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Abstract The notion of broken k-diamond partitions was introduced by Andrews and Paule. Let Δk(n)

denote the number of broken k-diamond partitions of n. Andrews and Paule also posed three conjectures on

the congruences of Δ2(n) modulo 2, 5 and 25. Hirschhorn and Sellers proved the conjectures for modulo 2, and

Chan proved the two cases of modulo 5. For the case of modulo 3, Radu and Sellers obtained an infinite family

of congruences for Δ2(n). In this paper, we obtain two infinite families of congruences for Δ2(n) modulo 3 based

on a formula of Radu and Sellers, a 3-dissection formula of the generating function of triangular number due to

Berndt, and the properties of the U -operator, the V -operator, the Hecke operator and the Hecke eigenform. For

example, we find that Δ2(243n+ 142) ≡ Δ2(243n+ 223) ≡ 0 (mod 3). The infinite family of Radu and Sellers

and the two infinite families derived in this paper have two congruences in common, namely, Δ2(27n + 16) ≡
Δ2(27n+ 25) ≡ 0 (mod 3).
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1 Introduction

The objective of this paper is to derive two infinite families of congruences for the number of broken 2-

diamond partitions modulo 3. The notion of broken k-diamond partitions was introduced by Andrews and

Paule [1]. A broken k-diamond partition π = (a1, a2, a3, . . . ; b2, b3, b4, . . .) is a plane partition satisfying

the relations illustrated in Figure 1, where ai, bi are nonnegative integers and ai → aj means ai � aj.

More precisely, the building blocks in Figure 1, except for the broken block (b2, b3, . . . , b2k+2), have the

same order structure as shown in Figure 2. We call each block a k-elongated partition diamond of length 1,

or a k-elongated diamond, for short.

For example, Figure 3 gives a broken 2-diamond partition

π = (10, 8, 9, 7, 6, 3, 2, 1, 0, 1; 3, 5, 2, 1, 1, 1).

Let Δk(n) denote the number of broken k-diamond partitions of n. For convenience, define Δk(0) = 1

and Δk(n) = 0 for n < 0. Let Bk(q) denote the generating function of Δk(n), i.e.,

Bk(q) =
∑
n�0

Δk(n)q
n.
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Figure 1 A broken k-diamond of length 2n
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Figure 2 A k-elongated diamond

Andrews and Paule [1] obtained the following formula,

Bk(q) =
(−q; q)∞

(q; q)2∞(−q2k+1; q2k+1)∞
. (1.1)

Note that the above formula can also be written in terms of eta-quotients related to modular forms

Bk(q) = q(k+1)/12 η(2z)η((2k + 1)z)

η(z)3η((4k + 2)z)
,

where q = e2πiz.

From (1.1), Andrews and Paule proved that for n � 0,

Δ1(2n+ 1) ≡ 0 (mod 3). (1.2)

They also posed three conjectures on congruences for the number of broken 2-diamond partitions of n.

Fu [5] and Mortenson [8] found combinatorial proofs of congruence (1.2). Meanwhile, Hirschhorn and

Sellers [6] gave a proof of (1.2) by deriving the following generating function for Δ1(2n+ 1),

∑
n�0

Δ1(2n+ 1)qn = 3
(q2; q2)2∞(q6; q6)2∞

(q; q)6∞
.

Hirschhorn and Sellers [6] also obtained the following congruences modulo 2,

Δ1(4n+ 2) ≡ Δ1(4n+ 3) ≡ 0 (mod 2), (1.3)

Δ2(10n+ 2) ≡ Δ2(10n+ 6) ≡ 0 (mod 2), (1.4)

where n � 1. The congruences in (1.4) were conjectured by Andrews and Paule [1].

