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Abstract The present paper first obtains Strichartz estimates for parabolic equations with nonnegative elliptic

operators of order 2m by using both the abstract Strichartz estimates of Keel-Tao and the Hardy-Littlewood-

Sobolev inequality. Some conclusions can be viewed as the improvements of the previously known ones. Further-

more, an endpoint homogeneous Strichartz estimates on BMOx(Rn) and a parabolic homogeneous Strichartz

estimate are proved. Meanwhile, the Strichartz estimates to the Sobolev spaces and Besov spaces are general-

ized. Secondly, the local well-posedness and small global well-posedness of the Cauchy problem for the semilinear

parabolic equations with elliptic operators of order 2m, which has a potential V (t, x) satisfying appropriate in-

tegrable conditions, are established. Finally, the local and global existence and uniqueness of regular solutions

in spatial variables for the higher order elliptic Navier-Stokes system with initial data in Lr(Rn) is proved.
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1 Introduction

We are concerned in this paper with Strichartz estimates for the inhomogeneous initial problem associated

with the parabolic equations with the constant coefficients nonnegative elliptic operators P(D) of order

2m, {
∂tu(t, x) + P(D)u(t, x) = F (t, x), (t, x) ∈ (0,∞)× R

n,

u(0, x) = f(x), x ∈ R
n,

(1.1)

where the unknown function u(t, x) is a scalar valued or vector valued function of the time variable t and

the space variable x. F (t, x) and f(x) are given functions. The operator P is defined by

P(D) :=
∑

|α|�2m

aαDα,

where m is a positive integer, D = (D1,D2, . . . ,Dn), Dj = 1
i

∂
∂xj

and α = (α1, α2, . . . , αn) ∈ Z
n
+ and

|α| = ∑n
j=1 αj , n ∈ N. We always regard its symbol P (ξ) as 2m order constant real coefficients elliptic
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polynomial in R
n with P (ξ) > 0 for any ξ �= 0. The system (1.1) is a typical parabolic equation and it

has several properties resembling to the heat equations.

We now give a brief outline of this paper. In Section 2, we first recall the definitions of some function

spaces as we go along. By the Fourier transform and Duhamel’s principle, the solution of (1.1) can be

written as

u(t, x) = e−tP(D)f(x) +

∫ t

0

e−(t−s)P(D)F (s, x)ds,

where e−tP(D)f(x) = F−1(e−tP (ξ)Ff(ξ))(x) = Kt(x) ∗ f(x). Here F and F−1 denote the Fourier and

inverse Fourier transforms with respect to space variable, respectively, defined by

F(f) = f̂(ξ) =

∫
Rn

e−ix·ξf(x)dx, F−1(g) = ǧ(x) =
1

(2π)n

∫
Rn

eix·ξg(ξ)dξ

for any f, g ∈ S and S is the Schwartz function spaces. ∗ stands for the convolution operation on the

space variable.

Because the multiplier corresponds to solution operator of (1.1), e−tP (ξ) ∈ Mp
p, t > 0, 1 � p < ∞, the

operator P generates an analytic semigroup e−tP(D) on Lp (1 � p < ∞). It also holds when we replace

L∞ with Cb, where Cb is the space of bounded continuous functions with the sup norm. Next, we recall

the self-adjoint and some of commutative properties of the operator e−tP(D) with Riesz potential operator

(−Δ)β and Bessel potential operator (I −Δ)β . We also state the commutative property of the operator

e−tP(D) with the Littlewood-Paley (or dyadic) decomposition operator Δj . At the end of this section,

we quote the Lr → Lp estimate and previous Strichartz estimates associated with the operator e−tP(D).

In Section 3, we get Strichartz estimates for parabolic equations with elliptic operators of order 2m by

using both the abstract Strichartz estimates of Keel-Tao and the Hardy-Littlewood-Sobolev inequality.

Particularly, it extends Lemma 3.2 in [5] to the cases: β ∈ N, (q, p, r) = (2, 2n
n−2β , 2) when n > 2β

and (q, p, r) = (4βn ,∞, 2) when n < 2β. Furthermore, we prove an endpoint homogeneous Strichartz

estimates on BMOx(R
n) and a parabolic homogeneous Strichartz estimate for parabolic equations with

elliptic operators of order 2m where the special case n = 2 was proved by Tao in [8]. Meanwhile, we

generalize the Strichartz estimate to the Sobolev spaces and Besov spaces.

Section 4 is devoted to the first application of Strichartz estimates. We study the local well-posedness

and small global well-posedness of the Cauchy problem for the following semilinear parabolic equations

with elliptic operators of order 2m:{
∂tu(t, x) + P(D)u(t, x) + V (t, x)u(t, x) = F (t, x), (t, x) ∈ R

1+n
+ ,

u(0, x) = f(x), x ∈ R
n,

(1.2)

where V (t, x) is a time dependent potential. We prove the local well-posedness and small global well-

posedness of the Cauchy problem for system (1.2). The corresponding operator semigroup SP(t) is

denoted by SP(t) � e−tP(D), whilst the proof is similar to the method of [11] by using the Banach

contraction mapping principle and assuming an appropriate integrability condition in space and time on

V (t, x). A similar idea was used by D’Ancona et al. in [1] to get analogous estimates for the Schrödinger

equations.

In Section 5, our focus is a more specific application for the higher order elliptic Navier-Stokes system

on the half-space R
1+n
+ , n � 2:⎧⎪⎪⎨⎪⎪⎩

∂tu+ P(D)u+ (u · ∇)u+∇p = h, (t, x) ∈ R
1+n
+ ,

∇ · u = 0, (t, x) ∈ R
1+n
+ ,

u(0, x) = g(x), x ∈ R
n,

(1.3)

where the initial data g(x) ∈ Lr(Rn). In particular, (1.3) becomes the Navier-Stokes equations in the case

P(D) = −Δ. We establish the global existence and uniqueness of regular solutions in spatial variables

for the higher order elliptic Navier-Stokes system (1.3).
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2 Lemmas

Let (X, dx) be a measure space. We write the Lebesgue norm of a function f : X → R by

‖f‖p ≡ ‖f‖Lp(X) ≡
(∫

X

|f(x)|pdx
)1/p

<∞.

Let ψ : Rn → [0, 1] be a smooth radial cut-off function,

ψ(ξ) =

⎧⎪⎪⎨⎪⎪⎩
1, |ξ| � 1,

smooth, 1 < |ξ| < 2,

0, |ξ| � 2.

Denote ϕ(ξ) = ψ(ξ)−ψ(2ξ), and we introduce the function sequence {ϕj}j∈Z, where ϕj(ξ) = ϕ(2−jξ), j ∈
Z. Since supp(ϕ) ⊂ {ξ : 2−1 � |ξ| � 2}, we easily see that supp(ϕj) ⊂ {ξ : 2j−1 � |ξ| � 2j+1}, j ∈ Z

and
∑

j∈Z
ϕj = 1 for all ξ �= 0. Define Δj = F−1ϕjF , j ∈ Z. {Δj}j∈Z is called Littlewood-Paley (dyadic)

decomposition operator.

Let −∞ < s <∞, 1 � p, q � ∞. We denote by Ṡ ′ the dual space of

Ṡ = {f ∈ S (Rn) : (Dαf̂)(0) = 0, ∀α ∈ (N ∪ {0})n}.
We denote the homogeneous Besov spaces

Ḃs
p,q(R

n) =

{
f ∈ Ṡ ′(Rn) : ‖f‖Ḃs

p,q(R
n) :=

( ∞∑
j=−∞

2jsp‖Δjf‖qp
)1/q

<∞
}
.

