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Abstract This paper considers utility indifference valuation of derivatives under model uncertainty and trading

constraints, where the utility is formulated as an additive stochastic differential utility of both intertemporal

consumption and terminal wealth, and the uncertain prospects are ranked according to a multiple-priors model

of Chen and Epstein (2002). The price is determined by two optimal stochastic control problems (mixed with

optimal stopping time in the case of American option) of forward-backward stochastic differential equations.

By means of backward stochastic differential equation and partial differential equation methods, we show that

both bid and ask prices are closely related to the Black-Scholes risk-neutral price with modified dividend rates.

The two prices will actually coincide with each other if there is no trading constraint or the model uncertainty

disappears. Finally, two applications to European option and American option are discussed.
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1 Introduction

This paper considers derivative pricing in an incomplete financial market with model uncertainty (ambi-

guity) and trading constraints. Incompleteness means that investors are uncertain about the risk-neutral

probability measure which are used to price the derivatives in the market. The investors rank the un-

certain prospects according to a multiple-priors model of Chen and Epstein [4], where a continuous-time

intertemporal version of multiple-priors utility is formulated by using backward stochastic differential

equation (BSDE). The other source of incompleteness is due to trading constraints such as short sale

constraint. We take the indifference pricing approach where the investor’s utility is formulated as an

additive stochastic differential utility of both intertemporal consumption and terminal wealth (see Duffie

and Epstein [9]).

The idea of indifference valuation is firstly introduced by Hodges and Neuberger [16], whereby the

price for a derivative is the cash amount that the investor is willing to pay such that she is no worse off in

expected utility terms than she would have been without the derivative. The idea is further developed by

Henderson [14], Musiela and Zariphopoulou [23] and Sicar and Zariphopoulou [24], among others, under
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a Markovian setting using the partial differential equation (PDE) approach, and by Hu et al. [17], Mania

and Schweizer [22] and Ankirchner et al. [2] in a general non-Markovian setting using the BSDE approach

(see more references therein). On the other hand, Becherer [3] and Davis [8] use the duality approach to

study the indifference hedging strategy. However, most of the existing research is based on the assumption

that the investor is only concerned with her terminal wealth, and ignores her intertemporal consumption

and her risk aversion in the consumption. It seems that the only exception is Cheridito and Hu [6], which

takes account of consumption on the top of terminal wealth under the framework of Hu et al. [17]. In our

model, the investor takes account of not only the terminal wealth but also the intertemporal consumption,

and she is risk averse in the consumption instead of the terminal wealth.

Different from most of utility indifference pricing models, where the indifference prices are heavily

distorted by the investor’s risk aversion in her terminal wealth, and therefore complicated in general,

the indifference prices in our model are independent of the investor’s risk aversion, and bear a striking

resemblance to the risk-neutral price. In fact, we show that both bid and ask prices in our model are

closely related to the risk-neutral price with modified dividend rates. The deviation is actually caused

by the investor’s uncertainty on the risk-neutral probability measure and the existence of the trading

constraints.

Model uncertainty is an important aspect in derivative pricing. Indeed, uncertainty on the choice of an

option pricing model can lead to model risk in the valuation of portfolios of options, so one must separate

between risk (uncertainty on outcomes for which the probabilities are known) and ambiguity (model

uncertainty). In their seminal work, Chen and Epstein [4] introduced a multiple-priors model under the

framework of stochastic differential utility. Cont [7] introduced different risk measures to quantity the

model uncertainty. In the indifference pricing framework, Jaimungal and Sigloch [18] introduced the

concept of robust indifference pricing (with the utility of terminal wealth), which incorporates both risk

aversion and model uncertainty. They mainly use the idea from Anderson et al. [1], by modifying the

optimization problem to maximize the expected penalized utility of terminal wealth, while minimizing the

expected penalized utility over a set of equivalent measures. Since the risk-neutral probability measure

is naturally a dominant pricing measure, we take the multiple-priors model from Chen and Epstein [4]

in order to incorporate the model uncertainty, where the probability measures in the set of priors are

equivalent to the risk-neutral dominant pricing measure.

The idea of applying Chen and Epstein’s multiple-priors model to derivative pricing is not new, for

example, [5, 13]. Guo et al. [13] considered the pricing problem of exotic options, in particular Parisian

options, also under the multiple-priors framework of Chen and Epstein [4]. However, they used the idea

of super-replication rather than utility indifference valuation, so they obtained proper reasonable pricing

bounds rather than a price. On the other hand, their concentration is more on numerical results of

the pricing bounds and practical application, which is different from our paper where we try to build

up an indifference pricing framework under model uncertainty. Moreover, our model also includes the

trading constraints on the top of model uncertainty. Actually, these two factors result in the market

incompleteness in our model.

Although the model uncertainty causes the deviation of the bid and ask prices from the risk-neutral

price, we show that if there is no trading constraint, then both bid and ask prices will coincide with the

risk-neutral price even under model uncertainty. In fact, if there is no trading constraint, the investor

can invest arbitrary position in the underlying stocks to hedge the model uncertainty in our indifference

pricing setup. On the other hand, if there exist trading constraints, then the prices will deviate from the

risk-neutral price. For example, if the payoff of an option is monotone with respect to the prices of the

underlying, the investor needs to hold an opposite position in order to hedge her risk exposure. Trading

constraints such as short sale constraint will prohibit her arbitrary position, and therefore result in prices

different from the risk-neutral price. We should remark that the price deviation is not only caused by

trading constraints but also model uncertainty. These two factors tangling together impact the bid and

ask prices, in both European option and American option cases. We also obtain the convergence rate of

the indifference prices to the risk-neutral price as the model uncertainty disappears (see Proposition 3.5

for the case of European option and Proposition 4.8 for the case of American option).
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If the investor is allowed to exercise her option at any time before maturity as in the American option

setting, the definition of the corresponding indifference price needs to be modified. In such a situation,

the investor needs to compare two optimal investment problems with different time horizons, and she

chooses not only her optimal trading strategy but also her optimal exercise time. By the time consistency,

we derive an intertemporal wealth which consists of not only the usual wealth, but also the value of the

remaining optimal consumption (see Definition 4.2). In a Markovian setting, we also effectively use the

Alexandrov-Bakel’man-Pucci (A-B-P) comparison principle for variational inequalities to deduce various

properties of the bid and ask prices for American option.

The utility indifference pricing models are usually formulated as two optimal portfolio problems (see

(2.7) and (2.8)). Concretely speaking, the price P is determined from an equation F (·, P (·)) = G(·),
and functions F and G where the value functions of two optimal stochastic control problems. There are

two methods to solve these problems, such as the BSDE approach and the PDE approach. The BSDE

approach is based on martingale optimality principle (see [17,22]) or the risk-sensitive control (see a recent

work by Henderson and Liang [15]), and the price is expressed via the solutions to two BSDEs. The PDE

method is based on dynamic programming principle, and the price is described via the solutions to two

HJB equations (see [14, 23, 24]). Due to the complexities of BSDEs and HJB equations, it is usually

difficult to investigate the properties of the utility indifference prices.

In our model, the price is still determined by the equation F (·, P (·)) = G(·), where F and G are the

value functions of the two optimal control problems of forward-backward stochastic equations (FBSDEs).

In the American option case, the optimal control problems involve optimal stopping time problems, and

the optimal strategy consists of optimal consumption, optimal investment and optimal stopping time.

In order to completely solve the problems, we firstly analyze the two optimal portfolio problems and

express the price as the solution to nonlinear BSDEs via the following idea. We define an indirect utility by

subtracting the wealth (and the contingent claim) from the original stochastic differential utility (SDU) to

represent the indifference price as the solution to BSDE with Lipschitz continuous driver. Mathematically

speaking, we translate the original stochastic control problem of FBSDE into finding a maximum solution

to a family of BSDEs with different drivers. Then by the comparison principle for BSDE, we find the

nonlinear BSDE for the optimal solution and express the price via the corresponding FBSDE.

By applying the Feynman-Kac formula, we express the prices as the solutions to semi-linear PDE (for

European option) or variational inequality (VI, for American option). Then via the method of PDE,

we improve the regularity of the value function, and analyze the properties of the price, the optimal

investment, consumption and stopping strategies. In this paper, We give a general and technical proof

of improving the regularity of the solution of PDE or VI under low regularity of terminal value and

obstacles. Moreover, we prove that PDE is a special case of VI if we choose a proper obstacle under some

general assumptions. Thanks to the improved regularity, we achieve some concise results as mentioned

above. With these results, it is easy to calculate the prices or theoretically analyze their properties by

the standard method. Moreover, we use some PDE estimates to show the convergence result of the

corresponding prices when the ambiguity market shrinks to the standard market.

The paper is organized as follows: We present our indifference pricing and hedging model in Section 2,

and apply it to two concrete settings, namely European option and American option in Section 3 and

Section 4, respectively. Some further technical details on the results of relevant PDEs are provided in

Appendix.

2 Indifference pricing and hedging model

For a fixed time horizon T > 0, let W = (W 1, . . . ,Wn)T be an n-dimensional Brownian motion on a

filtered probability space (Ω,F ,F = {Ft},P) satisfying the usual conditions, where F is the augmented

filtration generated by the Brownian motion W , and P is interpreted as the risk-neutral probability

measure. Herein the superscript T denotes the matrix transposition. The market consists of one risk-free

asset B with the risk-free interest rate r(·), and n risky assets S = (S1, . . . , Sn)T, whose price processes
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under the risk-neutral probability measure P are given by

Si
s = Si

t +

∫ s

t

r(u)Si
udu+

n∑
j=1

∫ s

t

σij(u)S
i
udW

j
u , (2.1)

for 1 � i � n and 0 � t � s � T , where σ(·) = (σij(·))1�i,j�n is the volatility matrix. The coefficients

satisfy the following assumption:

Assumption 2.1. The risk-free interest rate r(·) and the volatility matrix σ(·) are continuous func-

tions, and the volatility matrix σ(·) is positive definite.

However, investors are uncertain about the risk-neural probability measure P, and rank the uncertain

prospects according to a multiple-priors model, which was initially proposed by Chen and Epstein [4].

They represent the set Θ of priors on (Ω,FT ) by the set of probability measures equivalent to P:

Θ �
{
Q :

dQ

dP
= exp

(
− 1

2

∫ T

0

|ξs|2ds−
∫ T

0

(ξs)
TdWs

)}
,

for ξ = (ξ1, . . . , ξn)T ∈ Ξ, where Ξ is the set of F-adapted process valued in a compact and convex subset

O ⊂ Rn including the origin 0. More generally, the density on (Ω,Ft) is defined as EP[
dQ
dP | Ft]. Hence, Θ

is indeed the set of equivalent probability measures which includes the risk-neutral probability measure P

as the dominant pricing measure.

