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Abstract A family of stable mixed finite elements for the linear elasticity on tetrahedral grids are constructed,

where the stress is approximated by symmetric H(div)-Pk polynomial tensors and the displacement is approxi-

mated by C−1-Pk−1 polynomial vectors, for all k � 4. The main ingredients for the analysis are a new basis of

the space of symmetric matrices, an intrinsic H(div) bubble function space on each element, and a new technique

for establishing the discrete inf-sup condition. In particular, they enable us to prove that the divergence space

of the H(div) bubble function space is identical to the orthogonal complement space of the rigid motion space

with respect to the vector-valued Pk−1 polynomial space on each tetrahedron. The optimal error estimate is

proved, verified by numerical examples.
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1 Introduction

In the Hellinger-Reissner mixed formulation of the linear elasticity equations, the stress is sought in

H(div,Ω, S) and the displacement in L2(Ω,R3). It is a challenge to design stable mixed finite element

spaces mainly due to the symmetric constraint of the stress tensor. To overcome this difficulty, earliest

works adopted composite element techniques or weakly symmetric methods [3, 6, 7, 25, 27, 29–31]. In

[9], Arnold and Winther designed the first family of mixed finite element methods in 2D, based on

polynomial shape function spaces. From then on, various stable mixed elements have been constructed,

see [2, 4, 5, 8–12,17–24,26, 32, 33].

As the displacement function is in L2(Ω,R3), a natural discretization is the piecewise Pk−1 polynomial

without interelement continuity. It is a long-standing and challenging problem if the stress tensor can

be discretized by an appropriate Pk finite element subspace of H(div,Ω, S). Adams and Cockburn

constructed such a mixed finite element in [2] where the discrete stress space is the space of H(div,Ω, S)-

Pk+2 tenors whose divergence is a Pk−1 polynomial on each tetrahedron, for k = 2. The method was

modified and extended to a family of elements, k � 2, by Arnold et al. [5]. In this paper, we solve this

open problem by constructing a suitable H(div,Ω, S)-Pk, instead of the above Pk+2, finite element space
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for the stress discretization, for k � 4. In these elements, the symmetric stress tensor is approximated

by the full C0-Pk space enriched by some so-called H(div) bubble functions locally on each tetrahedron.

A new way of proof is developed to establish the stability of the mixed elements, by characterizing the

divergence of local stress space. The space of divergence of the local H(div) bubble stress space is exactly

the subspace of the Pk−1 polynomial space orthogonal to the local rigid-motion. The optimal order error

estimate is proved, verified by numerical tests of P4 and P5 mixed elements. Note that the Pk mixed

element here has the same numbers of degrees of freedom at vertices, on edges, and faces, as that k − 2

order mixed element in [5], while the new element promises a k order convergence in the energy norm.

The rest of the paper is organized as follows. In Section 2, we define the weak problem and the

finite element method. In Section 3, we prove the well-posedness of the finite element problem, i.e., the

discrete coerciveness and the discrete inf-sup condition, by which, the optimal order convergence of the

new element follows. In Section 4, we provide some numerical results, using P4 and P5 finite elements.

2 The family of finite elements

Based on the Hellinger-Reissner principle, the linear elasticity problem within a stress-displacement (σ-u)

form reads: Find (σ, u) ∈ Σ× V := H(div,Ω, S = symmetric R
3×3)× L2(Ω,R3), such that{

(Aσ, τ) + (divτ, u) = 0, for all τ ∈ Σ,

(divσ, v) = (f, v), for all v ∈ V.
(2.1)

Here the symmetric tensor space for the stress Σ and the space for the vector displacement V are,

respectively,

H(div,Ω, S) :=

⎧⎪⎪⎨⎪⎪⎩σ =

⎛⎜⎜⎝
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎞⎟⎟⎠ ∈ H(div,Ω), σT = σ

⎫⎪⎪⎬⎪⎪⎭ , (2.2)

L2(Ω,R3) := {(u1 u2 u3)
T, ui ∈ L2(Ω), i = 1, 2, 3}. (2.3)

This paper denotes by Hk(T,X) the Sobolev space consisting of functions with domain T ⊂ R
3, taking

values in the finite-dimensional vector space X , and with all derivatives of order at most k square-

integrable. For our purposes, the range space X will be either S, R3, or R. ‖ · ‖k,T is the norm of Hk(T ).

