moreover, for any f ∈ Ĥp, q
atb (μ), by Definition 7.3 with γ = 1/p and ρ = 2, we know that there exists a

sequence {bk}k∈N of (p, q, 1/p, 2)λ, 1-atomic blocks such that f =
∑

k∈N bk in (E1/p−1
ρ (μ))∗ and∑

k∈N

|bk|pĤp, q
atb (μ)

� ‖f‖p
Ĥp, q

atb (μ)
. (9.13)

For each k, assume that bk = λk, 1ak, 1 + λk, 2ak, 2, where supp (bk) ⊂ Bk, supp (ak, j) ⊂ Bk, j for

j ∈ {1, 2}. Let [Ĉk]
p := K̃

(2), p
Bk, 1, Bk

. From Remark 9.1 and Proposition 9.2, (9.9), (9.12) and (9.13), we

deduce that

f =
∑
k∈N

bk =
∑
k∈N

[ mk∑
i=1

C̃λk, 1

Ĉk

ck, i + C̃(|λk, 1|+ |λk, 2|)cmk+1

]
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in (E1/p−1
ρ (μ))∗ = (Lip1/p−1(μ; δ))

∗ and

∑
k∈N

[ mk∑
i=1

∣∣∣∣λk, 1
Ĉk

∣∣∣∣p + (|λk, 1|+ |λk, 2|)p
]
�
∑
k∈N

|bk|pĤp, q
atb (μ)

� ‖f‖p
Ĥp, q

atb (μ)
.

This implies that f ∈ Hp
at(μ) and ‖f‖Hp

at(μ)
� ‖f‖Ĥp, q

atb (μ), which completes the proof of Theorem 9.4.

Remark 9.5. (i) Theorem 9.4 implies that, if (X , d, μ) is a space of homogeneous type with

λ(x, r) := μ(B(x, r))

for all x ∈ X and r ∈ (0,∞), then Ĥ1
atb(μ) and H

1
at(μ) coincide with equivalent norms. We notice that

it is not a paradox of the example given by Tolsa [54, Example 5.6] since λ(x, r) ∼ r for all x ∈ X and

r ∈ (0,
√
2], which is not equivalent to μ(B(x, r)) ∼ r2, in that example.

(ii) Let ρ ∈ (1,∞), γ ∈ [1,∞) and q ∈ (1,∞]. Combining Theorem 9.4 and Remark 7.4(ii), we obtain

Ĥ1, q, γ
atb, ρ (μ) = H1

at(μ) = H̃1, q, γ
atb, ρ (μ)

over spaces of homogeneous type.

(ii) From Theorem 9.4 and [11, Theorem A], it follows that Ĥp, q
atb (μ) is independent of the choice of q

in spaces of homogeneous type with λ(x, r) := μ(B(x, r)) for all x ∈ X and r ∈ (0,∞).

10 Relation between H̃p, q, γ
atb, ρ (µ) and Hp

at(µ) over RD-spaces

In this section, we investigate the relations among H̃p, q, γ
atb, ρ (μ), H̃

p, q, γ, ε
mb, ρ (μ) and Hp, q

at (μ) over RD-spaces.

As a corollary, the relations among H̃p, q, γ
atb, ρ (μ), H̃

p, q, γ, ε
mb, ρ (μ), Hp(RD), Ĥp, q, γ

atb, ρ (μ) and Ĥp, q, γ, ε
mb, ρ (μ) over

Euclidean spaces (RD, | · |) endowed with the D-dimensional Lebesgue measure dx are also presented.

Let (X , d, μ) be a space of homogeneous type with λ(x, r) := μ(B(x, r)) for all x ∈ X and r ∈ (0,∞).

The following notion of RD-spaces was introduced by Han et al. [22]. A space of homogeneous type

is called an RD-space if there exist constants κ ∈ (0, ν] and C ∈ [1, ∞) such that, for all x ∈ X ,

r ∈ (0, diam(X )/2) and λ ∈ [1, diam(X )/(2r)),

C−1λκμ(B(x, r)) � μ(B(x, λr)) � Cλνμ(B(x, r)), (10.1)

where diam (X ) := supx, y∈X d(x, y) and ν := log2 C(λ) is as in Section 1. We point out that the RD-space

is also a space of homogeneous type. In the remainder of this section, we always assume that (X , d, μ) is
an RD-space with μ(X ) = ∞ and let Vr(x) := μ(B(x, r)) and V (x, y) := μ(B(x, d(x, y))) for all x, y ∈ X
and r ∈ (0,∞).

The following space of test functions on X was introduced by Han et al. [21, 22]. Throughout this

section, we fix x1 ∈ X .

Let β ∈ (0, 1] and γ ∈ (0,∞). A function f on X is said to belong to the space of test functions,

G(β, γ), if there exists a non-negative constant C̃ such that

(A1) for all x ∈ X ,

|f(x)| � C̃
1

V1(x1) + V (x1, x)

[
1

1 + d(x1, x)

]γ
;

(A2) for all x, y ∈ X satisfying d(x, y) � (1 + d(x1, x))/2,

|f(x)− f(y)| � C̃

[
d(x, y)

1 + d(x1, x)

]β
1

V1(x1) + V (x1, x)

[
1

1 + d(x1, x)

]γ
.

Moreover, for f ∈ G(β, γ), its norm is defined by

‖f‖G(β,γ) := inf{C̃ : C̃ satisfies (A1) and (A2)}.
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The space G̊(β, γ) is defined as the set of all functions f ∈ G(β, γ) satisfying
∫
X f(x)dμ(x) = 0.

Moreover, we endow the space G̊(β, γ) with the same norm as the space G(β, γ). Furthermore, G̊(β, γ) is
a Banach space.

For any given ε ∈ (0, 1], let G̊ε
0(β, γ) be the completion of the set G̊(ε, ε) in G̊(β, γ) when β, γ ∈ (0, ε].

Moreover, if f ∈ G̊ε
0(β, γ), we then define ‖f‖G̊ε

0(β,γ)
:= ‖f‖G̊(β,γ). We define the dual space (G̊ε

0(β, γ))
∗ to

be the set of all continuous linear functionals L from G̊ε
0(β, γ) to C, and endow it with the weak∗ topology.

Suppose that ε1 ∈ (0, 1] and ε2, ε3 ∈ (0,∞). Let {Dt}t∈(0,∞) be a family of bounded linear operators

on L2(μ) such that, for all t ∈ (0,∞), Dt(x, y), the kernel of Dt, is a measurable function from X × X
to C satisfying the following estimates: There exists a positive constant L0 such that, for all t ∈ (0,∞)

and all x, x̃, y ∈ X with d(x, x̃) � [t+ d(x, y)]/2,

(A3) |Dt(x, y)| � L0
1

Vt(x)+Vt(y)+V (x,y) [
t

t+d(x,y) ]
ε2 ;

(A4) |Dt(x, y)−Dt(x̃, y)| � L0[
d(x,x̃)

t+d(x,y) ]
ε1 1

Vt(x)+Vt(y)+V (x,y) [
t

t+d(x,y) ]
ε3 ;

(A5) Property (A4) also holds true with the roles of x and y interchanged;

(A6)
∫
X Dt(x, y)dμ(x) = 0;

(A7)
∫
X Dt(x, y)dμ(y) = 0.

Now we recall the following Calderón reproducing formula which is a continuous variant of [22, Theo-

rem 3.10]. Hereafter, we let a ∧ b := min{a, b} and a ∨ b := max{a, b} for all a, b ∈ R.