For any starting time t ∈ [0, T ], a representative investor makes inter-temporal consumption and

invests the remaining wealth in the risk-free asset and the risky assets in the remaining time interval

[t, T ], resulting in her wealth equation

XXt;π,c
s = Xt +

∫ s

t

XXt;π,c
u −∑n

i=1 π
i
u

Bu
dBu +

n∑
i=1

∫ s

t

πi
u

Si
u

dSi
u −

∫ s

t

cudu

= Xt +

∫ s

t

[r(u)XXt;π,c
u − cu]du +

∫ s

t

(πu)
Tσ(u)dWu, (2.2)

where (π, c) is the portfolio-consumption strategy with c being the inter-temporal consumption rate, and

π = (π1, . . . , πn)T being the amount of money invested in the risky assets S = (S1, . . . , Sn)T, both in the

admissible set Π[t, T ]:

Π[t, T ] � {(π, c) : π ∈ L2
F(t, T ;A), c ∈ L2

F(t, T ;R+)}
with

L2
F(t, T ;A) �

{
π : F-adapted, valued in A, and EP

[∫ T

t

|πs|2ds
]
< ∞

}
,

where A is a closed subset of Rn.

Note that the investor in fact makes her decision under Q but not under P, as she is uncertain about

the risk-neutral probability P. By Girsanov’s theorem, W = (W
1
, . . . ,W

n
)T with

W
j
= W j +

∫ ·

0

ξjsds

is the Brownian motion under Q, and the investor’s wealth equation (2.2) under Q is

XXt;π,c
s = Xt +

∫ s

t

[
r(u)XXt;π,c

u − cu −
n∑

i,j=1

σij(u)π
i
uξ

j
u

]
du+

n∑
i,j=1

∫ s

t

σij(u)π
i
udW

j

u

= Xt +

∫ s

t

[r(u)XXt;π,c
u − cu − (πu)

Tσ(u)ξu]du+

∫ s

t

(πu)
Tσ(u)dWu. (2.3)

Hence, the portfolio-consumption strategy (π, c) does impact the investor’s wealth XXt;π,c through its

drift terms.
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The investor has an additive utility defined on the priors set Θ, which is formulated as a stochastic

differential utility as in Duffie and Epstein [9]:

UQ
t � EQ

[∫ τ

t

(v(u, cu)− r(u)UQ
u )du+ UQ

τ

∣∣∣∣ Ft

]
,

with the bequest at the terminal time T : UQ
T = XXt;π,c

T , where τ ∈ U [t, T ] is the set of F-stopping times

valued in [t, T ], v(·, ·) is the time-dependent utility of the inter-temporal consumption rate c, and XXt;π,c

is the wealth process. The investor chooses the worst scenario from the priors set Θ as her utility:

Ut = inf
Q∈Θ

UQ
t . (2.4)

The utility v(·, ·) of the consumption rate c satisfies the following assumption:

Assumption 2.2. For any t ∈ [0, T ], the time-dependent utility v : [0, T ] × R �→ [−∞,∞) is (1)

concave, nondecreasing and upper semi-continuous; (2) the half-line

domt(v) � {x ∈ [0,+∞) : v(t, x) > −∞}

is a nonempty subset of [0,∞); and (3) ∂xv(t, ·) is continuous, positive, and strictly decreasing in the

interior of domt(v), and

lim
x→+∞ sup

t∈[0,T ]

∂xv(t, x) = 0.

A typical example of v(·, ·) is the power utility which is penalized to −∞ when the consumption rate

is negative. By [19, Subsection 3.4], there exists ĉ(t) such that

v∗(t) � v(t, ĉ(t)) − ĉ(t) = sup
x∈R

{v(t, x)− x}, (2.5)

i.e., v∗(t) is the convex dual of v(t, ·) at level 1 for t ∈ [0, T ].

The investor values a contingent claim in the market, whose payoff is an FT -measurable random

variable ξ ∈ L2
FT

(R+),

L2
FT

(R+) � {ξ : FT -measurable, valued in R+, and EP[|ξ|2] < ∞}.

If there is no ambiguity about the risk-neutral probability measure P, no inter-temporal consumption

and no trading constraints, it is known that the risk-neutral price process D of this contingent claim and

the corresponding hedging strategy Y = (Y 1, . . . , Y n)T (normalized by the volatility matrix σ(·)) are the
unique solutions to the following linear BSDE:

Dt = ξ −
∫ T

t

r(u)Dudu−
∫ T

t

(Yu)
TdWu = EP[e

− ∫ T
t

r(u)duξ | Ft], (2.6)

for (D,Y ) ∈ L2
F(0, T ;R)× L2

F(0, T ;R
n). See [11, Section 1] for the further details. However, due to the

ambiguity, the consumption and the trading constraints, (2.6) is not valid.

We consider utility indifference valuation for such a contingent claim with the payoff ξ. We write the

utility Ut as Ut(X
Xt;π,c
T ), when we want to emphasize the dependence of the utility U on the bequest

XXt;π,c
T .

Definition 2.3. The bid price P b(Xt; ξ) and the ask price P s(Xt; ξ) of the contingent claim with the

payoff ξ are defined implicitly by the requirement that

ess.sup
(π,c)∈Π[t,T ]

Ut(X
Xt;π,c
T ) = ess.sup

(π,c)∈Π[t,T ]

Ut(ξ +X
Xt−P b(Xt;ξ);π,c
T ), (2.7)

ess.sup
(π,c)∈Π[t,T ]

Ut(X
Xt;π,c
T ) = ess.sup

(π,c)∈Π[t,T ]

Ut(−ξ +X
Xt+P s(Xt;ξ);π,c
T ), (2.8)
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where XXt;π,c· follows the wealth equation (2.2) starting from time t under P, or equivalently (2.3)

under Q, and Ut(·) is the worst case of the stochastic differential utility at time t defined by (2.4), i.e.,

Ut = Ut(X
Xt;π,c
T ) satisfies

Ut = inf
Q∈Θ

UQ
t = inf

Q∈Θ
EQ

[∫ T

t

(v(u, cu)− r(u)UQ
u )du+XXt;π,c

T

∣∣∣∣ Ft

]
.

In terms of utility maximization, we are thus indifferent between buying or not buying the contingent

claim with the payoff ξ for the bid price P b(Xt; ξ), and indifferent between selling or not selling the

contingent claim with the payoff ξ for the ask price P s(Xt; ξ), while the utility is chosen as the worst

scenario from the priors set Θ.

Our model deviates from the existing literature in the following three folds: (1) The utility is formulated

in terms of a stochastic differential utility of both the inter-temporal consumption and the terminal wealth,

while the most of exiting literature only considers the expected utility of the terminal wealth; (2) the

model uncertainty is taken into account in a dynamic consistent way by employing the multiple-priors

model of Chen and Epstein [4]; (3) the trading constraints are also considered in our indifference valuation

model. We shall see (2) and (3) lead to some new and interesting features of the indifference price.

Our main tool to characterize the indifference price is the theory of BSDE. By [4, Theorem 2.2], the

utility U is represented as the unique solution to the following BSDE:

Ut = XXt;π,c
T +

∫ T

t

[
v(u, cu)− r(u)Uu −max

ξ∈Ξ

n∑
j=1

ξjuZ
j
u

]
du −

n∑
j=1

∫ T

t

Zj
udW

j
u , (2.9)

for (U,Z) ∈ L2
F(0, T ;R) × L2

F(0, T ;R
n). The BSDEs in this paper are always considered in the above

space.

Note that the maximum term in the above bracket is in fact pathwise maximum:(
max
ξ∈Ξ

n∑
j=1

ξjtZ
j
t

)
(ω) = max

ξt(ω)∈O

n∑
j=1

ξjt (ω)Z
j
t (ω),

for any t ∈ [0, T ] and ω ∈ Ω, so we will write the above two maximization problems synonymously.

Our first main result is the following representation result for the bid price and the ask price.

Theorem 2.4. Suppose that Assumptions 2.1 and 2.2 are satisfied. Then the bid price P b(Xt; ξ) and

the ask price P s(Xt; ξ) are uniquely determined by Definition 2.3, and are both independent of the initial

wealth Xt. They are denoted as P b(t; ξ) and P s(t; ξ) respectively, and have the representations

P b(t; ξ) = ess.sup
(π,c)∈Π[t,T ]

Ut(ξ +X0;π,c
T )−R(t) � Dt, (2.10)

P s(t; ξ) = − ess.sup
(π,c)∈Π[t,T ]

Ut(−ξ +X0;π,c
T ) +R(t) � Dt, (2.11)

where R(·) is the value of the optimal consumption

R(t) =

∫ T

t

e−
∫

s
t
r(u)duv∗(s)ds.

Proof. We only consider the case of the bid price, while the case of the ask price is similar. Note that

the utility maximization problem on the left-hand side (LHS) of (2.7) is a special case of the one on the

right-hand side (RHS) with ξ = 0.

We first show that the solutions to both utility maximization problems in (2.7) exist, i.e.,

ess.sup
(π,c)∈Π[t,T ]

Ut(ξ +XXt;π,c
T ) < +∞,
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for any payoff ξ ∈ L2
FT

(R+) and any initial wealth Xt ∈ L2
Ft
(R). Indeed, if we define an indirect utility Û

by subtracting the contingent claim D and the wealth XXt;π,c from the original utility U as

Ûs = Us(ξ +XXt;π,c
T )− (Ds +XXt;π,c

s ), Ẑj
s = Zj

s −
(
Y j
s +

n∑
i=1

σij(s)π
i
s

)
,

for s ∈ [t, T ], by (2.2), (2.6) and (2.9), it is easy to verify that (Û , Ẑ) satisfies the following BSDE:

Ût =

∫ T

t

{
− r(u)Ûu + [v(u, cu)− cu]−max

ξ∈Ξ

n∑
j=1

ξjuZ
j
u

}
du−

n∑
j=1

∫ T

t

Ẑj
udW

j
u . (2.12)

Note that

v(u, cu)− cu � v∗(u), −max
ξ∈Ξ

n∑
j=1

ξjuZ
j
u � 0.