S denotes the space of symmetric tensors, H(div, T, S) consists of square-integrable symmetric matrix

fields with square-integrable divergence. The H(div) norm is defined by

‖τ‖2H(div,T ) := ‖τ‖2L2(T ) + ‖divτ‖2L2(T ).

L2(T,R3) is the space of vector-valued functions which are square-integrable. Here, the compliance tensor

A = A(x) : S → S, characterizing the properties of the material, is bounded and symmetric positive

definite uniformly for x ∈ Ω.

This paper deals with a pure displacement problem (2.1) with the homogeneous boundary condition

that u ≡ 0 on ∂Ω. But the method and the analysis work for mixed boundary value problems and the

pure traction boundary problem.

The domain Ω is subdivided by a family of quasi-uniform tetrahedral grids Th (with the grid size h).

We introduce the finite element space of order k (k � 4) on Th. The displacement space is the full

C−1-Pk−1 space

Vh = {v ∈ L2(Ω,R3), v|K ∈ Pk−1(K,R3) for all K ∈ Th}. (2.4)

Since the discrete stress space Σh is an H(div) bubble enrichment of the H1 space

Σ̃h = {σ ∈ H1(Ω, S), σ|K ∈ Pk(K, S) for all K ∈ Th}, (2.5)
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t01 = x1 − x0 (tangent vector)

Edge-bubble: b = λ0λ1pt01tT01, bni|∂K = 0, i = 0, 1, 2, 3

Tetrahedron K:

�
�
�
�
�
�
�
�

Figure 2.1 An edge-bubble function b = λ0λ1pt01tT01, p ∈ Pk−2(K,R) on an edge x0x1 of tetrahedron K

we first define the H(div) bubble function space on each element. To this end, let x0, x1, x2 and x3 be

the four vertices of a tetrahedron K, cf. Figure 2.1.

The referencing mapping is then

x = FK(x̂) = x0 + (x1 − x0 x2 − x0 x3 − x0)x̂,

mapping the reference tetrahedron

K̂ = {0 � x̂1, x̂2, x̂3, 1− x̂1 − x̂2 − x̂3 � 1}

to K. Then the inverse mapping is

x̂ =

⎛⎜⎜⎝
nT

1

nT
2

nT
3

⎞⎟⎟⎠ (x− x0), (2.6)

where ⎛⎜⎜⎝
nT

1

nT
2

nT
3

⎞⎟⎟⎠ = (x1 − x0 x2 − x0 x3 − x0)
−1. (2.7)

By (2.6), these normal vectors are coefficients of the barycentric variables:

λ1 = n1 · (x− x0), λ2 = n2 · (x− x0),

λ3 = n3 · (x− x0), λ0 = 1− λ1 − λ2 − λ3.

On each face triangle, say x0x2x3, all three edges (the tangent vectors), x0x2, x0x3 and x2x3, are

orthogonal to the face normal vector n1. For convenience, we introduce the tangent vectors and their

tensors:

t01 = x1 − x0, T01 = t01t
T
01,

t02 = x2 − x0, T02 = t02t
T
02,

t03 = x3 − x0, T03 = t03t
T
03,

t12 = x2 − x1, T12 = t12t
T
12,

t23 = x3 − x2, T23 = t23t
T
23,

t13 = x3 − x1, T13 = t13t
T
13.

(2.8)

With them, we define a H(div,K, S) bubble function space

ΣK,b =
∑

0�i<j�3

λiλjPk−2(K,R)Tij . (2.9)
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Note that each bubble function, say, a function τ in λ0λ1T01Pk−2(K,R), vanishes on two face triangles

(λ0 = 0, λ1 = 0) and τn2 = 0, τn3 = 0 on the other two face triangles. Then the discrete stress space

of order k (k � 4) is defined as

Σh = {σ ∈ H(div,Ω, S), σ = σc + σb, σc ∈ Σ̃h, σb|K ∈ ΣK,b, ∀K ∈ Th}. (2.10)