Chan [4] found two infinite families of congruences modulo 5 for broken 2-diamond partitions

Δ2

(
5l+1n+

3

4
(5l − 1) + 2 · 5l + 1

)
≡ 0 (mod 5), (1.5)
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Figure 3 A broken 2-diamond partition of 60

Δ2

(
5l+1n+

3

4
(5l − 1) + 4 · 5l + 1

)
≡ 0 (mod 5), (1.6)

where l � 1 and n � 0. The two cases for l = 1 in (1.5) and (1.6) were conjectured by Andrews and

Paule [1], namely,

Δ2(25n+ 14) ≡ Δ2(25n+ 24) ≡ 0 (mod 5).

Paule and Radu [10] obtained an infinite family of congruences modulo 5 for broken 2-diamond parti-

tions. They showed that for any prime p with p ≡ 13, 17 (mod 20) and any nonnegative integer n,

Δ2

(
5p2n+ 4p− 1

4
(p− 1)

)
≡ 0 (mod 5). (1.7)

Moreover, they posed four conjectures on congruences for broken 3-diamond partitions and broken 5-

diamond partitions, which have been confirmed by Xiong [12] and Jameson [7].

For broken 2-diamond partitions, Radu and Sellers [11] showed that

∑
n�0

Δ2(3n+ 1)qn ≡ 2q
∏
n�1

(1 − q10n)4

(1− q5n)2
(mod 3), (1.8)

which implies the following congruences,

Δ2(15n+ 1) ≡ Δ2(15n+ 7) ≡ 0 (mod 3), (1.9)

Δ2(15n+ 10) ≡ Δ2(15n+ 13) ≡ 0 (mod 3), (1.10)

and

Δ2

(
3p2n+

3

4
(p(4k + 3)− 1) + 1

)
≡ 0 (mod 3), (1.11)

where p ≡ 3 (mod 4) is a prime,

0 � k � p− 1 and k �= p− 3

4
.

In this paper, we use (1.8) to establish two new infinite families of congruences of Δ2(n) modulo 3

by using a 3-dissection formula of the generating function of triangular numbers and properties of the

U -operator, the V -operator, the Hecke operator and the Hecke eigenform.

Theorem 1.1. For l � 1, we have

Δ2

(
32l+1n+

3

4
(32l − 1) + 32l + 1

)
≡ 0 (mod 3), (1.12)

Δ2

(
32l+1n+

3

4
(32l − 1) + 2 · 32l + 1

)
≡ 0 (mod 3). (1.13)
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2 Preliminaries

In this section, we give an overview of some definitions and properties of modular forms which will be

used in the proof of Theorem 1.1. Let N be a positive integer. We shall use modular forms in the

congruence subgroup Γ0(N) of SL2(Z), where

Γ0(N) :=

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣c ≡ 0 (mod N)

}
.

We shall also make use of the U -operator U(d), the V -operator V (d), the Hecke operator Tm,k acting on

modular forms and the Hecke eigenform with respect to the Hecke operator Tm,k, see Ono [9].

Definition 2.1. Let N be a positive integer, and k be an integer. Let

f(z) =
∑
n�0

a(n)qn

be a modular form in Mk(Γ0(N)). If d is a positive integer, then the U -operator U(d) and the V -operator

V (d) acting on f(z) are defined by

f(z)|U(d) :=
∑
n�0

a(dn)qn (2.1)

and

f(z)|V (d) :=
∑
n�0

a(n)qdn. (2.2)

For any positive integer m, the action of the Hecke operator Tm,k on f(z) is given by

f(z)|Tm,k :=
∑
n�0

( ∑
d| gcd(m,n)

dk−1a(mn/d2)

)
qn.

In particular, for any prime p,

f(z)|Tp,k :=
∑
n�0

(a(pn) + pk−1a(n/p))qn. (2.3)

Moreover, by (2.1) and (2.3), for any prime p and k > 1, we have

f(z)|U(p) ≡ f(z)|Tp,k (mod p). (2.4)

The operators U(d), V (d) and the Hecke operator Tm,k have the following properties.

Proposition 2.2. Let N be a positive integer, and k be an integer. Let f(z) be a modular form in

Mk(Γ0(N)).