By the BSDE comparison theorem (see [11, Theorem 2.2]), Ût � R(t), where R is given by

R(t) =

∫ T

t

[−r(u)R(u) + v∗(u)]du −
∫ T

t

(Q(u))TdWu, (2.13)

which has a unique solution in L2
F(0, T ;R)× L2

F(0, T ;R
n):

(R(t),Q(t)) =

(∫ T

t

e−
∫

s
t
r(u)duv∗(s)ds, 0

)
.

Hence,

Ut(ξ +XXt;π,c
T ) � Dt +Xt +R(t),

for any (π, c) ∈ Π, and we have proved the upper bound

ess.sup
(π,c)∈Π[t,T ]

Ut(ξ +XXt;π,c
T ) � Dt +Xt +R(t) < ∞. (2.14)

Next, we show the representation (2.10). We first solve the utility maximization problem on LHS

of (2.7) explicitly. By taking (π, c) = (0, ĉ) in (2.9), we have

Ût =

∫ T

t

{
− r(u)Ûu + v∗(u)−max

ξ∈Ξ

n∑
j=1

ξjuZ
j
u

}
du−

n∑
j=1

∫ T

t

Zj
udW

j
u ,

where

Ûs � Us(X
Xt;0,ĉ
T )−XXt;0,ĉ

s ,

for s ∈ [t, T ]. The above BSDE has a unique solution in L2
F(0, T ;R)× L2

F(0, T ;R
n), which is the same as

(2.13): (Ût, Zt) = (R(t),Q(t)). Hence

ess.sup
(π,c)∈Π[t,T ]

Ut(X
Xt;π,c
T ) � Ut(X

Xt;0,ĉ
T ) = Ût +Xt = R(t) +Xt.

The above inequality is actually the equality. Indeed, by taking ξ = 0 in (2.14), we have the upper bound

ess.sup
(π,c)∈Π[t,T ]

Ut(X
Xt;π,c
T ) � R(t) +Xt,

so we have proved that

ess.sup
(π,c)∈Π[t,T ]

Ut(X
Xt;π,c
T ) = R(t) +Xt (2.15)

with the optimal portfolio-consumption strategy (π∗, c∗) = (0, ĉ) for the utility maximization problem on

LHS of (2.7).
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On the other hand, note that the utility maximization problem on RHS of (2.7) is independent of the

initial wealth

ess.sup
(π,c)∈Π[t,T ]

Ut(ξ +XXt;π,c
T ) = ess.sup

(π,c)∈Π[t,T ]

Ut(ξ +X0;π,c
T ) +Xt. (2.16)

By combining (2.15) and (2.16), we obtain the representation (2.10), which also shows that the bid

price P b(t; ξ) is independent of the initial wealth Xt. Finally, by taking Xt = 0 in the inequality (2.14)

and using the representation (2.10), we obtain the upper bound of the bid price

P b(t; ξ) = ess.sup
(π,c)∈Π[t,T ]

Ut(ξ +X0;π,c
T )−R(t) � Dt +Rt −Rt = Dt.

Our next result further characterizes the indifference prices in terms of the solutions to BSDEs. We

show that different admissible sets Π result in different bid prices P b(t; ξ) and ask prices P s(t; ξ), and

in particular, if there is no constraint in Π, then both the bid price and the ask price coincide with the

risk-neutral price even with model ambiguity.

For t ∈ [0, T ] and ω ∈ Ω, we define the subset Bt(ω) ⊂ Rn by

Bt(ω) �
{
z ∈ Rn : zj =

n∑
i=1

σij(t)π
i
t(ω) with πt(ω) ∈ A

}
.

Note that Bt(ω) is still closed since A is closed and σij(·) is bounded. For any z ∈ Rn, we further

introduce

dO(z,Bt(ω)) = min
z∈Bt(ω)

max
ξt(ω)∈O

n∑
j=1

ξjt (ω)(zj + zj),

where O is a closed and convex subset of Rn including the origin 0. Since Bt(ω) is closed, there exists at

least one point in Bt(ω) which minimizes the support function δO(·) of the compact and convex set O:

δO(z, z) = max
ξt(ω)∈O

n∑
j=1

ξjt (ω)(zj + zj),

and we denote such minimal point as argmin(z,Bt(ω)). In the following, we will omit ω if no confusion

may arise.

Theorem 2.5. Suppose that Assumptions 2.1 and 2.2 are satisfied. Then the bid price P b(t; ξ) = U b
t

and the ask price P s(t; ξ) = U s
t , where U b and Us are the unique solutions to the following BSDEs

respectively:

U b
t = ξ +

∫ T

t

[−r(u)U b
u − dO(Zb

u,Bu)]du−
∫ T

t

(Zb
u)

TdWu, (2.17)

Us
t = ξ +

∫ T

t

[−r(u)U s
u + dO(−Zs

u,Bu)]du −
∫ T

t

(Zs
u)

TdWu, (2.18)

for (U b, Zb) ∈ L2
F(0, T ;R)×L2

F(0, T ;R
n) and (U s, Zs) ∈ L2

F(0, T ;R)×L2
F(0, T ;R

n). The optimal portfolio-

consumption strategy for the bid price is

(π∗, c∗) = ((σT )−1argmin(Zb,B), ĉ),

and for the ask price is

(π∗, c∗) = ((σT )−1argmin(−Zs,B), ĉ).
Moreover, if A = Rn, i.e., there is no trading constraint, then both the bid price P b(t; ξ) and the ask

price P s(t; ξ) coincide with the risk neutral price Dt,

P b(t; ξ) = P s(t; ξ) = Dt = EP[e
− ∫

T
t

r(u)duξ | Ft].
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The optimal portfolio-consumption strategy for the bid price is (π∗, c∗) = (−(σT)−1Y, ĉ), and for the ask

price is

(π∗, c∗) = ((σT)−1Y, ĉ),

where Y is given by (2.6).

Proof. We again only consider the case of the bid price, as the case of the ask price is similar. By the

representation (2.10), we only need to solve

ess.sup
(π,c)∈Π[t,T ]

Ut(ξ +X0;π,c
T ).

For the initial wealth Xt = 0, define the indirect utility U by subtracting the wealth X0;π,c from the

original utility U as

Us = Us(ξ +X0;π,c
T )−X0;π,c

s , Z
j

s = Zj
s −

n∑
i=1

σij(s)π
i
s,

for s ∈ [t, T ]. By (2.2) and (2.9), it is easy to verify that (U,Z) satisfies the following BSDE:

U t = ξ +

∫ T

t

{
− r(u)Uu + [v(u, cu)− cu]−max

ξ∈Ξ

n∑
j=1

ξjuZ
j
u

}
du −

∫ T

t

Z
T

udWu. (2.19)

The maximum term in the above bracket can be rewritten in terms of Z as

max
ξ∈Ξ

n∑
j=1

ξjuZ
j
u = max

ξ∈Ξ

n∑
j=1

ξju

(
Z

j

u +
n∑

i=1

σij(u)π
i
u

)
= δO(Zu, (σ(u))

Tπu),

which is Lipschitz continuous in Zu, so the comparison principle holds for (2.19). For any (π, c) ∈ Π, we

have

v(t, ct)− ct � v∗(t), −δO(Zt, (σ(t))
Tπt) � −dO(Zt,Bt),

and for (π, c) = ((σT )−1argmin(Z,B), ĉ), we have the following:

v(t, c∗t )− c∗t = v∗(t), −δO(Zt, argmin(Zt,Bt)) = −dO(Zt,Bt).

By the BSDE comparison principle, U t � U
∗
t for any (π, c) ∈ Π, where U

∗
is the solution to BSDE

U
∗
t = ξ +

∫ T

t

(−r(u)U
∗
u + v∗(u)− dO(Z

∗
u,Bu))du −

∫ T

t

(Z
∗
u)

TdWu, (2.20)

and (U t, Zt) = (U
∗
t , Z

∗
t ) for

(π, c) = ((σT)−1argmin(Z,B), ĉ).
Therefore,

ess.sup
(π,c)∈Π[t,T ]

Ut(ξ +X0;π,c
T ) = ess.sup

(π,c)∈Π[t,T ]

U t = U
∗
t

with the optimal portfolio-consumption strategy

(π∗, c∗) = ((σT)−1argmin(Z
∗
,B), ĉ).

Finally, it is easy to verify that

(U
∗
t −R(t), Z

∗
t ) = (U b

t , Z
b
t ),

which is the unique solution to BSDE (2.17).

Finally, if A = Rn, i.e., there is no trading constraint, Bu(ω) is R
n-valued as well, and

dO(Zb
u,Bu(ω)) = min

z∈Bu(ω)
max

ξu(ω)∈O
(ξu(ω))

T(Zb
u + z) = 0,
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where argmin(Zb
u,Bu(ω)) = −Zb

u. In this situation, the pricing BSDE (2.17) reduces to BSDE (2.6). By

the uniqueness of the solution to (2.6), we have (U b, Zb) = (D,Y ). The optimal portfolio-consumption

strategy in this situation reduces to

(π∗, c∗) = ((σT)−1argmin(Z
∗
,B), ĉ) = (−(σT)−1Y, ĉ).

In the following two sections, we will apply our BSDE representation results for utility indifference

prices to European options and American options. Another potential application is to consider exotic

options such as Parisian options. For example, Guo et al. [13] consider the pricing problem of Parisian

options also under the framework of Chen and Epstein [4]. However, they use the idea of super-replication

rather than utility indifference valuation, so they obtain pricing bounds rather than a price.

3 Application to European option

In this section, we specify our model in a Markovian setting by assuming the payoff of the contingent

claim having the form:

ξ =

∫ T

t

	(u)du +Ψ(ST ), (3.1)

where 	 is the earning rate, and Ψ is the final payoff of the contingent claim at the maturity T . They

satisfy the following assumption:

Assumption 3.1. The earnings rate 	(·) is a continuous function, and the final payoff Ψ is uniformly

Lipschitz continuous

|Ψ(S)−Ψ(S)| � K|S − S|, for S, S ∈ Rn
+,

so Ψ(·) has linear growth.
Under the above Markovian assumption, the bid price P b(t; ξ) and the ask price P s(t; ξ) can be

written as functions of the time t and the state St: P b(t, St; Ψ) � P b(t; ξ), and P s(t, St; Ψ) � P s(t; ξ).