Next, we define a basis for Σh. Given element K, let xi and Fi, i = 0, 1, 2, 3, be its vertices and faces,

respectively. Given edge Ei,j = xixj , 0 � i < j � 3, define its k − 1 interior nodal points

xEi,j ,l =
l

k
xi +

(
1− l

k

)
xj , 1 � l � k − 1. (2.11)

Given Fi with three vertices x
(i)
0 , x

(i)
1 and x

(i)
2 , define its (k−1)(k−2)

2 interior nodal points

xFi,j,l =
j

k
x
(i)
0 +

l

k
x
(i)
1 +

k − l− j

k
x
(i)
2 , 1 � j, l and j + l � k − 1. (2.12)

We define (k−1)(k−2)(k−3)
6 interior nodal points

xK,i,j,l =
i

k
x0 +

j

k
x1 +

l

k
x2 +

k − i− j − l

k
x3, (2.13)

1 � i, j, l and i+ j + l � k − 1 of element K. Then the nodes for the Lagrange element of order k are

XK = {xi, i = 0, . . . , 3} ∪ {xEi,j,l, 0 � i < j � 3, l = 1, . . . , k − 1}
∪ {xFi,j,l, i = 0, . . . , 3, 1 � j, l and j + l � k − 1}
∪ {xK,i,j,l, 1 � i, j, l and i+ j + l � k − 1}.

Let XE denote all interior nodes, defined in (2.11), of all the edges, XF denote all interior nodes, defined

in (2.12), of all the faces, XK denote all interior nodes, defined in (2.13), of all the elements, and XV

denote all the vertices of Th. Define the Lagrange element space of order k by

Ph := H1(Ω,R) ∩ {v ∈ L2(Ω), v|K ∈ Pk(K,R), ∀K ∈ Th}.

Given a node x ∈ XV ∪XE ∪XF ∪XK, let ϕx ∈ Ph be its associated nodal basis function, which is defined

as

ϕx(x) = 1 and ϕx(x
′) = 0 for any x′ ∈ XV ∪ XE ∪ XF ∪ XK other than x.

Given edge E, let TE be a matrix of rank one defined similarly to that in (2.8). We need the orthogonal

complement matrices T⊥
E,j ∈ S, j = 1, . . . , 5, of matrix TE , which are defined by

T⊥
E,j : TE = 0, T⊥

E,j : T
⊥
E,j = 1, and T⊥

E,i : T
⊥
E,j = 0 for i 
= j, (2.14)

where the inner product A : B =
∑3

i,j=1 aijbij for two matrices A = {aij}3i,j=1 and B = {bij}3i,j=1.

Given face F , let tF,j , j = 1, 2, 3, be unit tangential vectors of its three edges, which allow for defining

TF,j = tF,jt
T
F,j , j = 1, 2, 3. (2.15)

Define their orthogonal complement matrices T⊥
F,m,m = 1, 2, 3, such that

TF,j : T
⊥
F,m = 0, and T⊥

F,j : T
⊥
F,m = δj,m, j,m = 1, 2, 3. (2.16)

A canonical basis of S reads

T1 =

⎛⎜⎜⎝
1 0 0

0 0 0

0 0 0

⎞⎟⎟⎠ , T2 =

⎛⎜⎜⎝
0 1 0

1 0 0

0 0 0

⎞⎟⎟⎠ , and T3 =

⎛⎜⎜⎝
0 0 1

0 0 0

1 0 0

⎞⎟⎟⎠ ,

T4 =

⎛⎜⎜⎝
0 0 0

0 1 0

0 0 0

⎞⎟⎟⎠ , T5 =

⎛⎜⎜⎝
0 0 0

0 0 1

0 1 0

⎞⎟⎟⎠ , and T6 =

⎛⎜⎜⎝
0 0 0

0 0 0

0 0 1

⎞⎟⎟⎠ .

(2.17)
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With these preparations, the basis functions of Σh can be classified into six classes:

(1) Vertex-based basis functions: given node x ∈ XV, its six associated basis functions of Σh read

τx,i = ϕxTi, i = 1, . . . , 6.

(2) Edge-based basis functions with nonzero flux: given node x ∈ XE on edge E, its five associated

basis functions with nonzero flux of Σh read

τ
(nb)
E,x,i = ϕxT

⊥
E,i, i = 1, . . . , 5.

