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Abstract Let (Ω, E, P ) be a probability space, F a sub-σ-algebra of E, Lp(E) (1 � p � +∞) the classical

function space and Lp
F (E) the L0(F)-module generated by Lp(E), which can be made into a random normed

module in a natural way. Up to the present time, there are three kinds of conditional risk measures, whose

model spaces are L∞(E), Lp(E) (1 � p < +∞) and Lp
F (E) (1 � p � +∞) respectively, and a conditional convex

dual representation theorem has been established for each kind. The purpose of this paper is to study the

relations among the three kinds of conditional risk measures together with their representation theorems. We

first establish the relation between Lp(E) and Lp
F (E), namely Lp

F (E) = Hcc(Lp(E)), which shows that Lp
F (E)

is exactly the countable concatenation hull of Lp(E). Based on the precise relation, we then prove that every

L0(F)-convex Lp(E)-conditional risk measure (1 � p � +∞) can be uniquely extended to an L0(F)-convex

Lp
F (E)-conditional risk measure and that the dual representation theorem of the former can also be regarded

as a special case of that of the latter, which shows that the study of Lp-conditional risk measures can be

incorporated into that of Lp
F (E)-conditional risk measures. In particular, in the process we find that combining

the countable concatenation hull of a set and the local property of conditional risk measures is a very useful

analytic skill that may considerably simplify and improve the study of L0-convex conditional risk measures.
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1 Introduction

Random metric theory is based on the idea of randomizing the classical space theory of functional analysis.

As the central part of random metric theory, random normed modules (briefly, RN modules) and random

locally convex modules (briefly, RLC modules) together with their random conjugate spaces have been

deeply studied under the (ε, λ)-topology in the direction of functional analysis, cf. [15–17, 20] and the

related references of these papers. In 2009, Filipović et al. [8] presented a kind of new topology — the

locally L0-convex topology for random normed modules and random locally convex modules and, for the

first time, applied random normed modules to the study of conditional risk measures, cf. [8, 16].

Classical convex analysis (see [7]) is the analytic foundation for convex risk measures, cf. [1, 3, 10–12].

However, it is no longer well suited to L0-convex (or conditional convex) conditional risk measures (in

∗Corresponding author



1754 Guo T X et al. Sci China Math August 2014 Vol. 57 No. 8

particular, those defined on the model spaces of unbounded financial positions). Just to overcome the

obstacle, Filipović et.al [8, 9] presented the module approach to conditional risk. Let (Ω, E , P ) be a

probability space, F a sub-σ-algebra of E , L0(F) (L̄0(F)) the set of real (extended real)-valued F -

measurable random variables on Ω, Lp(E) (1 � p � +∞) the classical function space and Lp
F (E) the

L0(F)-module generated by Lp(E), which can be made into a random normed module in a natural way,

see Example 2.4 of this paper for the construction of the random normed module Lp
F(E). The so-called

module approach is to choose Lp
F(E) as the model space, namely define an L0(F)-convex conditional

risk measure to be a proper L0(F)-convex cash-invariant and monotone function from Lp
F(E) to L̄0(F)

and further develop conditional risk measures under the definition, which also leads to the development

of random convex analysis, cf. [8, 9, 16, 17, 20]. Based on these advances, this paper further studies the

relations among the three kinds of conditional risk measures.

It is easy to observe that Lp(E) is dense in Lp
F(E) with respect to the (ε, λ)-topology on Lp

F(E)

(clearly, this is not true with respect to the locally L0-convex topology). The simple fact motivates

us to further study the precise relations among the three kinds of conditional risk measures. The first

kind was introduced independently by Detlefsen and Scandolo [5] and Bion-Nadal [2] as a monotone and

cash-invariant function from L∞(E) to L∞(F) (briefly, an L∞-conditional risk measure). The second

and third kinds were introduced by Filipović et al. [9] as monotone and cash-invariant functions from

Lp(E) to Lr(F) (1 � r � p < +∞) and from Lp
F(E) to L̄0(F) (1 � p � +∞) (briefly, Lp- and Lp

F(E)-

conditional risk measures, respectively). We show that an L∞-conditional risk measure can be uniquely

extended to an L∞
F (E)-conditional risk measure and the conditional convex dual representation theorem

for the former can be regarded as a special case of that for the latter. We further show that an L0-

convex Lp-conditional risk measure can be uniquely extended to an L0-convex Lp
F (E)-conditional risk

measure (1 � p < +∞) and the conditional convex dual representation theorem for the former can also

be regarded as a special case of that for the latter. Hence, this paper shows that the two vector space

approaches to conditional risk can be incorporated into the module approach. The second extension

theorem is not very easy, whose proof is constructive, since an L0-convex Lp-conditional risk measure is

not necessarily uniformly continuous with respect to the relative topology when Lp(E) is regarded as a

subspace of Lp
F(E) which is endowed with the (ε, λ)-topology. It is to establish the extension theorem that

we find the relation between Lp(E) and Lp
F(E), namely Lp

F(E) = Hcc(L
p(E)), which shows that Lp

F(E) is

exactly the countable concatenation hull of Lp(E). In particular, in the process we find that combining

the countable concatenation hull of a set and the local property of conditional risk measures is a very

useful analytic skill that may considerably simplify and improve the study of L0-convex conditional risk

measures.

Most of the main ideas and results of this paper were first announced in Guo’s survey paper [17]

without the detailed proofs or at most with a sketch of proofs of a few of illustrative results, in fact, this

paper is just the third part of our manuscript [20]. Besides, the main results of this paper strengthen the

corresponding versions announced in [17] since we observe the two interesting results — Lemma 2.16 and

Proposition 3.5.

The rest of this paper is organized as follows. Section 2 recalls the Fenchel-Moreau duality theorem

in random normed modules together with the dual representation of Lp
F(E)-conditional risk measures;

Sections 3 and 4 present and prove our main results as stated above in Section 1 of this paper.

Throughout this paper, we always use the following notation and terminologies:

K : the scalar field R of real numbers or C of complex numbers.

(Ω,F , P ) : a probability space.

L0(F ,K) = the algebra of equivalence classes of K-valued F -measurable random variables on (Ω,F , P ).

L0(F) = L0(F ,R).

L̄0(F) = the set of equivalence classes of extended real-valued F -measurable random variables

on (Ω,F , P ).

As usual, L̄0(F) is partially ordered by ξ � η iff ξ0(ω) � η0(ω) for P -almost all ω ∈ Ω (briefly,

a.s.), where ξ0 and η0 are arbitrarily chosen representatives of ξ and η, respectively. Then (L̄0(F),�)

is a complete lattice,
∨
H and

∧
H denote the supremum and infimum of a subset H , respectively.
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(L0(F),�) is a conditionally complete lattice. Please refer to [6] or [16, p. 3026] for the rich properties

of the supremum and infimum of a set in L̄0(F).