By Theorem 2.5, P b(t, St; Ψ) and P s(t, St; Ψ) are the solutions to the following BSDEs, respectively:

P b(t, St; Ψ) = Ψ(ST ) +

∫ T

t

[	(u)− r(u)P b(u, Su; Ψ)− dO(Zb
u,Bu)]du −

∫ T

t

(Zb
u)

TdWu, (3.2)

P s(t, St; Ψ) = Ψ(ST ) +

∫ T

t

[	(u)− r(u)P s(u, Su; Ψ) + dO(−Zs
u,Bu)]du −

∫ T

t

(Zs
u)

TdWu, (3.3)

where the state S is given by (2.1). Moreover, by the nonlinear Feynman-Kac formula (see [11, The-

orem 4.2]), P b(t, S; Ψ) and P s(t, S; Ψ) are the unique viscosity solutions to the following semi-linear

PDEs: ⎧⎪⎪⎨⎪⎪⎩
−∂tP

b − L0P
b = 	(t)− dO((σ(t))TSDSP

b,Bt) in dNT ,

−∂tP
s − L0P

s = 	(t) + dO(−(σ(t))TSDSP
s,Bt) in NT ,

P b(T, S; Ψ) = P s(T, S; Ψ) = Ψ(S), S ∈ (0,+∞)n,

(3.4)

where NT � [0, T )× (0,+∞)n and

SDSP � (S1∂S1P, . . . , Sn∂SnP )T,

and the operator Lq is given by

Lq �
n∑

i,j=1

1

2
aij(t)SiSj∂SiSj +

n∑
i=1

[r(t) − qi(t)]Si∂Si − r(t) (3.5)

with

aij(t) �
n∑

l=1

σil(t)σjl(t).
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The term q(·) = (q1(·), . . . , qn(·))T in the operator Lq is interpreted as the dividend rate of the risky

assets S, and we shall see the bid price and the ask price under model uncertainty with trading constraint

can be related to the risk-neutral price by adjusting the dividend rate of the underlying.

In order to investigate further properties of the bid and ask prices and their associated hedging strate-

gies, we need to improve the regularities of P b and P s. In the following, we present the strong solutions

to PDEs (3.4).

Proposition 3.2. Suppose that Assumptions 2.1, 2.2 and 3.1 are satisfied. Then PDEs (3.4) have

unique strong solutions with linear growth. Concretely speaking,

P b(t, S; Ψ), P s(t, S; Ψ) ∈ W 2,1
p,loc(NT ) ∩ C(N T ) for any p � 1,

and there exists a constant C such that

|P b(t, S; Ψ)|+ |P s(t, S; Ψ)| � C(1 + |S|) for any (t, S) ∈ N T ,

where W 2,1
p,loc(NT ) is the set of all functions whose restrictions on the domain N ∗

T belong to W 2,1
p (N ∗

T ) for

any compact subset N ∗
T of NT , and W 2,1

p (N ∗
T ) is the completion of C∞(N ∗

T ) under the norm

‖P‖W 2,1
p (N∗

T ) �
[ ∫

N∗
T

(|P |p + |∂tP |p + |DSP |p + |D2
SP |p )dSdt

] 1
p

,

where DSP and D2
SP denote the gradient and the Hessian matrix for P with respect to S, respectively.

We shall show in Appendix that PDEs (3.4) is a special case of the variational inequality (4.6) (see

Theorem B.1). Hence, the above existence and regularity result is only a special case of the corresponding

result for the variational inequality (4.6) in Proposition 4.5.

In the rest of this section, we consider a concrete example of the priors set Θ by specifying the value

set O of the corresponding kernel ξt(ω) ∈ O,

O1 � {x ∈ Rn : −κi � xi � κi, i = 1, . . . , n},

where κi, κi � 0. The corresponding priors set is denoted as Θ1, which is a generalization of the κ-

ignorance model in [4, Subsection 3.3] by taking κi = κi. With the above priors set Θ1, the support

function δO1(z, z) can be calculated as

δO1(z, z) �
n∑

i=1

[κi(zi + zi)
+ + κi(zi + zi)

−] = κT(z + z)+ + κT(z + z)−.

By Theorem 2.5, if there is no trading constraint, both the bid price and the ask price coincide with

the risk-neutral price even with model uncertainty. In the following, we specify the admissible set Π by

restricting its values in A1 = [0,∞)n, which is equivalent to short sale constraint. The corresponding

admissible set is denoted as Π1.

We denote the risk-neutral price under the Black-Scholes model with the dividend rate q(·) and the

payoff Ψ as P 0(t, S; q,Ψ), and the indifference prices with the priors set Θ1 and the admissible set Π1

as P 1m(t, S; Ψ) for m ∈ {b, s}. We can regard the Black-Scholes framework as a special case of our

indifference pricing model by assuming δO0(z, z) = 0.

Our main results in this section are the connections between the indifference prices and the risk-neutral

prices with different dividend rates.

Proposition 3.3. Suppose that Assumptions 2.1, 2.2 and 3.1 are satisfied, the priors set is Θ1, and

the admissible set is Π1.

• If Ψ(S) is increasing in each component Si, then the bid price is given by

P 1b(t, S; Ψ) = P 0(t, S;σκ,Ψ)
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with the optimal portfolio-consumption strategy (π∗, c∗) = (0, ĉ), and the ask price is given by

P 1s(t, S; Ψ) = P 0(t, S; 0,Ψ)

with the optimal portfolio-consumption strategy (π∗, c∗) = (SDSP
0, ĉ).

• If Ψ(S) is decreasing in each component Si, then the bid price is given by

P 1b(t, S; Ψ) = P 0(t, S; 0,Ψ)

with the optimal portfolio-consumption strategy (π∗, c∗) = (−SDSP
0, ĉ), and the ask price is

P 1s(t, S; Ψ) = P 0(t, S;σκ,Ψ)

with the optimal portfolio-consumption strategy (π∗, c∗) = (0, ĉ).

Proof. We only prove the case that Ψ(S) is increasing in each component Si, while the decreasing case

is similar.

It is obvious from (2.1) that

Si
T = Si

t exp

{∫ T

t

(
r(u)− 1

2

n∑
j=1

|σij(u)|2
)
du+

∫ T

t

n∑
j=1

σij(u)dW
j
u

}
.

Hence, if Ψ(ST ) is increasing in each component Si
T , it is also increasing in Si

t . By the BSDE comparison

theorem, form ∈ {b, s}, P 1m(t, St; Ψ) is increasing in each component Si
t as well. Since P

1m ∈ W 2,1
p,loc(NT )

for any p � 1, the imbedding theorem for Sobolev space implies that DSP
1m ∈ C(NT ) if we choose

p > n + 2. Hence, ∂SiP
1m � 0 for each i = 1, 2, . . . , n. Recalling Bt = [0,∞)n, we deduce that for the

case of the bid price

dO1((σ(t))
TSDSP

1b,Bt) = min
z∈Bt

{κT((σ(t))TSDSP
1b + z)+ + κT((σ(t))TSDSP

1b + z)−}
= (σ(t)κ)TSDSP

1b

with the optimizer z∗ = 0, or equivalently, π∗ = 0. For the case of the ask price

dO1(−(σ(t))TSDSP
1s,Bt) = min

z∈Bt

{κT(−(σ(t))TSDSP
1s + z)+ + κT(−(σ(t))TSDSP

1s + z)−} = 0

with the optimizer z∗ = (σ(t))TSDSP
1s, or equivalently, π∗ = SDSP

1s. Then the conclusions follow

from the pricing equations (3.4).

Intuitively, if the payoff of an option is increasing with the prices of all the underlying stocks, an

investor needs to hold a short position in each underlying stock in order to hedge a long position in this

option, and a long position in each underlying stock in order to hedge a short position in this option.

However, since there is short selling constraint (i.e., A1 = [0,∞)n), hedging the long position of the

option is impossible, and the best that the investor can do is not trading any underlying stocks. In turn,

the investor has to compensate for the option price an equivalent dividend rate σκ.

The other observation is that the lower bound κ = (κ1, . . . , κ1)
T in the priors set Θ1 does not impact

the indifference prices P 1b and P 1s, which is due to the asymmetric property of the trading constraint

set A1 = [0,∞)n. Moreover, the bid-ask spread P 1b −P 1s is given in terms of the risk-neutral price with

modified dividend rates: −|P 0(t, S; 0,Ψ)− P 0(t, S;σκ,Ψ)|.
For general payoff Ψ, there are no explicit formulae for the bid price and the ask price. However, we can

still have bounds on the indifference prices in terms of the risk-neutral price with modified dividend rates.

Since PDEs (3.4) are a special case of the variational inequality (4.6) (see Theorem B.1), we will present

the proof for the corresponding variational inequality (4.6) in Proposition 4.7, and leave the following

proof for PDEs (3.4) to the reader.
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Proposition 3.4. Suppose that Assumptions 2.1, 2.2 and 3.1 are satisfied, the priors set is Θ1, and

the admissible set is Π1.

• The bid price satisfies the following inequality:

max{P 0(t, S;σκ,Ψ+), P 0(t, S; 0,Ψ−)} � P 1b(t, S; Ψ) � P 0(t, S; q,Ψ),

for any q ∈ [0, σκ], and the optimal portfolio-consumption strategy is (π∗, c∗) = ((SDSP
1b)−, ĉ).

• The ask price satisfies the following inequality:

P 0(t, S;σκ,Ψ) � P 1s(t, S; Ψ) � min{P 0(t, S;σκ,Ψ
−
), P 0(t, S; 0,Ψ

+
)},

and the optimal portfolio-consumption strategy is (π∗, c∗) = ((SDSP
1s)+, ĉ).

Here, Ψ+/Ψ− is any increasing/decreasing function bounded above by Ψ, and Ψ
+
/Ψ

−
is any increas-

ing/decreasing function bounded below by Ψ.

To finish this section, we investigate how the indifference prices converge to the corresponding risk-

neutral price when the priors set Θ1 shrinks to the probability set which only has negative densities, i.e.,

the positive part of the model uncertainty disappears.

Proposition 3.5. Suppose that Assumptions 2.1, 2.2 and 3.1 are satisfied, the priors set is Θ1, and the

admissible set is Π1. Then the bid price P 1b and the ask price P 1s converge to the risk-neutral price P 0

when the upper bound κ in the priors set Θ1 converges to zero. Concretely speaking,

|P 1b − P 0|+ |P 1s − P 0| � Cκ∗(1 + |S|), ‖|P 1b − P 0|+ |P 1s − P 0|‖W 2,1
p (N∗

T ) � CN∗
T
κ∗,

where κ∗ = max{κ1, . . . , κn}, and N ∗
T is any compact subset of NT , and C is a constant independent

of N ∗
T , but CN∗

T
is a constant depending on N ∗

T .