Lemma 10.1. Let ε1 := 1, ε2, ε3 ∈ (0,∞), ε ∈ (0, ε1 ∧ ε2) and {Dt}t∈(0,∞) be as above. Then there

exists a family {D̃t}t∈(0,∞) of linear operators such that, for all f ∈ G̊ε
0(β, γ) with β, γ ∈ (0, ε),

f =

∫ ∞

0

D̃tDt(f)
dt

t

in G̊ε
0(β, γ) and in Lq(μ) for all q ∈ (1,∞). Moreover, the kernels of the operators D̃t satisfy the conditions

(A3), (A4), (A6) and (A7) with ε1 and ε2 replaced by ε̃ ∈ (ε, ε1 ∧ ε2).
To the best of our knowledge, the following useful property is well known but there exists no complete

proof. We present full details here.

Lemma 10.2. Let ε1 be as in (A4), ε ∈ (0, ε1], β, γ ∈ (0, ε] and q ∈ (1,∞). Then G̊ε
0(β, γ) is dense in

Lq(μ).

To prove this lemma, we need the following two technical conclusions. Hereafter, for any ε ∈ (0,∞),

we denote ‖ · ‖(d)ε , which is as in (9.1) with δ and α replaced respectively by d and ε, simply by ‖ · ‖ε.
Lemma 10.3. Let ε ∈ (0, 1], F be a nonempty closed set and G an open set containing F . Then there

exists f ∈ Lipε(μ) such that

f = 1 on F, supp (f) ⊂ G, 0 � f � 1 on X ,

where, for any set A ⊂ X , A represents the smallest closed set containing A.

Proof. For x ∈ X , let

f(x) :=

[
d(x, G�)

d(x, F ) + d(x, G�)

]ε
,

here and hereafter, for any two sets A, B ⊂ X , A� := X\A and

d(A,B) := inf{d(a, b) : a ∈ A and b ∈ B}.

It is easy to show that f has all the required properties in Lemma 10.3 with ‖f‖ε � 1
[d(F,G�)]ε , which

completes the proof of Lemma 10.3.

Moreover, we have the following conclusion.

Lemma 10.4. Let ε ∈ (0, 1]. For any ball B(x0, r0) and η ∈ (0,∞), there exists

h ∈ Lipε, b(μ) := {f ∈ Lipε(μ) : supp (f) is bounded}
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such that

supp (h) ⊂ (B(x0, r0))
�,

∫
X
h(x)dμ(x) = 1 and ‖h‖Lq(μ) < η.

Proof. For any k ∈ N, let Fk := B(x0, k + r0 + 1)\B(x0, r0 + 1) and

Gk := B(x0, k + r0 + 2)\B(x0, r0).

From [22, Remark 1.2(i)], it follows that Gk ⊃ Fk �= ∅ for some sufficiently large k. By Lemma 10.3 with F

and G replaced by Fk and Gk, respectively, we conclude that there exists h̃k ∈ Lipε(μ) (‖h̃k‖ε � 1) such

that h̃k = 1 on Fk, supp (h̃k) ⊂ Gk and 0 � h̃k � 1 on X . Let hk := h̃k

Jk
, where Jk :=

∫
X h̃k(x)dμ(x).

Then
∫
X hk(x)dμ(x) = 1 and

Jk �
∫
Fk

dμ(x) � μ(B(x0, k + r0 + 1)\B(x0, r0 + 1)). (10.2)

We only need to show that limk→∞ ‖hk‖qLq(μ) = 0. By (10.2) and 0 � h̃k � 1 on X , we have

‖hk‖qLq(μ) �
μ(B(x0, k + r0 + 3)\B(x0, r0))

μ(B(x0, k + r0 + 1)\B(x0, r0 + 1))

1

[μ(B(x0, k + r0 + 1)\B(x0, r0 + 1))]q−1
.

Noticing that μ(X ) = ∞, we obtain

lim
k→∞

1

[μ(B(x0, k + r0 + 1)\B(x0, r0 + 1))]q−1
= 0,

which reduces the proof to the fact that

lim sup
k→∞

μ(B(x0, k + r0 + 3)\B(x0, r0))

μ(B(x0, k + r0 + 1)\B(x0, r0 + 1))
� C,

where C is as in (10.1).

Indeed, from μ(X ) = ∞ and (10.1), we deduce that

lim sup
k→∞

μ(B(x0, k + r0 + 3)\B(x0, r0))

μ(B(x0, k + r0 + 1)\B(x0, r0 + 1))

� 1 + lim sup
k→∞

μ(B(x0, k + r0 + 3)\B(x0, k + r0 + 1))

μ(B(x0, k + r0 + 1)\B(x0, r0 + 1))

� 1 + lim sup
k→∞

[C(k+r0+3
k+r0+1 )

ν − 1]μ(B(x0, k + r0 + 1))

μ(B(x0, k + r0 + 1)\B(x0, r0 + 1))
� C,

where ν and C are as in (10.1). This finishes the proof of Lemma 10.4.

Now we are ready to prove Lemma 10.2.

Proof of Lemma 10.2. By some arguments as in [22, p. 19], we know that

L̊ipε, b(μ) :=

{
f ∈ Lipε, b(μ) :

∫
X
f(x)dμ(x) = 0

}
⊂ G̊(ε, ε) ⊂ G̊ε

0(β, γ) ⊂ L2(μ).

Thus, to show Lemma 10.2, it suffices to prove that L̊ipε, b(μ) is dense in Lq(μ). By the fact that

Lipε, b(μ) is dense in Lq(μ) (see, for example, [22, Corollary 2.11(ii)]), we know that, for any η ∈ (0,∞)

and f ∈ Lq(μ), there exists g ∈ Lipε, b(μ) such that ‖g − f‖Lq(μ) < η/2. Now we show that there exists

g̃ ∈ L̊ipε, b(μ) such that ‖g̃ − f‖Lq(μ) < η. We consider the following two cases:

Case (i)
∫
X g(x)dμ(x) = 0. The result holds true immediately.

Case (ii)
∫
X g(x)dμ(x) = A �= 0. Let a ball B(x0, r0) ⊃ supp (g). By Lemma 10.4, there exists

h ∈ Lipε, b(μ) such that supp (h) ⊂ (B(x0, r0))
�,
∫
X h(x)dμ(x) = 1 and ‖h‖Lq(μ) <

η
2|A| , which implies

that g̃ := g −Ah ∈ L̊ipε, b(μ) and

‖f − g̃‖Lq(μ) � ‖f − g‖Lq(μ) + |A|‖h‖Lq(μ) <
η

2
+ |A| η

2|A| = η.

This, together with Case (i), finishes the proof of Lemma 10.2.
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Recall that the Littlewood-Paley S-function S(f)(x) for any f ∈ Lq(μ) with q ∈ (1,∞) and x ∈ X is

defined by

S(f)(x) :=

{∫
Γ(x)

|Dt(f)(y)|2 dμ(y)dt
Vt(x) t

}1/2

,

where

Γ(x) := {(y, t) ∈ X × (0,∞) : d(y, x) < t}
generalizes the notion of a cone with vertex at x and aperture 1.

In RD-spaces, Han et al. [21] introduced the Hardy space Hp(μ) defined by

Hp(μ) := {f ∈ (G̊ε
0(β, γ))

∗ : S(f) ∈ Lp(μ)}

endowed with the quasi-norm

‖f‖Hp(μ) := ‖S(f)‖Lp(μ).

Moreover, Grafakos et al. [19] proved that Hp
at(X ) and Hp(μ) coincide with equivalent quasi-norms.

Before dealing with the relation between H̃p, q, γ
atb, ρ (μ) and H

p
at(μ), we need the following construction of

dyadic cubes on spaces of homogeneous type from [7]; see also [21].

