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Abstract We study symmetric tensor spaces and cones arising from polynomial optimization and physical

sciences. We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,

which leads to several other interesting properties in symmetric tensor spaces. We then consider the positive

semidefiniteness of linear operators which deduces the convexity of the Frobenius norm function of a symmetric

tensor. Furthermore, we characterize the symmetric positive semidefinite tensor (SDT) cone by employing the

properties of linear operators, design some face structures of its dual cone, and analyze its relationship to many

other tensor cones. In particular, we show that the cone is self-dual if and only if the polynomial is quadratic,

give specific characterizations of tensors that are in the primal cone but not in the dual for higher order cases,

and develop a complete relationship map among the tensor cones appeared in the literature.
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1 Introduction

A symmetric tensor is a higher order generalization of a symmetric matrix. Analogous to the fact that a

symmetric matrix can be regarded both as a linear operator on some Euclidean space and as an element

in symmetric matrices space, a symmetric tensor both acts as a multilinear operator on some Cartesian

products of Euclidean spaces and as a component of symmetric tensors space. As the former one, it has

recently gained intense attention due to its wide applications to polynomial optimization [9], higher order

derivatives of smooth functions [13], moments and cumulants of random vectors [15] in the theoretical

respect, and to physical sciences such as imaging technologies in the practical respect. As the latter

one, new mathematical developments for symmetric tensors involve tensor eigenvalues [17], tensor ranks

and symmetric outer product decompositions [6], all of which are generalizations to symmetric matrices.

Linear operators are fundamental and essential for any linear space, and hence for the symmetric tensor

space. However, few papers concentrate on linear operators and their properties which work on symmetric

tensors in the manner of a tensor-level thinking.
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In this paper, we are interested in a class of special linear operators on symmetric tensor spaces, which

further contribute to exploiting properties of some special components — the cone of positive semidefinite

symmetric tensors (SDT cone for short) in symmetric tensor spaces. An intimate relation to positive

semidefinite symmetric tensors is the nonnegative homogeneous polynomials, where the nonnegativity is

an intrinsic property of polynomial functions, as one can see from quadratic polynomial functions. Let

x ∈ R
n and m be a positive integer. An m-order homogeneous polynomial function in x can be written as

fA(x) =

n∑
i1,...,im=1

Ai1···imxi1xi2 · · ·xim . (1.1)

The coefficients of the polynomial can be regarded as an m-order n-dimensional real tensor, denoted

by A, which is symmetric — invariant under any permutation of its indices. Such a tensor A is said to

be positive semidefinite if the corresponding polynomial fA(x) is nonnegative for any x ∈ R
n. Obviously,

positive semidefinite tensors only occur when m is even. The SDT cone consists of all such tensors. In

this regard, verifying the nonnegativity of a homogeneous polynomial is equivalent to identifying the

associated tensor lies in the SDT cone. Additionally, for many real applications, a tensor, either second

or higher order, must be positive semidefinite to be physically meaningful. For example, the involved

diffusion tensor in the diffusion weighted MRI is a symmetric positive semidefinite tensor of order 4

and dimension 3 (see [3]). All these show the evidence that to study the SDT cone is a necessary and

meaningful work to a certain extent.

We greatly employ a special class of linear operators to get a better understanding of the SDT cone and

the corresponding tensor space. Such a class of special linear operators on symmetric tensor spaces is just

an m-order generalization of the symmetric-scaled representation used in interior-point algorithms in the

literature of semidefinite programming [21], and shares a decomposition invariance theorem resembling

that of the symmetric-scaled representation. Several other interesting properties in symmetric tensor

spaces follow from this invariance property. All these properties may be potential to build a foundation

for us to learn more about the symmetric tensor structures which provide greater descriptive flexibility

than that of the corresponding reshaped matrix-based structures.

The positive semidefiniteness (i.e., monotonicity and self-adjointness) of such a class of linear operators

is also considered which leads to the convexity of the Frobenius norm function of a symmetric tensor.

Specially, for the case n = 3, we exhibit the matrix representation and the rank of such a matrix of

the aforementioned class of linear operators, and then exploit the positive semidefiniteness of linear

operators by the property of the corresponding matrices. Here the concept of matrix representation for a

general linear operator was first proposed by Qi and Ye [18] by employing a linear isomorphic operator L
which builds up a one-to-one correspondence from a tensor of dimension 3 to a real vector in R

κ with

κ = (m+2)(m+1)
2 , the number of independent components of a 3-dimensional symmetric tensor.

Based on the achieved properties of such a class of linear operators aforementioned, we proceed with

characterizing the SDT cone. Just like all positive semidefinite symmetric matrices form a closed pointed

convex self-dual cone in symmetric matrices space, the SDT cone can be easily verified as a closed pointed

convex cone, while generally no longer self-dual in symmetric tensors space. In particular, we show that

the symmetric positive semidefinite tensor cone is self-dual if and only if m = 2. We also present other

results for the dual of the SDT cone such as a class of its faces, and give specific characterizations of

tensors that in the primal cone but not in the dual. In addition, we analyze SDT’s relationship to many

other tensor cones, such as nonnegative tensor, partially diagonal tensor, and sum-of-squares (SOS) cones.

We present a complete relationship map among these cones. This also expresses some striking differences

between tensors and matrices.

The organization of this paper is as follows. In Section 2, we propose a decomposition invariance

property for a class of linear operators and describe some other interesting properties of such linear

operators based on such decomposition invariance property. In Section 3, the positive semidefiniteness

of such linear operators is considered. Symmetric positive semidefinite tensor cone and its relationship

to its dual cone and several other cones, such as nonnegative tensor cone, partially diagonal tensor cone
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and sum-of-squares (SOS) cone are characterized by the aforementioned properties of linear operators in

Sections 4 and 5. Some concluding remarks are made in Section 6.