Let ξ and η be in L̄0(F). ξ < η is understood as usual, namely ξ � η and ξ �= η. In this paper we also

use “ξ < η (or ξ � η) on A” for “ξ0(ω) < η0(ω) (resp., ξ0(ω) � η0(ω)) for P -almost all ω ∈ A”, where

A ∈ F , ξ0 and η0 are a representative of ξ and η, respectively.

L̄0
+(F) = {ξ ∈ L̄0(F) | ξ � 0}.

�L0
+(F) = {ξ ∈ L0(F) | ξ � 0}.

L̄0
++(F) = {ξ ∈ L̄0(F) | ξ > 0 on Ω}.

L0
++(F) = {ξ ∈ L0(F) | ξ > 0 on Ω}.

Besides, ĨA always denotes the equivalence class of IA, where A ∈ F and IA is the characteristic

function of A. When Ã denotes the equivalence class of A(∈ F), namely Ã = {B ∈ F | P (A�B) = 0}
(here, A�B = (A \B) ∪ (B \A)), we also use IÃ for ĨA.

2 Fenchel-Moreau duality theorem in random normed modules together with

the dual representation of Lp
F(E)-conditional risk measures

Definition 2.1 (See [15, 16]). An ordered pair (E, ‖ · ‖) is called a random normed space (briefly, an

RN space) over K with base (Ω,F , P ) if E is a linear space over K and ‖ · ‖ is a mapping from E to

L0
+(F) such that the following are satisfied:

(RN-1) ‖αx‖ = |α|‖x‖, ∀α ∈ K and x ∈ E;

(RN-2) ‖x‖ = 0 implies x = θ (the null element of E);

(RN-3) ‖x + y‖ � ‖x‖ + ‖y‖, ∀x, y ∈ E.

Here, ‖ · ‖ is called the random norm on E and ‖x‖ the random norm of x ∈ E (if ‖ · ‖ only satisfies

(RN-1) and (RN-3) above, it is called a random seminorm on E).

Furthermore, if, in addition, E is a left module over the algebra L0(F ,K) (briefly, an L0(F ,K)-module)

such that

(RNM-1) ‖ξx‖ = |ξ|‖x‖, ∀ ξ ∈ L0(F ,K) and x ∈ E.

Then (E, ‖ · ‖) is called a random normed module (briefly, an RN module) over K with base (Ω,F , P ),

the random norm ‖ · ‖ with the property (RNM-1) is also called an L0-norm on E (a mapping only

satisfying (RN-3) and (RNM-1) above is called an L0-seminorm on E).

Definition 2.2 (See [15]). Let (E, ‖ ·‖) be an RN space over K with base (Ω,F , P ). A linear operator

f from E to L0(F ,K) is said to be an a.s. bounded random linear functional if there is ξ ∈ L0
+(F) such

that ‖f(x)‖ � ξ‖x‖, ∀x ∈ E. Denote by E∗ the linear space of a.s. bounded random linear functionals

on E, define ‖ · ‖ : E∗ → L0
+(F) by ‖f‖ =

∧
{ξ ∈ L0

+(F) | ‖f(x)‖ � ξ‖x‖ for all x ∈ E} for all f ∈ E∗,

then it is easy to check that (E∗, ‖ · ‖) is also an RN module over K with base (Ω,F , P ), called the

random conjugate space of E.

Example 2.3. Let L0(F , B) be the L0(F ,K)-module of equivalence classes of F -random variables

(or, strongly F -measurable functions) from (Ω,F , P ) to a normed space (B, ‖ · ‖) over K. ‖ · ‖ induces an

L0-norm (still denoted by ‖·‖) on L0(F , B) by ‖x‖ := the equivalence class of ‖x0(·)‖ for all x ∈ L0(F , B),

where x0(·) is a representative of x. Then (L0(F , B), ‖ · ‖) is an RN module over K with base (Ω,F , P ).

Specially, L0(F ,K) is an RN module, the L0-norm ‖ · ‖ on L0(F ,K) is still denoted by | · |.
Filipović et al. [8] constructed important RN modules Lp

F(E) (1 � p � +∞). In this paper, we will

prove that Lp
F(E) plays the role of universal model spaces for L0-convex conditional risk measures.

Example 2.4. Let (Ω, E , P ) be a probability space and F a sub-σ-algebra of E . Define |||·|||p : L0(E) →
L̄0
+(F) by

|||x|||p =

{
E[|x|p|F ]

1
p , when 1 � p < ∞,∧

{ξ ∈ L̄0
+(F) | |x| � ξ}, when p = +∞,

for all x ∈ L0(E).
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Denote Lp
F (E) = {x ∈ L0(E) | |||x|||p ∈ L0

+(F)}, then (Lp
F (E), ||| · |||p) is an RN module over R with

base (Ω,F , P ) and Lp
F(E) = L0(F) · Lp(E) = { ξx | ξ ∈ L0(F) and x ∈ Lp(E)}.

Definition 2.5 (See [15]). Let (E, ‖ · ‖) be an RN space over K with base (Ω,F , P ). For any positive

numbers ε and λ with 0 < λ < 1, let Nθ(ε, λ) = {x ∈ E | P{ω ∈ Ω | ‖x‖(ω) < ε} > 1 − λ}, then

{Nθ(ε, λ) | ε > 0, 0 < λ < 1} forms a local base at θ of some Hausdorff linear topology on E, called the

(ε, λ)-topology induced by ‖ · ‖.

From now on, we always denote by Tε,λ the (ε, λ)-topology for every RN space if there is no possible

confusion. Clearly, the (ε, λ)-topology for the special class of RN modules L0(F , B) is exactly the ordinary

topology of convergence in measure, and (L0(F ,K), Tε,λ) is a topological algebra over K. It is also easy

to check that (E, Tε,λ) is a topological module over (L0(F ,K), Tε,λ) when (E, ‖ · ‖) is an RN module

over K with base (Ω,F , P ), namely the module multiplication operation is jointly continuous.

Let (E, ‖ · ‖) be an RN module over K with base (Ω,F , P ). For any ε ∈ L0
++(F), let U(ε) = {x

∈ E | ‖x‖ � ε}. A subset G of E is Tc-open if for each fixed x ∈ G there is some ε ∈ L0
++(F) such

that x + U(ε) ⊂ G. Denote by Tc the family of Tc-open subsets of E, then Tc is a Hausdorff topology on

E, called the locally L0-convex topology induced by ‖ · ‖. Filipović et al. [8] first observed this kind of

topology. In this paper, for any RN module (E, ‖ · ‖) we always use Tc for the L0-convex topology on E

if there is no possible confusion.