Lemma 10.5. Let X be a space of homogeneous type. Then there exist a collection

{Qk
β ⊂ X : k ∈ Z, β ∈ Ik}

of open subsets, where Ik is some index set, and positive constants δ ∈ (0, 1) and L1, L2 such that

(i) μ(X\⋃β Q
k
β) = 0 for each fixed k, and Qk

β ∩Qk
γ = ∅ if β �= γ;

(ii) for any β, γ, k and l with l � k, either Ql
γ ⊂ Qk

β or Ql
γ ∩Qk

β = ∅;
(iii) for each (k, β) and each l < k, there exists a unique γ such that Qk

β ⊂ Ql
γ ;

(iv) diam (Qk
β) � L1δ

k;

(v) each Qk
β contains some ball B(zkβ , L2δ

k), where zkβ ∈ X .

We further introduce some notation from [21]. Let

R :=
{
Qk

β ⊂ X : k ∈ Z, β ∈ Ik
}
.

For any k ∈ Z, let Ωk := {x ∈ X : S(f)(x) > 2k} and

Rk :=

{
Q ∈ R : μ(Q ∩ Ωk) >

1

2
μ(Q) and μ(Q ∩ Ωk+1) �

1

2
μ(Q)

}
.

Moreover, for any Qk
β ∈ R, let

Q̂k
β := {(x, t) ∈ X × (0,∞) : x ∈ Qk

β and L1δ
k < t � L1δ

k−1},
Rmc

k := {Q ∈ Rk : if Q̃ ⊃ Q and Q̃ ∈ R, then Q̃ /∈ Rk},

and, for any Qmc
k ∈ Rmc

k ,

Q̃mc
k :=

⋃
Q∈Rk, Q⊂Qmc

k

Q̂,

here and hereafter, “mc” means maximal cubes.

We need the following useful lemma.

Lemma 10.6. Let k, j ∈ Z and k < j. Then( ⋃
Qmc

k ∈Rmc
k

Q̃mc
k

)
∩
( ⋃

Qmc
j ∈Rmc

j

Q̃mc
j

)
= ∅.
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Proof. Let k, j ∈ Z and k < j. To prove this lemma, it suffices to prove that, for any two dyadic

cubes Q and P satisfying Q ∈ Rk, Q ⊂ Qmc
k ∈ Rmc

k , P ∈ Rj and P ⊂ Qmc
j ∈ Rmc

j , it holds true that

Q̂∩ P̂ = ∅. We prove it by contradiction. Suppose that Q̂∩ P̂ �= ∅. Then Q∩P �= ∅. By Lemma 10.5(ii),

Q ⊂ P or P ⊂ Q. Without loss of generality, we may assume that Q ⊂ P . Let Q = Qm
β and P = Qn

γ for

some m, n ∈ Z, β ∈ Im and γ ∈ In. If m �= n, then Q̂∩ P̂ = ∅, which contradicts to the assumption that

Q̂ ∩ P̂ �= ∅. Thus, m = n, which, together with Lemma 10.5(i), implies that Qm
β = Qn

γ . Moreover, from

Q ∈ Rk, it follows that μ(Q ∩ Ωk) >
1
2μ(Q) and μ(Q ∩ Ωk+1) � 1

2μ(Q). On the other hand, by P ∈ Rj ,

we see that μ(P ∩ Ωj) >
1
2μ(P ) and μ(P ∩ Ωj+1) � 1

2μ(P ). Meanwhile, k < j implies that Ωj ⊂ Ωk+1

and hence μ(P ∩ Ωk+1) >
1
2μ(P ). Thus, P �= Q, which contradicts to the fact that Q = Qm

β = Qn
γ = P .

This finishes the proof of Lemma 10.6.

Now we introduce some useful decompositions of D̃t(x, y) in Lemma 10.1 which are easy consequences

of [22, Proposition 2.9], the details being omitted.

Lemma 10.7. Let ε1 ∈ (0, 1], ε2 ∈ (0,∞), ε ∈ (0, ε1 ∧ ε2), ε̃ ∈ (ε, ε1 ∧ ε2) and {D̃t}t∈(0,∞) be as in

Lemma 10.1. Then, for any N ∈ (0, ε̃], t ∈ (0,∞) and x, y ∈ X ,

D̃t(x, y) =

∞∑
=0

2−Nϕ2�t(x, y),

where ϕ2�t(x, y) is an adjust bump function in x associated with the ball B(y, 2t), which means that there

exists a positive constant C such that, for all t ∈ (0,∞) and y ∈ X ,

(i) supp (ϕ2�t(·, y)) ⊂ B(y, 2t);

(ii) |ϕ2�t(x, y)| � C 1
V
2�t

(y) for all x ∈ X ;

(iii) ‖ϕ2�t(·, y)‖ε � C(2t)−η 1
V
2�t

(y) for all 0 < η � ε̃;

(iv)
∫
X ϕ2�t(x, y)dμ(x) = 0.

Then we introduce a useful criterion for the boundedness of some integral operators. Hereafter, we

denote the inner product of L2(μ) by (·, ·).
Lemma 10.8. Let Kt(·, ·) for t ∈ (0,∞) be a measurable function from X × X to C and {Kt}t∈(0,∞)

a set of L2(μ)-bounded linear operators defined by

Kt(f)(x) :=

∫
X
Kt(x, y)f(y)dμ(y) for all t ∈ (0,∞), x ∈ X and f ∈ L2(μ).

If there exist positive constants ε1, ε2 and C such that, for all x, y ∈ X and s, t ∈ (0,∞),

|Kt(x, y)| � C
1

Vt(x) + Vt(y) + V (x, y)

[
t

t+ d(x, y)

]ε2
, (10.3)

and

|KtK
∗
s (x, y)| � C

(
t

s
∧ s

t

)ε1 1

Vt∨s(x) + Vt∨s(y) + V (x, y)

[
t ∨ s

t ∨ s+ d(x, y)

]ε2
, (10.4)

where K∗
t denotes the adjoint operator of Kt. Then there exists a positive constant C̃ such that, for all

f ∈ L2(μ),

‖G(f)‖L2(μ) � C̃‖f‖L2(μ),

where, for all x ∈ X ,

G(f)(x) :=

{∫ ∞

0

|Kt(f)(x)|2 dt
t

}1/2

.

Proof. For any f ∈ L2(μ), by Fubini’s theorem, we write

‖G(f)‖2L2(μ) = (G(f), G(f)) =

∫
X

∫ ∞

0

|Kt(f)(x)|2 dt
t
dμ(x)
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=

∫ ∞

0

∫
X
|Kt(f)(x)|2dμ(x)dt

t
= lim

N→∞

∫ N

1/N

(Kt(f),Kt(f))
dt

t

= lim
N→∞

∫ N

1/N

∫
X
K∗

tKt(f)(x)f(x)dμ(x)
dt

t

= lim
N→∞

∫
X

∫ N

1/N

K∗
tKt(f)(x)

dt

t
f(x)dμ(x) = lim

N→∞

(∫ N

1/N

K∗
tKt(f)

dt

t
, f

)
.

Moreover, from (10.3), (10.4) and the Schur lemma (see [17, p. 457]), we deduce that, for all s, t ∈ (0,∞),

K∗
t and K∗∗

s = Ks are bounded on L2(μ) and

‖K∗
tKtK

∗
sKs‖L2(μ)→L2(μ) � ‖KtK

∗
s‖L2(μ)→L2(μ) �

(
t

s
∧ s

t

)ε1

.