Before we proceed, we describe some notation used throughout this paper: T (m,n) stands for the set

of all m-order n-dimensional real symmetric tensors; [x]m := x⊗x⊗· · ·⊗x is a rank-one symmetric tensor

generated by the outer product ofm copies of a vector x; S(m,n) denotes the set of all positive semidefinite

tensors in T (m,n); V(m,n) is the dual cone of S(m,n) in T (m,n); L(·) is the linear isomorphic operator

between T (m, 3) and R
κ with κ = 1

2 (m + 1)(m + 2). Let F be a convex subset of some convex closed

cone K, F � K means that F is a face of K, i.e., for any x, y ∈ K with x + y ∈ F , we have x,

y ∈ F . The inner product of two tensors X , Y ∈ T (m,n) is defined as the component-wise product

〈X,Y 〉 =
∑n

i1,...,im=1 Xi1···imYi1···im and ‖ · ‖F denotes the Frobenius norm which is deduced by the inner

product. Unless otherwise pointed out, we will restrict m to be even in the rest of the paper.

2 A decomposition invariance property

A linear operator is a basic operation to any linear space, so is to the tensor space. Qi and Ye [18]

proposed a class of linear operators based on matrices in tensors space for the purpose of the orthogonal

similarity of E-eigenvalues. Comon and Sorensen [7] employed such class of linear operators based on

orthogonal matrices for tensor diagonalization. The definition of this class of linear operators is reviewed

as follows.

Definition 2.1. Let P = (Pij) ∈ R
n×n. Define a linear operator P [m] such that

(P [m](A))i1···im :=

n∑
i′1,...,i′m=1

Pi1i′1 · · ·Pimi′mAi′1···i′m , (2.1)

for any A ∈ T (m,n) with the (i1, . . . , im)-th entry Ai1···im .

We use P [m] to denote such a linear operator in this paper instead of Pm used in [17] to avoid the

notation confusion from power operation of matrices in subsequent analyses. Note that P [m] is a linear

operator from T (m,n) to itself according to [17, Proposition 10], and its definition is given in an entry-

wise manner. Now, we turn our attention to the decomposition form of such linear operator based on

the so-called symmetric outer product decomposition of symmetric tensors; see Comon et al. [6], i.e., for

any A ∈ T (m,n), one can find α1, . . . , αs ∈ R and u(1), . . . , u(s) ∈ R
n such that

A =
s∑

i=1

αi[u
(i)]m. (2.2)

Though the symmetric outer product decomposition (2.2) of any given A is not unique in general [6,12],

we prove that the linear operator P [m] enjoys the following decomposition invariance property.

Theorem 2.2 (Decomposition invariance). For any P ∈ R
n×n, and any A ∈ T (m,n) with any of its

symmetric outer product decomposition A =
∑s

i=1 αi[u
(i)]m, we have

P [m](A) =

s∑
i=1

αi[P (u(i))]m. (2.3)

Proof. For any A ∈ T (m,n) and any i1, . . . , im ∈ {1, 2, . . . , n}, we have( s∑
i=1

αi[P (u(i))]m
)

i1···im
=

s∑
i=1

αi(P (u(i)))i1 · · · (P (u(i)))im

=

s∑
i=1

αi

( n∑
j1=1

Pi1j1u
(i)
j1

)
· · ·

( n∑
jm=1

Pimjmu
(i)
jm

)

=

s∑
i=1

αi

n∑
j1,...,jm=1

Pi1j1u
(i)
j1

· · ·Pimjmu
(i)
jm
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=
n∑

j1,...,jm=1

Pi1j1 · · ·Pimjm

s∑
i=1

αiu
(i)
j1

· · ·u(i)
jm

=
n∑

j1,...,jm=1

Pi1j1 · · ·PimjmAj1···jm

= (P [m](A))i1···im ,

where the last equality is achieved by (2.1). This completes the proof.

It is worth pointing out that P [m] can be regarded as an extension of the symmetric-scaled represen-

tation QP in the setting of symmetric matrices space, i.e.,

QP (A) = PAPT = P [2](A), ∀A ∈ S(2, n).

Such an operator plays an essential role in the design of interior-point methods for the symmetry preser-

vation in the context of semidefinite programming [2, 21] and has also been generalized to the Euclidean

Jordan algebra, which is called the quadratic representation; see [8, 19, 20] for more details.

Next, we show that the operator P [m] possesses several nice properties analogous with the ones of

quadratic representation. The decomposition invariance property developed in Theorem 2.2 greatly

facilitates the proofs of these properties.

Proposition 2.3. For any P ∈ R
n×n, we have

(i) (P [m])k = (P k)[m];

(ii) if P is invertible, then (P [m])−1 = (P−1)[m];

(iii) 〈P [m](A), B〉 = 〈A, (PT)[m](B)〉, for any A, B ∈ T (m,n);

(iv) if P is invertible, then 〈P [m](A), (P−T )[m](B)〉 = 〈A,B〉, for any A, B ∈ T (m,n);

(v) if m is odd, then P [m] is a symmetric operator iff P is a symmetric matrix;

(vi) if m is even, then P [m] is a symmetric operator iff P is a symmetric matrix or a skew-symmetric

matrix.

Proof. The assertions in (i) and (ii) follow directly from the decomposition invariance property of P [m].

For any A, B ∈ T (m,n), with A =
∑s

i=1 αi[u
(i)]m, B =

∑T
j=1 βj [w

(j)]m, it yields from (2.3) that

〈P [m](A), B〉 =
〈 s∑

i=1

αi[Pu(i)]m,
T∑

j=1

βj [w
(j)]m

〉

=

s∑
i=1

T∑
j=1

αiβj〈[Pu(i)]m, [w(j)]m〉

=
s∑

i=1

T∑
j=1

αiβj((w
(j))TPu(i))m

=

s∑
i=1

T∑
j=1

αiβj((u
(i))TPTw(j))m

=

s∑
i=1

T∑
j=1

αiβj〈[PTw(j)]m, [u(i)]m〉

=

〈 s∑
i=1

αi[u
(i)]m,

T∑
j=1

βj [P
Tw(j)]m

〉

= 〈A, (PT)[m](B)〉.

This proves the assertion in (iii). The statement in (iv) follows from (ii) and (iii), and (v) and (vi) follow

from (iii).
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We now characterize the range and null spaces of linear operator P [m], whose proofs are straightforward

and we omit them here. They are basically determined by the range and null spaces of matrix P due to

Theorem 2.2.