(L0(F ,K), Tc) is a topological ring, namely the addition and multiplication operations are jointly

continuous, and further [8] pointed out that Tc is not necessarily a linear topology since the mapping

α �→ αx (x is fixed) is no longer continuous in general. These observations led [8] to the study of a class

of topological modules over the topological ring (L0(F ,K), Tc), namely the locally L0-convex modules, it

is proved that (E, Tc) is a Hausdorff locally L0-convex module for any random normed module (E, ‖ · ‖),

cf. [8].

Proposition 2.6 (See [13, 16]). Let (E, ‖ · ‖) be an RN module over K with base (Ω,F , P ) and f a

linear operator from E to L0(F ,K). Then f ∈ E∗ iff f is a continuous module homomorphism from

(E, Tε,λ) to (L0(F ,K), Tε,λ) iff f is a continuous module homomorphism from (E, Tc) to (L0(F ,K), Tc),
in which case ‖f‖ =

∨
{|f(x)| | x ∈ E and ‖x‖ � 1}.

Let (E, ‖ · ‖) be an RN module over K with base (Ω,F , P ), E∗
ε,λ denote the L0(F ,K)-module of

continuous module homomorphisms from (E, Tε,λ) to (L0(F ,K), Tε,λ) and E∗
c the L0(F ,K)-module of

continuous module homomorphisms from (E, Tc) to (L0(F ,K), Tc), then Proposition 2.6 shows that

E∗ = E∗
ε,λ = E∗

c .

Proposition 2.7 below is the representation theorem of the random conjugate spaces of Lp
F(E).

Proposition 2.7 (See [8, 16]). Let 1 � p < +∞ and q the Hölder conjugate number of p. Then for

each f ∈ (Lp
F (E))∗, there exists a unique y ∈ Lq

F(E) such that f(x) = E(xy | F) for any x ∈ Lp
F(E) and

‖f‖ = |||y|||q, namely (Lp
F(E))∗ is isometrically isomorphic to Lq

F(E) under the canonical mapping.

Let E be an L0(F)-module and f a function from E to L̄0(F). The effective domain of f is denoted

by dom(f) := {x ∈ E | |f(x)| < +∞ on Ω} and the epigraph of f by epi(f) := {(x, r) ∈ E×L0(F) | f(x)

� r}. f is proper if dom(f) �= ∅ and f(x) > −∞ on Ω. f is L0-convex if f(ξx + (1 − ξ)y) � ξf(x)

+ (1− ξ)f(y) for all x, y ∈ E and ξ ∈ L0
+(F) with 0 � ξ � 1, where the following convention is adopted:

0 · (±∞) = 0 and +∞± (±∞) = +∞. f : E → L̄0(F) is said to be local (or, to have the local property)

if ĨAf(x) = ĨAf(ĨAx) for all x ∈ E and A ∈ F . In [9], it is proved that an L0-convex function is local.

Definition 2.8. Let (E, ‖ · ‖) be an RN module over R with base (Ω,F , P ) and f : E → L̄0(F) a

proper L0-convex function. f is Tε,λ-lower semicontinuous if epi(f) is closed in (E, Tε,λ) × (L0(F), Tε,λ).

Let (E, ‖ · ‖) be an RN module over R with base (Ω,F , P ) and f : E → L̄0(F) a proper L0-convex

function. f∗ : E∗ → L̄0(F) is defined by f∗(g) =
∨
{g(x) − f(x) | x ∈ E}, called the random conjugate

function of f , f∗∗ : E → L̄0(F) is defined by f∗∗(x) =
∨
{g(x) − f∗(g) | g ∈ E∗}, called the random

bi-conjugate function of f . Then we have the following random version under the (ε, λ)-topology of the

classical Fenchel-Moreau dual representation theorem.
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Proposition 2.9 (See [20]). Let (E, ‖ · ‖) be an RN module over R with base (Ω,F , P ) and f : E →
L̄0(F) a proper Tε,λ-lower semicontinuous L0-convex function. Then f∗∗ = f .

Definition 2.10 (See [8]). Let (E, ‖·‖) be an RN module over R with base (Ω,F , P ) and f : E → L̄0(F)

a proper L0-convex function. f is Tc-lower semicontinuous if {x ∈ E | f(x) � r} is Tc-closed for each

r ∈ L0(F).

To introduce the random version under the locally L0-convex topology of the classical Fenchel-Moreau

dual representation theorem, let us first recall the notion of countable concatenation property of a set

or an L0(F ,K)-module. The introducing of the notion utterly results from the study of the locally L0-

convex topology, the reader will see that this notion is ubiquitous in the theory of the locally L0-convex

topology. From now on, we always suppose that all the L0(F ,K)-modules E involved in this paper have

the property that for any x, y ∈ E, if there is a countable partition {An, n ∈ N} of Ω to F such that

ĨAnx = ĨAny for each n ∈ N then x = y. Guo [16] already pointed out that all random locally convex

modules possess this property, so the assumption is not too restrictive.

Definition 2.11 (See [16]). Let E be an L0(F ,K)-module. A sequence {xn, n ∈ N} in E is countably

concatenated in E with respect to a countable partition {An, n ∈ N} of Ω to F if there is x ∈ E such

that ĨAnx = ĨAnxn for each n ∈ N, in which case we define
∑∞

n=1 ĨAnxn as x. A subset G of E is said to

have the countable concatenation property if each sequence {xn, n ∈ N} in G is countably concatenated

in E with respect to an arbitrary countable partition {An, n ∈ N} of Ω to F and
∑∞

n=1 ĨAnxn ∈ G.

From now on, let E be an L0(F ,K)-module with the countable concatenation property and G a subset

of E. Hcc(G) always denotes the countable concatenation hull of G in E, namely Hcc(G) = {
∑∞

n=1 ĨAngn :

{An, n ∈ N} is a countable partition of Ω to F and {gn, n ∈ N} is a sequence in G}. Furthermore, if

x =
∑∞

n=1 ĨAnxn for some countable partition {An, n ∈ N} of Ω to F and some sequence {xn, n ∈ N}
in E, then

∑∞
n=1 ĨAnxn is called a canonical representation of x.

When an RN module E has the countable concatenation property, in [20] we proved that a proper

L0-convex function f on E is Tε,λ-lower semicontinuous iff it is Tc-lower semicontinuous. So we have

the following corollary, namely the random version under the locally L0-convex topology of the classical

Fenchel-Moreau dual representation theorem:

Corollary 2.12 (See [20]). Let (E, ‖ · ‖) be an RN module over R with base (Ω,F , P ) such that E has

the countable concatenation property and f : E → L̄0(F) a proper Tc-lower semicontinuous L0-convex

function. Then f∗∗ = f .