We define the inhomogeneous Besov spaces (see [10])

Bs
p,q(R

n) =

{
f ∈ S ′(Rn) : ‖f‖Bs

p,q(R
n) :=

(
‖F−1ψFf‖qp +

∞∑
j=1

2jsp‖Δjf‖qp
)1/q

<∞
}
.

Note that we need replace the lq-norm by l∞-norm in the above definition if q = ∞.

We also denoteHs,p(Rn) and Ḣs,p(Rn), s ∈ R, 1 � p, q � ∞ to be the inhomogeneous and homogeneous

Sobolev spaces which are the completion of all infinitely differential functions f with compact support in

R
n with respect to the norms ‖f‖Hs,p(Rn) = ‖(I −Δ)s/2f‖Lp(Rn) and ‖f‖Ḣs,p(Rn) = ‖(−Δ)s/2f‖Lp(Rn)

respectively, where (I −Δ)s/2f = F−1((1 + |ξ|2)s/2Ff(ξ)) and (−Δ)s/2f = F−1(|ξ|s/2Ff(ξ)).
We have the following readily verified properties:

Lemma 2.1. For all t > 0 and β > 0, we have

(a) e−tP(D)(−Δ)β = (−Δ)βe−tP(D), where (−Δ)β is the Riesz potential operator.

(b) e−tP(D)(I −Δ)β = (I −Δ)βe−tP(D), where (I −Δ)β is the Bessel potential operator.

(c) e−tP(D)Δj = Δje
−tP(D), where Δj (j ∈ Z) is the Littlewood-Paley (dyadic) decomposition operator.

(d) 〈e−tP(D)f, g〉 = 〈f, e−tP(D)g〉, ∀ f, g ∈ L2(Rn).

Proof. The proofs of (a), (b) and (c) will follow from the definitions of e−tP(D), (−Δ)β , (I −Δ)β and

Δj , j ∈ Z. For (d), let f, g ∈ L2(Rn). Using Plancherel theorem, we obtain the following result,

〈e−tP(D)f, g〉 =
∫

F−1(e−tP (ξ)Ff(ξ))(x)g(x)dx

=

∫
e−tP (ξ)Ff(ξ)Fg(ξ)dξ =

∫
Ff(ξ)e−tP (ξ)Fg(ξ)dξ.

Using Plancherel theorem again, we obtain

〈e−tP(D)f, g〉 =
∫
f(x)F−1(e−tP (ξ)Fg(ξ))(x)dx = 〈f, e−tP(D)g〉.

This finishs the proof of Lemma 2.1.
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Lemma 2.2 (See [4]). Assume P (ξ) is a nonnegative elliptic polynomial of order 2m. Then there

exists c > 0, such that P (ξ) � c(
∑n

i=1 |ξi|2)m.
Corollary 2.3. If P (ξ) is a nonnegative elliptic polynomial of order 2m on R

n, then there exists a

constant C > 0, such that C−1|ξ|2m � P (ξ) � C|ξ|2m for all ξ �= 0.

Proof. According to Lemma 2.2, there exists a constant C1 > 0, such that C−1
1 |ξ|2m � P (ξ). On the

other hand, from the basic algebra inequality, we obtain that there exists C2 > 0, such that P (ξ) �
C2|ξ|2m. Taking C = max{C1, C2}, the proof of Corollary 2.3 is finished.

The following two lemmas are now a direct consequence of Corollary 2.3 together with two lemmas

(Lemmas 3.1 and 3.2) of [5]. The proof will be omitted.

Lemma 2.4. Let 1 � r � p � ∞ and f ∈ Lr(Rn). Then

‖e−tP(D)f‖Lp
x(Rn) � t−

n
2m ( 1

r− 1
p )‖f‖Lr(Rn), ‖∂βe−tP(D)f‖Lp

x(Rn) � t−
β

2m− n
2m ( 1

r− 1
p )‖f‖Lr(Rn).

Lemma 2.5. Let (q, p, r) be any n
2m -admissible triplet satisfying

p <

⎧⎨⎩
nr

n− 2m
, n > 2m,

∞, n � 2m,

and let ϕ ∈ Lr(Rn). Then e−tP(D)ϕ ∈ Lq(I;Lp(Rn)) with the estimate

‖e−tP(D)ϕ‖Lq
t (I,L

p
x(Rn)) � ‖ϕ‖Lr(Rn).

We can obtain the following estimate from Lemma 2.4.

Lemma 2.6. Let m � 1, T > 0, and p, q satisfy p > n
2m−1 , 2m−1 = 2m

q + n
p . Assume that f ∈ Lr(Rn)

with n
2m−1 < r � p. Then we have ‖e−tP(D)f‖Lq

t ([0,T ],Lp
x(Rn)) � T 1− n

2m ( 1
n+ 1

r )‖f‖Lr(Rn).

Proof. According to Lemma 2.4, we obtain

‖e−tP(D)f‖Lq
t ([0,T ],Lp

x(Rn)) �
(∫ T

0

t−
nq
2m ( 1

r− 1
p )‖f‖qLr

x(R
n)dt

)1/q

� T 1− n
2m ( 1

n+ 1
r )‖f‖Lr(Rn).

This completes the proof of Lemma 2.6.

3 Strichartz estimates for solution of system (1.1)

It is also known that the operator P generates an analytic semigroup on Lr (1 < r <∞). We can verify

directly that if u(t, x) is a solution of free equation associated with (1.1), then uλ(t) = u(λ2mt, λx) is also

a solution of free equation associated with (1.1) with initial value f(λx). If u(t, x) ∈ Lq(R+, Lp(Rn)), 1 <

p, q <∞, then p, q should satisfy n
2m -admissible triplet condition. So we need to introduce the following

definition on admissible triplets for the 2m order dissipative equation. For the corresponding definition

for parabolic equations the reader may refer to [4–6].

Definition 3.1. The triplet (q, p, r) is called a σ-admissible triplet if 1
q = σ(1r − 1

p ), where 1 < r �
p � ∞ and σ > 0.

Lemma 2.5 gives us the homogeneous Strichartz estimates of (1.1) except endpoint cases. To obtain

the endpoint estimates we need the abstract Strichartz estimates of Keel and Tao [3].

Lemma 3.2 (See [3]). Let H be a Hilbert space and (X, dx) be a measure space. Suppose that U(t) :

H → L2(X) obeys the energy estimate: ‖U(t)f‖L2(X) � ‖f‖H and the untruncated decay estimate, i.e.,

for some σ > 0, ‖U(t)(U(s))∗f‖L∞ � |t− s|−σ‖f‖L1, ∀ s �= t. Then the estimates

‖U(t)f‖Lq
tL

p
x
� ‖f‖H,
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∥∥∥∥
H

� ‖F‖
Lq′

t Lp′
x
,∥∥∥∥ ∫

s<t

U(t)(U(s))∗F (s)ds
∥∥∥∥
Lq

tL
p
x

� ‖F‖
L

q′
1

t L
p′
1

x

hold for all n
2m -admissible triplets (q, p, 2) and (q1, p1, 2) with q, q1 � 2, and (q, p, n

2m) and (q1, p1,
n
2m )

being not (2,∞, 1).