Proposition 2.4. For any P ∈ R
n×n,

(i) the range space and the null space of P [m] are given by

R(P [m]) =

{ r∑
i=1

αi[u
(i)]m : αi ∈ R, u(i) ∈ R(P ), i = 1, 2, . . . , r, r ∈ N

}
,

N (P [m]) =

{ r∑
i=1

αi[u
(i)]m : αi ∈ R, u(i) ∈ N (P ), i = 1, 2, . . . , r, r ∈ N

}
.

(ii) if P is invertible, then R(P [m]) = T (m,n) and N (P [m]) = {0}.
We are also able to give explicit expressions of the range and null spaces of P [m] for any P ∈ R

n×n in

terms of the generalized inverse of a matrix, instead of the symmetric outer product decomposition form

presented above. This resembles the projection theory of regular matrices.

Proposition 2.5. For any P ∈ R
n×n, let P † be the generalized inverse of P . Then,

(i) (P [m])† = (P †)[m];

(ii) R(P [m]) = (PP †)[m](T (m,n)), N (P [m]) = (I − (P †P )[m])(T (m,n));

(iii) for any A ∈ T (m,n) and the tensor equation P [m](X) = A, X = (P †)[m](A)+ (I − (P †P )[m])(B),

B ∈ T (m,n) is a general solution to the equation if it is consistent, or a least-squares solution if it is

inconsistent.

Actually, the class of linear operators defined in Definition 2.1 and its linear combinations play a

fundamental role in the symmetric tensor space which can act as a subtensor generator, some special pro-

jection operators, diagonalization operators and even the Hadamard product, as the following proposition

illustrates.

Proposition 2.6. For any B ∈ T (m,n),

(i) let Γk be any index subset of {1, 2, . . . , n} with |Γk| = k (k = 1, . . . , n), BΓk
∈ T (m, k) be the

corresponding m-order k-dimensional sub-tensor of B, and BΓk
be the natural expansion of BΓk

. Then

(IΓk
)[m](B) = BΓk

, where IΓk
∈ R

n×n is the matrix with the (i, i)-entry 1 if i ∈ Γk and other entries 0;

(ii) let w(1), w(2), . . . , w(h) ∈ R
n be unit vectors which are pairwise orthogonal, and S{w(1),w(2),...,w(h)} :=

{
∑h

i=1 ki[w
(i)]m : ki ∈ R, i = 1, 2, . . . , h}. Then the projection of B onto S{w(1),w(2),...,w(h)} is∑h

i=1(P
(i))[m](B), with P (i) := w(i)(w(i))T;

(iii) let diag(B) be the diagonal tensor which remains the diagonal entries of B and others 0. Then

diag(B) =
∑n

i=1(P̃
(i))[m](B), with P̃ (i) := e(i)(e(i))T, where e(i) ∈ R

n with 1 at the ith entry and 0

everywhere else;

(iv) let A :=
∑s

i=1 αi[u
(i)]m and A ◦ B be the Hadamard product of A and B. Then A ◦ B =∑s

i=1 αi(P̄
(i))[m](B), with P̄ (i) the diagonal matrix generated by u(i).

Proof. (i), (ii) and (iii) follow by definition. For any B ∈ T (m,n) with any of its symmetric outer

product decomposition B =
∑t

j=1 βj [v
(j)]m, it follows from the decomposition invariance property that

for any i1, . . . , im ∈ {1, 2, . . . , n},
( s∑

i=1

αi(P̄
(i))[m](B)

)
i1···im

=

( s∑
i=1

αi

t∑
j=1

βj [P̄
(i)v(j)]m

)
i1···im

=

s∑
i=1

αi

t∑
j=1

βj(u
(i))i1(v

(j))i1 · · · (u(i))im (v(j))im

=

( s∑
i=1

αi(u
(i))i1 · · · (u(i))im

)( t∑
j=1

βj(v
(j))i1 · · · (v(j))im

)
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= Ai1···imBi1···im .

Thus the assertion in (iv) follows and the whole proof is complete.

3 Positive semidefiniteness of linear operators

A linear operator is said to be positive semidefinite if it is monotone and self-adjoint. It is known that the

monotonicity of the gradient function leads to the convexity of the primitive real-valued function and the

self-adjointness of a linear operator indicates some symmetry property with respect to the inner product.

This section is devoted to the positive semidefiniteness of aforementioned linear operators in symmetric

tensor spaces. We begin with a basic theorem on such issue as follows.

Theorem 3.1. For any P ∈ R
n×n, (PTP )[m] is a positive semidefinite operator in T (m,n).

Proof. For anyA ∈ T (m,n) with any of its symmetric outer product decompositionA =
∑s

i=1 αi[u
(i)]m,

by the decomposition invariance property, we have

〈(PTP )[m](A), A〉 =
〈 s∑

i=1

αi[P
TPu(i)]m,

s∑
j=1

αj [u
(j)]m

〉

=

s∑
i=1

s∑
j=1

αiαj〈PTPu(i), u(j)〉m

=
s∑

i=1

s∑
j=1

αiαj〈Pu(i), Pu(j)〉m

=

⎡
⎢⎢⎢⎢⎢⎣

α1

α2

...

αs

⎤
⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

〈Pu(1), Pu(1)〉m · · · 〈Pu(1), Pu(s)〉m

〈Pu(2), Pu(1)〉m · · · 〈Pu(2), Pu(s)〉m
...

. . .
...

〈Pu(s), Pu(1)〉m · · · 〈Pu(s), Pu(s)〉m

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

α1

α2

...

αs

⎤
⎥⎥⎥⎥⎥⎦

=: wTMw,

where w := (α1, α2, . . . , αs)
T ∈ R

s and

M :=

⎡
⎢⎢⎢⎢⎢⎣

〈Pu(1), Pu(1)〉m · · · 〈Pu(1), Pu(s)〉m

〈Pu(2), Pu(1)〉m · · · 〈Pu(2), Pu(s)〉m
...

. . .
...

〈Pu(s), Pu(1)〉m · · · 〈Pu(s), Pu(s)〉m

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

s×s.

Denote U := [u(1), . . . , u(s)] ∈ R
n×s. It is easy to verify that

M = ((PU)TPU) ◦ ((PU)TPU) ◦ · · · ◦ ((PU)TPU)︸ ︷︷ ︸
m copies

,

where ◦ is the Hadamard product. Noting that ((PU)TPU) ∈ S(2, s), together with [11, Theorem 5.2.1],

we have M ∈ S(2, s) for any U ∈ R
n×s, which further implies that wTMw � 0 for any w ∈ R

s. Thus

〈(PTP )[m](A), A〉 � 0 for any A ∈ T (m,n) and hence (PTP )[m] is positive semidefinite.