We leave its proof in Appendix.

4 Application to American option

In this section, we extend our model to allow for an early exercise of the contingent claim. Assume that

the contingent claim has the payoff

ξ =

∫ τ∧T

t

	(u)du+ Γ(τ, Sτ )1{τ<T} +Ψ(ST )I{τ=T}, (4.1)

where τ ∈ U [t, T ] is any F-stopping time valued in [t, T ], 	 is the earning rate, and Γ is the early payoff if

the option is exercised before the maturity T , and Ψ is the final payoff at the maturity T . The earning

rate and the final payoff satisfy Assumption 3.1, and the early payoff Γ satisfies the following assumption:

Assumption 4.1. The early payoff Γ is uniformly Lipschitz continuous

|Γ(t, S)− Γ(t, S)| � K(|t− t|) + |S − S|), for t, t ∈ [0, T ] and S, S ∈ Rn
+,

and is bounded above by Ψ.

Since the buyer of the American option has the right to exercise the option before the maturity T ,

the indifference price in Definition 2.3 needs to be modified accordingly. First, note that the investor’s

maximum utility satisfies the following time consistency property: For any F-stopping time τ ∈ U [t, T ],

ess.sup
(π,c)∈Π[t,T ]

Ut(X
Xt;π,c
T ) = ess.sup

(π,c)∈Π[t,τ ]

Ut

(
ess.sup

(π,c)∈Π[τ,T ]

Uτ (X
Xt;π,c
T )

)
= ess.sup

(π,c)∈Π[t,τ ]

Ut(R(τ) +XXt;π,c
τ ),

where we used (2.15) in the last inequality. In other words, in order to have the time consistency property,

the intermediate wealth at any F-stopping time τ consists of not only the wealth XXt;π,c
τ , but also the

value of the remaining optimal consumption R(τ) from τ to the maturity T .
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We modify Definition 2.3, and give the following definition of the indifference bid price of the Ameri-

can option.

Definition 4.2. The bid price P b(t, St; Γ,Ψ) of the American option with the payoff∫ τ∧T

t

	(u)du+ 1{τ<T}Γ(τ, Sτ ) + 1{τ=T}Ψ(ST ),

where τ ∈ U [t, T ] is the exercise time, is defined implicitly by the requirement that

ess.sup
(π,c)∈Π[t,T ]

Ut(X
Xt;π,c
T ) = ess.sup

τ∈U [t,T ]

ess.sup
(π,c)∈Π[t,τ ]

Ut

(∫ τ∧T

t

	(u)du+ (R(τ) +XXt−P b(t,St;Γ,Ψ);π,c
τ

+ Γ(τ, Sτ ))1{τ<T} + (X
Xt−P b(t,St;Γ,Ψ);π,c
T +Ψ(ST ))1{τ=T}

)
. (4.2)

Similar to the proof of Theorem 2.4, it is easy to check that the optimization problem on RHS of (4.2)

is translation invariant of its initial value:

ess.sup
τ∈U [t,T ]

ess.sup
(π,c)∈Π[t,τ ]

Ut

(∫ τ∧T

t

	(u)du+ (R(τ) +X0;π,c
τ + Γ(τ, Sτ ))1{τ<T}

+ (X0;π,c
T +Ψ(ST ))1{τ=T}

)
+Xt − P b(t, St; Γ,Ψ).

On the other hand, LHS of (4.2) is R(t) + Xt by (2.15). Therefore, the bid price of the American

option is

P b(t, St; Γ,Ψ) = ess.sup
τ∈U [t,T ]

ess.sup
(π,c)∈Π[t,τ ]

Ut

(
(R(τ) +X0;π,c

τ + Γ(τ, Sτ ))1{τ<T}

+ (X0;π,c
T +Ψ(ST ))1{τ=T} +

∫ τ∧T

t

	(u)du

)
−R(t).

Theorem 4.3. Suppose that Assumptions 2.1, 2.2, 3.1 and 4.1 are satisfied. Then the bid price

P b(t, St; Γ,Ψ) = U b
t , where U b

t � Γ(t, St) is the unique solution to reflected BSDE:

U b
t = Ψ(ST ) +

∫ T

t

[	(u)− r(u)U b
u − dO(Zb

u,Bu)]du+

∫ T

t

dKu −
∫ T

t

(Zb
u)

TdWu, (4.3)

for (U b, Zb) ∈ L2
F(0, T ;R)×L2

F(0, T ;R
n), and K being continuous, increasing, starting from K0 = 0, and

satisfying the following Skorohod condition:∫ T

0

[U b
u − Γ(u, Su)]dKu = 0.

The optimal portfolio-consumption strategy for the bid price is

(π∗, c∗) = ((σT)−1argmin(Zb,B), ĉ),

and the optimal exercise time is

τ∗ = inf{s � t : U b
s = Γ(s, Ss)} ∧ T.

Proof. Similar to the proof of Theorem 2.5, define an indirect utility U by subtracting the wealth X0;π,c

from the original utility U as

Us = Us

(∫ τ∧T

t

	(u)du+ (R(τ) +X0;π,c
τ + Γ(τ, Sτ ))1{τ<T} + (X0;π,c

T +Ψ(ST ))1{τ=T}

)
−X0;π,c

s ,
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Z
j

s = Zj
s −

n∑
i=1

σij(s)π
i
s,

for s ∈ [t, T ]. By (2.2) and (2.9), it is easy to verify that (U,Z) is the solution to the following BSDE:

U t = (R(τ) + Γ(τ, Sτ ))1{τ<T} +Ψ(ST )1{τ=T} −
∫ τ∧T

t

(Zu)
TdWu

+

∫ τ∧T

t

{	(u)− r(u)Uu + [v(u, cu)− cu]− δO(Zu, (σ(u))
Tπu)}du.

By the BSDE comparison principle, U t � U
∗
t for any (π, c) ∈ Π[t, τ ], where U

∗
is the solution to BSDE

U
∗
t = (R(τ) + Γ(τ, Sτ ))1{τ<T} +Ψ(ST )1{τ=T}

+

∫ τ∧T

t

{	(u)− r(u)U
∗
u + v∗(u)− dO(Z

∗
u,Bu)}du−

∫ τ∧T

t

(Z
∗
u)

TdWu

and (U t, Zt) = (U
∗
t , Z

∗
t ) for (π, c) = ((σT)−1argmin(Z,B), ĉ).

Furthermore, by [10, Proposition 2.3], U
∗
t � U

∗∗
t for any stopping time τ ∈ U [t, T ], where U

∗∗
t �

R(t) + Γ(t, St) is the solution to the following reflected BSDE:

U
∗∗
t = Ψ(ST ) +

∫ T

t

[	(u)− r(u)U
∗∗
u + v∗(u)− dO(Z

∗∗
u ,Bu)]du +

∫ T

t

dKu −
∫ T

t

(Z
∗∗
u )TdWu

with the Skorohod condition ∫ T

0

[U
∗∗
u −R(u)− Γ(u, Su)]dKu = 0,

and (U
∗
t , Z

∗
t ) = (U

∗∗
t , Z

∗∗
t ) for τ = τ∗. Therefore,

ess.sup
τ∈U [t,T ]

ess.sup
(π,c)∈Π[t,τ ]

Ut

(∫ τ∧T

t

	(u)du + (R(τ) +X0;π,c
τ + Γ(τ, Sτ ))1{τ<T} + (X0;π,c

T +Ψ(ST ))1{τ=T}

)
= ess.sup

τ∈U [t,T ]

ess.sup
(π,c)∈Π[t,τ ]

U t = ess.sup
τ∈U [t,T ]

U
∗
t = U

∗∗
t

with the optimal portfolio-consumption strategy (π∗, c∗) = ((σT)−1argmin(Z
∗∗
,B), ĉ) and the optimal

exercise time τ∗.
Finally, it is easy to verify that (U

∗∗
t − R(t), Z

∗∗
t ) = (U b

t , Z
b
t ), which is the unique solution to the

reflected BSDE (4.3).

It is important to recall that it is the buyer of the claim who decides when the contract is exercised.

The writer of the derivative does not have this opportunity and, therefore, she will have to maximize

his utility contingently on the buyer’s optimal actions. In a sense, the valuation problem of the writer

reduces to a barrier type with expiration given by the buyer’s optimally chosen exercise time τ∗, and the

payoff is

1{τ∗<T}Γ(τ, Sτ ) + 1{τ∗=T}Ψ(ST ).

This asymmetry is not observed in complete markets where there is a unique price. However, in incomplete

markets such asymmetries naturally emerge and give rise to realistic price spreads.

Proposition 4.4. The ask price P s(t, St; Γ,Ψ) of the American option with the payoff∫ τ∗∧T

t

	(u)du+ 1{τ∗<T}Γ(τ∗, Sτ∗) + 1{τ∗=T}Ψ(ST )

is defined implicitly by the requirement that

ess.sup
(π,c)∈Π[t,T ]

Ut(X
Xt;π,c
T ) = ess.sup

(π,c)∈Π[t,τ∗]
Ut

(
−

∫ τ∗∧T

t

	(u)du + (R(τ∗) +X
Xt+P s(t,St;Γ,Ψ);π,c
τ∗
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− Γ(τ∗, Sτ∗))1{τ∗<T} + (X
Xt+P s(t,St;Γ,Ψ);π,c
T −Ψ(ST ))1{τ∗=T}

)
. (4.4)

Suppose that Assumptions 2.1, 2.2, 3.1 and 4.1 are satisfied. Then the ask price P s(t, St; Γ,Ψ) = Us
t ,

where Us is the unique solution to BSDE

U s
t = Γ(τ∗, Sτ∗)1{τ∗<T} +Ψ(ST )1{τ∗=T}

+

∫ τ∗∧T

t

[	(u)− r(u)U s
u + dO(−Zs

u,Bu)]du−
∫ τ∗∧T

t

(Zs
u)

TdWu, (4.5)

for (Us, Zs) ∈ L2
F(0, T ;R)×L2

F(0, T ;R
n). The optimal portfolio-consumption strategy for the ask price is

(π∗, c∗) = ((σT)−1argmin(−Zs,B), ĉ).
Proof. The proof is similar to the proof of Theorem 2.5, so we omit it.

