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1 Introduction

In stochastic analysis for diffusion processes, the Bismut formula (also called Bismut-Elworthy-Li formula

[7]) and the integration by parts formula are two fundamental tools. Let, for example, {Xt}t�0 be

a diffusion process on R
n generated by an elliptic differential operator and {Pt}t�0 be the associated

Markov semigroup. The Bismut formula is of type

∇ξPtf(x) = E{f(Xx
t )M

x
t }, f ∈ Bb(R

n), t > 0,

where Mx
t is a random variable independent of f , and ∇ξ is the directional derivative along ξ. This

formula is applied to various aspects such as functional inequalities, heat kernel estimates, strong Feller

properties and sensitivity analysis, see [1, 2, 7, 14] and the references therein for diffusion cases and

jump-diffusion cases. In recent years, there exist some results for jump processes. For example, Norris

established an integration by parts formula and obtained the heat kernel estimates in [8] for SDEs driven

by jump processes; in [17] and [19], Bismut formula for linear SDEs driven by Lévy processes were derived

by using coupling method; in [22], the formula was also investigated for nonlinear SDEs driven by α-

stable processes. With the help of Malliavin calculus for jump processes, Dong et al. [6] obtained Bismut

formula for linear SDEs driven by general Lévy processes. There are some other results about this topic,

such as [3, 13, 21] and so on.

Let {Pt}t�0 and {Pt(x, ·)}t�0 be the semigroup and transition probability kernel for a strong Markov

process on a Polish space U . If X := {Xt}t�0 and Y := {Yt}t�0 are two processes with the same

transition probability kernel {Pt(x, ·)}t�0, then {X,Y } = {Xt, Yt}t�0 is called a coupling of the strong

Markov process with coupling time Tx,y := inf{t � 0 : Xt = Yt}. The coupling is called successful if
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Tx,y < ∞ a.s. The recent results for coupling and applications in SDEs were summarized in [18] for both

diffusion and jump processes, see also [11, 12, 16] and the references therein.

The dimension-free Harnack inequality was first introduced in [15] by Wang using couplings constructed

through Girsanov transforms for diffusion semigroups on manifolds. It can be formulated as

(Ptf)
α(x) � Ptf

α(x+ y) exp{Cα(y, t)},

where α > 1 is a constant, and Cα(y, t) is a positive function on R
n × (0,∞) with Cα(0, t) = 0, which is

determined by the underlying stochastic equation. Since arguments used in most of references essentially

rely on special properties of the Brownian motion (see [1,2,5,16] and so on), they do not apply to the jump

setting. For SDEs driven by pure jump processes, a different version of Harnack inequality was presented

in [20]. In [17] and [19], with helps of coupling and new Girsanov transform on the configuration space,

Wang succeeded in establishing derivative formula and dimension-free Harnack inequality for linear SDEs

driven by Lévy processes.

In this paper, we aim to investigate Bismut formula, gradient estimates, dimension-free Harnack in-

equality and coupling property for the transition semigroups associated to a kind of semilinear SDEs

driven by jump processes. From now on, for i = 1, 2, we use Ci
b(R

n) to denote the family of Ci functions

f such that f and its partial derivatives up to order i are bounded. We denote the uniform norm with

respect to x by ‖ · ‖∞. Let Bb(R
n) be the class of all bounded measurable functions on R

n. The rest of

this paper is organized as follows: in the second section, we list some notation and our main results; in

the last section, we shall give the proofs of main results.

2 Notation and main results

For i = 1, 2, let Wi be the space of all càdlàg functions from [0,∞) to R
n vanishing at 0, which is

endowed with the Skorohod topology and the probability measure P
i such that the coordinate process

Li
t(w

i) = wi
t is a Lévy process. Furthermore, we assume that L1 := {L1

t}t�0 is a purely jump process

with Lévy measure ν1(dz) := ρ(z)dz, where ρ : R
n
0 → (0,∞) is a differentiable function satisfying∫

R
n
0
(|z|2 ∧ 1)ρ(z)dz < ∞.

Consider the following product probability space, (Ω,F ,P) := (W1 ×W2,B(W1) × B(W2),P
1 × P

2),

and define Lt = L1
t + L2

t , i.e., for w = (w1, w2) ∈ Ω, Lt(w) = w1
t + w2

t . Then {Lt}t�0 is a Lévy process

on (Ω,F ,P) with two independent parts and its Lévy measure denoted by ν satisfies ν(dz) � ρ(z)dz.