When T (m,n) is specified to the symmetric matrices space, Theorem 3.1 turns out to be the fact that

for any Ψ := PTP , the Kronecker product of Ψ and itself, denoted by KΨ, remains symmetric positive

semidefinite, as we can easily verify that the vectorization of ΨXΨ is exactly KΨvec(X), where vec(·)
is the vectorization operator. Theorem 3.1 further implies the convexity of the Frobenius norm function

f(A) := 1
2‖P [m](A)‖2F in tensor A.
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Proposition 3.2. For any given P ∈ R
n×n, the gradient of f(A) := 1

2‖P [m](A)‖2F at A is ∇f(A) =

(PTP )[m](A). Moreover, f(A) is a convex function of A.

Proof. By direct calculation, we have

f(A) =
1

2

n∑
i1···im=1

( n∑
i′1,...,i′m=1

Pi1i′1 · · ·Pimi′mAi′1···i′m

)2

,

which further implies that

∂f

∂Aj1···jm
=

n∑
i1···im=1

( n∑
i′1,...,i′m=1

Pi1i′1 · · ·Pimi′mAi′1···i′m

)
Pi1j1 · · ·Pimjm

=

n∑
i1···im=1

(P [m](A))i1···imPi1j1 · · ·Pimjm

= ((PT)[m](P [m](A)))j1 ···jm
= ((PTP )[m](A))j1···jm .

Henceforth, ∇f(A) = (PTP )[m](A). Applying Theorem 3.1, together with the first order property of

convex function in convex analysis, we get the convexity of f(A) immediately.

Qi and Ye [18] proposed a linear operator L which builds up a one-to-one correspondence from T (m, 3)

to R
κ with κ = (m+2)(m+1)

2 . They further managed to achieve the equivalence between positive semidef-

inite linear operators on T (m, 3) and symmetric positive semidefinite matrices in R
κ×κ. Similarly, we

restrict our attention also to 3-dimensional symmetric tensors, which are called space tensors; see [18],

and consider the positive semidefiniteness of some special linear operators via the corresponding matrix

representations in the remaining of this section.

Lemma 3.3. Let Q :=
∑h

i=1 αi(u
(i)(u(i))T)[m] with u(i) ∈ R

3. Then the corresponding matrix repre-

sentation of Q is

Q :=

h∑
i=1

αiL([u(i)]m)L([u(i)]m)T.

Proof. Note that for any A ∈ T (m, 3), we have

L(Q(A)) = L
( h∑

i=1

αi(u
(i)(u(i))T)[m](A)

)

= L
( h∑

i=1

αi〈[u(i)]m, A〉[u(i)]m
)

=
h∑

i=1

αi〈[u(i)]m, A〉L([u(i)]m)

=
h∑

i=1

αi〈L([u(i)]m),L(A)〉L([u(i)]m)

=

h∑
i=1

αiL([u(i)]m)L([u(i)]m)TL(A).

In view of the identity L(Q(A)) = Q(L(A)), the desired result follows.

Based on the lemma, we consider the rank of the representation matrix.

Proposition 3.4. Let Q :=
∑h

i=1 αi(u
(i)(u(i))T)[m] with u(1), u(2), . . . , u(h) ∈ R

3 pairwise linearly

independent, and m � h − 1. Then the rank of the corresponding matrix representation Q is h if all

αi 
= 0, and Q is positive semidefinite iff αi � 0 for all i = 1, 2, . . . , h.
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Proof. By the fact that u(1), u(2), . . . , u(h) ∈ R
3 are pair-wise linearly independent, we have [u(1)]m,

[u(2)]m, . . . , [u(h)]m are linearly independent from [6, Corollary 4.4]. Note that L is the linear iso-

morphic operator between T (m, 3) and R
κ with κ := 1

2 (m + 1)(m + 2). Thus the linear indepen-

dency of L([u(1)]m), L([u(2)]m), . . . ,L([u(h)]m) follows. This further implies that L([u(1)]m)L([u(1)]m)T,

L([u(2)]m)L([u(2)]m)T, . . . ,L([u(h)]m)L([u(h)]m)T are linearly independent. If αi 
= 0, then Q has rank h.

The remaining part can be verified directly by definition.

Note that if h � m + 1, then h � κ = 1
2 (m + 1)(m + 2) and hence the matrix representation of

Q defined in the above proposition is always rank-deficient. Next, we give an explicit form of a linear

operator which enjoys the positive definiteness like a regular matrix.

Proposition 3.5. Let v(1), v(2), . . . , v(κ) ∈ R
κ be any linearly independent unit vectors, S̄v(i) :=

{kL−1(v(i)) : k ∈ R} (i = 1, 2, . . . , κ) and Q :=
∑t

i=1 qiPS̄
v(i)

with qi ∈ R, where PS̄
v(i)

is the projection

operator on S̄v(i) . Here L−1 is the inverse operator of L. Then the corresponding matrix representation

is Q :=
∑t

i=1 qiv
(i)(v(i))T. Moreover, Q is symmetric and

(i) Q is positive semidefinite iff all qi � 0;

(ii) Q is positive definite iff all qi > 0.

Proof. We can verify by definition that

PS̄
v(i)

(A) = 〈L−1(v(i)), A〉L−1(v(i)), ∀A ∈ T (m, 3).

Therefore,

L(Q(A)) = L
( t∑

i=1

qi〈L−1(v(i)), A〉L−1(v(i))

)

=

t∑
i=1

qi〈L−1(v(i)), A〉v(i)

=

t∑
i=1

qi〈v(i),L(A)〉v(i),

which implies that Q(L(A)) =
∑t

i=1 qiv
(i)(v(i))TL(A). Thus, the first part of the assertion is established.

Then the “moreover” part follows directly by definition.

Indeed, the projection PS̄
v(i)

(A) mentioned in the above proposition is exactly a kind of contraction

product (see [7]) of the 2m-order n-dimensional tensor L−1(v(i))⊗L−1(v(i)) and A, which can be specified

as

PS̄
v(i)

(A) = (L−1(v(i))⊗ L−1(v(i))) •1 •2 · · · •m A.