The so-called module approach to conditional risk is to develop conditional risk measures under the

following definition:

Definition 2.13 (See [9]). Let 1 � p � +∞. A proper function f : Lp
F(E) → L̄0(F) is said to be

(1) monotone if f(x) � f(y) for all x, y ∈ Lp
F(E) such that x � y;

(2) cash invariant if f(x + y) = f(x) − y for all x ∈ Lp
F(E) and y ∈ L0(F).

Furthermore, a proper, monotone and cash invariant function f from Lp
F(E) to L̄0(F) is called an Lp

F(E)-

conditional risk measure.

Since Lp
F(E) has the countable concatenation property, Filipović et al. [9] essentially used Corollary 2.12

as well as the typical techniques from conditional risk measures to obtain the following representation

theorem:

Theorem 2.14 (See [9]). Let 1 � p < +∞ and 1 < q � +∞ be a pair of Hölder conjugate numbers and

f : Lp
F(E) → L̄0(F) a Tc- (or equivalently, Tε,λ-) lower semicontinuous L0(F)-convex Lp

F(E)-conditional

risk measure. Then f(x) =
∨
{E(xy | F) − f∗(y) | y ∈ Lq

F(E), y � 0 and E(y | F) = −1} for all

x ∈ Lp
F(E).

Just as the notion of a random normed module is a proper random generalization of that of a normed

space, one can have the notion of a random locally convex module as a random generalization of that

of a Hausdorff locally convex space. A random locally convex module over K with base (Ω,F , P ) is an

order pair (E,P), where E is an L0(F ,K)-module and P is a separating family of L0-seminorms on E.
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Similarly, P can induce the two kinds of topologies, namely the (ε, λ)-topology and the locally L0-convex

topology, and the two random versions for a random locally convex module of the classical Fenchel-

Moreau dual representation theorem also hold under the two kinds of topologies, which are proved in [20]

and will be used in Theorem 2.15 below.

Similarly to the theory of classical duality pair, we have developed the theory of random duality pair

under the framework of a random locally convex module so that one can understand the two kinds of

random w∗-topologies, see [20] for details. We consider the natural random duality pair 〈L1
F (E), L∞

F (E)〉,
namely 〈·, ·〉 : L1

F(E) × L∞
F (E) → L0(F) is given by 〈x, y〉 = E(xy | F) for any x ∈ L1

F(E) and y ∈
L∞
F (E), since L1

F(E) and L∞
F (E) both have the countable concatenation property, a proper L0-convex

function f from L∞
F (E) to L̄0(F) is σε,λ(L∞

F (E), L1
F (E))-lower semicontinuous iff it is σc(L

∞
F (E), L1

F (E))-

lower semicontinuous. Furthermore, for the random conjugate spaces of L∞
F (E) under the two kinds

of random w∗-topologies, we have that (L∞
F (E), σ(L∞

F (E), L1
F (E)))∗ε,λ = (L∞

F (E), σ(L∞
F (E), L1

F(E)))∗c
= L1

F(E), cf. [18, 20]. Thus by the random version in random locally convex modules of the classical

Fenchel-Moreau dual representation theorem and the similar techniques in [9], we can obtain Theorem 2.15

below.

Theorem 2.15. Let f : L∞
F (E) → L̄0(F) be a σε,λ(L∞

F (E), L1
F(E)) (or equivalently, σc(L

∞
F (E), L1

F (E))-

lower semicontinuous L0(F)-convex L∞
F (E)-conditional risk measure). Then f(x) =

∨
{E(xy | F) −

f∗(y) | y ∈ L1
F(E), y � 0 and E(y | F) = −1} for all x ∈ L∞

F (E).

In the final part of this section, let us give Lemma 2.16 below, which is almost obvious but frequently

used in the proofs of the main results of this paper.

Lemma 2.16. Let E be an L0(F)-module with the countable concatenation property. Then we have

the following statements:

(1) Let f : E → L̄0(F) have the local property and x = Σ∞
n=1ĨAnxn for some countable partition

{An, n ∈ N} of Ω to F and some sequence {xn, n ∈ N} in E, then f(x) = Σ∞
n=1ĨAnf(xn).

(2) Let f : E → L̄0(F) have the local property and G ⊂ E be a nonempty subset, then
∨
{f(x) | x ∈

G} =
∨
{f(x) | x ∈ Hcc(G)}.

(3) Let f and g be any two functions from E to L̄0(F) such that they both have the local property and

G ⊂ E a nonempty subset. If f(x) = g(x) for all x ∈ G, then f(x) = g(x) for all x ∈ Hcc(G).

(4) Let {fα, α ∈ Γ} be a family of functions from E to L̄0(F) such that each fα has the locally property,

then f : E → L̄0(F) defined by f(x) =
∨
{fα(x) | α ∈ Γ} for all x ∈ E, also has the local property.

3 The relations between Lp(E) and Lp
F(E)

In the sequel of this paper, (Ω, E , P ) always denotes a probability space, F a sub-σ-algebra of E and

Lp(E) := Lp(Ω, E , P ) (1 � p � +∞).

Let us first give a useful proposition.

Proposition 3.1 (See [14, 19]). Let (E, ‖ · ‖) be an RN module over K with base (Ω,F , P ) and

1 � p � +∞. Let Lp(E) = {x ∈ E | ‖x‖p < +∞}, where ‖ · ‖p : E → [0,+∞] is defined by

‖x‖p =

⎧⎪⎨
⎪⎩

(∫
Ω

‖x‖pdP
) 1

p

, when 1 � p < +∞,

inf{M ∈ [0,+∞] | ‖x‖ � M}, when p = +∞,

for all x ∈ E.

Then (Lp(E), ‖ · ‖p) is a normed space and Lp(E) is Tε,λ-dense in E.

When we take E = Lp
F(E) in Proposition 3.1, it is obvious that Lp(E) = Lp(E), so we have the

following:

Corollary 3.2. Lp(E), regarded as a subspace of the RN module (Lp
F (E), ||| · |||p), is Tε,λ-dense

in Lp
F(E).
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Proposition 3.3 below is a stronger proposition than Corollary 3.2, which will be needed in the proofs

of Theorems 4.3, 4.4, 4.7 and 4.10 below.

Proposition 3.3. Let 1 � p � +∞, then Lp
F(E) = Hcc(L

p(E)).