Theorem 3.3. Let (q, p, 2) be n
2m -admissible. If q � 2 and (q, p, n

2m ) is not (2,∞, 1), then

‖e−tP(D)f‖Lq
t(I;L

p
x(Rn)) � ‖f‖L2(Rn). (3.1)

Proof. We only need to prove (3.1) for I = [0,∞) since the proofs for other cases are similar. Assume

that (q, p, 2) is an n
2m -admissible triplet with q � 2 and (q, p, n

2m ) is not (2,∞, 1). It follows from

Lemma 2.4 that we have the energy estimate

‖e−tP(D)f‖L2
x(R

n) � ‖f‖L2(Rn), ∀ t > 0, (3.2)

and untruncated decay estimate

‖e−(t+s)P(D)f‖L∞(Rn) � |t+ s|− n
2m ‖f‖L1(Rn) � |t− s|− n

2m ‖f‖L1(Rn), ∀ s �= t, s, t ∈ (0,∞). (3.3)

By (3.2), (3.3) and Lemma 2.1, we can apply Lemma 3.2 with U(t) = e−tP(D) for t > 0, H = L2(Rn)

and X = R
n to obtain (3.1).

Theorem 3.3 extends Lemma 3.2 in [5] to the cases: β ∈ N, (q, p, r) = (2, 2n
n−2β , 2) when n > 2β and

(q, p, r) = (4βn ,∞, 2) when n < 2β.

Now we establish the inhomogeneous Strichartz estimate under the conditions in the following theorem

which is weaker than the n
2m -admissibility of (q, p, 2) and (q1, p1, 2).

Theorem 3.4. Let 1 � p′1 < p � ∞ and 1 < q′1 < q < ∞, p′1 = p1

p1−1 , q
′
1 = q1

q1−1 . If (q, p) and (q1, p1)

satisfy (
1

q′1
− 1

q

)
+

n

2m

(
1

p′1
− 1

p

)
= 1, (3.4)

then ∥∥∥∥ ∫ t

0

e−(t−s)P(D)F (s, x)ds

∥∥∥∥
Lq

t (I;L
p
x(Rn))

� ‖F‖
L

q′1
t (I;L

p′1
x (Rn))

, (3.5)

where I is either [0,∞) or [0, T ] for some 0 < T <∞.

Proof. We only need to prove (3.5) for I = [0,∞) and the proofs for other cases are similar. Assume

that (q, p, 2) and (q1, p1, 2) satisfy 1 � p′1 < p � ∞, 1 < q′1 < q < ∞ and 1
q′1

+ n
2m( 1

p′
1
− 1

p ) = 1 + 1
q . It

follows from Lemma 2.4 that

‖e−(t−s)P(D)F (s, x)‖Lp
x(Rn) � |t− s|−

n
2m ( 1

p′
1
− 1

p )‖F (s, x)‖
L

p′
1

x (Rn)
, ∀ s < t.

Then the Hardy-Littlewood-Sobolev inequality implies that∥∥∥∥ ∫ t

0

e−(t−s)P(D)F (s, x)ds

∥∥∥∥
Lq

t (I;L
p
x(Rn))

�
∥∥∥∥ ∫ t

0

‖e−(t−s)P(D)F (s, x)‖Lp
x(Rn)ds

∥∥∥∥
Lq

t (I)

�
∥∥∥∥ ∫ t

0

|t− s|−
n

2m ( 1
p′1

− 1
p )‖F (s, x)‖

L
p′1
x (Rn)

ds

∥∥∥∥
Lq

t (I)

� ‖F (s, x)‖
L

q′1
t (I;L

p′1
x (Rn))

.

This finishes the proof of (3.5).
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Remark 3.5. Since e−tP(D) commutes with (−Δ)β and (I − Δ)β for β > 0, if (q, p) satisfies the

assumption of Theorem 3.3, then (3.1) holds with ‖·‖Lp(Rn) replaced by either ‖·‖Ḣβ,p(Rn) or ‖·‖Hβ,p(Rn).

Similarly, if (q, p) and (q1, p1) satisfy the assumption of Theorem 3.4, then (3.5) holds with the same

replacement.

A locally integrable function f will be said to belong to BMO(Rn) if the semi-norm

‖f‖BMO(Rn) =

(
sup
Q

L(Q)−n

∫
Q

|f(x) − fQ|2dx
)1/2

<∞,

where Q is a cube in R
n with sides parallel to the coordinate axes, L(Q) is the sidelength of Q and

fQ = L(Q)−n
∫
Q
f(x)dx denotes the mean value of f over the cube Q.

Theorem 3.6. Let n = 2m. Then

‖e−tP(D)f‖L2
t((0,∞);BMOx(Rn)) � ‖f‖L2(Rn). (3.6)

Proof. Define ϕ ∈ C∞(R) with supp(ϕ) ⊆ (1/2, 2), ϕ(x) = 1 for x ∈ (34 ,
9
8 ) and

∑
k∈Z

ϕ(2−kt) = 1 for

all t > 0.

Let ϕk(t) = ϕ(2−kt). Define Pkf = F−1(ϕk(| · |)Ff(·)) be a Littlewood-Paley decomposition with

respect to ϕk (see [7]). Since BMO(Rn) = Ḟ 0,2∞ (Rn) (see [2]),

‖g‖BMO(Rn) ≈
∥∥∥∥( ∑

K∈Z

|Pkg|2
)1/2∥∥∥∥

L∞(Rn)

.

Then we have

‖e−tP(D)f‖2L2
t((0,∞);BMOx(Rn)) =

∫ ∞

0

‖e−tP(D)f‖2BMOx(Rn)dt

�
∫ ∞

0

sup
x

∑
k∈Z

|e−tP(D)Pkf |2dt

�
∑
k∈Z

‖e−tP(D)Pkf‖2L2
tL

∞
x
.

Take ψ ∈ C∞(R) with supp(ψ) ⊆ (1/4, 4) and ψ(x)ϕ(x) = ϕ(x). Define P̃kf = F−1(ψk(Ff)). Then
we have ‖e−tP(D)f‖2

L2
t((0,∞);BMOx(Rn))

�
∑

k ‖e−tP(D)PkP̃kf‖2L2
tL

∞
x (Rn)

.

If we can show that ‖e−tP(D)Pkf‖2L2
tL

∞
x (Rn)

� ‖f‖2L2(Rn), then we obtain

‖e−tP(D)f‖2L2
t((0,∞);BMOx(Rn)) �

∑
k

‖e−tP(D)PkP̃kf‖2L2
tL

∞
x (Rn) �

∑
k

‖P̃kf‖2L2(Rn) � ‖f‖2L2(Rn).

Next, we show that ‖e−tP(D)Pkf‖2L2
tL

∞
x (Rn)

� ‖f‖2L2(Rn). Let Mk = B(0, 2k+1)\B(0, 2k−1) and χMk
be

its characteristic function. Since ϕ is supported on (1/2, 2) and n = 2m, we have

‖e−tP(D)Pkf‖2L2
tL

∞
x (Rn) �

∫ ∞

0

sup
x

∣∣∣∣ ∫
Rn

e−tP (ξ)ei〈ξ,x〉f̂(ξ)ϕ(2−k|ξ|)dξ
∣∣∣∣2dt

�
∫ ∞

0

∫
Rn

χMk
(ξ)dξ sup

x

∫
Rn

|e−tP (ξ)ei〈ξ,x〉f̂(ξ)ϕ(2−k|ξ|)|2dξdt

� 2(k−1)n(22n − 1)

∫ ∞

0

∫
Mk

e−2tP (ξ)|f̂(ξ)ϕ(2−k|ξ|)|2dξdt

� 2(k−1)n(22n − 1)

∫ ∞

0

∫
Mk

e−2t|ξ|n |f̂(ξ)ϕ(2−k|ξ|)|2dξdt

� 2(k−1)n(22n − 1)

∫ ∞

0

e−t2(k−1)n+1

dt‖f‖2L2(Rn)

� (22n−1 − 1/2)‖f‖2L2(Rn) � ‖f‖2L2(Rn).