Here L−1(v(i))⊗ L−1(v(i)) is the outer product of L−1(v(i)) and itself, which is defined as

(L−1(v(i))⊗ L−1(v(i)))i1···imj1···jm = (L−1(v(i)))i1···im(L−1(v(i)))j1···jm .

Obviously, such 2m-order tensor loses the symmetry for any m � 2.

4 Symmetric positive semidefinite tensor cone

Analogous with the positive semidefinite cone in the symmetric matrix space, we now turn our attention

to the positive semidefinite tensor cone in the symmetric tensor space. Positive definiteness is an intrinsic

property. For many real applications, a tensor must be positive semidefinite to be physically meaningful.

In this section, we characterize the self-duality of the SDT cone and some face structures of its dual cone

by employing the properties of aforementioned linear operators. The high-order SDT cone, first defined

by Qi and Ye [18] for space tensors, will be extended to the space T (m,n) with any n � 2 in this paper.

First, we define what the SDT cone is.
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Definition 4.1. For any A ∈ T (m,n), we say A is positive semidefinite if

A[x]m � 0, ∀x ∈ R
n.

The set of all positive semidefinite tensors in T (m,n), denoted by S(m,n), is called symmetric positive

semidefinite tensor cone.

Similar to [18, Theorem 3], we can also derive the dual cone of S(m,n) as follows.

Proposition 4.2. The dual cone of S(m,n), termed as V(m,n), has the form:

V(m,n) =

{ l∑
i=1

[x(i)]m : x(i) ∈ R
n, i = 1, 2, . . . , l

}
,

where l is the dimension of the space T (m,n).

Evidently, V(m,n) ⊆ S(m,n). In particular, when m = 2, both S(m,n) and V(m,n) coincide as the

well-known symmetric positive semidefinite matrix cone which plays a fundamental role in semidefinite

programming [2, 21]. Thus, S(2, n) = V(2, n) and so that it is self dual. The natural question would

be: Can the self-duality be extended to m � 4? We show next that the self-duality is not true for

m � 4. Before we proceed, we characterize some faces of V(m,n). It is evident that the set S+
w :=

{k[w]m : k ∈ R, k � 0} is an extreme ray with any given w ∈ R
n and hence a face of V(m,n) and S(m,n).

Next we give another class of faces of V(m,n).

Theorem 4.3. For any k ∈ {1, . . . , n} and any index subset Γk ⊆ {1, . . . , n} with |Γk| = k, let IΓk
be

defined as in Proposition 2.6(i). Then we have

(IΓk
)[m](V(m,n))� V(m,n).

Proof. Without loss of generality, we may assume that Γk = {1, 2, . . . , k} with any given 1 � k � n.

For any A,B ∈ V(m,n), with A =
∑r1

j=1[u
(j)]m and B =

∑r2
l=1[w

(l)]m. If A + B ∈ (IΓk
)[m](V(m,n)),

then for any x ∈ R
n with xi = 0 for any i ∈ {1, . . . , k}, (A + B)[x]m = 0. Combining with the fact A,

B ∈ V(m,n) ⊆ S(m,n), we achieve that A[x]m = B[x]m = 0. By setting x(i) ∈ R
n with x

(i)
i+k 
= 0 and

other components 0 for any i = 1, . . . , n− k, we can then obtain that

r1∑
j=1

(u(j))mi+k(x
(i)
i+k)

m =

r2∑
l=1

(w(l))mi+k(x
(i)
i+k)

m = 0, ∀ i = 1, . . . , n− k,

which further implies that for any i = 1, . . . , n− k,

(u(j))i+k = 0, ∀ j = 1, . . . , r1,

(w(l))i+k = 0, ∀ l = 1, . . . , r2.

Henceforth, A,B ∈ (IΓk
)[m](V(m,n)). By definition, we establish that (IΓk

)[m](V(m,n)) is a face of

V(m,n).

Utilizing the similar technique in the above proof, we can also get the following result which is analogous

with the one of symmetric positive semidefinite matrices.

Proposition 4.4. For any A ∈ V(m,n), if there exists an index i ∈ {1, 2, . . . , n} such that Aii···i = 0,

then A ∈ (IΓn−1)
[m](V(m,n)) with Γn−1 = {1, . . . , i−1, i+1, . . . , n}. Particularly, if all diagonal elements

of A are 0, then A = 0.

Proof. Since A ∈ V(m,n), we can find some integer s and u1, . . . , us ∈ R
n such that A =

∑s
j=1[u

(j)]m.

Note that

Aii···i = (u(1))mi + · · ·+ (u(s))mi = 0.

Together with the fact that m is even and all u(i) ∈ R
n, it follows readily that

(u(1))i = (u(2))i = · · · = (u(s))i = 0,
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which implies that Ai1···im = 0 if i ∈ {i1, . . . , im}. Henceforth, we have A ∈ (IΓn−1)
[m](V(m,n)) with

Γn−1 = {1, . . . , i− 1, i+1, . . . , n} from Proposition 2.6(i). Similarly, we can verify the second part of the

proposition. This completes the proof.

The above property may fail to hold for A ∈ S(m,n), as the following example shows.

Example 4.5. Let A ∈ T (4, 3) with A1122 = A1212 = A1221 = A2112 = A2121 = A2211 = 1 and other

entries 0. Then for any x = (x1, x2, x3)
T ∈ R

3, we have A[x]4 = 6x2
1x

2
2 � 0. Thus A ∈ S(4, 3).

The above example also shows that S(4, 3) 
= V(4, 3), since the aforementioned A /∈ V(4, 3) by Propo-

sition 4.4. This further comes to the self-duality result as follows.

Theorem 4.6. For any n � 2, we have V(m,n) ⊆ S(m,n), and the equality holds if and only if m = 2.

Furthermore, int(V(m,n)) ⊆ int(S(m,n)), and the equality holds if and only if m = 2.