Denote by {Ft}t�0 the smallest filtration generated by {Lt}t�0. We use N1 and Ñ1 to denote the jump

measure and martingale measure of {L1
t}t�0. Let E and E

1 be the associated expectations of P and P
1

respectively.

This paper is concerned with the following stochastic differential equation (SDE) with jumps,{
dXt = b(Xt)dt+ σtdLt,

X0 = x,
(2.1)

where b : Rn → R
n and σ : [0,∞) → R

n ⊗ R
n are measurable. It is well known that there exists a

unique solution of (2.1) provided the coefficient b satisfies Lipschitz conditions and the solution can be

formulated as

Xx
t = x+

∫ t

0

b(Xs)ds+

∫ t

0

σsdLs, t � 0. (2.2)

We gather here the hypotheses which will be made on (2.1).

(H1) b ∈ C1(Rn) with ∇b bounded and Lipschitz continuous. There exists a constant β > 0 such that

|σ−1
s | � β for any s > 0.

(H2) There is a constant K > 0, such that 〈b(x) − b(y), x− y〉 � −K|x− y|2 for any x, y ∈ R
n.
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As we know, λ0 :=
∫
R

n
0
ρ(z)dz is either finite or infinite. If λ0 = ∞, then we aim to investigate the

Bismut formula, gradient estimate and coupling property for the associated semigroup

Ptf(x) := Ef(Xx
t ), t � 0, x ∈ R

n, f ∈ Bb(R
n).

Otherwise, we consider P 1
t instead of Pt,

P 1
t f(x) := E{f(Xx

t )I[Nt�1]}, t � 0, x ∈ R
n, f ∈ Bb(R

n),

where Nt = N1([0, t]× R
n).

Recall that the solution has successful coupling if and only if (see [4])

lim
t→∞ ‖Pt(x, ·) − Pt(y, ·)‖Var = 0, x, y ∈ R

n,

where Pt(x, ·) is the transition probability of Xx
t and ‖ · ‖Var denotes the total variation norm.

Let Jt be the derivative of Xx
t w.r.t. the initial value x. We have the following main results.

Theorem 2.1. Let (H1) hold and ρ ∈ C1(Rn) with
∫
Rn |∇ρ(z)|dz < ∞. For t > 0, ξ ∈ R

n and

f ∈ Cb(R
n), we have

∇ξP
1
t f(x) = −E

{
f(Xx

t )
I[Nt�1]

Nt

∫ t

0

∫
Rn

∇ log ρ(z) · (σ−1
s Jsξ)Ñ1(dz, ds)

}
.

Furthermore,

‖∇P 1
t f‖∞ � 4βet‖∇b‖∞

λ0
(1− e−λ0t − e−λ0tλ0t)‖f‖∞

∫
Rn

|∇ρ(z)|dz.

Theorem 2.2. Let (H1)–(H2) hold and ρ ∈ C1(Rn) with
∫
Rn |∇ρ(z)|dz < ∞. Then for t > K+λ0

K ,

‖Pt(x, ·)− Pt(y, ·)‖Var �
{

4β

Kλ0

∫
Rn

|∇ρ(z)|dz|x− y|+ 2

}
e
− Kλ0

K+λ0
t
.

The above two results are under the condition that ρ(z)dz is a finite measure. Before we introduce the

main results in the σ-finite case, we would like to list some notation. Denote

Li =

{
h : Rn → R

∣∣∣∣ ∫
R

n
0

|h(z)|iν1(dz) < ∞
}
, i = 1, 2;

L1
+ = {h | h � 0 and h ∈ L1};

C = {h : Rn → R | h is differential and has compact support in R
n
0}.

For h ∈ C , we define a weighted norm as

‖h‖ρ =

{∫
R

n
0

|∇h(z)|2ν1(dz)
} 1

2

+

{∫
R

n
0

h2(z)|∇ log ρ(z)|2ν1(dz)
} 1

2

.

Let C
‖·‖ρ

be the closure of C under ‖ · ‖ρ. Denote Hρ = {h ∈ L1
+ ∩ L2 | h ∈ C

‖·‖ρ
and ∇h is bounded}.

We have the following results.