The proof is completed.
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Theorem 3.7 (Parabolic Strichartz estimate). (a) Let 1 � r � p � ∞ and 0 < T < ∞. If n < 2m,

then ∫ T

0

s−
nr

2pm ‖e−sP(D)f‖rLp
x(Rn)ds � T 1− n

2m ‖f‖rLr(Rn). (3.7)

(b) Let 2 < p � ∞. If n = 2m, then∫ ∞

0

s−2/p‖e−sP(D)f‖2Lp
x(Rn)ds � ‖f‖2L2(Rn). (3.8)

Proof. (a) Let 1 � r � p � ∞ and n < 2m. It follows from Lemma 2.4 that

s−
nr

2pm ‖e−sP(D)f‖rLp
x(Rn) � s−

n
2m ‖f‖rLr

x(R
n).

Furthermore, n < 2m implies that
∫ T

0
s−

n
2m ds = 2m

2m−nT
1− n

2m . Thus (3.7) holds.

(b) The following proof is essentially the same as the proof in Tao [8] and Zhai [11]. For the sake of

completeness, it is provided here. We use the TT ∗ method. Thus, by duality and the self-adjointness of

e−tP(D) it suffices to verify∥∥∥∥ ∫ ∞

0

s−
1
p e−sP(D)F (s, x)ds

∥∥∥∥2

L2(Rn)

�
∫ ∞

0

‖F (s, x)‖2
Lp′

x (Rn)
ds (3.9)

for all test functions F , where p′ := p/(p − 1) is the dual exponent. The left-hand side of (3.9) can be

written as
∫∞
0

∫∞
0
s
− 1

p

1 s−
1
p 〈e− s+s1

2 P(D)F (s, x), e−
s+s1

2 P(D)F (s1, x)〉xdsds1.
Applying Lemma 2.4 and writing g(s) = ‖F (s, x)‖

Lp′
x (Rn)

, we have

|〈e− s+s1
2 P(D)F (s, x), e−

s+s1
2 P(D)F (s1, x)〉x| � (s+ s1)

−2( 1
p′ − 1

2 )g(s)g(s1).

Hence, it suffices to prove that∫ ∞

0

∫ ∞

0

g(s)g(s1)dsds1

(s+ s1)1−2/ps1/ps
1/p
1

�
∫ ∞

0

g(s)2ds. (3.10)

By symmetry we can reduce to the region where s1 � s. If one decomposes into the dyadic ranges

2−ks � s1 � 2−k+1s, we can bound the left-hand side of (3.10) by∫ ∞

0

∞∑
k=1

∫ 2−k+1s

2−ks

g(s)g(s1)

s1−2/ps1/p(2−ks)1/p
ds1ds

�
∞∑
k=1

2k/p
∫ ∞

0

∫
2−ks�s1�2−k+1s

g(s)g(s1)

s
ds1ds

�
∞∑
k=1

2k(
1
p− 1

2 )

∫ ∞

0

g(s)2ds �
∫ ∞

0

g(s)2ds

with the second inequality using the boundedness of L2 for Hardy-Littlewood maximum functions. In

fact, we have∫ ∞

0

∫ 2−k+1s

2−ks

g(s)g(s1)

s
ds1ds � 2−k

∫ ∞

0

g(s)M(g)(2−ks)ds

� 2−k‖g(s)‖L2(R)‖M(g)(2−ks)‖L2(R) � 2−
k
2 ‖g(s)‖2L2(R).

The proof is completed.

We can refer to (3.8) as a parabolic homogeneous Strichartz estimate. The special case n = 2 of (3.8)

was proved by Tao in [8].
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Theorem 3.8. Let n > 2m > 0, p ∈ [1, 2), q ∈ (1, 2). If 1
q + n

2m ( 1p − 1
2 ) =

3
2 then∥∥∥∥ ∫ t

0

e−(t−s)P(D)F (s, x)ds

∥∥∥∥
L2

t (I;L
2n

n−2m
x (Rn))

� ‖F‖Lq
t (I;Z) (3.11)

holds with Z = Ḣm,p
x (Rn) or Hm,p

x (Rn).

Proof. We only need to prove (3.11) for Z = Ḣm,p
x (Rn). Assuming that p, q andm satisfy the conditions

given by the theorem, we have n
2m ( 1p − 1

2 ) ∈ (1/2, 1). According to the imbedding of Ḣm,2(Rn) into

L
2n

n−2m (Rn), Lemmas 2.1 and 2.4 and the Hardy-Littelewood-Sobolev inequality, we obtain∥∥∥∥ ∫ t

0

e−(t−s)P(D)F (s, x)ds

∥∥∥∥
L2

t (I;L
2n

n−2m
x (Rn))

�
∥∥∥∥ ∫ t

0

e−(t−s)P(D)F (s, x)ds

∥∥∥∥
L2

t (I;Ḣ
m,2
x (Rn))

�
∥∥∥∥(−Δ)m/2

∫ t

0

e−(t−s)P(D)F (s, x)ds

∥∥∥∥
L2

t (I;L
2
x(R

n))

�
∥∥∥∥ ∫ t

0

e−(t−s)P(D)((−Δ)m/2F (s, x))ds

∥∥∥∥
L2

t (I;L
2
x(R

n))

�
∥∥∥∥ ∫ t

0

‖e−(t−s)P(D)((−Δ)m/2F (s, x))‖L2
x(R

n)ds

∥∥∥∥
L2

t (I)

�
∥∥∥∥ ∫ t

0

|t− s|− n
2m ( 1

p− 1
2 )‖(−Δ)m/2F (s, x)‖Lp

x(Rn)ds

∥∥∥∥
L2

t (I)

� ‖(−Δ)m/2F (t, x)‖Lq
t (I;L

p
x(Rn)) � ‖F‖Lq

t (I;Ḣ
m,p
x (Rn)).

This finishes the proof of (3.11).

Using the Littlewood-Paley decomposition, we establish the following estimates in Besov spaces.

Theorem 3.9. (a) Let (q, p, 2) be n
2m -admissible. If q � 2 and (q, p, n

2m ) is not (2,∞, 1), then

‖e−tP(D)f‖Lq
t (I;X1) � ‖f‖X2 (3.12)

holds with (X1, X2) = (Bs
p,2(R

n), Bs
2,2(R

n)) or (Ḃs
p,2(R

n), Ḃs
2,2(R

n)).

(b) Let 1 � p′1 < p � ∞ and 1 < q′1 � 2 < q <∞. If (q, p) and (q1, p1) satisfy (3.4) and q1 � 2, then∥∥∥∥ ∫ t

0

e−(t−s)P(D)F (s, x)ds

∥∥∥∥
Lq

t (I;Y1)

� ‖F‖
L

q′1
t (I,Y2)

(3.13)

holds with (Y1, Y2) = (Bs
p,2(R

n), Bs
p′
1,2

(Rn)) or (Ḃs
p,2(R

n), Ḃs
p′
1,2

(Rn)).