Proof. Since Lp
F(E) has the countable concatenation property, Hcc(L

p(E)) ⊂ Lp
F(E) is obvious. Con-

versely, since Lp
F(E) = L0(F) · Lp(E) := {ξg | ξ ∈ L0(F) and g ∈ Lp(E)}, for any x = ξg ∈ Lp

F(E)

for some ξ ∈ L0(F) and g ∈ Lp(E), let ξ0 be any chosen representative of ξ and An = {ω ∈ Ω | n − 1

� |ξ0(ω)| < n} for each n ∈ N, then it is clear that ξ = Σ∞
n=1ĨAnξ, and hence x = ξg = (Σ∞

n=1ĨAnξ)g

= Σ∞
n=1ĨAn(ĨAnξg) ∈ Hcc(L

p(E)) by an easy observation that each ĨAnξg ∈ Lp(E).

Remark 3.4. Let x ∈ Lp
F(E), {An, n ∈ N} be a countable partition of Ω to F and {xn, n ∈ N}

a sequence in Lp(E) such that x = Σ∞
n=1ĨAnxn. Since it is obvious that Σ∞

n=1ĨAn |||xn|||p converges in

probability measure P , Σ∞
n=1ĨAnxn both converges in Tε,λ to x and unconditionally converges in Tε,λ to x

in (Lp
F(E), ||| · |||p).

Proposition 3.5 below is also crucial for the proofs of Theorems 4.3, 4.4, 4.7 and 4.10 below.

Proposition 3.5. Let 1 � q � +∞ and γ be any positive number. Then we have the following

statements:

(1) Let G1 = {y ∈ Lq
F(E) | y � 0 and E(y | F) = −1} and G2 = {y ∈ Lq(E) | y � 0 and

E(y | F) = −1}, then G1 = Hcc(G2).

(2) Let G1 be the same as in (1) above, G3 = {y ∈ Lq(E) | y � 0, E(y | F) = −1 and E(|y|q | F) ∈
L∞(F)} and G4 = {y ∈ Lq(E) | y � 0, E(y | F) = −1 and E(|y|q | F) ∈ Lγ(F)}, then G1 = Hcc(G3)

= Hcc(G4).

Proof. (1) It is obvious that G1 has the countable concatenation property and G2 ⊂ G1, so Hcc(G2)

⊂ G1. Conversely, let y be a given element in G1, ξ0 any chosen representative of |||y|||q, An = {ω ∈ Ω

| n − 1 � ξ0(ω) < n} and yn = ĨAny + ĨAc
n
(−1) for all n ∈ N. Then it is clear that each yn ∈ G2 and

y = (Σ∞
n=1ĨAn)y = Σ∞

n=1ĨAny = Σ∞
n=1ĨAnyn, so y ∈ Hcc(G2). Thus G1 = Hcc(G2).

(2) It is obvious that G3 ⊂ G4⊂G1, so Hcc(G3)⊂Hcc(G4)⊂G1. It remains to prove that G1 ⊂ Hcc(G3)

as follows: Let y ∈ G1, ξ0, An and yn be the same as in the proof of (1) for each n ∈ N, then it is very

easy to observe that each yn also belongs to G3, so y = Σ∞
n=1ĨAnyn ∈ Hcc(G3), which shows that

G1 ⊂ Hcc(G3).

4 Extension theorem for conditional risk measures

4.1 Extension theorem for L∞-conditional risk measures

Definition 4.1 (See [2, 5]). A function f : L∞(E) → L∞(F) is said to be

(1) monotone if f(x) � f(y) for all x, y ∈ L∞(E) such that x � y;

(2) cash invariant if f(x + y) = f(x) − y for all x ∈ L∞(E) and y ∈ L∞(F);

(3) F -local if ĨAf(x) = ĨAf(ĨAx) for any A ∈ F and x ∈ L∞(E);

(4) L0(F)-convex if f(ξx + (1 − ξ)y) � ξf(x) + (1 − ξ)f(y) for any ξ ∈ L0
+(F) with 0 � ξ � 1 and

x, y ∈ L∞(E).

Furthermore, a monotone and cash invariant function from L∞(E) to L∞(F) is called an L∞-conditional

risk measure.

Let P be the set of all the probability measures Q on (Ω, E) such that Q is absolutely continuous with

respect to P on E and PF = {Q ∈ P | Q = P on F}.

For an L∞-conditional risk measure f : L∞(E) → L∞(F), α : PF → L̄0(F) defined by α(Q) =∨
{EQ(−x | F) − f(x) : x ∈ L∞(E)} for all Q ∈ PF , is called the random penalty function of f , where

EQ(· | F) denotes the conditional expectation given F under Q. The following representation theorem

is known.
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Theorem 4.2 (See [2,5]). Let f : L∞(E) → L∞(F) be an L0(F)-convex L∞-conditional risk measure.

Then the following statements are equivalent:

(1) f is continuous from above, namely f(xn) ↗ f(x) whenever xn ↘ x;

(2) f has the “Fatou property”: For any bounded sequence {xn, n ∈ N} which converges P-a.s. to

some x, then f(x) � limnf(xn);

(3) f(x) =
∨
{EQ(−x | F) − α(Q) | Q ∈ PF} for all x ∈ L∞(E).

For an L0(F)-convex L∞-conditional risk measure f : L∞(E) → L∞(F), f∗ : L1
F(E) → L̄0(F) defined

by f∗(y) =
∨
{E(xy | F) − f(x) | x ∈ L∞(E)} for all y ∈ L1

F(E), is called the random conjugate function

of f , where E(· | F) denotes the conditional expectation given F under P .

Identifying each Q ∈ PF with the Radon-Nikodým derivative dQ
dP , PF and {y | y ∈ L1

+(E), E(y | F) =

1} are identified, then (3) of Theorem 4.2 amounts to the following (4).

(4) f(x) =
∨
{E(xy | F) − f∗(y) | y ∈ L1(E), y � 0 and E(y | F) = −1}.

Theorem 4.3. Let f : L∞(E) → L∞(F) be an L∞-conditional risk measure. Then there is a unique

L∞
F (E)-conditional risk measure f̄ : L∞

F (E) → L0(F) such that |f̄(x) − f̄(y)| � |||x − y|||∞ for all

x, y ∈ L∞
F (E) and f̄ |L∞(E) = f .

Proof. Let us first recall the L0-norm ||| · |||∞ : L∞
F (E) → L0

+(F), which is defined by |||x|||∞ =
∧
{ξ ∈

L̄0
+(F) | |x| � ξ} for all x ∈ L∞

F (E), then it is obvious that |||x|||∞ ∈ L∞
+ (F) for all x ∈ L∞(E).

Since x = y + x − y � y + |x − y| � y + |||x − y|||∞ for all x, y ∈ L∞(E), f(x) � f(y + |||x − y|||∞)

= f(y)− |||x− y|||∞, namely f(y)− f(x) � |||x− y|||∞, which shows that |f(y)− f(x)| � |||x− y|||∞ for

all x, y ∈ L∞(E).