By the nonlinear Feynman-Kac formula, P b(t, S; Γ,Ψ) and P s(t, S; Γ,Ψ) are the unique viscosity so-

lutions of the following variational inequality and semi-linear PDE respectively:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∂tP

b − L0P
b = 	(t)− dO((σ(t))TSDSP

b,Bt), if P b > Γ and (t, S) ∈ NT ,

−∂tP
b − L0P

b � 	(t)− dO((σ(t))TSDSP
b,Bt), if P b = Γ and (t, S) ∈ NT ,

P b(T, S; Γ,Ψ) = Ψ(S),

(4.6)

and ⎧⎨⎩−∂tP
s − L0P

s = 	(t) + dO(−(σ(t))TSDSP
s,Bt) in {P b > Γ},

P s = Γ in {P b = Γ}, P s(T, S; Γ,Ψ) = Ψ(S).
(4.7)

We have the following existence and regularity results for the strong solutions of (4.6) and (4.7). Note

that the early payoff function Γ usually takes the form Γ = max{Γ1, 0}, where Γ1 is some payoff if the

investor exercises the option. For example, the early payoff function of American call/put option is just

(S −K)+/(K − S)+ with the strike price K.

Proposition 4.5. Suppose that Assumptions 2.1, 2.2 and 3.1 are satisfied. Moreover, the early payoff

function Γ has the form Γ = max{Γ1,Γ2}, where both Γ1 and Γ2 satisfy Assumptions 4.1, with D2
SΓ1 and

D2
SΓ2 having polynomial growth, i.e., there exist a positive constant C and a positive integer N such that

|D2
SΓ1|+ |D2

SΓ2| � C(1 + |S|N ).

Then both (4.6) and (4.7) have unique strong solutions with linear growth. Concretely speaking,

P b(t, S; Γ,Ψ) ∈ W 2,1
p,loc(NT ) ∩ C(N T ),

P s(t, S; Γ,Ψ) ∈ W 2,1
p,loc(NT ∩ {P b � Γ}) ∩ C(N T ),

and there exists a constant C such that

|P b(t, S; Γ,Ψ)|+ |P s(t, S; Γ,Ψ)| � C(1 + |S|).
We leave its proof in Appendix.

In the rest of this section, we consider a concrete example with the priors set Θ1 and the admissible

set Π1, where Θ1 and Π1 are given in the last section. We denote the risk-neutral American option price

with the dividend rate q(·) and the payoff∫ τ∧T

t

	(u)du+ 1{τ<T}Γ(τ, Sτ ) + 1{τ=T}Ψ(ST )

as P 0(t, S; q,Γ,Ψ), and the indifference prices with the priors set Θ1 and the admissible set Π1 as

P 1m(t, S; Γ,Ψ) for m ∈ {b, s}. We can regard the standard American option pricing framework as a

special case of our indifference pricing model for the bid price by assuming δO0(z̄, z) = 0.
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Proposition 4.6. Suppose that the assumptions in Proposition 4.5 are satisfied, the priors set is Θ1,

and the admissible set is Π1.

• If both Γ(S) and Ψ(S) are increasing in each component Si, then the bid price is given by

P 1b(t, S; Γ,Ψ) = P 0(t, S;σκ,Γ,Ψ)

with the optimal portfolio-consumption strategy (π∗, c∗) = (0, ĉ), and the optimal exercise time

τ∗ = τ̂ � inf{s � t : P 1b(s, Ss; Γ,Ψ) = Γ(s, Ss)} ∧ T.

The ask price is bounded by

P 1b(t, S; Γ,Ψ) � P 1s(t, S; Γ,Ψ) � P 0(t, S; 0,Γ,Ψ)

with the optimal portfolio-consumption strategy (π∗, c∗) = (SDSP
1s, ĉ).

• If both Γ(S) and Ψ(S) are decreasing in each component Si, then the bid price is given by

P 1b(t, S; Γ,Ψ) = P 0(t, S; 0,Γ,Ψ)

with the optimal portfolio-consumption strategy (π∗, c∗) = (−SDSP
0, ĉ), and the optimal exercise time

τ∗ = τ̂ . The ask price is bounded by

P 1b(t, S; Γ,Ψ) � P 1s(t, S; Γ,Ψ) � P 0(t, S;σκ,Γ,Ψ)

with the optimal portfolio-consumption strategy (π∗, c∗) = (0, ĉ).

Proof. We only prove the case that Ψ(S) is increasing in each component Si, while the decreasing case

is similar. Let P 0, P 1s and P 1b denote P 0(t, S; 0,Γ,Ψ), P 1s(t, S; Γ,Ψ) and P 1b(t, S; Γ,Ψ), respectively.

First, as in the proof of Proposition 3.3, by the BSDE comparison theorem and the regularity of the

strong solution, we deduce that DSiP
1m � 0 for m ∈ {b, s}. Therefore, for the case of the bid price,

dO1((σ(t))
TSDSP

1b,Bt) = (σ(t)κ)TSDSP
1b

with the optimizer π∗ = 0, and for the case of the ask price

dO1(−(σ(t))TSDSP
1s,Bt) = 0

with the optimizer π∗ = SDSP
1s. Then

P 1b(t, S; Γ,Ψ) = P 0(t, S;σκ,Γ,Ψ)

follows from the pricing equation (4.6).

Different from the European option case, the optimal trading strategy of the American option’s holder

affects the seller’s ask price. In other words, the solution to (4.6) affects the solution to (4.7), so we can

not expect that the ask price is equal to the price in the standard Black-Scholes market.

We first prove the lower bound of the ask price. It is clear that P 1s = P 1b = Γ in the domain {P 1b = Γ}
from (4.7). In the domain {P 1b > Γ}, note that dO1(·,Bu) � 0, then we have

−∂tP
1b − L0P

1b = 	(t)− dO1((σ(t))
TSDSP

1b,Bu)

� 	(t) + dO1(−(σ(t))TSDSP
1s,Bu) = −∂tP

1s − L0P
1s.

The continuity and the terminal and boundary conditions of P 1b, P 1s imply P 1b = P 1s on the parabolic

boundary of {P 1b > Γ}. By applying Lemma A.6, we deduce P 1b � P 1s.

Next, we use the similar method to prove the upper bound of the ask price. Since P 0 � Γ, we derive that

P 0 � P 1s in the domain {P 1b = Γ} from (4.7). Note that dO0(·,Bu) = 0 = dO1(−(σ(t))TSDSP
1s,Bt),

we deduce that in the domain {P 1b > Γ},
−∂tP

1s − L0P
1s = 	(t) � −∂tP

0 − L0P
0.

Moreover, the continuity of P 1s implies that P 1s = Γ � P 0 on ∂p{P 1b > Γ} ∩ NT . On the other hand,

P 1s = P 0 on ∂p{P 1b > Γ} ∩ ∂pNT . By applying Lemma A.6, we deduce P 1s � P 0.
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Proposition 4.7. Suppose that the assumptions in Proposition 4.5 are satisfied, the priors set is Θ1,

and the admissible set is Π1. Then we have

• The bid price satisfies the following inequality:

max{P 0(t, S;σκ,Γ+,Ψ+), P 0(t, S; 0,Γ−,Ψ−)}
� P 1b(t, S; Γ,Ψ) � P 0(t, S; q,Γ,Ψ), ∀ q ∈ [0, σκ].

The optimal portfolio-consumption strategy is (π∗, c∗) = ((SDSP
1b)−, ĉ), and the optimal exercise time

τ∗ = τ̂ .

• The ask price satisfies the following inequality:

P 1b(t, S; Γ,Ψ) � P 1s(t, S; Γ,Ψ)

� min{P 0(t, S;σκ,Γ
−
,Ψ

−
), P 0(t, S; 0,Γ

+
,Ψ

+
)}.

The optimal portfolio-consumption strategy is (π∗, c∗) = ((SDSP
1s)+, ĉ), where Γ+/Γ− is any increas-

ing/decreasing function bounded above by Γ, and Γ
+
/Γ

−
is any increasing/decreasing function bounded

below by Γ.

Proof. We only prove the case of the bid price, as the case of the ask price is similar. Let P 0 and P 1b

denote P 0(t, S; q,Γ,Ψ) and P 1b(t, S; Γ,Ψ), respectively.

Note that if the final payoff Ψ does not have any monotone property, the sign of DSP
1b is indefinite.

In this case,

dO1((σ(t))
TSDSP

1b,Bt) = min
z∈Bt

{
κT((σ(t))TSDSP

1b + z)+ + κT((σ(t))TSDSP
1b + z)−

}
= (σ(t)κ)T(SDSP

1b)+

with the optimizer z∗ = (σ(t))T(SDSP
1b)−, or equivalently, π∗ = (SDSP

1b)−. Denote

	̃(t) � (−∂tP
1b − LqP

1b)− (−∂tP
1b − L0P

1b) + 	(t)− dO1((σ(t))
TSDSP

1b,Bt).

Then we can rewrite the variational inequality (4.6) as follows:⎧⎪⎪⎨⎪⎪⎩
−∂tP

1b − LqP
1b = 	̃(t), if P 1b > Γ and (t, S) ∈ NT ,

−∂tP
1b − LqP

1b � 	̃(t), if P 1b = Γ and (t, S) ∈ NT ,

P 1b(T, S) = Ψ(S).

On the other hand, P 0 satisfies⎧⎪⎪⎨⎪⎪⎩
−∂tP

0 − LqP
0 = 	(t), if P 0 > Γ and (t, S) ∈ NT ,

−∂tP
0 − LqP

0 � 	(t), if P 0 = Γ and (t, S) ∈ NT ,

P 0(T, S) = Ψ(S).

Moreover, it is not difficult to check that

	̃(t) = −[(σ(t)κ)T − q(t)T](SDSP
1b)+ − q(t)T[(SDSP

1b)+ − SDSP
1b] + 	(t) � 	(t).

By applying Lemma A.6, we have the upper bound of the bid price

P 1b(t, S; Γ,Ψ) � P 0(t, S; q,Γ,Ψ), ∀ q ∈ [0, σκ].

On the other hand, P 1b(t, S; Γ,Ψ) and P 1b(t, S; Γ+/Γ−,Ψ+/Ψ−) satisfy the same differential equation,

but with different terminal values. Lemma A.6 implies that P 1b(t, S; Γ,Ψ) is larger since it has larger

terminal value and obstacle. By Proposition 4.6, the bid price associated with the payoff Γ+,Ψ+ is

P 0(t, S;σκ,Γ+,Ψ+), and the bid price associated with the payoff Γ−,Ψ− is P 0(t, S; 0,Γ−,Ψ−). Hence,

we have the lower bound of the bid price

P 1b(t, S; Γ,Ψ) � max{P 0(t, S;σκ,Γ+,Ψ+), P 0(t, S; 0,Γ−,Ψ−)}.
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To finish this section, we present a converge result of the indifference price to the risk-neutral price for

the American option as in Proposition 3.5 for the European option case.