By the above two inequalities and [18, p. 237, Exercise 8.5.8], we conclude that

‖G(f)‖2L2(μ) � lim inf
N→∞

∥∥∥∥ ∫ N

1/N

K∗
tKt(f)

dt

t

∥∥∥∥
L2(μ)

‖f‖L2(μ) � ‖f‖2L2(μ),

which completes the proof of Lemma 10.8.

Before showing the main result of this section, we introduce another technical lemma which gives a

sufficient condition to the fact that f = g in L2(μ) for all f, g ∈ (G̊ε
0(β, γ))

∗.

Lemma 10.9. Let ε1 be as in (A4) and β, γ ∈ (0, ε1). If f, g ∈ L2(μ) and f = g in (G̊ε
0(β, γ))

∗, then
f = g in L2(μ).

Proof. For any f, g ∈ L2(μ), let

(f, g) :=

∫
X
f(x)g(x)dμ(x).

Now we claim that (f, ·) is a bounded functional on G̊ε
0(β, γ) ⊂ L2(μ). Indeed, by (A1) and Hölder’s

inequality, we conclude that, for any f ∈ L2(μ) and h ∈ G̊ε
0(β, γ),

|(f, h)| �
∫
X
|f(x)||h(x)|dμ(x)

� ‖h‖G(β,γ)
∫
X

1

V1(x1) + V (x1, x)

[
1

1 + d(x, x1)

]γ
|f(x)|dμ(x)

� ‖h‖G(β,γ)‖f‖L2(μ)

[∫
X

{
1

V1(x1) + V (x1, x)

[
1

1 + d(x, x1)

]γ}2

dμ(x)

] 1
2

� ‖h‖G(β,γ)‖f‖L2(μ)

×
{∫

B(x1,1)

[
1

V1(x1)

]2
dμ(x) +

1

V1(x1)

∫
X\B(x1,1)

1

V (x1, x)

[
1

d(x, x1)

]2γ
dμ(x)

} 1
2

� ‖h‖G(β,γ)‖f‖L2(μ)
1

V1(x1)
,

which implies the claim.

From this, a density argument, Lemma 10.2 and f = g in (G̊ε
0(β, γ))

∗, it follows that

‖f − g‖L2(μ) = sup{|(f − g, h)| : ‖h‖L2(μ) � 1}
= sup{|(f − g, h)| : h ∈ G̊ε

0(β, γ) and ‖h‖L2(μ) � 1}
= sup{|(f, h)− (g, h)| : h ∈ G̊ε

0(β, γ) and ‖h‖L2(μ) � 1} = 0,

which completes the proof of Lemma 10.9.
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Now we are ready to prove the following main result of this section.

Theorem 10.10. Let (X , d, μ) be an RD-space with μ(X ) = ∞, ν
ν+1 < p � 1 < q � 2, ρ ∈ (1,∞),

γ ∈ [1,∞) and ε ∈ (0,∞), where ν is as in (10.1). Then H̃p, q, γ, ε
mb, ρ (μ), H̃p, q, γ

atb, ρ (μ) and Hp
at(μ) coincide

with equivalent quasi-norms.

Proof. Let p, q, ρ, γ and ε be as in assumptions of Theorem 10.10. We first claim that Hp
at(μ)∩L2(μ) is

dense in Hp
at(μ). Indeed, for any f ∈ Hp

at(μ), by Theorem 9.4, we have f =
∑∞

i=1 λibi in (Lip1/p−1(μ))
∗,

where {bi}i is a sequence of (p, 2)-atoms, supp (bi) ⊂ Bi for some ball Bi and ‖bi‖L2(μ) � [μ(Bi)]
1/2−1/p.

Let fN :=
∑N

i=1 λibi, N ∈ N. Then fN ∈ L2(μ) for all N ∈ N. Meanwhile, f − fN =
∑∞

i=N+1 λibi in

(Lip1/p−1(μ))
∗, and ‖f − fN‖p

Hp
at(μ)

�
∑∞

i=N+1 |λi|p → 0 as N → ∞. Thus, Hp
at(μ) ∩ L2(μ) is dense in

Hp
at(μ), which completes the proof of this claim.

We easily observe that L2(μ) ⊂ (G̊ε
0(β, γ))

∗. By [19, Remark 5.5(ii)], we know that Hp
at(μ) = Hp(μ)

with equivalent quasi-norms. By this, the above claim and a standard density argument, to show Theo-

rem 10.10, it suffices to prove that

(Hp
at(μ) ∩ L2(μ)) ⊂ H̃p, q, γ

atb, ρ (μ) ⊂ H̃p, q, γ, ε
mb, ρ (μ) ⊂ (Hp(μ) ∩ L2(μ)).

We show this by two steps.

Step 1. Now we show that (Hp
at(μ)∩L2(μ)) ⊂ H̃p, q, γ

atb, ρ (μ). By Remark 3.3(iii) and q ∈ (1, 2], it suffices

to show that (Hp
at(μ)∩L2(μ)) ⊂ H̃p, 2, γ

atb, ρ (μ). To this end, by Lemma 10.1 and an argument similar to that

used in the proof of [22, p. 1524, (2.30)], we know that, for any f ∈ (G̊ε
0(β, γ))

∗ with 0 < β, γ < ε < 1∧ ε2,
ε3 ∈ (0,∞) and ε̃ ∈ (ε, 1 ∧ ε2) (ε2 and ε3 are as in (A4)),

f(x) =

∞∑
=0

2−N
∑
k∈Z

∑
Qmc

k ∈Rmc
k

∫
Q̃mc

k

ϕ2�t(x, y)Dt(f)(y)
dμ(y)dt

t
in (G̊ε

0(β, γ))
∗,

where ϕ2�t(x, y) is as in Lemma 10.7. Then we show that, for any f ∈ Hp
at(μ) ∩ L2(μ),

f(x) =
∞∑
=0

2−N
∑
k∈Z

∑
Qmc

k ∈Rmc
k

∫
Q̃mc

k

ϕ2�t(x, y)Dt(f)(y)
dμ(y)dt

t
in L2(μ). (10.5)

By Lemma 10.9, it suffices to prove that∥∥∥∥ ∞∑
=0

2−N
∑
k∈Z

∑
Qmc

k ∈Rmc
k

∫
Q̃mc

k

ϕ2�t(·, y)Dt(f)(y)
dμ(y)dt

t

∥∥∥∥
L2(μ)

<∞.

To this end, for any x, y ∈ X , t, s ∈ (0,∞) and f ∈ L2(μ), let

ϕ2�t(f)(x) :=

∫
X
ϕ2�t(x, z)f(z)dμ(z).

Then

ϕ∗
2�t(f)(x) :=

∫
X
ϕ2�t(z, x)f(z)dμ(z)

and

ϕ∗
2�tϕ2�s(x, y) :=

∫
X
ϕ2�t(z, x)ϕ2�t(z, y)dμ(z).