Theorem 2.3. Let (H1) hold and ρ ∈ C1(Rn
0 ). If θ := lim infx→∞

ν1([h�x−1])
log x > 0 for some h ∈ Hρ,

then for t > 8
(θ∧1)(1−e−1) , ξ ∈ R

n and f ∈ Cb(R
n),

∇ξPtf(x) = −E

{
f(Xx

t )

[
H−1

t

∫ t

0

∫
R

n
0

∇(ρ(z)h(z))

ρ(z)
· σ−1

s JsξÑ1(dz, ds)

+H−2
t

∫ t

0

∫
R

n
0

∇h(z) · (σ−1
s Jsh(z)ξ)N

1(dz, ds)

]}
,
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where Ht =
∫ t

0

∫
R

n
0
h(z)N1(dz, ds). Furthermore,

‖∇Ptf‖∞ � C

(
1 +

1

t− 8
(θ∧1)(1−e−1)

)
β‖f‖∞ exp{‖∇b‖∞t}

×
{∥∥∥∥ |∇(hρ)|

ρ

∥∥∥∥
L2

+ 2‖∇h‖∞
√
‖h‖2L2 + ‖h‖2L1

}
,

where C is a constant independent of t.

Theorem 2.4. Let (H1)–(H2) hold and ρ ∈ C1(Rn
0 ). If lim infx→∞

ν1([h�x−1])
log x > 0 for some h ∈ Hρ,

then for any α ∈ (0, 1), there exists a constant C(α) independent of t such that

‖Pt(x, ·)− Pt(y, ·)‖Var �
C(α)

K
e−αKt.

Remark 2.5. Under either the conditions of Theorem 2.2 or Theorem 2.4, if there exists at least one

invariant measure for {Xx
t }t�0 and each invariant measure is integrable, then {Xx

t }t�0 is exponentially

ergodic.

We shall use Malliavin calculus for jump processes to prove the above results. So it is necessary for us

to recall the notion of L1-derivative and an integration by parts formula for jump processes. For T > 0,

let V = {V (s, z)}s�T,z∈R
n
0
be a predictable process satisfying E| ∫ T

0

∫
R

n
0
V (s, z)N1(dz, ds)| < ∞. Define

a perturbed random measure N1,ε by

N1,ε(B × [0, t]) =

∫ t

0

∫
R

n
0

IB(z + εV (s, z))N1(dz, ds), (2.3)

where
∫
B
ρ(z)dz < ∞. Let {Lε

t}0�t�T be the associated Lévy process perturbed by εV , i.e.,

Lε
t = Lt + ε

∫ t

0

∫
R

n
0

V (s, z)N1(dz, ds).

Definition 2.6 (See [3]). A function Ft(L) := F ({Ls}s�t) is called to have an L1-derivative in the

direction V , if there exists an integrable random variable denoted by DV Ft(L), such that

lim
ε→0

E

∣∣∣∣Ft(L
ε)− Ft(L)

ε
−DV Ft(L)

∣∣∣∣ = 0.

With this notion, we have an integration by parts formula. Denote

V = {V : Ω× [0, T ]× R
n
0 → R

n | V is predictable with V and DzV bounded,

∃U0 ⊂ R
n
0 compact, s.t. SuppV ⊂ [0, T ]× U0}.

Proposition 2.7. Let ρ ∈ C1(Rn
0 ). If a bounded function Ft(L) has an L1-derivative DV Ft(L) for

V ∈ V, then
E{DV Ft(L)} = −E{Ft(L)Rt}, (2.4)

where

Rt =

∫ t

0

∫
R

n
0

div(ρ(z)V (s, z))

ρ(z)
Ñ1(dz, ds).

This proof can be obtained by the same argument of Proposition 2.2 in [6].

Remark 2.8. Denote

Ṽ = {V : Ω× [0, T ]× R
n
0 → R

n | V is predictable with V and DzV bounded,

∃U ⊂ R
n compact, s.t. SuppV ⊂ [0, T ]× U}.

If the condition ρ ∈ C1(Rn
0 ) is replaced by ρ ∈ C1(Rn), which implies ρ(z)dz is a finite measure, then

(2.4) also holds for V ∈ Ṽ .
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3 Proofs of main results

In this section, we would like to give the proofs of the theorems listed in Section 2. Before we move on,

it is necessary for us to show the existence of L1-derivative of (2.2). For T > 0, denote

L2([0, T ]) =

{
k : [0, T ] → [0,∞)

∣∣∣∣ ∫ T

0

k2(s)ds < ∞
}
.