Proposition 4.8. Suppose the assumptions in Proposition 4.5 are satisfied, the priors set is Θ1, and

the admissible set is Π1. Then the bid price P 1b and the ask price P 1s converge to the risk-neutral price P 0

when the upper bound κ in the priors set Θ1 converges to zero, Concretely speaking,

|P 1b − P 0|+ |P 1s − P 0| � Cκ∗(1 + |S|) in NT ,

where C is a constant independent of κ∗.

We leave its proof in Appendix.
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Appendix

A Some results of relevant PDEs

In this Appendix, we provide some technical details on the results of relevant pricing PDEs for the utility

indifference prices. The main references are Lieberman [21] and Ladyzenskaja et al. [20].

We consider the following semi-linear parabolic PDE in a general form:{
−∂tP − LP = 0 in QT ,

P = Ψ on ∂pQT ,
(A.1)

where ∂pQT is the backward parabolic boundary of QT , which is a bounded or unbounded backward

parabolic domain, and the differential operator

LP �
n∑

i,j=1

aij∂SiSjP +

n∑
i=1

bi∂SiP + cP + F (t, S, P,DSP ).

Assumption A.1. The coefficient function a is continuous in QT , and there exists a positive con-

stant K such that

|a(t, S)|(1 + |S|)−2 + |b(t, S)|(1 + |S|)−1 + |c(t, S)| � K, for any (t, S) ∈ QT .

Assumption A.2. There exists a positive constant K such that

|F (t, S, u1, v1)− F (t, S, u2, v1)| � K(1 + |S|)(|u1 − u2|+ |v1 − v2|),

for any (t, S) ∈ QT , u1, u2 ∈ R, v1, v2 ∈ Rn.

First, we present the existence and uniqueness result for the strong solution to (A.1).

Lemma A.3. Let QT = [0, T )×Q where Q is a bounded open domain in Rn with C2 boundary. Suppose

that Assumptions A.1 and A.2 are satisfied, and a satisfies the uniformly positive definite condition in QT ,

i.e.,
n∑

i,j=1

aij(t, S)ξiξj � |ξ|2/K, for any (t, S) ∈ QT , ξ ∈ Rn.

Moreover,

F (·, ·, 0, 0) ∈ Lp(QT ), Ψ ∈ W 2,1
p (QT )

with some p � 1.

Then (A.1) has a unique strong solution P ∈ W 2,1
p (QT ). Moreover, the following estimate holds:

‖P‖W 2,1
p (QT ) � C(‖F (·, ·, 0, 0)‖Lp(QT ) + ‖Ψ‖W 2,1

p (QT )),

where the constant C depends on K, p, n,QT .

Next, we present the interiorW 2,1
p estimate and Cα estimate with local boundary for PDE (A.1), which

is the key tool to study the problem with low regularity on the boundary, or the problem in unbounded

domain.
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Lemma A.4. Let QT be a bounded or unbounded backward parabolic domain, and Q∗
T be a compact

subset of QT . Suppose that Assumptions A.1 and A.2 are satisfied, and a satisfies the uniformly positive

definite condition in Q∗
T . Moreover, F (·, ·, 0, 0) ∈ Lp(Q∗

T ) with some p � 1.

Then the following estimate holds:

‖P‖W 2,1
p (Q∗∗

T ) � C(‖F (·, ·, 0, 0)‖Lp(Q∗
T ) + ‖P‖Lp(Q∗

T )),

where Q∗∗
T is a compact subset of Q∗

T , and C depends on K, p, n,Q∗∗
T , and dist(QT ,Q∗

T ), dist(Q∗
T ,Q∗∗

T ).

Lemma A.5. Let MT � [0, T )×M, where M is an open domain in Rn with continuous boundary,

and M∗ be a compact subset of M. Suppose that Assumptions A.1 and A.2 are satisfied, and a is

uniformly positive definite in M∗
T � [0, T )× M∗. Moreover, F (·, ·, 0, 0) ∈ Lp(M∗

T ),Ψ ∈ Cα(M∗) with

some p > n+ 2, α ∈ (0, 1).

Then there exists a constant β ∈ (0, α) such that the following estimate holds:

‖P‖Cβ,β/2(M∗∗
T ) � C(‖F (·, ·, 0, 0)‖Lp(M∗

T ) + ‖P‖L∞(M∗
T ) + ‖Ψ‖Cα,α/2(M∗ )),

where M∗∗ is a compact subset of M∗, and C, β depend on K, p, n and α, T, dist(M,M∗), dist(M∗,M∗∗).

We also give the A-B-P comparison principle for the variational inequality (A.2) (see Friedman [12]

and Tao [25]), which is similar to the comparison principle for the classical solution. Since the solutions

for variational inequalities are generally strong solutions rather than classical solutions, the A-B-P com-

parison theory is more appropriate for variational inequalities. On the other hand, PDEs can be regarded

as a special case of variational inequalities if we choose a small enough lower obstacle Γ such that the

solution P > Γ (see Theorem B.1). Hence, the following lemma also applies to PDEs that we considered.

Lemma A.6. For l = 1, 2, let P l be the strong solutions to the following variational inequalities,

respectively ⎧⎪⎪⎨⎪⎪⎩
−∂tP

l − LP l = f l, if P l > Γl and (t, x) ∈ QT ,

−∂tP
l − LP l � f l, if P l = Γl and (t, x) ∈ QT ,

P l = Ψl on ∂pQT .

(A.2)

Suppose that Assumptions A.1 and A.2 are satisfied, and a satisfies the nonnegative definite condition in

QT , i.e.,
n∑

i,j=1

aij(t, S)ξiξj � 0, for any ξ ∈ Rn, (t, S) ∈ QT .

Moreover, Ψl,Γl ∈ C(QT ), P
l ∈ W 2,1

p,loc(QT ) ∩ C(QT ) with some p > n + 2, and there exist a positive

constant C and a positive integer N such that

|P 1|+ |P 2| � C(1 + |S|N ).

Then we have P 1 � P 2 in QT if f1 � f2, Ψ1 � Ψ2, Γ1 � Γ2 in QT .

B Proofs of propositions

Proof of Proposition 3.5. It is sufficient to prove the result for P 1b, and the proof for P 1s is similar.

Without loss of generality, we suppose that κ∗ � 1.

Note that dO1(v,Bt) = κTv+ in this case. Then P 1b satisfies{
−∂tP

1b − L0P
1b = 	(t)− (σ(t)κ)T(SDSP

1b)+ in NT ,

P 1b(T, S) = Ψ(S).
(B.1)

By Proposition 3.4, we have P 1b � P 0. Next, we prove that there exist positive constants C1, C2

independent of κ such that

P 1b � P 0 − κ∗W, W � C1e
C2(T−t)(1 + |S|). (B.2)
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Indeed, since Ql = ∂Sl
P 0, l = 1, . . . , n satisfies{

−∂tQl − L̃lQl = 0 in NT ,

Ql(T, S) = ∂Sl
Ψ(S),

where

L̃l �
n∑

i,j=1

1

2
aij(t)SiSj∂SiSj +

n∑
i=1

[r(t) + ali(t)]Si∂Si .

By applying Lemma A.6, we can deduce that |∂Sl
P 0| � K, where K is the Lipschitz constant of Ψ.

Moreover, it is not difficult to check that

Si∂SiW = C1e
C2(T−t) S

2
i

|S| , |Si∂SiW | � W, |SiSj∂SiSjW | � W.

Hence, we have

−∂t(P
0 − κ∗W )− L0(P

0 − κ∗W )− 	(t) + (σ(t)κ)T(SDS(P
0 − κ∗W ))+

= (−∂tP
0 − L0P

0) + κ∗(∂tW + L0W )− 	(t) + (σ(t)κ)T(SDSP
0 − κ∗SDSW )+

� −κ∗(C2W − CW ) + Cκ∗|SDSP
0| � 0

provided C1, C2 are large enough. Note that the constants are independent of κ.

By applying Lemma A.6 again, we have proved (B.2). Hence, if we denote ΔP = P 1b − P 0, we have

showed that

|ΔP | � κ∗C1e
C2(T−t)(1 + |S|). (B.3)

From PDE (B.1) and Lemma A.4, we have the following estimate:

‖P 1b‖W 2,1
p (N∗

T ) � C(‖	‖Lp(NT ) + ‖P 1b‖Lp(NT )) � C, (B.4)

for any compact subset N ∗
T of NT , where the constants C,C depend on N ∗

T , but are independent of κ.

It is clear that ΔP satisfies

−∂tΔP − L0ΔP = −(σ(t)κ)T(SDSP
1b)+ in NT .

By applying Lemma A.4 again, we deduce that

‖ΔP‖W 2,1
p (N∗∗

T ) � C(‖(σ(t)κ)T(SDSP
1b)+‖Lp(N∗

T ) + ‖ΔP‖Lp(N∗
T )) � Cκ∗,

for any compact subset N ∗∗
T of N ∗

T , where we have used (B.3).

Proof of Proposition 4.5. First, we prove the existence of the strong solution P b for the variational

inequality (4.6).

We use the penalty method to approximate the variational inequality (4.6),{
−∂tPm − L0Pm = 	(t)− dO((σ(t))TSDSPm,Bt) +m(Pm − Γ)− in NT ,

Pm(T, S) = Ψ(S).
(B.5)

Since the above problem lies in unbounded domain, and the regularity of the terminal value Ψ is not

enough, we need to smooth Ψ and use the following problem in bounded domain to approximate the

above PDE in unbounded domain,{
−∂tPk,m − L0Pk,m = 	(t)− dO((σ(t))TSDSPk,m,Bt) +m(Pk,m − Γ)− in N k

T ,

Pk,m(t, S) = Ψk(S) on ∂pN k
T ,

(B.6)

where N k
T � [0, T )×N k, and

N k � {S ∈ Rn : 1/k � Si � k, i = 1, . . . , n}, k ∈ N+.
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Ψk is the smooth function of Ψ, which is defined as follows. Denote by η the standard mollifier, then

ηk(S) = knη(kS), and

Ψk(S) =

∫
Rn

Ψ(y)ηk(S − y)dy +
K

k
with Ψ(y) = 0, if y /∈ N .