By a duality method, Lemma 10.2, Fubini’s theorem, Hölder’s inequality, Lemma 10.6 and [21, Proposi-

tion 2.14], we obtain∥∥∥∥ ∞∑
=0

2−N
∑
k∈Z

∑
Qmc

k ∈Rmc
k

∫
Q̃mc

k

ϕ2�t(·, y)Dt(f)(y)
dμ(y)dt

t

∥∥∥∥
L2(μ)
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= sup
‖h‖L2(μ)�1

h∈G̊ε
0(β,γ)

∣∣∣∣〈 ∞∑
=0

2−N
∑
k∈Z

∑
Qmc

k ∈Rmc
k

∫
Q̃mc

k

ϕ2�t(·, y)Dt(f)(y)
dμ(y)dt

t
, h

〉∣∣∣∣
= sup

‖h‖L2(μ)�1

h∈G̊ε
0(β,γ)

∣∣∣∣ ∞∑
=0

2−N
∑
k∈Z

∑
Qmc

k ∈Rmc
k

〈∫
Q̃mc

k

ϕ2�t(·, y)Dt(f)(y)
dμ(y)dt

t
, h

〉∣∣∣∣
= sup

‖h‖L2(μ)�1

h∈G̊ε
0(β,γ)

∣∣∣∣ ∞∑
=0

2−N
∑
k∈Z

∑
Qmc

k ∈Rmc
k

∫
Q̃mc

k

[ ∫
X
ϕ2�t(x, y)h(x)dμ(x)

]
Dt(f)(y)

dμ(y)dt

t

∣∣∣∣
� sup

‖h‖L2(μ)�1

∞∑
=0

2−N
∑
k∈Z

∑
Qmc

k ∈Rmc
k

∣∣∣∣ ∫
Q̃mc

k

[ ∫
X
ϕ2�t(x, y)h(x)dμ(x)

]
Dt(f)(y)

dμ(y)dt

t

∣∣∣∣
� sup

‖h‖L2(μ)�1

∞∑
=0

2−N

{∫
X

∫ ∞

0

|ϕ∗
2�t(h)(y)|2

dt

t
dμ(y)

}1/2{∫
X

∫ ∞

0

|Dt(f)(y)|2 dt
t
dμ(y)

}1/2

� sup
‖h‖L2(μ)�1

∞∑
=0

2−N/2

{∫
X

∫ ∞

0

|2−N/2ϕ∗
2�t(h)(y)|2

dt

t
dμ(y)

}1/2

‖f‖L2(μ),

where, in the third equality of the above equation, we used the fact that, for any Qmc
k ∈ Rmc

k , f ∈ L2(μ)

and h ∈ G̊ε
0(β, γ),

O :=

∫
X

∫
Q̃mc

k

|ϕ2�t(x, y)| |h(x)||Dt(f)(y)| dt
t
dμ(y)dμ(x) <∞.

Indeed, let Qmc
k := Qk0

β0
for some k0 ∈ Z and some β0 ∈ Ik0 . By Fubini-Tonelli theorem, Lemmas 10.7(i)

and 10.7(ii), and (A1), Q̃mc
k ⊂ Qk0

β0
×(0, L1δ

k0−1] (see [21, p. 1524]) and [21, Proposition 2.14], we conclude

that

O =

∫
Q̃mc

k

[∫
X
|ϕ2�t(x, y)||h(x)|dμ(x)

]
|Dt(f)(y)| dt

t
dμ(y)

�
∫
Q̃mc

k

[∫
B(y,2�t)

|h(x)|
V2�t(y)

dμ(x)

]
|Dt(f)(y)| dt

t
dμ(y)

� ‖h‖G̊ε
0(β,γ)

1

V1(x1)

∫
Q̃mc

k

|Dt(f)(y)| dt
t
dμ(y)

� ‖h‖G̊ε
0(β,γ)

1

V1(x1)

[∫
Q̃mc

k

dt

t
dμ(y)

]1/2[ ∫
Q̃mc

k

|Dt(f)(y)|2 dt
t
dμ(y)

]1/2
� ‖h‖G̊ε

0(β,γ)

1

V1(x1)
[μ(Qk0

β0
)L1δ

k0−1]1/2
[ ∫

X

∫ ∞

0

|Dt(f)(y)|2 dt
t
dμ(y)

]1/2
� ‖h‖G̊ε

0(β,γ)

1

V1(x1)
[μ(Qk0

β0
)L1δ

k0−1]1/2‖f‖L2(μ) <∞,

which implies the desired result.

Let

Φ(h)(y) :=

{∫ ∞

0

|2−N/2ϕ∗
2�t(h)(y)|2

dt

t

}1/2

for all y ∈ X . To prove (10.5), we only need to show that

‖Φ(h)‖L2(μ) � ‖h‖L2(μ), (10.6)

where the implicit positive constant is independent of �.
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By Lemma 10.8, we need to show that {ϕ2�t}t∈(0,∞) satisfy (10.3) and (10.4). From Lemma 10.7, we

easily deduce that (10.3) holds true for {ϕ2�t}t∈(0,∞). Thus, it suffices to show that, for all x, y ∈ X ,

s, t ∈ (0,∞),

|(2−N/2ϕ2�t)
∗(2−N/2ϕ2�s)(x, y)|

�
(
t

s
∧ s

t

)η
1

Vt∨s(x) + Vt∨s(y) + V (x, y)

[
t ∨ s

t ∨ s+ d(x, y)

]N/2

.

Due to the symmetry of t and s, without loss of generality, we may assume that s < t. Thus, we only

need to show that, for all x, y ∈ X , 0 < s < t <∞,

|ϕ∗
2�tϕ2�s(x, y)| � 2N

(
s

t

)η
1

Vt(x) + Vt(y) + V (x, y)

[
t

t+ d(x, y)

]N/2

.

By Lemma 10.7(iv), we write

|ϕ∗
2�tϕ2�s(x, y)| �

∫
X
|ϕ2�t(z, x)− ϕ2�t(y, x)||ϕ2�s(z, y)|dμ(z)

�
∫
{z∈X :d(z,y)�2�t+d(x,y)

2 }
|ϕ2�t(z, x)− ϕ2�t(y, x)||ϕ2�s(z, y)|dμ(z)

+

∫
{z∈X :d(z,y)>2�t+d(x,y)

2 }
|ϕ2�t(z, x)||ϕ2�s(z, y)|dμ(z)

+ |ϕ2�t(y, x)|
∫
{z∈X :d(z,y)>2�t+d(x,y)

2 }
|ϕ2�s(z, y)|dμ(z)

=: I1 + I2 + I3.

We first estimate I1. Observe that, if z ∈ B(x, 2t) and 2�t+d(x,y)
2 � d(y, z) � d(x, y) − d(x, z), then

y ∈ B(x, 2+2t); if d(x, y) < 2+2t, then(
t

t+ d(x, y)

)N/2

�
(

t

t+ d(x, y)

)N

� 2−N.

From the above two facts, Lemmas 10.7(i)–10.7(iii) and Remark 2.4(ii), it follows that

I1 �
∫
{z∈X :d(z,y)�2�t+d(x,y)

2 }
‖ϕ2�t(·, x)‖η[d(y, z)]ηχB(x,2�+2t)(y)

χB(y,2�s)(z)

V2�s(y)
dμ(z)

�
∫
{z∈X :d(z,y)�2�t+d(x,y)

2 }

1

(2t)η
χB(x,2�+2t)(y)

V2�t(x)
(2s)η

χB(y,2�s)(z)

V2�s(y)
dμ(z)

�
(
s

t

)η ∫
{z∈X :d(z,y)�2�t+d(x,y)

2 }

χB(x,2�+2t)(y)

V2�+2t(x)

χB(y,2�s)(z)

V2�s(y)
dμ(z)

�
(
s

t

)η χB(x,2�+2t)(y)

V2�+2t(x) + V2�+2t(y) + V (x, y)

� 2N

(
s

t

)η
1

Vt(x) + Vt(y) + V (x, y)

[
t

t+ d(x, y)

]N/2

.