L∞(E) is Tε,λ-dense in L∞
F (E) by Corollary 3.2. Furthermore, it is clear that f is uniformly Tε,λ-

continuous from (L∞(E), ||| · |||∞) to (L∞(F), | · |) (namely L∞(E) is regarded as a subspace of (L∞
F (E), ||| ·

|||∞) and L∞(F) as a subspace of (L0(F), | · |)). Thus f has a unique extension f̄ : L∞
F (E) → L0(F) such

that |f̄(x) − f̄(y)| � |||x− y|||∞ for all x, y ∈ L∞
F (E). Since f has the F -local property, f̄ must have this

property. Further, by Proposition 3.3 every x ∈ L∞
F (E) can be expressed as x = Σ∞

n=1ĨAnxn for some

countable partition {An, n ∈ N} of Ω to F and some sequence {xn, n ∈ N} in L∞(E) and every y ∈ L0(F)

as y = Σ∞
n=1ĨBnyn for some countable partition {Bn, n ∈ N} of Ω to F and some sequence {yn, n ∈ N} in

L∞(F), where the first series converges in Tε,λ in (L∞(E), ||| · |||∞) and the second does in (L0(F), | · |).
Thus one can easily see that f̄ is monotone and cash invariant in the sense of Definition 2.13.

In Theorem 4.3, when f is L0(F)-convex, it is clear that f̄ is also L0(F)-convex.

Theorem 4.4. Let f : L∞(E) → L∞(F) be an L0(F)-convex L∞-conditional risk measure and f̄ :

L∞
F (E) → L0(F) the unique extension as determined in Theorem 4.3. Then the following statements are

equivalent:

(1) f is continuous from above;

(2) f has the Fatou property;

(3) f(x) =
∨
{E(xy | F) − f∗(y) | y ∈ L1(E), y � 0 and E(y | F) = −1} for all x ∈ L∞(E);

(4) f(x) =
∨
{E(xy | F) − f∗(y) | y ∈ L1

F(E), y � 0 and E(y | F) = −1} for all x ∈ L∞(E);

(5) f̄(x) =
∨
{E(xy | F) − f̄∗(y) | y ∈ L1

F(E), y � 0 and E(y | F) = −1} for all x ∈ L∞
F (E);

(6) f̄ is σε,λ(L∞
F (E), L1

F (E)) (or equivalently, σc(L
∞
F (E), L1

F(E)))-lower semicontinuous.

Proof. (1)⇔(2)⇔(3) is just Theorem 4.2.

(3)⇔(4). The equivalence relation is easily seen by applying Proposition 3.5(1) for q = 1 and

Lemma 2.16(2) since E(xy | F) − f∗(y) is a local function of y for each fixed x ∈ L∞(E).

(5)⇒(4). Before the proof, let us first notice that f∗(y) = f̄∗(y) for all y ∈ L1
F(E): since f∗(y) =∨

{E(xy | F)− f(x) | x ∈ L∞(E)}, f̄∗(y) =
∨
{E(xy | F)− f̄(x) | x ∈ L∞

F (E)} and L∞
F (E) = Hcc(L

∞(E))

by Proposition 3.3, then f̄∗(y) =
∨
{E(xy | F) − f(x) | x ∈ L∞(E)} = f∗(y) by noticing that both

E(xy | F) and f̄(x) are local functions of x ∈ L∞
F (E) for each fixed y ∈ L1

F(E) and applying Lemma 2.16(2)

to the local function g : L∞
F (E) → L̄0(F) defined by g(x) = E(xy | F) − f̄(x).

(4)⇒(5). by Lemma 2.16(4), it is clear that ḡ : L∞
F (E) → L̄0(F) defined by ḡ(x) =

∨
{E(xy |

F) − f̄∗(y) | y ∈ L1
F(E), y � 0 and E(y | F) = −1} for any x ∈ L∞

F (E) is local since E(xy | F) − f̄∗(y)
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is a local function of x for each fixed y. By applying Lemma 2.16(3) to f̄ and ḡ one can see that f̄ = ḡ

since L∞
F (E) = Hcc(L

∞(E)) and it is just (4) that f̄(x) = ḡ(x) for all x ∈ L∞(E).

(5)⇒(6) is clear.

(6)⇒(5) is by Theorem 2.15.

4.2 Extension theorem for Lp-conditional risk measures

Motivated by the work in [21,22], Filipović et al. [9] introduced the following Lp-conditional risk measures

as follows:

Definition 4.5 (See [9]). Let 1 � r � p < +∞ and f be a function from Lp(E) to Lr(F). f is an

Lp-conditional risk measure if the following two conditions are satisfied:

(1) f(x) � f(y) for all x, y ∈ Lp(E) with x � y;

(2) f(x + y) = f(x) − y for all x ∈ Lp(E) and y ∈ Lp(F).

Similar to Definition 4.1, one can have the notions of F -local and L0(F)-convex Lp-conditional risk

measures. The following representation result is known:

Proposition 4.6 (See [9]). Let f be an L0(F)-convex Lp-conditional risk measure from Lp(E) to Lr(F)

and 1 � r � p < +∞. If f is continuous from (Lp(E), ‖ · ‖p) to (Lr(E), ‖ · ‖r), then

f(x) =
∨

{E(xy | F ) − f∗(y) | y ∈ Lq(E), y � 0, E(|y|q | F) ∈ L
r(p−1)
p−r (F) and E(y | F) = −1}

for all x ∈ Lp(E), where 1
p + 1

q = 1 and r(p−1)
p−r = +∞ when p = r and f∗ : Lq

F(E) → L̄0(F) is defined by

f∗(y) =
∨
{E(xy | F) − f(x) | x ∈ Lp(E)} for all y ∈ Lq

F(E).

The aim of this subsection is to give an extension theorem for any L0(F)-convex Lp-conditional risk

measure, in particular, in this process we also improve Proposition 4.6 in that we can give a necessary

and sufficient condition that any L0(F)-convex Lp-conditional risk measure can be represented as in

Proposition 4.6, in fact, a new and shorter proof of Proposition 4.6 will be also given.

An important special case of L0(F)-convex Lp-conditional risk measures is the following conditional

risk measure derived from the solution to backward stochastic differential equations (BSDE, for short).

Let Rd be the d-dimensional Euclidean space of d-tuples of real numbers, whose elements are described

in terms of column vectors, (Bt)t�0 a standard d-dimensional Brown motion defined on a probability

space (Ω,F , P ) and (Ft)t�0 the augmented filtration generated by (Bt)t�0.

Let a function g : R+×Ω×R
d → R, (t, ω, z) → g(t, ω, z) (briefly,g(t, z)) satisfy the following conditions:

(A) g is Lipschitz in z, i.e., there exists a constant μ > 0 such that we have dt × dP -a.s., for any

z0, z1 ∈ Rd, |g(t, z0) − g(t, z1)| � μ‖z0 − z1‖.