Proof. We only check (3.12) provided that (X1, X2) = (Ḃs
p,2(R

n), Ḃs
2,2(R

n)) and (3.13) provided that

(Y1, Y2) = (Ḃs
p,2(R

n), Ḃs
p′
1,2

(Rn)) because the proofs of other cases are similar.

If q = ∞, then p = 2, we obtain

‖e−tP(D)f‖L∞
t (I,Bs

2,2)
= sup

t∈I
‖e−tP(D)(−Δ)

s
2 f‖L2 = ‖e−tP(D)(−Δ)

s
2 f‖L∞

t L2
x
� ‖(−Δ)

s
2 f‖L2 = ‖f‖Bs

2,2
.

Next, we assume that q < ∞. Define u(t) = e−tP(D)f . Then using Lemma 2.1(c), we have Δj(u) =

e−tP(D)Δjf . Hence

‖u‖Lq
t(I;Ḃ

s
p,2(R

n)) =

(∫
I

(∑
j

22sj‖e−tP(D)(Δjf)‖2Lp(Rn)

)q/2

dt

)2/q

.

Letting Aj(t) = 22sj‖e−tP(D)(Δjf)‖2Lp(Rn) and k = q/2 � 1, we have

‖u‖Lq
t(I;Ḃ

s
p,2(R

n)) =

(∫
I

(∑
j

Aj(t)

)k

dt

)1/k

=

∥∥∥∥∑
j

Aj(·)
∥∥∥∥
Lk(I)

=
∑
j

22sj‖e−tP(D)(Δjf)‖2Lq(I;Lp(Rn)).
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Using Theorem 3.3, we deduce ‖u‖Lq
t(I;Ḃ

s
p,2(R

n)) � (
∑

j 2
2sj‖Δjf‖2L2(Rn))

1/2 � ‖f‖Ḃs
2,2(R

n). Therefore,

(3.12) holds.

We assume that p <∞ since the case p = ∞ is similar.

Let u(t) =
∫ t

0
e−(t−s)P(D)F (s, x)ds. Then

2sjΔj(u) = 2sjF−1

∫ t

0

ψjF(e−(t−s′)P(D)F (s′, x))ds′

= 2sjF−1

∫ t

0

e−(t−s′)P (ξ)ψjF(F (s′, ξ))ds′

= 2sj
∫ t

0

F−1(e−(t−s′)P (ξ)ψjF(F (s′, ξ)))ds′

=

∫ t

0

e−(t−s′)P(D)(2sjF−1(ψjF(F (s′, ξ))))ds′

=

∫ t

0

e−(t−s′)P(D)vj(s
′)ds′,

where vj(t) = 2sjF−1(ψjF(F (t, ξ))). Thus

‖u‖2
Lq

t(I;Ḃ
s
p,2(R

n))
�

(∫
I

(∑
j

∥∥∥∥∫ t

0

e−(t−s′)P(D)vj(s
′)ds′

∥∥∥∥2
Lp(Rn)

)q/2

dt

)2/q

.

In a similar manner to the proof of (3.12), we have

‖u‖2
Lq

t(I;Ḃ
s
p,2(R

n))
�

(∫
I

(∑
j

∥∥∥∥ ∫ t

0

e−(t−s′)P(D)vj(s
′)ds′

∥∥∥∥2
Lp

) q
2

dt

) 2
q

�
∑
j

(∫
I

(∥∥∥∥∫ t

0

e−(t−s′)P(D)vj(s
′)ds′

∥∥∥∥
Lp

)q

dt

) 2
q

�
∑
j

∥∥∥∥ ∫ t

0

e−(t−s′)P(D)vj(s
′)ds′

∥∥∥∥2
Lq

t (I;L
p(Rn))

.

Applying Theorem 3.4, we get ‖u‖2
Lq

t(I;Ḃ
s
p,2(R

n))
�

∑
j ‖vj‖2

L
q′
1

t (I;Lp′
1(Rn))

�
∑

j(
∫
I Bj(t)dt)

k, whereBj(t) =

‖vj(t)‖q
′
1

Lp′
1(Rn)

and k = 2/q′1 � 1. An application of Minkowski inequality yields

‖u‖2/k
Lq

t(I;Ḃ
s
p,2(R

n))
�

∥∥∥∥ ∫
I

Bj(t)dt

∥∥∥∥
lk(Z)

�
∫
I

‖Bj(t)‖lk(Z)dt � ‖F‖q′1
L

q′
1

t (I;Ḃs
p′
1
,2
(Rn))

.

Thus (3.13) holds.

4 Well-posedness for the system (1.2)

Theorem 4.1. Let n � 2m, I = [0, T ] or [0,∞). Suppose V is a real potential and

V ∈ Lr
t (I;L

s
x(R

n)),
1

r
+

n

2ms
= 1,

for some fixed r ∈ (1, 2)∪ (2,∞). Let F ∈ L
q′1
t (I;L

p′
1

x (Rn)) for some n
2m -admissible triplet (q1, p1, 2) with

p′1 ∈ [1, 2) and q′1 ∈ (1, 2). Then (1.2) has a unique solution v(t, x) satisfying

‖v‖Lq
t (I;L

p
x(Rn)) � ‖f‖L2(Rn) + ‖F‖

L
q′
1

t (I;L
p′
1

x (Rn))
, (4.1)

for all n
2m -admissible triplets (q, p, 2) with 2 � q � ∞ and (q, p, n

2m ) �= (2,∞, 1).
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Proof. We shall prove this theorem for n > 2m. In the case n = 2m, we can replace in the sequel the

space L2
t (J ;L

2n
n−2m
x (Rn)) by any Lq

t (J ;L
p
x(R

n)) for 1-admissible (q, p, 2) with p arbitrarily large.

We consider the following two cases.

Case 1. r ∈ (2,∞). Let (q, p, 2) (2 � q � ∞) be n
2m -admissible. Let J = [0, ε], where ε > 0 will be

determined later and (k, l, 2) is n
2m -admissible with q � k � ∞, and set

X = Lk
t (J ;L

l
x(R

n)) ∩ L2
t (J ;L

2n
n−2m
x (Rn))

with ‖v‖X := max{‖v‖Lk
t (J;L

l
x(R

n)), ‖v‖
L2

t(J;L
2n

n−2m
x (Rn))

}.
By interpolation (see Triebel [9]), X can be embedded into Lq

t (J ;L
p
x(R

n)) for each n
2m -admissible

triplet (q, p, 2) with 2 � q � k. Define T (v) on X by

T (v) = e−tP(D)f +

∫ t

0

e−(t−s)P(D)(F (s, x)− V (s, x)v(s, x))ds, ∀ v = v(t, x) ∈ X.

Applying Theorems 3.3 and 3.4, we have

‖Tv‖Lq
t(J;L

p
x(Rn)) � C‖f‖L2(Rn) + C‖F‖

L
q′
1

t (J;L
p′
1

x (Rn))
+ C‖V v‖

L
q′
2

t (J;L
p′
2

x (Rn))
,

for all n
2m -admissible triplets (q, p, 2), (q1, p1, 2), and (q2, p2, 2) satisfying

2 � q � k, q′1 ∈ (1, 2), q′2 ∈ (1, 2), 1 � p′1 < 2 � p � ∞, 1 < p′2 < 2.