Proof. The inclusion is evident. Thus it remains to show the equivalence between the equality and

m = 2. The sufficiency is valid by the self-duality of positive semidefinite matrices cone. To get the

necessity, it suffices to construct a symmetric tensor A which lies in S(m,n)\V(m,n) for any m � 4. Let

A ∈ T (m,n) with A1122···2 = A1212···2 = · · · = A2···211 = 1 and other entries 0. It is easy to verify that

A[x]m = αx2
1x

m−2
2 � 0, ∀x = (x1, x2, . . . , xn)

T ∈ R
n,

where α = m(m−1)
2 . Thus A ∈ S(m,n). However, such a tensor A has all its diagonal elements 0 and

henceforth A /∈ V(m,n) by Proposition 4.4. Together with the closedness of V(m,n) and S(m,n), we can

obtain the relation of their interiors. This completes the whole proof.

5 Relationship of positive semidefinite tensor cones

Followed by Theorem 4.6, we move on to considering some special subsets of int(S(m,n)) \ int(V(m,n)),

i.e., subsets between S(m,n) and V(m,n) for any m � 4 and further exhibit the relationship to other

cones in tensor spaces. We will start with a key lemma as a theoretical preparation.

Lemma 5.1. We can express the interiors of S(m,n) and V(m,n), respectively as

int(S(m,n)) = {A ∈ S(m,n) : 〈A,B〉 > 0, ∀B ∈ V(m,n), B 
= 0},
int(V(m,n)) = {B ∈ V(m,n) : 〈A,B〉 > 0, ∀A ∈ S(m,n), A 
= 0}.

Proposition 5.2. For any even m � 4, letting D̄(m,n) be the set of all diagonal tensors in T (m,n)

with all diagonal elements positive, we have D̄(m,n) ⊆ int(S(m,n)) \ int(V(m,n)).

Proof. For any diagonal tensor B with the corresponding diagonal elements α1, . . . , αn > 0, we have

B[x]m =

n∑
i=1

αix
m
i > 0, ∀x ∈ R

n, x 
= 0.

Thus, B ∈ int(S(m,n)). However, by setting a nonzero tensor A ∈ S(m,n) as defined in the proof of

Theorem 4.6, we can get 〈A,B〉 = 0. In view of Lemma 5.1, it follows that B /∈ int(V(m,n)). Henceforth,

the desired result is established.

The aforementioned diagonal tensor with positive diagonal entries is exactly a special case of nonnega-

tive tensors which have numerous applications such as high-order Markov chains [16], spectral hyper-graph

theory [4], multi-linear pagerank in the internet [14]. This inspires us to exploit more connections between

nonnegative tensors and positive semidefinite tensors. As a start, a generalization of diagonal tensors is

introduced as follows.

Definition 5.3. For any A ∈ T (m,n), the entries Ai1···im whose subscript i1 · · · im can be written as

j1j1 · · · jm/2jm/2 by permutation, are called the partially diagonal entries of A, others are called the off

partially diagonal entries. A tensor A ∈ T (m,n) is said to be partially diagonal if all its off partially

diagonal entries are 0.
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Actually, the partially diagonal tensors in T (m,n) can be easily verified to be quasi-diagonal tensors

which were defined by Chang et al. [5]. Denote the set of all partially diagonal tensors in T (m,n)

by D(m,n), and the set of all tensors in D(m,n) with nonnegative (or respectively, positive) partially

diagonal entries by D+(m,n) (or respectively, D++(m,n)). It is evident that all diagonal tensors are

partially diagonal and when m = 2, D(m,n) is exactly the set of all diagonal matrices in R
n×n.

Proposition 5.4. D+(m,n) is a pointed, convex, closed cone in T (m,n) and

(i) D+(m,n) has no interior in T (m,n);

(ii) D+(m,n) has the interior D++(m,n) in D(m,n).

The relation among S(m,n), V(m,n) and D+(m,n) are as follows.

Theorem 5.5. For any n � 2, we have

(i) D+(m,n) ⊂ S(m,n), and D++(m,n) ⊂ int(S(m,n));

(ii) Every tensor in V(m,n) has nonnegative partially diagonal entries.

Before providing the proof of the above theorem, we will first introduce another type of sub-tensors in

T (m,n). For any A =
∑s

i=1 αi[u
(i)]m, we say

A
(kl)
(m−2) =

s∑
i=1

αi[u
(i)](m−2)(u(i))k(u

(i))l

is an (m−2)-order n-dimensional subtensor of A. There are n(n+1)
2 different (m−2)-order n-dimensional

subtensors of A. By definition, we can immediately get that for any A ∈ T (m,n),

(A
(kl)
(m−2))i1···im−2 = Ai1···im−2kl, ∀ i1, . . . , im−2 ∈ {1, 2, . . . , n},

and hence

A[x]m =

n∑
i1,...,im−2=1

n∑
k,l=1

(A
(kl)
(m−2))i1···im−2xkxlxi1 · · ·xim−2 , ∀x ∈ R

n.

Proposition 5.6. For any A ∈ V(m,n), i.e., A =
∑s

i=1[u
(i)]m with s � (m+n−1)!

m!(n−1)! , we have A
(kk)
(m−2) ∈

V(m− 2, n) for any k = 1, 2, . . . , n.

Proof. By definition we have

A
(kk)
(m−2) =

s∑
i=1

[u(i)](m−2)(u(i))2k =

s∑
i=1

[(u(i))
2

m−2

k u(i)](m−2).

This completes the proof.

Proof of Theorem 5.5. From the above proposition, we can get
(n+m

2 −1)!
m
2 !n! different n × n symmetric

positive semidefinite matrices for any A ∈ V(m,n) and each diagonal element of such matrices is exactly

a partially diagonal entry of A. Noting that all diagonal elements of symmetric positive semidefinite

matrices are nonnegative, it comes to the assertion of (ii). For any A ∈ D+(m,n), we have

A[x]m =

n∑
j1,...,jm/2

αj1,...,jm/2
Aj1j1···jm/2jm/2

x2
j1 · · ·x

2
jm/2

� 0, ∀x ∈ R
n,

where αj1,...,jm/2
> 0 is the number of different permutations of j1j1 · · · jm/2jm/2. This implies that

D+(m,n) ⊆ S(m,n). Let A be the tensor in T (m,n) with

A11···1 = 1, A22···2 =
α2

4
, A 1 · · · 1︸ ︷︷ ︸

m
2

copies

2 · · · 2︸ ︷︷ ︸
m
2

copies

= · · · = A2···21···1 = −1,

where α is permutation number of the 1 · · · 12 · · · 2. By the construction of A, we have A /∈ D+(m,n), but

A[x]m = xm
1 +

α2

4
xm
2 − αx

m/2
1 x

m/2
2 � 0, ∀x ∈ R

n,
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which implies that A ∈ S(m,n). Thus D+(m,n) ⊂ S(m,n). For any B ∈ D++(m,n), it is easy to

verify that

A[x]m �
n∑

i=1

Aii···ixm
i > 0, ∀x ∈ R

n, x 
= 0.