(1) If d is a positive integer, then

f(z)|V (d) ∈Mk(Γ0(Nd)).

(2) If d is a positive integer and d|N , then

f(z)|U(d) ∈Mk(Γ0(N)).

(3) If m is a positive integer, then

f(z)|Tm,k ∈Mk(Γ0(N)).

A Hecke eigenform associated with the Hecke operator Tm,k is defined as follows.
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Definition 2.3. A modular form f(z) ∈ Mk(Γ0(N)) is called a Hecke eigenform associated with the

Hecke operator Tm,k if for every m � 2 there is a complex number λ(m) such that

f(z)|Tm,k = λ(m)f(z).

If a Hecke eigenform with respect to the Hecke operator Tm,k is a cusp form, then the following

proposition can be used to compute λ(m).

Proposition 2.4. Suppose that

f(z) =
∑
n�0

a(n)qn

is a cusp form in Sk(Γ0(N)) with a(1) = 1. If f(z) is a Hecke eigenform associated with the Hecke

operator Tm,k, then for m � 1,

f(z)|Tm,k = a(m)f(z).

3 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1 by using the approach of Chan [4]. We first establish the

following congruence on the generating function of Δ2(3n+ 1). Let ψ(q) be the generating function for

the triangular numbers, i.e.,

ψ(q) =
∑
n�0

qn(n+1)/2 =
∏
n�1

(1− q2n)2

(1− qn)
. (3.1)

Lemma 3.1. We have

ψ(q15)2
∑
n�0

Δ2(3n+ 1)qn+4 ≡ 2q5ψ(q5)8 (mod 3). (3.2)

Proof. By (1.8) and (3.1), we find that

∑
n�0

Δ2(3n+ 1)qn ≡ 2q
∏
n�1

(1− q10n)4

(1− q5n)2
= 2qψ(q5)2 (mod 3). (3.3)

It follows that

2q5ψ(q5)8 = q4ψ(q5)6 · (2qψ(q5)2)

≡ ψ(q5)6
∑
n�0

Δ2(3n+ 1)qn+4 (mod 3). (3.4)

Since
(q; q)3∞
(q3; q3)∞

≡ 1 (mod 3)

(see Ono [9]), we deduce that

ψ(q5)6
∑
n�0

Δ2(3n+ 1)qn+4 ≡ ψ(q15)2
∑
n�0

Δ2(3n+ 1)qn+4 (mod 3). (3.5)

Combining (3.4) and (3.5), we obtain that

ψ(q15)2
∑
n�0

Δ2(3n+ 1)qn+4 ≡ 2q5ψ(q5)8 (mod 3),

as claimed.

It is not difficult to show that q5ψ(q5)8 is a Hecke eigenform in M4(Γ0(10)). For a formal power series

f(q), we use the common notation [qm]f(q) to denote the coefficient of qm in f(q).
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Lemma 3.2. The function q5ψ(q5)8 is a Hecke eigenform in M4(Γ0(10)) associated with the Hecke

operator Tm,4. More precisely, for m � 2, we have

q5ψ(q5)8|Tm,4 = λ(m)q5ψ(q5)8,

where λ(m) = [qm]qψ(q)8.

Proof. It has been shown by Chan [3] that qψ(q)8 is a Hecke eigenform in M4(Γ0(2)) with respect to

the Hecke operator Tm,4. By Definition 2.3, for m � 2, there exists a complex number λ(m) such that

qψ(q)8|Tm,4 = λ(m)qψ(q)8. (3.6)

Observing that qψ(q)8 is a cusp form for which the coefficient of q is 1, by Proposition 2.4 we find that

λ(m) = [qm]qψ(q)8. (3.7)

Substituting q by q5 in (3.6), we obtain that

q5ψ(q5)8|Tm,4 = λ(m)q5ψ(q5)8.

Meanwhile, by Proposition 2.2(1), we deduce that

q5ψ(q5)8 = qψ(q)8|V (5) ∈M4(Γ0(10)).