Here and later C > 0 is a constant. Clearly, Hölder’s inequality implies

‖Tv‖Lq
t(J;L

p
x(Rn)) � C‖f‖L2(Rn) + C‖F‖

L
q′
1

t (J;L
p′
1

x (Rn))
+ C‖V ‖Lr

t (J;L
s
x(R

n))‖v‖
L2

t(J;L
2n

n−2m
x (Rn))

provided 1
q2

= 1
2− 1

r ,
1
p2

= n+2m
2n − 1

s . This and the assumption on r and s imply that q′2 ∈ (1, 2), p′2 ∈ (1, 2)

and
1

q2
+

n

2m

1

p2
=

1

2
+

n

2m

n+ 2m

2n
−
(
n

2m

1

s
+

1

r

)
=

n

4m
.

Taking (q, p, 2) to be (k, l, 2) and (2, 2n
n−2m , 2), we get

‖T (v)‖X � C‖f‖2 + C‖F‖
L

q′
1

t (J;L
p′
1

x (Rn))
+ C‖V ‖Lr

t (J;L
s
x(R

n))‖v‖X .

Hence T (v) ∈ X and T is an operator from X to X . Since r <∞, we may choose such an ε > 0 that

C‖V ‖Lr
t (J;L

s
x(R

n)) �
1

2
. (4.2)

This fact yields that ‖T (v1)− T (v2)‖X � 1
2‖v1 − v2‖X , ∀ v1, v2 ∈ X. Thus T is a contraction operator on

X , and T has a unique fixed point v(t, x) which is the unique solution of (1.2) and v satisfies ‖v‖X �
‖f‖2 + ‖F‖

L
q′
1

t (J;L
p′
1

x (Rn))
.

Since X is embedded in Lq
t (J ;L

p
x(R

n)), one finds ‖v‖Lq
t (J;L

p
x(Rn)) � ‖f‖2 + ‖F‖

L
q′1
t (J;L

p′1
x (Rn))

. Now, we

can apply the previous arguments to any subinterval J = [t1, t2] on which a condition like (4.2) holds

and obtain

‖v‖Lq
t (J;L

p
x(Rn)) � ‖v(t1)‖L2(Rn) + ‖F‖

L
q′
1

t (J;L
p′
1

x (Rn))
. (4.3)

Note that (4.3) implies

‖v(t2)‖L2(Rn) � ‖v(t1)‖L2(Rn) + ‖F‖
L

q′1
t (J;L

p′1
x (Rn))

. (4.4)

If I = [0, T ] for 0 < T < ∞, we can partition I into a finite number of subintervals on which

the condition (4.2) holds. If I = [0,∞), since V ∈ Lr
t (I;L

s
x(R

n)), we can find T1 > 0 such that
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C‖V ‖Lr
t ((T1,∞);Ls

x(R
n)) <

1
2 ; and partition [0, T1] similarly. Thus we can prove (4.1) by inductively applying

(4.3) and (4.4).

Case 2. r ∈ (1, 2). Since (r, 2s
s+2 ) is the dual of (r′, 2s

s−2 ), our assumption on r and s implies

1

r′
+

n

2m

s− 2

2s
=

n

2ms
+

n

2m

s− 2

2s
=

n

2m
.

Thus (r′, 2s
s−2 ) is

n
2m -admissible with r ∈ (1, 2). In a fashion analogous to handling Case 1, we use Theo-

rems 3.3 and 3.4 to obtain ‖Tv‖Lq
t(J;L

p
x(Rn)) � C‖f‖L2(Rn) +C‖F‖

L
q′1
t (J;L

p′1
x (Rn))

+ C‖V v‖
Lr

t (J;L
2s

s+2
x (Rn))

.

Again, by Hölder’s inequality we have

‖Tv‖Lq
t(J;L

p
x(Rn)) � C‖f‖L2(Rn) + C‖F‖

L
q′
1

t (J;L
p′
1

x (Rn))
+ C‖V ‖Lr

t (J;L
s
x(R

n))‖v‖L∞
t (J;L2

x(R
n)).

Similarly, taking (q, p, 2) to be (∞, 2, 2) and (2, 2n
n−2m , 2), we have

‖Tv‖X � C‖f‖L2(Rn) + C‖F‖
L

q′
1

t (J;L
p′
1

x (Rn))
+ C‖V ‖Lr

t (J;L
s
x(R

n))‖v‖X .

The rest of the proof is similar to that of the first case.

5 Well-posedness for the Navier-Stokes system (1.3)

We can prove the following estimate by estimating kernel function Kt(x) in mixed norm spaces.

Lemma 5.1. Let m � 1, 0 < T <∞, 1 � p′1 < p � ∞, 1 � q′1 < q � ∞, 1
r = 1

p + 1
p1

and 1
h = 1

q + 1
q1
.

If 0 < nh
2m

(
1− 1

r

)
< 1, then∥∥∥∥ ∫ t

0

e−(t−s)P(D)F (s, x)ds

∥∥∥∥
Lq

t ([0,T );X)

� T
1
h− n

2m (1− 1
r )‖F‖

L
q′1
t ([0,T );Y )

(5.1)

holds with (X,Y ) = (Lp
x(R

n), L
p′
1

x (Rn)), (Ḣβ,p
x (Rn), Ḣ

β,p′
1

x (Rn)) or (Hβ,p
x (Rn), H

β,p′
1

x (Rn)) for all β > 0.

Proof. We only prove the case (X,Y ) = (Lp
x(R

n), L
p′
1

x (Rn)) since similar arguments apply to other

cases. Assume that T ∈ (0,∞), 1 � p′1 < p � ∞, 1 � q′1 < q � ∞, 1
r = 1

p + 1
p1
, 1

h = 1
q + 1

q1
and

nh
2m (1− 1

r ) ∈ (0, 1). According to the Young’s inequality and the definition of e−tP(D)(see Appendix), we

have ∥∥∥∥ ∫ t

0

e−(t−s)P(D)F (s, x)ds

∥∥∥∥
Lq

t (I;L
p
x(Rn))

�
∥∥∥∥ ∫ t

0

‖Kt−s(x) ∗x F (s, x)‖Lp
x(Rn)ds

∥∥∥∥
Lq

t (I)

�
∥∥∥∥ ∫ t

0

‖Kt−s(x)‖Lr
x(R

n)‖F (s, x)‖
L

p′
1

x (Rn)
ds

∥∥∥∥
Lq

t (I)

� ‖Kt(x)‖Lh
t (I;L

r
x(R

n))‖F (s, x)‖Lq′
1

t (I;L
p′
1

x (Rn))
.

Thus it suffices to prove ‖Kt(x)‖Lh
t (I;L

r
x(R

n)) � T
1
h− n

2m (1− 1
r ). In fact, it follows from Lemma A.1 of

Appendix that Kt(x) ∈ Lk(Rn) for all 1 � k � ∞. Since 1
r = 1

p + 1
p1

and p′1 < p imply that r > 1,

Kt(x) ∈ Lr(Rn). Hence

‖Kt(x)‖Lh
t (I;L

r
x(R

n)) �
(∫ T

0

t−
nh
2m

(∫
Rn

tn/2m

(1 + |x|)(n+2m)r
dx

)h
r

dt

)1/h

�
[ ∫ T

0

t−
nh
2m (1− 1

r )dt

]1/h
� T

1
h− n

2m (1− 1
r ).