(3) Edge-based basis functions with zero flux: given node x ∈ XE on edge E, letting K1, . . . ,K�E be

elements which share the common edge E, its associated basis functions with zero flux of Σh read

τ
(b)
E,Ki,x

= ϕx|KiTE , i = 1, . . . , �E .

(4) Face-based basis functions with nonzero flux: given node x ∈ XF on face F , its three associated

basis functions with nonzero flux of Σh read

τ
(nb)
F,x,i = ϕxT

⊥
F,i, i = 1, 2, 3.

(5) Face-based basis functions with zero flux: given node x ∈ XF on face F , letting K1 and K2 be two

elements which share the common face F , its associated basis functions with zero flux of Σh read

τ
(b)
F,Ki,x,j

= ϕx|KiTF,j , i = 1, 2, j = 1, 2, 3.

(6) Volume-based basis functions: given node x ∈ XK inside K, its six associated basis functions of Σh

read

τK,x,i = ϕxTi, i = 1, . . . , 6.

To characterize the bubble space ΣK,b, we need the following lemma.

Lemma 2.1. The six symmetric tensors Tij in (2.8) are linearly independent, and form a basis of S.

Proof. Each tensor Tij = tijt
T
ij is a positive semi-definite matrix, on a tetrahedron K. We would show

that the constants cij are all equal to zero in

T = c01T01 + c02T02 + c03T03 + c12T12 + c23T23 + c13T13 = 0.

First, we compute the bilinear form (cf. Figure 2.1), by (2.7),

nT
1 Tn1 = c011 · 1 + c020 + c030 + c12(−1)(−1) + c230 + c13(−1)(−1) = 0.

Here, by (2.7) and (2.8),

tT01n1 = 1,

tT12n1 = (tT02 − tT01)n1 = 0− 1,

tT13n1 = (tT03 − tT01)n1 = 0− 1.

Symmetrically, by evaluating nT
i Tni for i = 0, 1, 2, 3, where n0 = −n1 − n2 − n3, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c01 + c02 + c03 = 0,

c01 + c12 + c13 = 0,

c02 + c12 + c23 = 0,

c03 + c13 + c23 = 0.

(2.18)
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Note that n0 
= 0 as K is a non-singular tetrahedron. Next, we introduce three (non-unit) vectors si
orthogonal to the three pairs of skew edges, x0x1 and x2x3, x0x2 and x1x3, x0x3 and x1x2, respectively

(cf. Figure 2.1), i.e.,

s1 =
t01 × t23
6|K| ,

because |K| 
= 0 and consequently |t01 × t23| 
= 0. Thus s1 · t01 = 0, s1 · t02 = −1, s1 · t03 = −1,

s1 · t12 = −1, s1 · t13 = −1, and s1 · t23 = 0. By evaluating sTi Tsi, it follows that⎧⎪⎨⎪⎩
c02 + c03 + c12 + c13 = 0,

c01 + c03 + c12 + c23 = 0,

c01 + c02 + c13 + c23 = 0.

(2.19)

By the first two equations in (2.18) and the first equation in (2.19), we get 2c01 = 0. Symmetrically, we

find all cij = 0. Thus {Tij} is a linearly independent set of tensors. As dim S = 6, {Tij} is a basis.

It follows from the definition of Vh (Pk−1 polynomials) and Σh (Pk polynomials) that div Σh ⊂ Vh.

This, in turn, leads to a strong divergence-free space:

Zh := {τh ∈ Σh | (div τh, v) = 0 for all v ∈ Vh} = {τh ∈ Σh | div τh = 0 pointwise }. (2.20)

The mixed finite element approximation of Problem (1.1) reads: Find (σh, uh) ∈ Σh × Vh such that{
(Aσh, τ) + (divτ, uh) = 0, for all τ ∈ Σh,

(div σh, v) = (f, v), for all v ∈ Vh.
(2.21)

3 Stability and convergence

The convergence of the finite element solutions follows the stability and the standard approximation

property. So we consider first the well-posedness of the discrete problem (2.21). By the standard theory,

we only need to prove the following two conditions, based on their counterpart at the continuous level.