(B) For all z ∈ Rd, g(·, z) is a predictable process such that for any T > 0, E[
∫ T

0
g(t, ω, z)2dt] < +∞

for any z ∈ Rd.

(C) dt× dP -a.s., g(t, 0) = 0.

(D) g is convex in z: ∀α ∈ [0, 1], ∀ z0, z1 ∈ Rd, dt × dP -a.s., g(t, αz0 + (1 − α)z1) � αg(t, z0) + (1

− α)g(t, z1).

Then, for any T > 0, the following BSDE:{
−dYt = g(t, Zt)dt− Z ′

tdBt,

YT = ξ,

where ξ ∈ L2(Ω,FT , P ) and Z ′
t is the transpose of Zt, has a unique solution (Yt, Zt)t∈[0,T ] consisting

of predictable stochastic processes such that E[
∫ T

0 Y 2
t dt] < +∞ and E[

∫ T

0 ‖Zt‖2dt] < +∞, cf. [4, 21].

Peng [21] defined the conditional g-expectation of ξ at time t as

Eg(ξ | Ft) := Yt.

Now, for any fixed t ∈ [0, T ], define ρgt (·) : L2(FT ) → L2(Ft) by ρgt (x) = Eg(−x | Ft) for all x ∈ L2(FT ),

then ρgt is an L0(Ft)-convex L2-conditional risk measure. By [21, Theorem 3.2], ρgt is continuous from
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(L2(FT ), ‖ · ‖2) to (L2(Ft), ‖ · ‖2). Again by [21, Theorem 3.2], |ρgt (x)− ρgt (y)| � c(E[|x− y|2|Ft])
1
2 for all

x, y ∈ L2(FT ), where c = e8(1+μ2)(T−t), namely when L2(FT ) is regarded as a subspace of the RN module

(L2
Ft

(FT ), ||| · |||2) and L2(Ft) is regarded as a subspace of the RN module (L0(Ft), | · |), ρgt is Lipschitz

with respect to the L0-norms. So, ρgt can be uniquely extended to an L0(Ft)-convex L2
Ft

(FT )-conditional

risk measure ρ̄gt such that |ρ̄gt (x) − ρ̄gt (y)| � c(E[|x − y|2|Ft])
1
2 for all x, y ∈ L2

Ft
(FT ) since L2(FT ) is

Tε,λ-dense in (L2
Ft

(FT ), ||| · |||2), the proof is the same as that of Theorem 4.3.

Since a general L0(F)-convex Lp-conditional risk measure from Lp(E) to Lr(F) may not necessarily

Tε,λ-uniformly continuous when Lp(E) is regarded a subspace of (Lp
F(E), ||| · |||p) and Lr(F) as a subspace

of (L0(F), | · |), we are forced to use a constructive way to obtain a unique extension, namely Theorem 4.7

below.

Theorem 4.7. Let f : Lp(E) → Lr(F) be an L0(F)-convex Lp-conditional risk measure. Then there

is a unique L0(F)-convex Lp
F(E)-conditional risk measure f̄ : Lp

F(E) → L0(F) such that f̄ |Lp(E) = f .

Proof. Define f̄ : Lp
F(E) → L0(F) by f̄(x) = Σ∞

n=1ĨAnf(xn) for any canonical representation Σ∞
n=1ĨAnxn

of x,

First, f̄ is well defined. In fact, for any two canonical representations Σ∞
n=1ĨAnxn and Σ∞

n=1ĨBnyn of x,

Σ∞
n=1ĨAnf(xn) = Σ∞

i,j=1ĨAi∩Bjf(xi) = Σ∞
i,j=1 ĨAi∩Bjf(yj) = Σ∞

n=1ĨBnf(yn).

Second, f̄ is L0(F)-convex: Let ξ ∈ L0
+(F) such that 0 � ξ � 1 and x, y ∈ Lp

F(E) have the

canonical representations Σ∞
n=1ĨAnxn and Σ∞

n=1ĨBnyn, respectively. Then x = Σ∞
i,j=1 ĨAi∩Bjxi and

y = Σ∞
i,j=1 ĨAi∩Bjyj , and thus f̄(ξx + (1 − ξ)y) = f̄(Σ∞

i,j=1ĨAi∩Bj (ξxi + (1 − ξ)yj)) = Σ∞
i,j=1 ĨAi∩Bjf(ξxi

+ (1 − ξ)yj) � ξΣ∞
i,j=1 ĨAi∩Bjf(xi) + (1 − ξ)Σ∞

i,j=1ĨAi∩Bjf(yj) = ξf̄(x) + (1 − ξ)f̄(y).

Similarly, f̄ is also monotone. Furthermore, by Proposition 3.3 and the local property of f̄ , f̄ is also

cash invariant in the sense of Definition 2.13.

Finally, any L0(F)-convex Lp
F(E)-conditional risk measure g with g|Lp(E) = f must coincide with f̄

since g has the local property by Lp
F(E) = Hcc(L

p(E)) and applying Lemma 2.16(3) to f̄ and g, which

proves the uniqueness.

Theorem 4.10 below shows that the continuity of f in Proposition 4.6 can be weakened to that f̄ is

Tε,λ (or equivalently, Tc)-lower semicontinuous, whereas the implication of the continuity of f is reflected

to some extent by Theorem 4.8 below.

Theorem 4.8. Let f and f̄ be the same as in Theorem 4.7. If f is continuous from (Lp(E), ‖ · ‖p) to

(Lr(F), ‖ · ‖r), then f̄ is Tε,λ-continuous from (Lp
F(E), ||| · |||p) to (L0(F), | · |).

Proof. When Lp(E) is regard as a subspace (Lp
F (E), ||| · |||p) and (Lr(F), ‖·‖r) is regarded as a subspace

of (L0(F), | · |), we first prove that f is Tε,λ-continuous from (Lp(E), ||| · |||p) to (Lr(F), | · |). For this,

we only need to prove that, for each fixed x0 ∈ Lp(E) and each sequence {xn, n ∈ N} in Lp(E) such

that {E[|xn − x0|p | F ]
1
p : n ∈ N} converges in probability measure P to 0, there exists a subsequence

{xnk
, k ∈ N} of {xn, n ∈ N} such that {f(xnk

), k ∈ N} converges in probability measure P to f(x0).