Lemma 3.1. Assume b ∈ C2(Rn) with bounded derivatives. Let V be a predictable process satisfying

|V (s, z)| � k(s)h(z), ∀ s ∈ [0, T ], ∀ z ∈ R
n
0 ,

for a nondecreasing function k ∈ L2([0, T ]) and h ∈ L1+ ∩L2. Then Xt has an L1-derivative. Moreover,

the L1-derivative satisfies the following equations,⎧⎪⎨⎪⎩
dDV Xt = ∇b(Xt)DV Xtdt+ σt

∫
R

n
0

V (t, z)N1(dz, dt),

DV X0 = 0.

(3.1)

We omit this proof since it is standard and can be found in [3].

Let Jt = ∇xX
x
t . Then Jt satisfies {

dJt = ∇b(Xx
t )Jtdt,

J0 = I.
(3.2)

The inverse matrix J−1
t solves the following equations,{

dJ−1
t = −J−1

t ∇b(Xx
t )dt,

J−1
0 = I.

(3.3)

Combining (3.1)–(3.3), we can obtain

DV Xt = Jt

∫ t

0

∫
R

n
0

J−1
s σsV (s, z)N1(dz, ds). (3.4)

Proof of Theorem 2.1. Due to an approximation argument, the proof can be divided into two steps.

Step1. b ∈ C2(Rn) with bounded derivatives. For k ∈ N, take Uk = {z ∈ R
n | |z| � k} and

φk(z) =

⎧⎪⎪⎨⎪⎪⎩
1, z ∈ Uk,
1

2
(1 + cos(π(|z| − k))), z ∈ Uk+1\Uk,

0, z ∈ R
n\Uk+1.

(3.5)

Then IUk
� φk � IUk+1

and |∇φk| � π
2 IRn\Uk+1

. For any ξ ∈ R
n, set Vk(s, z) = σ−1

s Jsξφk(z) and

V (s, z) = σ−1
s Jsξ. Let χ : [0,∞) → [0,∞) be a smooth function satisfying χ(0) = 0 and χ(i) = 1 for all

i ∈ N. Then χ(Nt) = I[Nt�1]. In the following steps, we can use χ(Nt) to replace I[Nt�1] if necessary. It

follows from (2.4) and Remark 2.2 that

E

{
DVk

(
f(Xx

t )
I[Nt�1]

Nt

)}
= −E

{
f(Xx

t )
I[Nt�1]

Nt

∫ t

0

∫
Rn

div(ρ(z)Vk(s, z))

ρ(z)
Ñ1(dz, ds)

}
= −E

{
f(Xx

t )
I[Nt�1]

Nt

∫ t

0

∫
Rn

(∇ log ρ(z) · (σ−1
s Jsξφk(z))

+ σ−1
s Jsξ · ∇φk(z))Ñ1(dz, ds)

}
. (3.6)
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Note that

E

∣∣∣∣DVk

(
f(Xx

t )
I[Nt�1]

Nt

)
−DV

(
f(Xx

t )
I[Nt�1]

Nt

)∣∣∣∣
� ‖∇f‖∞E|DVk

Xx
t −DV X

x
t |

� te‖∇b‖∞t‖∇f‖∞
∫
Rn

(1− φk(z))ρ(z)dz → 0, k → ∞,

E

∣∣∣∣ ∫ t

0

∫
Rn

∇ log ρ(z) · (σ−1
s Jsξ)(1 − φk(z))Ñ1(dz, ds)

∣∣∣∣ → 0, k → ∞,

and

E

∣∣∣∣ ∫ t

0

∫
Rn

σ−1
s Jsξ · ∇φk(z)Ñ1(dz, ds)

∣∣∣∣ → 0, k → ∞.

Let k → ∞ in (3.6), then we obtain

E

{
DV

(
f(Xx

t )
I[Nt�1]

Nt

)}
= −E

{
f(Xx

t )
I[Nt�1]

Nt

∫ t

0

∫
Rn

∇ log ρ(z) · (σ−1
s Jsξ)Ñ1(dz, ds)

}
. (3.7)

It follows from (3.4) that DV X
x
t = NtJtξ, then

I[Nt�1]

Nt
DV X

x
t = JtξI[Nt�1]. (3.8)

By (3.7) and (3.8) one arrives at

∇ξE{f(Xx
t )I[Nt�1]} = E{∇f(Xtx)JtξI[Nt�1]} = E

{
∇f(Xx

t )
I[Nt�1]

Nt
DV X

x
t

}
= E

{
DV f(X

x
t )

I[Nt�1]

Nt

}
= E

{
DV

(
f(Xx

t )
I[Nt�1]

Nt

)}
= −E

{
f(Xx

t )
I[Nt�1]

Nt

∫ t

0

∫
Rn

∇ log ρ(z) · (σ−1
s Jsξ)Ñ1(dz, ds)

}
. (3.9)

Note that

E

{
I[Nt�1]

Nt

}
= e−λ0t

∞∑
k=1

1

k

(λ0t)
k

k!
=

e−λ0t

λ0t

∞∑
k=1

k + 1

k

(λ0t)
k+1

(k + 1)!