(1) K-ellipticity. There exists a constant C > 0, independent of the meshsize h such that

(Aτ, τ) � C‖τ‖2H(div) for all τ ∈ Zh, (3.1)

where Zh is the divergence-free space defined in (2.20).

(2) Discrete B-B condition. There exists a positive constant C > 0 independent of the meshsize h,

such that

inf
0�=v∈Vh

sup
0�=τ∈Σh

(divτ, v)

‖τ‖H(div)‖v‖L2(Ω)
� C. (3.2)

It follows from div Σh ⊂ Vh that div τ = 0 for any τ ∈ Zh. This implies the above K-ellipticity

condition (3.1). It remains to show the discrete B-B condition (3.2), in the following two lemmas.

Lemma 3.1. For any vh ∈ Vh, there is a τh ∈ Σ̃h ⊂ Σh such that, for any polynomial p ∈ Pk−3(K,R3),

K ∈ Th, ∫
K

(div τh − vh) · p dx = 0 and ‖τh‖H(div) � C‖vh‖L2(Ω). (3.3)

Proof. Let vh ∈ Vh. By the stability of the continuous formulation, there is a τ ∈ H1(Ω, S) such that,

div τ = vh and ‖τ‖H1(Ω) � C‖vh‖L2(Ω).

As τ ∈ H1(Ω, S), we modify the Scott-Zhang [28] interpolation operator slightly to define a flux preserving

interpolation,

Ih : H1(Ω, S) → Σh ∩H1(Ω, S) = Σ̃h,
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τ �→ τh := Ihτ.

Here the interpolation is done inside a subspace, the continuous finite element subspace Σh ∩H1(Ω, S).

Ihτ is defined by its values at the Lagrange nodes.

At a vertex node or a node inside an edge, xi, Ihτ(xi) is defined as the nodal value of τ at the point if

τ is continuous, but in general, Ihτ(xi) is defined as an average value on a face triangle, on whose edge

the node is, as in [28]. After defining the nodal values at edges of tetrahedra, the nodal values of τh at

the nodes inside each face triangle F of a tetrahedron are defined by the L2-orthogonal projection on the

triangle F : ∫
F

τh,ijpdS =

∫
F

τijpdS, ∀ p ∈ Pk−3(F,R), i, j = 1, 2, 3, (3.4)

where τh,ij and τij are the (i, j)-th components of τh and τ , respectively, and F is a face triangle of a

tetrahedron in the tetrahedral triangulation Th. The number of equations in (3.4) is the same as the

number of internal degrees of freedom of Pk polynomials, dimPk−3. At the Lagrange nodes inside a

tetrahedron, Ihτ(xi) is defined by the L2-orthogonal projection on the tetrahedron, satisfying∫
K

τh,ijpdx =

∫
K

τijpdx, ∀ p ∈ Pk−4(K,R), (3.5)

where K is an element of Th. It follows by the stability of the Scott-Zhang operator that

‖Ihτ‖H1(Ω) � C‖τ‖H1(Ω) � C‖vh‖L2(Ω).

In particular,

‖Ihτ‖H(div) � ‖Ihτ‖H1(Ω) � C‖vh‖L2(Ω).

By (3.4) and (3.5), we get a partial-divergence matching property of Ih: for any p ∈ Pk−3(K,R3), as the

symmetric gradient ε(p) ∈ Pk−4(K, S),∫
K

(div τh − vh) · p dx =

∫
∂K

(τhn) · p ds−
∫
K

τh : ε(p) dx−
∫
K

vh · p dx

=

∫
∂K

(τn) · p ds−
∫
K

τ : ε(p) dx−
∫
K

vh · p dx

=

∫
K

(div τ − vh) · p dx = 0.

The proof is complete.

Given element K, let R(K) be the space of 6-dimensional, local rigid motions:

R(K) =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
a1 − a4y − a5z

a2 + a4x− a6z

a3 + a5x+ a6y

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ a1, a2, a3, a4, a5, a6 ∈ R

⎫⎪⎪⎬⎪⎪⎭ . (3.6)

Let R⊥(K) be the orthogonal complement of R(K) with respect to Pk−1(K,R3). We have the following

key result.