Now we turn to estimate I2. Observe that, if {z ∈ X : d(z, y) > 2�t+d(x,y)
2 } �= ∅ and z ∈ B(x, 2t)

∩ B(y, 2s), then y ∈ B(x, 2+1t) and 1 � ( st )
η. By the above facts, Lemmas 10.7(i) and 10.7(ii), and

some arguments similar to those used in the estimate for I1, we further have

I2 �
∫
{
z∈X :d(z,y)>2�t+d(x,y)

2

}
χB(x,2�t)(z)

V2�t(x)

χB(y,2�s)(z)

V2�s(y)
dμ(z)
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�
χB(x,2�+1t)(y)

V2�+1t(x)

∫
{z∈X :d(z,y)>2�t+d(x,y)

2 }

χB(y,2�s)(z)

V2�s(y)
dμ(z)

�
(
s

t

)η
1

V2�+1t(x) + V2�+1t(y) + V (x, y)

� 2N

(
s

t

)η
1

Vt(x) + Vt(y) + V (x, y)

[
t

t+ d(x, y)

]N/2

.

For I3, by some arguments similar to those used in the estimate for I2, we see that

I3 �
χB(x,2�t)(y)

V2�t(x)

∫
{z∈X :d(z,y)>2�t+d(x,y)

2 }

χB(y,2�t)(z)

V2�s(y)
dμ(z)

� 2N

(
s

t

)η
1

Vt(x) + Vt(y) + V (x, y)

[
t

t+ d(x, y)

]N/2

.

Combining the estimates for I1, I2 and I3, we finish the proof of (10.6) and hence (10.5).

Moreover, from the proof of [21, Theorem 2.21], it follows that, for any f ∈ Hp
at(μ)∩L2(μ), there exists

a positive constant L3 such that

f =
∞∑
=0

2−N
∑
k∈Z

∑
Qmc

k ∈Rmc
k

λQmc
k
aQmc

k
in L2(μ),

where

λQmc
k

= L3[μ(B
mc
k )]1/p−1/2

[∫
Q̃mc

k

|Dt(f)(y)|2 dμ(y)dt
t

]1/2
,

Qmc
k := Qk0

β0
, Bmc

k := B(zk0

β0
, (1δ + 1)L12

δk0) and, for all x ∈ X ,

aQmc
k
(x) :=

1

λQmc
k

∫
Q̃mc

k

ϕ2�t(x, y)Dt(f)(y)
dμ(y)dt

t

is a (p, 2)-atom supported on Bmc
k . By an argument similar to that used in the proof of (9.6), we

further conclude that aQmc
k

is also a (p, 2, γ, ρ)λ-atomic block and |aQmc
k
|H̃p, 2, γ

atb, ρ (μ) � |λQmc
k
|. Thus, f ∈

H̃p, 2, γ
atb, ρ (μ) and

‖f‖H̃p, 2, γ
atb, ρ (μ) � ‖f‖Hp

at(μ)
,

which completes the proof of Step 1.

Step 2. In this step, we show that H̃p, q, γ
atb, ρ(μ) ⊂ H̃p, q, γ, ε

mb, ρ (μ) ⊂ (Hp(μ) ∩ L2(μ)) for any q ∈ (1,∞).

By Proposition 4.3, we see that H̃p, q, γ
atb, ρ (μ) ⊂ H̃p, q, γ, ε

mb, ρ (μ) for any q ∈ (1,∞). Thus, to prove the desired

conclusion, it suffices to show that H̃p, q, γ, ε
mb, ρ (μ) ⊂ (Hp(μ) ∩ L2(μ)) for any q ∈ (1,∞).

We first reduce the proof to showing that, if b is a (p, q, γ, ε, ρ)λ-molecular block, then

S(b) ∈ Lp(μ) and ‖S(b)‖Lp(μ) � |b|H̃p, q, γ, ε
mb, ρ (μ). (10.7)

Indeed, assume that (10.7) holds true. For any f ∈ H̃p, q, γ, ε
mb, ρ (μ), by Definition 4.1, we know that there

exists a sequence {bi}i∈N of (p, q, γ, ε, ρ)λ-molecular blocks such that f =
∑∞

i=1 bi in L
2(μ) and

∞∑
i=1

|bi|pH̃p, q, γ, ε
mb, ρ (μ)

∼ ‖f‖p
H̃p, q, γ, ε

mb, ρ (μ)
. (10.8)

Notice that Dt(y, ·) ∈ L2(μ) for any y ∈ X and t ∈ (0,∞). Thus, for any y ∈ X , we have

|Dt(f)(y)| = |(Dt(y, ·), f)| �
∞∑
i=0

|(Dt(y, ·), bi)| =
∞∑
i=0

|Dt(bi)(y)|.
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From this, the Fatou lemma, (10.7) and (10.8), we deduce that

‖S(f)‖pLp(μ) �
∞∑
i=1

‖S(bi)‖pLp(μ) �
∞∑
i=1

|bi|p
H̃p, q, γ, ε

mb, ρ (μ)
∼ ‖f‖p

H̃p, q, γ, ε
mb, ρ (μ)

,

which completes the proof of Step 2.

Now we prove (10.7) by following the ideas of the proof of Theorem 4.8. For the sake of simplicity,

we assume that γ = 1 and ρ = 2. Let b =
∑∞

k=0

∑Mk

j=1 λk, jak, j be a (p, q, 1, ε, 2)λ-molecular block as in

Definition 4.1 with γ = 1 and ρ = 2, where, for any k ∈ Z+ and j ∈ {1, . . . ,Mk}, supp (ak, j) ⊂ Bk, j

⊂ Uk(B) for some Bk, j and Uk(B) as in Definition 4.1. Without loss of generality, we may assume that

M̃ =M in Definition 4.1. Since S is sublinear, we write

‖S(b)‖pLp(μ) �
∞∑
=5

∫
U�(B)

∣∣∣∣S( −5∑
k=0

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣pdμ(x)
+

∞∑
=5

∫
U�(B)

∣∣∣∣S( +4∑
k=−4

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣pdμ(x)
+

∞∑
=5

∫
U�(B)

∣∣∣∣S( ∞∑
k=+5

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣pdμ(x) + 4∑
=0

∫
U�(B)

|S(b)(x)|pdμ(x)

=: I + II + III + IV.

Now we first estimate III. For any x ∈ U(B) and � ∈ N∩ [5,∞), by the Minkowski inequality, we see that

S

( ∞∑
k=+5

M∑
j=1

λk, jmk, j

)
(x)

�
∞∑

k=+5

M∑
j=1

|λk, j |
{∫

Γ(x)

[∫
X
|mk, j(z)||Dt(y, z)|dμ(z)

]2
dμ(y)dt

Vt(x)t

}1/2

�
∞∑

k=+5

M∑
j=1

|λk, j |
∫
Bk, j

[∫
Γ(x)

|mk, j(z)|2|Dt(y, z)|2 dμ(y)dt
Vt(x)t

]1/2
dμ(z)

�
∞∑

k=+5

M∑
j=1

|λk, j |
∫
Bk, j

|mk, j(z)|[M1(x, z) +M2(x, z)]dμ(z),

where, for all x ∈ X and z ∈ Bk, j with k ∈ N ∩ [�+ 5,∞) and j ∈ {1, . . . ,M},

M1(x, z) :=

[∫
Γ(x)∩

{(y, t)∈X×(0,∞):t� d(x,z)
2

}

|Dt(y, z)|2dμ(y)dt
Vt(x)t

]1/2
and

M2(x, z) :=

[ ∫
Γ(x)∩

{(y, t)∈X×(0,∞):t>
d(x,z)

2
}

|Dt(y, z)|2 dμ(y)dt
Vt(x)t

]1/2
.

For any x, y, z ∈ X satisfying d(y, x) < t and t � d(x, z)/2, it is easy to see that

d(y, z) � d(x, z)− d(y, x) � 1

2
d(x, z).