Thus q5ψ(q5)8 is a Hecke eigenform in M4(Γ0(10)) associated with the Hecke operator Tm,4.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let f(z) = 2q5ψ(q5)8 with q = e2πiz. Applying the U -operator U(3) to f(z) gives

2q5ψ(q5)8|U(3) ≡
(
ψ(q15)2

∑
n�0

Δ2(3n+ 1)qn+4

)∣∣∣∣U(3) (mod 3)

= ψ(q5)2
∑
n�0

Δ2(9n− 11)qn (mod 3).

On the other hand, by Lemma 3.2, we see that

q5ψ(q5)8|T3,4 = ([q3]qψ(q)8)q5ψ(q5)8

= 28q5ψ(q5)8 ≡ q5ψ(q5)8 (mod 3).

Employing relation (2.4), we deduce that

ψ(q5)2
∑
n�0

Δ2(9n− 11)qn ≡ 2q5ψ(q5)8|U(3) (mod 3)

≡ 2q5ψ(q5)8|T3,4 ≡ 2q5ψ(q5)8 (mod 3).

Substituting n by n+ 2 in the above congruence, we get
∑
n�0

Δ2(9n+ 7)qn ≡ 2q3ψ(q5)6 ≡ 2q3ψ(q15)2 (mod 3). (3.8)

Using a 3-dissection formula of ψ(q) due to Berndt [2, p. 49], ψ(q) can be written in the following form,

ψ(q) = A(q3) + qψ(q9), (3.9)

where A(q) is a power series in q.

Plugging (3.9) into the right-hand side of (3.8), we find that
∑
n�0

Δ2(9n+ 7)qn ≡ 2q3(A(q45) + q15ψ(q135))2 (mod 3)
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≡ 2q3(A(q45)2 + 2q15A(q45)ψ(q135) + q30ψ(q135)2) (mod 3). (3.10)

Extracting those terms whose powers of q are congruent to 6 modulo 9 in (3.10), we obtain that

∑
n�0

Δ2(9(9n+ 6) + 7)q9n+6 ≡ 2q33ψ(q135)2 (mod 3). (3.11)

Dividing both sides of (3.11) by q6 and replacing q9 by q, we get

∑
n�0

Δ2(3
4n+ 61)qn ≡ 2q3ψ(q15)2 (mod 3). (3.12)

Combining (3.8) and (3.12), we arrive at

∑
n�0

Δ2(3
2n+ 7)qn ≡

∑
n�0

Δ2(3
4n+ 61)qn (mod 3). (3.13)

Iterating (3.13) with n replaced by 9n+ 6, we conclude that for l � 1,

∑
n�0

Δ2(3
2n+ 7)qn ≡

∑
n�0

Δ2

(
32ln+

3

4
(32l − 1) + 1

)
qn (mod 3).

Using (3.8) again, we get

∑
n�0

Δ2

(
32ln+

3

4
(32l − 1) + 1

)
qn ≡ 2q3ψ(q15)2 (mod 3). (3.14)

Since there are no terms with powers of q congruent to 1, 2 modulo 3 in 2q3ψ(q15)2, we obtain the

following infinite families of congruences,

Δ2

(
32l+1n+

3

4
(32l − 1) + 32l + 1

)
≡ 0 (mod 3),

Δ2

(
32l+1n+

3

4
(32l − 1) + 2 · 32l + 1

)
≡ 0 (mod 3).

This completes the proof.

Here are some examples of Theorem 1.1. For n � 0, we have

Δ2(27n+ 16) ≡ Δ2(27n+ 25) ≡ 0 (mod 3), (3.15)

Δ2(243n+ 142) ≡ Δ2(243n+ 223) ≡ 0 (mod 3), (3.16)

Δ2(2187n+ 1276) ≡ Δ2(2187n+ 2005) ≡ 0 (mod 3). (3.17)

Notice that the congruences in (3.15) are also contained in the infinite family of congruences (1.11) derived

by Radu and Sellers.
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