This deduces that D++(m,n) ⊂ int(S(m,n)).

Applying Proposition 2.18 and Theorem 5.5(i), we can provide a class of tensors which belong to

S(m,n) but not to V(m,n) for any m � 4 and n � 2.

Corollary 5.7. For any m � 4 and n � 2, we have

D0(m,n) := {A ∈ D+(m,n) : A 
= 0, Aii···i = 0, ∀ i = 1, 2, . . . , n} ⊆ S(m,n) \ V(m,n).

From Theorem 5.5(ii), we know that V(m,n) ∩ D+(m,n) 
= ∅, and from Example 4.5, we have

D+(m,n) \ V(m,n) 
= ∅. It is easy to verify the non-emptiness of V(m,n) \ D+(m,n). For example,

let A = [x]4 with x = (1,−1)T ∈ R
2. By definition we know that A ∈ V(4, 2) and by direct calcula-

tion we have all its partially diagonal entries 1 and off partially diagonal entries −1, which implies that

A /∈ D+(4, 2). Henceforth, the cones V(m,n) and D+(m,n) properly intersect with each other.

It is known that any tensor A ∈ T (m,n) has a one-to-one m-degree homogeneous polynomial coun-

terpart fA(x) as stated in (1.1). This correspondence further leads to equivalence that fA(x) is positive

semidefinite iff A ∈ S(m,n). Inspired by such observation, we can similarly get a closed convex cone

in T (m,n), termed as SOS(m,n), which is corresponding to all the m-order homogeneous polynomials

which can be written as sum-of-squares. We employ the name in the literature of polynomial theory and

call such cone the SOS cone.

Proposition 5.8. For any m � 4 and n � 2, we have

(i) V(m,n) ⊂ SOS(m,n) ⊆ S(m,n);

(ii) D+(m,n) ⊂ SOS(m,n);

(iii) The dual cone SOS(m,n)∗ = {B ∈ T (m,n) : 〈B,C ⊗ C〉 � 0, ∀C ∈ T (m2 , n)} and all partially

diagonal entries of any tensor in SOS(m,n)∗ are nonnegative.

The polynomial defined in (1.1) is a continuously differentiable function in x ∈ R
n. By convex analysis,

we know that fA(x) is convex in x if and only if ∇2fA(x) ∈ S(2, n) for any x ∈ R
n. A new notion called

SOS-convexity has recently been proposed as a tractable sufficient condition for convexity of polynomials

based on sum of squares decomposition [1]. The definition is as follows.

Definition 5.9 (SOS-convexity [1]). A multivariate polynomial f(x) ∈ R[x1, . . . , xn] is said to be

SOS-convex if its Hessian matrix H(x) can be factored as H(x) = V (x)TV (x) for any x ∈ R
n with some

V (x) ∈ R
n×n.

Proposition 5.10. Let fA(x) be defined as in (1.1). We have

(i) if fA(x) is convex, then A ∈ S(m,n);

(ii) if fA(x) is SOS-convex, then A ∈ SOS(m,n);

(iii) if A ∈ V(m,n), then fA(x) is SOS-convex and hence convex.

Proof. By direct calculation, we have

∇2fA(x) = m(m− 1)A[x]m−2, ∀x ∈ R
n. (5.1)

By the second order property of convex function, it follows that fA(x) is convex iff

∇2fA(x) ∈ S(2, n), ∀x ∈ R
n.

Combining with (5.1), we obtain that for any x ∈ R
n, A[x]m−2 ∈ S(2, n), which further implies that

A[x]m = 〈x,A[x]m−2x〉 � 0, ∀x ∈ R
n.

This proves the assertion in (i). By Definition 5.9, together with (5.1), we know that fA(x) is SOS-convex

iff A[x]m−2 = V (x)TV (x) for some V (x) ∈ R[x1, . . . , xn]
k×n with some integer k, which further deduces
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that A[x]m = 〈x, V (x)TV (x)x〉 =
∑k

i=1(V (x)x)2i . This proves the assertion in (ii). For any A ∈ V(m,n)

with A =
∑s

i=1[u
(i)]m, we have

A[x]m−2 =

s∑
i=1

(xTu(i))m−2u(i)(u(i))T =: M(x)TM(x),

where

M(x) := [(xTu(1))
m−2

2 , . . . , (xTu(s))
m−2

2 ]T.

This implies that fA(x) is SOS-convex by definition.

Proposition 5.10(ii) is an analog to the case of general polynomials as described by Helton and Nie

[10, Lemma 8]. Note that for m = 2, the convexity and SOS-convexity coincide with each other for

fA(x) = xTAx and such a property holds iff A is positive semidefinite. However, for higher order cases,

it is not the case, as the following statements show:

(i) if A ∈ S(m,n), the function fA(x) may not be convex;

(ii) if A ∈ SOS(m,n), the function fA(x) may not be SOS-convex;

(iii) if fA(x) is convex, the corresponding A may not lie in V(m,n).

Two counterexamples are proposed here to illustrate the above remark, where the second one is em-

ployed from [1].

Example 5.11. (i) Let A ∈ T (4, n) with A1122 = A1212 = A1221 = A2112 = A2121 = A2211 = 1

and other entries 0. Then for any x = (x1, . . . , xn)
T ∈ R

3, we have A[x]4 = 6x2
1x

2
2 � 0. Thus A ∈

SOS(m,n) ⊆ S(4, n). However,

A[x]2 =

⎡
⎢⎢⎢⎢⎢⎣

x2
2 2x1x2 0 · · · 0

2x1x2 x2
1 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ .

For any x ∈ R
n, it is obvious that A[x]2 may not lie in S(2, n) which implies that fA(x) is not convex

and hence not SOS-convex.

(ii) Let fB(x) = 32x8
1 + 118x6

1x
2
2 + 40x6

1x
2
3 + 25x4

1x
4
2 − 43x4

1x
2
2x

2
3 − 35x4

1x
4
3 + 3x2

1x
4
2x

2
3 − 16x2

1x
2
2x

4
3

+ 24x2
1x

6
3 + 16x8

2 + 44x6
2x

2
3 + 70x4

2x
4
3 + 60x2

2x
6
3 + 30x8

3. It is shown in [1] that such 8-degree homogeneous

polynomial fB(x) is convex. Note that the corresponding B ∈ T (8, 3) has negative partially diagonal

entries. Applying Theorem 5.5(ii), we have B /∈ V(8, 3).
To get more connections with the nonnegative tensor cone, we state a basic theorem for the linear

images of the SDT cone and its dual cone as follows.

Theorem 5.12. For any P ∈ R
n×n, we have

(i) P [m](S(m,n)) ⊆ S(m,n) and the equality holds iff P is invertible;

(ii) P [m](V(m,n)) ⊆ V(m,n) and the equality holds iff P is invertible.

Proof. For any x ∈ R
n, and any A ∈ S(m,n) with any of its symmetric outer product decomposition

A =
∑s

i=1 αi[u
(i)]m, it follows that

P [m](A)[x]m =
s∑

i=1

αi〈[Pu(i)]m, [x]m〉

=

s∑
i=1

αi〈Pu(i), x〉m

=
s∑

i=1

αi〈u(i), PTx〉m
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=
s∑

i=1

αi〈[u(i)]m, [PTx]m〉

= A[PTx]m

� 0,

which reveals that P [m](A) ∈ S(m,n). Thus,

P [m](S(m,n)) ⊆ S(m,n).

Combining with Proposition 2.3(ii), we can obtain under the invertibility of P that

S(m,n) = P [m](P−1)[m](S(m,n)) ⊆ P [m](S(m,n)) ⊆ S(m,n),

which is equivalent to P [m](S(m,n)) = S(m,n). If P is not invertible, then there exists some x ∈ R
n\{0}

such that Px = 0. It is easy to verify that

[x]m ∈ S(m,n) \ P [m](S(m,n)).

Henceforth, the assertion in item (i) follows. Similarly, we can get (ii).

Corollary 5.13. For any A ∈ V(m,n), we have

(i) A ◦B ∈ S(m,n), for any B ∈ S(m,n);

(ii) A ◦B ∈ V(m,n), for any B ∈ V(m,n).

Proof. Let A =
∑s

i=1[u
(i)]m. It follows from Proposition 2.6(iii) that

A ◦B =
s∑

i=1

(P̄ (i))[m](B), ∀B ∈ T (m,n).

If B ∈ S(m,n), Theorem 5.12(i) indicates that

(P̄ (i))[m](B) ∈ S(m,n), ∀ i = 1, . . . , s,

where P̄ (i) is the diagonal matrix generated by u(i). By the fact that S(m,n) is a convex cone, we

immediately get that A ◦B ∈ S(m,n). Likely, we can obtain (ii). This completes the proof.

When m = 2, the results in Corollary 5.13 turns out to be one of the basic results in matrix theory

that the Hadamard product of two symmetric positive semidefinite matrices remains positive semidefinite;

see [11, Theorem 5.2.1]. However, the Hadamard product of two symmetric semidefinite tensors of order

m � 4 may fail to be positive semidefinite, as the following example shows.

Example 5.14. Let A, B ∈ T (4, n) with A1122 = A1212 = A1221 = A2112 = A2121 = A2211 = 1 and

other entries of A zero, B1111 = 1, B2222 = 9, B1122 = B1212 = B1221 = B2112 = B2121 = B2211 = −1 and

other entries of B zero. It is easy to verify that A, B ∈ S(4, n). However, (A ◦ B)[x]4 = −6x2
1x

2
2 which

implies that A ◦B /∈ S(4, n).
Actually, the tensors A and B defined in the above example lie in SOS(4, n), which also shows that

the Hadamard product of two tensors in SOS(m,n) may not be in SOS(m,n) anymore. Additionally, by

summarizing Theorem 5.5(i) and Corollary 5.13(ii), we can easily get the following relationship to the

nonnegative tensor cone.

Proposition 5.15. Let N(m,n) be the m-order n-dimensional nonnegative tensor cone. We have

(i) D+(m,n) ⊂ S(m,n) ∩N(m,n);

(ii) {A ◦A : A ∈ V(m,n)} ⊂ V(m,n) ∩N(m,n).

The relationship among sets S(m,n), SOS(m,n), V(m,n), D+(m,n), D0(m,n), N(m,n), and the set

of all nonnegative diagonal tensors, denoted by D̄0(m,n), are in Figure 1.
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N(m,n)

S(m,n)

SOS(m,n)

V(m,n)
D (m,n)0D (m,n)0

D (m,n)+

−

Figure 1 Relationship among different tensor cones

Specially, when m = 2, we have

• S(m,n) = SOS(m,n) = V(m,n);

• D+(m,n) = D̄+(m,n);

• D0(m,n) = ∅.

6 Concluding remarks

We have employed an m-order generalization of symmetric-scaled representation used in interior-point

algorithms in SDP contexts to linear operators over symmetric tensor spaces and have proved a de-

composition invariance theorem for such a class of linear operators. This further leads to several other

interesting properties in the underlying tensor spaces. We then considered the positive semidefiniteness

of linear operators and managed to achieve the convexity of the Frobenius norm function of a symmetric

tensor. Furthermore, by employing the properties of linear operators, we characterize the symmetric

positive semidefinite tensor cone, design some face representations of its dual cone, and analyze its rela-

tions to many other convex cones, such as nonnegative tensor cone, partially diagonal tensor cone, and

SOS cone. In particular, we show that the cone is self-dual if and only if the polynomial is quadratic,

give specific characterizations of tensors that are in the primal cone but not in the dual, and develop a

complete relationship map among the tensor cones appeared in the literature. Much more work needs to

be done for the SDT cone both on theory analysis and numerical computations in the future.
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