It then follows, from this, (A3) and (10.1), that

M1(x, z) �
[

1

[V (x, z)]2

∫ d(x, z)/2

0

(∫
B(x,t)

dμ(y)

Vt(x)

)(
t

d(x, z)

)ε2 dt

t

]1/2
� 1

V (x, z)
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and

M2(x, z) �
[ ∫ ∞

d(x, z)/2

(∫
B(x,t)

dμ(y)

Vt(x)

)
dt

[V2t(z)]2t

]1/2
� 1

V (x, z)

[ ∫ ∞

d(x, z)/2

[d(x, z)]2κ

(2t)2κt
dt

]1/2
� 1

V (x, z)
.

Moreover, by z ∈ Bk, j ⊂ 2k+2B\2k−2B, k � � + 5, x ∈ 2+2B\2−2B, we have d(x, cB) < 2+2rB,

d(z, cB) � 2k−2rB � 2+3rB and

d(x, z) � d(z, cB)− d(x, cB) � 2+3rB − 2+2rB = 2+2rB > d(x, cB),

where cB and rB denote the center and the radius of B, respectively. Thus, for all x ∈ X ,

S

( ∞∑
k=+5

M∑
j=1

λk, jmk, j

)
(x) �

∞∑
k=+5

M∑
j=1

|λk, j | 1

V (x, cB)
‖mk, j‖L1(μ). (10.9)

From (10.9), Hölder’s inequality, (4.1) and (10.1), we deduce that

III �
∞∑
=5

∞∑
k=+5

M∑
j=1

|λk, j |p
∫
U�(B)

1

[V (x, cB)]p
dμ(x)‖mk, j‖pL1(μ)

�
∞∑
=5

∞∑
k=+5

M∑
j=1

|λk, j |p V2�+2rB (cB)

[V2�−2rB (cB)]
p
‖mk, j‖pLq(μ)[μ(Bk, j)]

p/q′

�
∞∑
=5

∞∑
k=+5

M∑
j=1

|λk, j |p[V2�+2rB (cB)]
1−p2−kεp[λ(cB , 2

k+2rB)]
p−1

�
∞∑
=5

∞∑
k=+5

M∑
j=1

2−kεp|λk, j |p ∼
M∑
j=1

∞∑
k=10

k−5∑
=5

2−kεp|λk, j |p

�
M∑
j=1

∞∑
k=10

k2−kεp|λk, j |p �
∞∑
k=0

M∑
j=1

|λk, j |p ∼ |b|p
H̃p, q, 1, ε

mb, 2 (μ)
.

In order to estimate I, for all x ∈ X , we write

S

( −5∑
k=0

M∑
j=1

λk, jmk, j

)
(x)

�
{∫

Γ(x)

∣∣∣∣ ∫X
−5∑
k=0

M∑
j=1

λk, jmk, j(z)[Dt(y, z)−Dt(y, cB)]dμ(z)

∣∣∣∣2 dμ(y)dtVt(x)t

}1/2

+

{∫
Γ(x)

∣∣∣∣ ∫X
−5∑
k=0

M∑
j=1

λk, jmk, j(z)Dt(y, cB)dμ(z)

∣∣∣∣2 dμ(y)dtVt(x)t

}1/2

=: M3(x) +M4(x).

To estimate M3(x), by the Minkowski inequality, we further write, for all x ∈ X ,

M3(x) �
−5∑
k=0

M∑
j=1

|λk, j |
{∫

Γ(x)

[∫
Bk, j

|mk, j(z)||Dt(y, z)−Dt(y, cB)|dμ(z)
]2
dμ(y)dt

Vt(x)t

}1/2

�
−5∑
k=0

M∑
j=1

|λk, j |
∫
Bk, j

|mk, j(z)|
{∫

Γ(x)

|Dt(y, z)−Dt(y, cB)|2 dμ(y)dt
Vt(x)t

}1/2

dμ(z)

�
−5∑
k=0

M∑
j=1

|λk, j |
∫
Bk, j

|mk, j(z)|[M3, 1(x, z) +M3, 2(x, z)]dμ(z),
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where, for all x ∈ X and z ∈ Bk, j with k ∈ Z+ ∩ [0, �− 5] and j ∈ {1, . . . ,M},

M3, 1(x, z) :=

[ ∫
Γ(x)∩

{(y, t)∈X×(0,∞):t� d(x,cB)
8

}

|Dt(y, z)−Dt(y, cB)|2 dμ(y)dt
Vt(x)t

]1/2
and

M3, 2(x, z) :=

[ ∫
Γ(x)∩

{(y, t)∈X×(0,∞):t>
d(x,cB )

8
}

|Dt(y, z)−Dt(y, cB)|2 dμ(y)dt
Vt(x)t

]1/2
.

Now we give some observations. For any z ∈ Bk, j ⊂ 2k+2B\2k−2B, k ∈ Z+ ∩ [0, � − 5], j ∈ {1, . . . ,M}
and y ∈ Γ(x), we have d(z, cB) < 2k+2rB and d(y, cB) � d(x, cB)− d(y, x) � 2−2rB − t and hence

d(y, cB) + t � 2−2rB � 2k+3rB > 2d(z, cB).

Meanwhile, for any y ∈ Γ(x) ∩ {(y, t) ∈ X × (0,∞) : t � d(x,cB)
8 }, we have

d(y, cB) � d(x, cB)− d(x, y) � d(x, cB)− d(x, cB)

8
=

7

8
d(x, cB).

From these observations, (A5) and (10.1), it follows that, for all x ∈ X and z ∈ Bk, j with k ∈ Z+∩[0, �−5]

and j ∈ {1, . . . ,M},

M3, 1(x, z) �
2krB
d(x, cB)

{∫ d(x, cB)

8

0

∫
B(x,t)

1

[V (cB, x)]2
tε3−1

[d(x, cB)]ε3
dμ(y)dt

Vt(x)

}1/2

∼ 2krB
d(x, cB)

1

V (cB , x)

and

M3, 2(x, z) �
2krB
d(x, cB)

{∫ ∞

d(x, cB)

8

∫
B(x,t)

1

[Vt(cB)]2
dμ(y)dt

Vt(x)t

}1/2

� 2krB
d(x, cB)

1

V (cB , x)

{∫ ∞

d(x, cB)

8

[
t

d(x, cB)

]−2κ
dt

t

}1/2

∼ 2krB
d(x, cB)

1

V (cB , x)
.

Combining the estimates of M3, 1(x, z) and M3, 2(x, z), we find that, for all x ∈ X ,

M3(x) �
−5∑
k=0

M∑
j=1

|λk, j |‖mk, j‖L1(μ)
2krB
d(x, cB)

1

V (cB, x)
.

By this, Hölder’s inequality, (4.1), (10.1) and p > ν
ν+1 , we conclude that

∞∑
=5

∫
U�(B)

[M3(x)]
pdμ(x)

�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p‖mk, j‖pL1(μ)

∫
U�(B)

2kprpB
[d(x, cB)]p

1

[V (cB, x)]p
dμ(x)

�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p[μ(Bk, j)]
p/q′‖mk, j‖pLq(μ)

2kprpB
2(−2)prpB

V2�+2rB (cB)

[V2�−2rB (cB)]
p

�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p2−kεp2(k−)p[V2�+2rB (cB)]
1−p[λ(cB , 2

k+2rB)]
p−1
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�
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p2−kεp2(k−)p2(−k)(1−p)ν

∼
∞∑
=5

−5∑
k=0

M∑
j=1

|λk, j |p2−kεp2(−k)[(1−p)ν−p]

�
∞∑
k=0

M∑
j=1

|λk, j |p ∼ |b|p
H̃p, q, 1, ε

mb, 2 (μ)
.