This finishes the proof of Lemma 5.1.
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In the rest of this paper, we use the notation Lp indiscriminately for scalar and vector valued functions.

Because the mild solutions for the system (1.3) are

u(t, x) = e−tP(D)g(x) +

∫ t

0

e−(t−s)P(D)(Ph− P∇(u⊗ u)(s, x))ds,

where P (Larey projection) is the orthogonal projection operator onto the divergence free vector field

defined as follows.

We denote the Riesz transforms by Rj = ∂
∂xj

(−Δ)−1/2, j = 1, 2, . . . , n. For an arbitrary vector field

u(x) = (u1(x), u2(x), . . . , un(x)) on R
n, we set z(x) =

∑n
k=1(Rkuk)(x) and define the operator P by

(̂Pu)(ξ) =

n∑
k=1

(
δjk − ξjξk

|ξ|2
)
ûk(ξ), j = 1, 2, . . . , n

with δj,k being the Kronecker symbol.

Lemma 5.2. Let m � 1 and T > 0. Assume that u, v ∈ Lq
t ([0, T ];L

p
x(R

n)) with p, q satisfying

max

{
n

2m− 1
, 2

}
< p <∞, 2m− 1 =

2m

q
+
n

p
.

Then B(u, v) =
∫ t

0
e−(t−s)P(D)

P∇(u ⊗ v)ds is bounded from Lq
t ([0, T ];L

p
x(R

n)) × Lq
t ([0, T ];L

p
x(R

n)) to

Lq
t ([0, T ];L

p
x(R

n)) with ‖B(u, v)‖Lq
t ([0,T ];Lp

x(Rn)) � ‖u‖Lq
t ([0,T ];Lp

x(Rn))‖v‖Lq
t ([0,T ];Lp

x(Rn)).

Proof. By Lemma 2.4 and Lp-boundedness of Riesz transform, we have

‖B(u, v)‖Lp
x(Rn) �

∫ t

0

‖∇e−(t−s)P(D)
P(u(s, ·)⊗ v(s, ·))‖Lp

x(Rn)ds

�
∫ t

0

1

|t− s| 1
2m+ n

2m ( 2
p− 1

p )
‖(u(s, ·)⊗ v(s, ·))‖

L
p/2
x (Rn)

ds

�
∫ t

0

1

|t− s| 1
2m+ n

2mp

‖u(s, ·)‖Lp
x(Rn)‖v(s, ·)‖Lp

x(Rn)ds.

Since m � 1 and p > n
2m−1 , 0 <

1
2m + n

2pm < 1. It follows from 2m − 1 = 2m
q + n

p and the Hardy-

Littlewood-Sobolev inequality that

‖B(u, v)‖Lq
t ([0,T ];Lp

x(Rn)) � ‖(‖u(s, ·)‖Lp
x(Rn)‖v(s, ·)‖Lp

x(Rn))‖Lq/2
t ([0,T ])

� ‖u‖Lq
t([0,T ];Lp

x(Rn))‖v‖Lq
t([0,T ];Lp

x(Rn)).

This completes the proof of Lemma 5.2.

Applying Theorem 3.4 and Lemmas 5.1, 5.2 and 2.6, we obtain the global existence and uniqueness of

solutions for system (1.3).

Theorem 5.3. Let m ∈ N, 1 � m < 1
2 + n

4 , 0 < T <∞, p > n
2m−1 and n

p + 2m
q = 2m− 1.

(a) Assume that n
2m−1 < r � p, 1 � p′1 < p � ∞, 1 � q′1 < q � ∞, g ∈ Lr(Rn) with ∇ · g = 0 and

h ∈ L
q′1
t ([0, T ];L

p′
1

x (Rn)), 0 < n
2m (1q + 1

q1
)(1 − 1

p − 1
p1
) < 1. If there exists a suitable constant C > 0 such

that

T 1− n
2m ( 1

n+ 1
r )‖g‖Lr(Rn) + T

1
q+

1
q1

− n
2m ( 1

p′1
− 1

p )‖h‖
L

q′1
t ([0,T ];L

p′1
x (Rn))

� C, (5.2)

then (1.3) has a unique strong solution v ∈ Lq
t ([0, T ];L

p
x(R

n)) in the sense of

v = e−tP(D)g(x) +

∫ t

0

e−tP(D)[Ph(s, x)− P∇ · (v ⊗ v)(s, x)]ds.
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(b) Assume that g ∈ L
n

2m−1 (Rn) with ∇ · g = 0 and h ∈ L
q′1
t ([0,∞);L

p′
1

x (Rn)) with q′1 and p′1 satisfying

1 < q′1 < q <∞,

1 � p′1 < p <

⎧⎪⎨⎪⎩
n2

(n− 2m)(2m− 1)
, 2m < n,

∞, 2m � n,

and
n

p′1
+

2m

q′1
= 4m− 1.

If ‖g‖
L

n
2m−1 (Rn)

+ ‖h‖
L

q′
1

t ([0,∞);L
p′
1

x (Rn))
is small enough, then (1.3) has a unique strong solution v ∈

Lq
t ([0,∞);Lp

x(R
n)).

Proof. (a) Under the assumption of (a), let X = Lq([0, T ];Lp(Rn)). Define

Tu = e−tP(D)g(x) +

∫ t

0

e−(t−s)P(D)(Ph(s, x)− P∇(u⊗ u)(s, x))ds.

We will prove that if a := T 1− 1
2m ( 1

n+ 1
r )‖g‖Lr(Rn)+T

1
q+

1
q1

− n
2m ( 1

p′
1
− 1

p )‖h‖
Lq′1([0,T ];Lp′1(Rn))

is bounded by

an appropriate constant, then T is a contraction operator on the ball BR in X with radius R = 2a. For

any u1, u2 ∈ BR, we have

‖Tu1 − Tu2‖X =

∥∥∥∥ ∫ t

0

e−(t−s)P(D)
P∇(u1 ⊗ u1)ds−

∫ t

0

e−(t−s)P(D)
P∇(u2 ⊗ u2)ds

∥∥∥∥
X

= ‖B(u1 − u2, u1) +B(u2, u1 − u2)‖X
� ‖B(u1 − u2, u1)‖X + ‖B(u2, u1 − u2)‖X ,

where B(u, v) =
∫ t

0
e−(t−s)P(D)

P∇(u⊗ v)ds.

It follows from Lemma 5.2 that B is bounded on X . Hence

‖Tu1 − Tu2‖X � C‖u1 − u2‖X‖u1‖X + C‖u2‖X‖u1 − u2‖X ,

where C > 0 only depends on m, p and q. Thus

‖Tu1 − Tu2‖X � C(‖u1‖X + ‖u2‖X)‖u1 − u2‖X � CR‖u1 − u2‖X .

To estimate ‖Tu‖X for u ∈ BR, we use T (0) = e−tP(D)g(x) +
∫ t

0 e
−(t−s)P(D)

Ph(s, x)ds to obtain

‖T (0)‖X � a according to Theorem 5.1 and Lemma 2.6. Consequently,

‖T (u)‖X = ‖T (u)− T (0) + T (0)‖X � ‖T (u− 0)‖X + ‖T (0)‖X � CR‖u‖X + a.

Since a is bounded by a suitable constant, we have ‖T (u1)−T (u2)‖X � 1
2‖u1−u2‖X and ‖T (u)‖X � R.

It follows from the Banach contraction mapping principle that there exists a unique strong solution

u ∈ X = Lq
t ([0, T ];L

p
x(R

n)).