Lemma 3.2. It holds that

div ΣK,b = R⊥(K). (3.7)

Proof. It is immediate that

div ΣK,b ⊂ R⊥(K).

If div ΣK,b 
= R⊥(K), there is a nonzero vh ∈ R⊥(K) such that∫
K

div τh · vh dx = 0, ∀ τh ∈ ΣK,b.
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By integration by parts, for τh ∈ ΣK,b, we have∫
K

div τh · vhdx = −
∫
K

τh : ε(vh)dx = 0, (3.8)

where ε(vh) is the symmetric gradient, (∇vh +∇Tvh)/2.

Let {Mij, i = 0, 1, 2, j = i+1, . . . , 3} be the dual basis of the symmetric matrix space, of {Tij}, defined
in (2.8), i.e.,

Mij = MT
ij , Mij : Ti′j′ = δij,i′j′ . (3.9)

Under the dual basis, we have a unique expansion, as ε(vh) ∈ Pk−2(K, S),

ε(vh) = q1M01 + q2M02 + q3M03 + q4M12 + q5M23 + q6M13, (3.10)

for some qi ∈ Pk−2(K,R). Selecting τ1 = λ0λ1q1T01 ∈ ΣK,b, we have, by (3.9),

0 =

∫
K

τ1 : ε(vh)dx =

∫
K

λ0λ1q
2
1(x)dx.

As λ0λ1 > 0 on K, we conclude that q1 ≡ 0. Similarly, the other five qi in (3.10) are zero, which implies

that vh is a rigid motion. On the other hand, vh ∈ R⊥(K) which indicates that it cannot be a nonzero

local rigid motion. Thus, vh ≡ 0 and div ΣK,b = R⊥(K).

Lemma 3.3. For any vh ∈ Vh, if∫
K

vh · p dx = 0 for all p ∈ Pk−3(K,R3) and all K ∈ Th, (3.11)

then there is a τh ∈ Σh such that

div τh = vh and ‖τh‖H(div) � C‖vh‖L2(Ω). (3.12)

Proof. As we assume polynomial degree k � 4 in Vh,

p ∈ Pk−3(K,R3) ⊃ P1(K,R3) ⊃ R(K).

So if vh satisfies (3.11), vh|K ∈ R⊥(K) for any element K. Then it follows from Lemma 3.2 that there

exists a τK ∈ ΣK,b such that

div τK = vh|K , ‖τK‖L2(K) = {min ‖τ‖L2(K), div τ = vh|K , τ ∈ ΣK,b}.

Let τh|K = τK for any K ∈ Th. As the matching div τh = vh is independently done on each element K,

by affine mapping and scaling argument, (3.12) holds.

We are in the position to show the well-posedness of the discrete problem.

Lemma 3.4. For the discrete problem (2.21), the K-ellipticity (3.1) and the discrete B-B condition

(3.2) hold uniformly. Consequently, the discrete mixed problem (2.21) has a unique solution (σh, uh) ∈
Σh × Vh.

Proof. The K-ellipticity immediately follows from the fact that div Σh ⊂ Vh. To prove the discrete

B-B condition (3.2), for any vh ∈ Vh, it follows from Lemma 3.1 that there exists a τ1 ∈ Σh such that,

for any polynomial p ∈ Pk−3(K,R3),∫
K

(div τ1 − vh) · pdx = 0 and ‖τ1‖H(div) � C‖vh‖L2(Ω). (3.13)

Then it follows from Lemma 3.3 that there is a τ2 ∈ Σh such that

div τ2 = vh − div τ1 and ‖τ2‖H(div) � C‖ div τ1 − vh‖L2(Ω). (3.14)

Let τ = τ1 + τ2, which implies that

div τ = vh and ‖τ‖H(div) � C‖vh‖L2(Ω). (3.15)

This proves the discrete B-B condition (3.2).