By
∫
X b(x)dμ(x) = 0 and some arguments similar to those used in the estimate of (10.9), we see that,

for all x ∈ X ,

M4(x) =

{∫
Γ(x)

∣∣∣∣ ∫X
∞∑

k=−4

M∑
j=1

λk, jmk, j(z)Dt(y, cB)dμ(z)

∣∣∣∣2 dμ(y)dtVt(x)t

}1/2

�
∞∑

k=−4

M∑
j=1

|λk, j |‖mk, j‖L1(μ)
1

V (cB, x)
.

Again, by some arguments similar to those used in the estimate of III, we know that

∞∑
=5

∫
U�(B)

[M4(x)]
pdμ(x) � |b|p

H̃p, q, 1, ε
mb, 2 (μ)

.

Thus,

I �
∞∑
=5

∫
U�(B)

[M3(x)]
pdμ(x) +

∞∑
=5

∫
U�(B)

[M4(x)]
pdμ(x) � |b|p

H̃p, q, 1, ε
mb, 2 (μ)

.

Then we turn to estimate II. We first write

II �
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p
∫
U�(B)

[S(mk, j)(x)]
pdμ(x)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p
∫
2Bk, j

[S(mk, j)(x)]
pdμ(x)

+
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p
∫
U�(B)\2Bk, j

[S(mk, j)(x)]
pdμ(x) =: II1 + II2.

By Hölder’s inequality, the Lq(μ)-boundedness (q ∈ (1,∞)) of S(f) and (4.1), we conclude that

II1 �
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p [μ (2Bk, j)]
1− p

q ‖S (mk, j)‖pLq(μ)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p [μ (2Bk, j)]
1− p

q ‖mk, j‖pLq(μ)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2−kεp �
∞∑
k=0

M∑
j=1

|λk, j |p ∼ |b|p
H̃p, q, 1, ε

mb, 2 (μ)
.

To estimate II2, fix � ∈ N∩ [5,∞), k ∈ {�− 4, . . . , �+4}, j ∈ {1, . . . ,M} and x ∈ U(B)\2Bk, j . Notice

that, for any z ∈ Bk, j and x /∈ 2Bk, j ,

d(x, z) � d(x, cBk, j
)− d(z, cBk, j

) � 1

2
d(x, cBk, j

).
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By this, the Minkowski inequality and an argument similar to that used in the estimate of (10.9), we

further obtain

S(mk, j)(x) �
{∫

Γ(x)

[ ∫
Bk, j

|mk, j(z)||Dt(y, z)|dμ(z)
]2
dμ(y)dt

Vt(x)t

}1/2

�
∫
Bk, j

|mk, j(z)|
[∫

Γ(x)

|Dt(y, z)|2 dμ(y)dt
Vt(x)t

]1/2
dμ(z)

� 1

V (x, cBk, j
)
‖mk, j‖L1(μ).

From this, Hölder’s inequality, (4.1) and (10.1), we deduce that

II2 �
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p
∫
U�(B)\2Bk, j

1

[V (x, cBk, j
)]p
dμ(x)‖mk, j‖pL1(μ)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p
[∫

2�+7B\2Bk, j

1

V (x, cBk, j
)
dμ(x)

]p
[μ(2+2B)]1−p

× [μ(Bk, j)]
p/q′‖mk, j‖pLq(μ)

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p[K̃(ρ), p

Bk, j , 2�+6B
]p[μ(2+2B)]1−p

× 2−kεp[λ(cB , 2
k+2rB)]

p−1[K̃
(ρ), p

Bk, j , 2k+2B
]−p

�
∞∑
=5

+4∑
k=−4

M∑
j=1

|λk, j |p2−kεp ∼ |b|p
H̃p, q, 1, ε

mb, 2 (μ)
,

which, together with the estimate for II1, implies that II � |b|p
H̃p, q, 1, ε

mb, 2 (μ)
.

To estimate IV, observe that

IV �
4∑

=0

∫
U�(B)

∣∣∣∣S( +4∑
k=0

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣pdμ(x)
+

4∑
=0

∫
U�(B)

∣∣∣∣S( ∞∑
k=+5

M∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣pdμ(x) =: IV1 + IV2.

By some arguments similar to those used in the estimates for II1 and III, we respectively obtain

IV1 � |b|p
H̃p, q, 1, ε

mb, 2 (μ)
and IV2 � |b|p

H̃p, q, 1, ε
mb, 2 (μ)

,

which, together with the estimates for I–III, completes the proof of Step 2 and hence Theorem 10.10.

Remark 10.11. (i) Let ρ ∈ (1,∞), γ ∈ [1,∞) and ν
ν+1 < p � 1 < q � 2. Combining Propositions 8.1

and 8.2, and Theorems 10.10 and 9.4, we finally obtain

Ĥp, q, γ
atb, ρ (μ) = Hp

at(μ) = H̃p, q, γ
atb, ρ (μ) = H̃p, q, γ, ε

mb, ρ (μ)

over an RD-space (X , d, μ) with μ(X ) = ∞.

(ii) It is still unclear whether Ĥp, q, γ
atb, ρ (μ) (or Hp

at(μ)) and H̃p, q, γ
atb, ρ (μ) (or H̃p, q, γ, ε

mb, ρ (μ)) coincide or not

for any q ∈ (2,∞] over RD-spaces (X , d, μ) with μ(X ) = ∞.

(iii) Let (X , d, μ) := (RD, | · |, dx) with the D-dimensional Lebesgue measure dx, ρ ∈ (1,∞), γ ∈ [1,∞),
D

D+1 < p � 1 < q < ∞ and ε ∈ (0,∞). By Theorem 9.4, we see that Ĥp, q, γ
atb, ρ (μ) = Hp(RD). Now

we deal with the relation between H̃p, q, γ
atb, ρ (μ) and Hp(RD). To this end, consider [2, Theorem 5.4] with

ϕ(x, t) := tp (p ∈ (0, 1]) and L = −Δ, we notice that Hp
−Δ(R

D) = Hp(RD) (see [12]), q(ϕ) = 1,
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r(ϕ) = ∞, �(ϕ) = p = i(ϕ), q ∈ (1,∞) and p−Δ = 1 therein. By etΔ1 = 1, −Δ satisfying [2, (H1)

and (H2)] and [2, p. 107, (6.16)] (see also [31, Remark 5.1]), we conclude that, for any (p, q,M)L-atom a

defined in [2, Definition 5.2], ∫
RD

a(x)dx = 0.

Thus, a is a (p, q)-atom. From this, Step 2 of the proof of Theorem 10.10 and the proof of [2, Theorem 5.4],

we deduce that

(Hp(RD) ∩ L2(RD)) = H̃p, q, γ
atb, ρ(μ). (10.10)

Thus, Hp(RD) = H̃p, q, γ
atb, ρ (μ).

Moveover, by Step 2 of the proof of Theorem 10.10 and (10.10), we know that

H̃p, q, γ
atb, ρ (μ) ⊂ H̃p, q, γ, ε

mb, ρ (μ) ⊂ Hp(RD) ∩ L2(RD) = H̃p, q, γ
atb, ρ (μ).

Thus, by this and Theorems 9.4 and 7.9, we have

H̃p, q, γ, ε
mb, ρ (μ) = H̃p, q, γ

atb, ρ (μ) = Hp(RD) = Ĥp, q, γ
atb, ρ (μ) = Ĥp, q, γ, ε

mb, ρ (μ).
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