(b) Note that n
p + 2m

q = 2m − 1 implies that (q, p, n
2m−1 ) is n

2m -admissible. By Lemma 2.5, we get

‖e−tP(D)g‖Lq
t([0,∞);Lp

x(Rn)) � ‖g‖
L

n
2m−1 (Rn)

. On the other hand, Theorem 3.4 implies

∥∥∥∥ ∫ t

0

e−(t−s)P(D)h(s, x)ds

∥∥∥∥
Lq

t ([0,∞);Lp
x(Rn))

� ‖h‖
L

q′
1

t ([0,∞);L
p′
1

x (Rn))
.

Applying Lemma 5.2 for T = ∞ and the Banach contraction mapping principle, we can prove (b) since

‖g‖
L

n
2m−1 (Rn)

+ ‖h‖
L

q′1
t ([0,∞);L

p′1
x (Rn))

is small enough.

We show that the solution established in Theorem 5.3 is smooth in spatial variables. For a non-negative

multi-index k = (k1, . . . , kn) we define Dk = ( ∂
∂x1

)k1 · · · ( ∂
∂xn

)kn and |k| = k1 + · · ·+ kn.
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Corollary 5.4. Under the hypothesis of Theorem 5.3 we assume further that for a non-negative multi-

index k, Dkg ∈ Lr(Rn) and Dkh ∈ L
q′1
t ([0, T ];L

p′
1

x (Rn)). Then the solution v established in Theorem 5.3

satisfies

Djv ∈ Lq([0, T ];Lp(Rn)), (5.3)

for any non-negative multi-index j with |j| � |k|.
Proof. The proof is similar to that of Theorem 5.3. We only demonstrate the case |j| = 1, since similar

arguments apply to the cases |j| = 2, 3, . . . , |k|. Define

T (Du) = e−tP(D)(Dg) +

∫ t

0

e−(t−s)P(D)P (Dh)ds−B(Dv, v) −B(v,Dv). (5.4)

Consider the integral equation Dv = T (Dv). Then T is a mapping of the space X of function v with

v ∈ Lq([0, T ];Lp(Rn)) and Dv ∈ Lq([0, T ];Lp(Rn)).

The norm in X is defined by ‖v‖X = ‖v‖Lq([0,T ];Lp(Rn))+‖Dv‖Lq([0,T ];Lp(Rn)). The assumption on Dg and

Dh implies that the first two terms on the right-hand side of (5.4) are bounded inX . The boundness of the

other terms follows from Lemma 5.2. So T is a contraction mapping of X into itself and has a unique fixed

point in X . Therefore, the solution v established in Theorem 5.3 satisfies Dv ∈ Lq([0, T ];Lp(Rn)).
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Appendix

We consider the linear semigroup SP(t) � e−tP(D) generated by the following linear parabolic equations

with elliptic operators P(D) of order 2m:{
∂tu(t, x) + P(D)u(t, x) = 0, (t, x) ∈ (0,∞)× R

n,

u(0, x) = f(x), x ∈ R
n.

(A.1)
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We show that the kernel function of the operator semigroup SP(t) generates a bounded linear operator

on Lp(Rn) for p ∈ [0,∞].

Consider the Cauchy problem for system (A.1). By the Fourier transform and Duhamel’s principle,

the solution of (A.1) can be written as u(t, x) = e−tP(D)f(x) = F−1(e−tP (ξ)Ff(ξ))(x) = Kt(x) ∗ f(x).
From the above and Young’s inequality it is seen that, to guarantee the Lp → Lp boundedness of

the linear operator SP(t) one only needs that the kernel function Kt(x) = (2π)−n
∫
Rn eixξe−tP (ξ)dξ is

bounded on L1. Notice that P (ξ) has constant real coefficients and P (ξ) > 0 for all ξ �= 0. It is obvious

that e−tP (ξ) ∈ L1(Rn), so

Kt(x) ∈ L∞(Rn) ∩C(Rn), |Kt(x)| � Ct−
n

2m for all t > 0, (A.2)

and by the Riemann-Lebesgue theorem, lim|x|→∞Kt(x) = 0.

Lemma A.1. The kernel function Kt(x) has the following point-wise estimate,

|Kt(x)| � Ct−
n

2m (1 + |t− 1
2m x|)−n−2m, x ∈ R

n,

for m ∈ N and 0 < t <∞. Consequently one has Kt(x) ∈ Lp(Rn) for any 1 � p � ∞ and 0 < t <∞.

Proof. Define the invariant derivative operator L(x,D) =
x·∇ξ

i|x|2 . Then we have L(x,D)eixξ = eixξ. The

conjugate operator is L∗(x,D) = −x·∇ξ

i|x|2 . Thus we may write Kt(x) as

Kt(x) = (2π)−n

∫
Rn

eixξL∗(e−tP (ξ))dξ

= (2π)−n

∫
Rn

eixξρ

(
ξ

δ

)
L∗(e−tP (ξ))dξ + (2π)−n

∫
Rn

eixξ
(
1− ρ

(
ξ

δ

))
L∗(e−tP (ξ))dξ

� I + II,

where δ > 0 is to be chosen later and ρ(ξ) is a C∞
c (Rn)-function satisfying

ρ(ξ) =

{
1, |ξ| � 1,

0, |ξ| > 2.

It is clear that

|I| � Ct

|x|
∫
|ξ|�2δ

P2m−1(ξ)dξ �
Ct

|x|
∫
|ξ|�2δ

|ξ|2m−1dξ � Ct|x|−1δ2m+n−1.

To estimate II, take a sufficiently large natural number N > 2m+ n and integrate by parts to obtain

|II| � (2π)−n

∫
Rn

∣∣∣∣eixξ(L∗)N−1

((
1− ρ

(
ξ

δ

))
L∗(e−tP (ξ))

)∣∣∣∣ dξ
� C|x|−N

∫
|ξ|�δ

N∑
l=1

tl|ξ|2lm−Ne−tP (ξ)dξ

+ C|x|−N
N−1∑
k=1

Ckδ
−k

∫
δ�|ξ|�2δ

N−k∑
l=1

Clt
l|ξ|2lm−(N−k)e−tP (ξ)dξ

� C|x|−N

∫
|ξ|�δ

t|ξ|2m−Ne−tP (ξ)dξ + C|x|−N

∫
|ξ|�δ

t|ξ|2m−N tN−1|ξ|2m(N−1)e−tP (ξ)dξ

+ C|x|−N
N−1∑
k=1

∫
δ�|ξ|�2δ

(t|ξ|2m−Ne−tP (ξ) + tN−k|ξ|2m(N−k)−N e−tP (ξ))dξ.

In view of the facts that

tN−1|ξ|2m(N−1)e−tP (ξ) � tN−1|ξ|2m(N−1)e−t|ξ|2m � C,
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tN−k−1|ξ|2m(N−k−1)e−tP (ξ) � tN−k−1|ξ|2m(N−k−1)e−t|ξ|2m � C

for k = 1, 2, . . . , N − 1, it is found that |II| is dominated by

Ct|x|−N

(∫
|ξ|�δ

|ξ|2m−Ndξ +

∫
δ�|ξ|�2δ

δ2m−Ndξ

)
� Ct|x|−Nδ2m−N+n.

Taking δ = |x|−1 gives |Kt(x)| � Ct|x|−n−2m. This together with the boundedness of Kt(x) (see (A.2))

completes the proof of the lemma.