Hu J et al. Sci China Math February 2015 Vol. 58 No. 2 305

Theorem 3.5. Let (σ, u) ∈ Σ × V be the exact solution of problem (2.1) and (τh, uh) ∈ Σh × Vh the

finite element solution of (2.21). Then, for k � 4,

‖σ − σh‖H(div) + ‖u− uh‖L2(Ω) � Chk(‖σ‖Hk+1(Ω) + ‖u‖Hk(Ω)). (3.16)

Proof. The stability of the elements and the standard theory of mixed finite element methods [13, 14]

give the following quasioptimal error estimate immediately,

‖σ − σh‖H(div) + ‖u− uh‖L2(Ω) � C inf
τh∈Σh,vh∈Vh

(‖σ − τh‖H(div) + ‖u− vh‖L2(Ω)). (3.17)

Let Ph denote the local L2 projection operator, or triangle-wise interpolation operator, from V to Vh,

satisfying the error estimate

‖v − Phv‖L2(Ω) � Chk‖v‖Hk(Ω) for any v ∈ Hk(Ω,R3). (3.18)

Choosing τh = Ihσ ∈ Σh, where Ih is defined in (3.4) and (3.5), we have [28], as Ih preserves symmetric

Pk functions locally,

‖σ − τh‖L2(Ω) + h|σ − τh|H(div) � Chk+1‖σ‖Hk+1(Ω). (3.19)

Let vh = Phv and τh = Ihσ in (3.17), by (3.18) and (3.19), we obtain (3.16).

Remark 3.6. By using a mesh dependent norm technique, see for example [29], we can prove the

following optimal error estimate,

‖σ − σh‖L2(Ω) � Chk+1‖σ‖Hk+1(Ω),

provided that σ ∈ Hk+1(Ω, S).

4 Numerical tests

We compute one example in 3D, by P4 and by P5 mixed finite element methods. It is a pure displacement

problem on the unit cube Ω = (0, 1)3 with a homogeneous boundary condition that u ≡ 0 on ∂Ω. In the

computation, we let

Aσ =
1

2μ

(
σ − λ

2μ+ nλ
tr(σ)δ

)
, n = 3, where δ =

⎛⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎠ ,

and μ = 1/2 and λ = 1 are the Lamé constants.

Let the exact solution on the unit square [0, 1]3 be

u =

⎛⎜⎜⎝
24

25

26

⎞⎟⎟⎠ x(1− x)y(1 − y)z(1− z). (4.1)

Then, the true stress function σ and the load function f are defined by the equations in (2.1), for the

given solution u.

In the computation, the level one grid is the given domain with a diagonal line shown in Figure 4.1.

Each grid is refined into a half-sized grid uniformly, to get a higher level grid, shown in Figure 4.1. In all

the computation, the discrete systems of equations are solved by Matlab backslash solver. In Table 4.1,

the errors and the convergence order in various norms are listed for the true solution (4.1), by the P4

mixed finite element in (2.10) and (2.4), with k = 4 there. The optimal order of convergence is achieved

in Table 4.1, confirming Theorem 3.5.
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Figure 4.1 The initial grid for (4.1), and its level 2 refinement

Table 4.1 The error and the order of convergence by the P4 finite element,

k = 4 in (2.4) and (2.10), for (4.1)

‖σ − σh‖L2(Ω) hn ‖u− uh‖L2(Ω) hn ‖div(σ − σh)‖L2(Ω) hn

1 0.19929801 0.0 0.06133241 0.0 1.47254873 0.0

2 0.00804695 4.6 0.00714869 3.1 0.09203430 4.0

3 0.00029057 4.8 0.00049143 3.9 0.00575214 4.0

Table 4.2 The error and the order of convergence by the P5 finite element,

k = 5 in (2.4) and (2.10), for (4.1)

‖Ihσ − σh‖L2(Ω) hn ‖Ihu− uh‖L2(Ω) hn ‖div(Ihσ − σh)‖L2(Ω) hn

1 0.00000002 0.0 0.01937914 0.0 0.00000011 0.0

2 0.00000002 0.0 0.00089726 4.4 0.00000031 0.0

In Table 4.2, the errors and the convergence order in various norms are listed for the true solution

(4.1), by the P5 mixed finite element in (2.10) and (2.4), with k = 5 there. Here the exact solution σ is

a polynomial tensor of degree 5. Thus, it is in the stress finite element space Σh and the finite element

solution σh is exact. It is computed so, shown in the second column and the six column in Table 4.2.

The optimal order of convergence is achieved for the displacement u in Table 4.2 (up to the computer

accuracy), confirming Theorem 3.5.
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