Since f is F -local, we only need to prove that, for any positive number δ, there exist an F -measurable

subset Hδ of Ω and a subsequence {xnk
, k ∈ N} of {xn, n ∈ N} such that P (Ω \ Hδ) > 1 − δ and

{f(xnk
), k ∈ N} converges in probability measure P to f(x0) on Ω \Hδ. In fact, by the Egoroff theorem

there are such Hδ and {xnk
, k ∈ N} such that {E[|xnk

− x0|p|F ]
1
p , k ∈ N} converges uniformly to 0 on

Ω \ Hδ, so that {ĨΩ\Hδ
xnk

, k ∈ N} converges to ĨΩ\Hδ
x0 in the usual Lp-norm ‖ · ‖p by the Lebesgue

domination convergence theorem, hence {ĨΩ\Hδ
f(xnk

), k ∈ N} converges in the Lr-norm to ĨΩ\Hδ
f(x0),

which implies that {f(xnk
), k ∈ N} converges in probability measure P to f(x0) on Ω \Hδ.

We can now prove that f̄ is Tε,λ-continuous. Let {xk, k ∈ N} be a sequence in Lp
F(E) convergent in

Tε,λ to x ∈ Lp
F(E), where Tε,λ is the (ε, λ)-topology on Lp

F(E) induced by ||| · |||p, then for any canonical

representation Σ∞
n=1ĨAnxn of x, we only need to prove that {f̄(xk), k ∈ N} converges in probability P to

f̄(x) on each fixed An. Now, let n0 ∈ N be fixed. For each given canonical representation Σ∞
n=1ĨAk

n
xk
n

of xk, we choose mk ∈ N such that P (Σn�mk
Ak

n) < 1
k , then {Σmk

n=1ĨAk
n
xk
n, k ∈ N} still converges in Tε,λ

to x, hence {ĨAn0
Σmk

n=1ĨAk
n
xk
n, k ∈ N}, of course, converges in Tε,λ to ĨAn0

x (= ĨAn0
xn0). By what we

have proved, {f(ĨAn0
Σmk

n=1ĨAk
n
xk
n), k ∈ N} converges in the probability measure P to f(ĨAn0

xn0). By the
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F -local property of f , ĨAn0
f(Σmk

n=1ĨAk
n
xk
n) = ĨAn0

f(ĨAn0
Σmk

n=1ĨAk
n
xk
n) and ĨAn0

f(xn0) = ĨAn0
f(ĨAn0

xn0),

then {f(ĨAn0
Σmk

n=1ĨAk
n
xk
n), k ∈ N} converges in the probability measure P to f(xn0) on An0 .

Finally, since f̄(xk) = Ĩ⋃mk
n=1 Ak

n
f(Σmk

n=1ĨAk
n
xk
n)) + Σ∞

n�mk
ĨAk

n
f(xk

n) and ĨAn0
f(x) = ĨAn0

f̄(x)

= ĨAn0
f̄(ĨAn0

x) = ĨAn0
f(xn0), we have that {f̄(xk), k ∈ N} converges in the probability measure P

to f̄(x) on An0 by noticing that P (Σ∞
n�mk

Ak
n) → 0 when k → ∞.

Lemma 4.9. Let f : Lp(E) → Lr(F) be an L0(F)-convex Lp-conditional risk measure and f̄ : Lp
F(E)

→ L0(F) its unique extension. Then we have that f∗(y) = f̄∗(y) for all y ∈ Lq
F (E).

Proof. Let us recall: f∗(y) =
∨
{E(xy | F) − f(x) | x ∈ Lp(E)} and f̄∗(y) =

∨
{E(xy | F) − f̄(x)

| x ∈ Lp
F(E)}. By Proposition 3.3, Lp

F(E) = Hcc(L
p(E)), which, together with the local property of

g : Lp
F(E) → L̄0(F) defined by g(x) = E(xy | F) − f̄(x) for all x ∈ Lp

F(E) implies the f∗(y) = f̄∗(y) for

all y ∈ Lq
F (E) by applying Lemma 2.16(2) to the local function g and G := Lp(E).

Theorem 4.10. Let 1 � r � p < +∞, q be the Hölder conjugate number of p, f : Lp(E) → Lr(F) an

L0(F)-convex Lp-conditional risk measure and f̄ : Lp
F(E) → L0(F) the unique extension of f determined

by Theorem 4.7. Then the following statements are equivalent:

(1) f(x) =
∨
{E(xy | F) − f∗(y) | y ∈ Lq(E), y � 0, E(|y|q | F) ∈ L∞(F) and E(y | F) = −1} for all

x ∈ Lp(E).

(2) For any given positive number γ, f(x) =
∨
{E(xy | F) − f∗(y) | y ∈ Lq(E), y � 0, E(|y|q | F) ∈

Lγ(F) and E(y | F) = −1} for all x ∈ Lp(E).

(3) f(x) =
∨
{E(xy | F) − f∗(y) | y ∈ Lq(E), y � 0, E(|y|q | F) ∈ L

r(p−1)
p−r (F) and E(y | F) = −1} for

all x ∈ Lp(E).

(4) f(x) =
∨
{E(xy | F) − f∗(y) | y ∈ Lq

F(E), y � 0 and E(y | F) = −1} for all x ∈ Lp(E).

(5) f̄(x) =
∨
{E(xy | F) − f̄∗(y) | y ∈ Lq

F(E), y � 0 and E(y | F) = −1} for all x ∈ Lp
F(E).

(6) f̄ is Tε,λ- (or equivalently, Tc-) lower semicontinuous.

(7) f̄ is continuous from (Lp
F(E), Tc) to (L0(F), Tc).

Proof. For any fixed x ∈ Lp(E), let g(y) = E(xy | F) − f∗(y) for any y ∈ Lq
F(E), then g has the local

property. By applying Lemma 2.16(2) and Proposition 3.5(2) one can easily see that (1)⇔(2)⇔(3)⇔(4).

By Lemma 4.9, f∗ = f̄∗, so (5)⇒(4) is clear. If (4) is true, let ḡ : Lp
F(E) → L̄0(F) be defined by

ḡ(x) =
∨

{E(xy | F) − f̄∗(y) | y ∈ Lq
F(E), y � 0 and E(y | F) = −1}

for any x ∈ Lp
F(E), then by Lemma 2.16(3) we have that f̄ = ḡ since (4) just shows that f̄(x) = ḡ(x) for

any x ∈ Lp(E), which shows (4)⇒(5).

(5)⇒(6) is clear.

(6)⇒(5) is by Proposition 4.6.

(6)⇒(7) is by [20, Theorem 3.44].

(7)⇒(6) is clear.

Theorem 4.10 not only gives a very short proof of Filipović et al. [9, Proposition 4.6], whose original

proof in [9] is somewhat complicated, but also improves Proposition 4.6 in that we give a necessary and

sufficient condition for Theorem 4.10(3) to hold, namely that f̄ is Tε,λ- (or Tc-) lower semicontinuous.

Besides, maybe Theorem 4.10(1) is more interesting.
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