It is clear that Ψk ∈ C∞(Q) for any k ∈ N+. It is not difficult to deduce that Ψk converges to Ψ in

Cα(NR) for any α ∈ (0, 1), R ∈ N+ as k → ∞, and there exists a constant C independent of m, k and Γ

such that

|Ψk| � C(1 + |S|), |DSΨk| � C, Ψk � Γ. (B.7)

Since the nonlinear term −dO(σ(t)v,Bt) +m(u−Γ)− is Lipschitz continuous with respect to u, v, and

−dO(0,Bt) +m(0− Γ)− is bounded in N k
T , we deduce that problem (B.6) has a unique strong solution

Pk,m ∈ W 2,1
p (N k

T ) ∩C(N k
T )

by Lemma A.3.

Next, we prove some estimates for Pk,m which are independent of k,m, in order to achieve some proper

convergence results. First, we show the upper bound of Pk,m. More precisely, there exist constants C1, C2

independent of m, k such that

Pk,m � W � C1e
C2(T−t)(1 + |S|). (B.8)

Indeed, we first choose C1 and C2 large enough such that W � Γ. Then we have

−∂tW − L0W − 	(t) + dO((σ(t))TSDSW,Bt)−m(W − Γ)− � C2W − CW − C � 0.

Moreover, by (B.7), it is clear that

W (t, S) � Ψk(S) = Pk,m(t, S) on ∂pN k
T

provided C1, C2 are large enough. Then Lemma A.6 implies (B.8).

Next, we prove the lower bound of Pk,m, i.e., there exist constants C3, C4 independent of m, k and Γ

such that

Pk,m � w � −C3e
C4(T−t)(1 + |S|). (B.9)

Indeed, we can choose C3 and C4 large enough such that

− ∂tw − L0w − 	(t) + dO((σ(t))TSDSw,Bt)−m(w − Γ)−

� C4w − Cw + C + C|(σ(t))TSDSw| � 0,

w(t, S) � Ψk(S) = Pk,m(t, S) on ∂pN k
T .

Then Lemma A.6 implies (B.9).

By applying Lemmas A.4 and A.5 to PDE (B.6) in the domain NR
T with k > R,R ∈ N+, we derive

that there exists a constant C depending on m,R, but is independent of k such that

‖Pk,m‖W 2,1
p (NR

T ∩{t�T−1/R}) + ‖Pk,m‖
Cβ,β/2(NR

T )

� CR(‖Pk,m‖L∞(NR
T ) + ‖dO(0,Bt)‖Lp(NR

T )

+ ‖m(Pk,m − Γ)−‖Lp(NR
T ) + ‖Ψk‖Cα(NR)

+ 1)

� C,

where we have used (B.8) and (B.9).

Due to the above estimates, we can show that the solution of (B.6) approximates the solution to (B.5)

by the method in [26, 27]. More precisely, there exists a function Pm such that some subsequence of

{Pk,m}∞k=1 converges to Pm weakly in

W 2,1
p (NR

T ∩ {t � T − 1/R})
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and strongly in C(NR
T ) for any m,R ∈ N+, and Pm is the strong solution to (B.5). Moreover, by taking

k → ∞ in (B.8) and (B.9), we have

−C3e
C4(T−t)(1 + |S|) � Pm � C1e

C2(T−t)(1 + |S|) in NT , (B.10)

where C1, C2, C3, C4 are independent of m, and C3, C4 are independent of Γ.

In order to show that the solution of (B.5) approximates the solution of the variational inequality (4.6),

we need to prove another lower bound of Pm such that

Pm � Γ− W

m
, W � C1e

C2(T−t)(1 + |S|N+2) (B.11)

provided m is large enough, and where C1, C2 are constants independent of m. Indeed, denote w∗ =

Γ1 −W/m, and we can check that

−∂tw
∗ − L0w

∗ − 	(t) + dO((σ(t))TSDSw
∗,Bt)−m(w∗ − Γ)−

� (−∂tΓ1 − L0Γ1)− C2W − CW

m
+ C + C|(σ(t))TSDSΓ1| −W

� C(1 + |S|N+2)−W � 0

provided C1 and C2 are large enough. Then Lemma A.6 implies Pm � Γ1 − W/m. By repeating the

same argument, we can deduce that Pk,m � Γ2 −W/m, so (B.11) is obvious.

By applying Lemma A.4 and A.5, we derive that there exists a constant CR independent of m such that

‖Pm‖W 2,1
p (NR

T ∩{t�T−1/R}) + ‖Pm‖
Cβ,β/2(NR

T )

� CR(‖Pm‖L∞(NR
T ) + ‖dO(0,Bt)‖Lp(NR

T )

+ ‖m(Pm − Γ)−‖Lp(NR
T ) + ‖Ψ‖

Cα(NR)
+ 1) � C,

where we have used (B.10) and (B.11), and the constant C is independent of m.

Thanks to the above estimates, we can show that the solution to (B.5) approximates the solution

to (4.6) by the method in [12, 27]. More precisely, there exists a function P such that some subsequence

of {Pm}∞m=1 converges to P weakly in

W 2,1
p (NR

T ∩ {t � T − 1/R})

and strongly in C(NR
T ) for any R ∈ N+, and P is the strong solution to (4.6). Therefore, we have proved

the existence of the strong solution P b to the variational inequality (4.6).

Since R is arbitrary, we deduce that P b ∈ W 2,1
p,loc(NT )∩C(NT ). Moreover, by taking m → ∞ in (B.10),

we have

−C3e
C4(T−t)(1 + |S|) � P b � C1e

C2(T−t)(1 + |S|) in NT , (B.12)

where C3, C4 are independent of Γ. The uniqueness of the strong solution P b for the variational inequal-

ity (4.6) follows from Lemma A.6. The proof of the results for P s is similar.

Proof of Proposition 4.8. The proof is similar to that of Proposition 3.5. First, we prove the result

for P 1b. Without loss of generality, we suppose that κ∗ � 1.

We first prove that

|∂Sl
P 0| � K, for any l = 1, . . . , n, (B.13)

where K is the Lipschitz constant of Γ and Ψ.

We must start from the penalty problem (B.5) to prove the result because the regularity of the solution

to the variational inequality (4.6) is not enough. Note that dO0(v,Bt) = 0 in this case, then the penalty

problem is {
−∂tP

0
m − L0P

0
m = 	(t) +m(P 0

m − Γ)−,

P 0
m(T, S) = Ψ(S).
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Denote Ql = ∂Sl
P 0
m, l = 1, . . . , n, which satisfies{

−∂tQl − L̂lQl = m∂Sl
ΓI{P 0

m<Γ} in NT ,

Ql(T, S) = ∂Sl
Ψ(S),

where

L̂l �
n∑

i,j=1

1

2
aij(t)SiSj∂SiSj +

n∑
i=1

[r(t) + ali(t)]Si∂Si −mI{P 0
m<Γ}.

By applying Lemma A.6, we have

|∂Sl
P 0
m| � K, for any l = 1, . . . , n.

By letting m → ∞, we deduce (B.13).

Note that dO1(v,Bt) = κTv+ in this case. Then P 1b satisfies⎧⎪⎪⎨⎪⎪⎩
−∂tP

1b − L0P
1b = 	(t)− (σ(t)κ)T(SDSP

1b)+, if P 1b > Γ,

−∂tP
1b − L0P

1b � 	(t)− (σ(t)κ)T(SDSP
1b)+, if P 1b = Γ,

P 1b(T, S) = Ψ(S).

(B.14)

From Proposition 4.7, we have P 1b � P 0. Next, we prove that there exist positive constants C1, C2

independent of κ such that

P 1b � w∗ = P 0 − κ∗W, W � C1e
C2(T−t)(1 + |S|). (B.15)

Indeed, repeating the same argument as in the proof of Proposition 3.5, we have

	̃(t) � (−∂tw
∗ − L0w

∗ + (σ(t)κ)T(SDSw
∗)+)− (−∂tP

0 − L0P
0) + 	(t)

= κ∗(∂tW + L0W ) + (σ(t)κ)T(SDSP
0 − κ∗SDSW )+ + 	(t)

� −κ∗(C2W − CW ) + Cκ∗|SDSP
0|+ 	(t) � 	(t)

provided C1, C2 are large enough, where we have used (B.13).

Hence, the variational inequality for P 0 implies that w∗ satisfies⎧⎪⎪⎨⎪⎪⎩
−∂tw

∗ − L0w
∗ + (σ(t)κ)T(SDSw

∗)+ = 	̃(t), if w∗ > Γ− κ∗W,

−∂tw
∗ − L0w

∗ + (σ(t)κ)T(SDSw
∗)+ � 	̃(t), if w∗ = Γ− κ∗W,

w∗(T, S) = Ψ(S)− κ∗W (T, S).

By applying Lemma A.6 again, we have (B.15), so the result for P 1b has been proved.

Next, we prove the result for P 1s. Since P 1s = Γ = P 1b in the set {P 1b = Γ}, the result for P 1b implies

that

|P 1s − P 0| � Cκ∗ in {P 1b = Γ}.
Then it is sufficient to prove that the above inequality holds in the set {P 1b > Γ}.

From Proposition 4.7, we have P 1b � P 0, so that

{P 1b > Γ} ⊂ {P 0 > Γ}.
Hence, in the set {P 1b > Γ}, P 1s and P 0 satisfy⎧⎪⎪⎨⎪⎪⎩

−∂tP
1s − L0P

1s = 	(t) + (σ(t)κ)T(SDSP
1s)− in {P 1b > Γ},

−∂tP
0 − L0P

0 = 	(t) in {P 1b > Γ},
|P 1s − P 0| = |P 1b − P 0| � Cκ∗(1 + |S|) on ∂p{P 1b > Γ}.

Repeating the same argument as above, we have proved the result for P 1s.

To finish Appendix, we give the following connection between the variational inequality (4.6) and

PDEs (3.4), which is a direct consequence of (B.12).
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Theorem B.1. Suppose that Assumptions 2.1, 2.2 and 3.1 are satisfied. Then there exist some func-

tions Γ ∈ C∞(NT ) satisfying Assumption 4.1, such that (4.6) is equivalent to (3.4).

Proof. From (B.12) and Assumption 3.1, we can choose a large enough constant C such that

Γ = −2C
√

1 + |S|2,

which satisfies Assumption 4.1, and Γ ∈ C∞(NT ) with P b > Γ. Since P b > Γ, (4.6) implies that

−∂tP
b − L0P

b = 	(t)− dO((σ(t))TSDSP
b,Bt) in NT .

Hence, (4.6) is equivalent to (3.4).