� 2
e−λ0t

λ0t

∞∑
k=1

(λ0t)
k+1

(k + 1)!
=

2

λ0t
(1− e−λ0t − e−λ0tλ0t).

Then,

|∇ξP
1
t f(x)| = |∇ξE{f(Xx

t )I[Nt�1]}|

=

∣∣∣∣E{f(Xx
t )

I[Nt�1]

Nt

∫ t

0

∫
Rn

∇ log ρ(z) · (σ−1
s Jsξ)Ñ1(dz, ds)

}∣∣∣∣
� 2‖f‖∞et‖∇b‖∞β|ξ|t

∫
Rn

|∇ρ(z)|dzEI[Nt�1]

Nt

� 4

λ0
‖f‖∞et‖∇b‖∞β|ξ|(1 − e−λ0t − e−λ0tλ0t)

∫
Rn

|∇ρ(z)|dz. (3.10)

Step 2. b ∈ C1(Rn) with ∇b bounded and Lipschitz continuous. Now we can choose a sequence

of functions {bk}k�1 ⊂ C2(Rn) such that bk → b and ∇bk → ∇b in pointwise sense as k → ∞ and

supk�1 ‖∇bk‖∞ < ∞. For each k � 1, consider the following equations,{
dXk

t = bk(X
k
t )dt+ σtdLt,

Xk
0 = x.

(3.11)
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Let {Xk
t }t�0 be the solution of (3.11) and {Jk

t }t�0 be the associated derivative with respect to x. It is

easy to prove that limk→∞ E{sups�t |Xk
t −Xt|2} = 0 and limk→∞ E{sups�t |Jk

t − Jt|} = 0. So with the

help of dominated convergence theorem, we can obtain that (3.9) holds with b ∈ C1(Rn) and ∇b bounded

and Lipschitz continuous. Furthermore,

‖∇P 1
t f‖∞ � 4et‖∇b‖∞β

λ0
(1− e−λ0t − e−λ0tλ0t)‖f‖∞

∫
Rn

|∇ρ(z)|dz. �

Proof of Theorem 2.2. By (H2) we can get

d|Xx
t −Xy

t |2 = 2〈b(Xx
t )− b(Xy

t ), X
x
t −Xy

t 〉dt � −2K|Xx
t −Xy

t |2dt.

Gronwall’s inequality implies |Xx
t −Xy

t | � e−Kt|x− y|, which can derive

|Jt| � e−Kt. (3.12)

(3.10) and (3.12) yield

|∇ξP
1
t f(x)| =

∣∣∣∣E{f(Xx
t )

I[Nt�1]

Nt

∫ t

0

∫
Rn

∇ log ρ(z) · (σ−1
s Jsξ)Ñ1(dz, ds)

}∣∣∣∣
� 2‖f‖∞β|ξ|

∫ t

0

|Js|ds
∫
Rn

|∇ρ(z)|dzE
{
I[Nt�1]

Nt

}
� 4β|ξ|

Kλ0t

∫
Rn

|∇ρ(z)|dz‖f‖∞.

Furthermore,

|Ptf(x)− Ptf(y)| � |P 1
t f(x)− P 1

t f(y)|+ |Ef(Xx
t )I[Nt=0] − Ef(Xy

t )I[Nt=0]|
� ‖∇P 1

t f‖∞|x− y|+ 2‖f‖∞P(Nt = 0)

� 4β|ξ|
Kλ0t

∫
Rn

|∇ρ(z)|dz‖f‖∞|x− y|+ 2‖f‖∞e−λ0t.

Combining this with (3.12) and using Markov property, we have, for t > s > 0,

|Ptf(x)− Ptf(y)| � E|Ps(X
x
t−s)− Ps(X

y
t−s)|

� 4β

Kλ0s

∫
Rn

|∇ρ(z)|dz‖f‖∞|Xx
t−s −Xy

t−s|+ 2‖f‖∞e−λ0s

� 4β

Kλ0s

∫
Rn

|∇ρ(z)|dz‖f‖∞e−K(t−s)|x− y|+ 2‖f‖∞e−λ0s.

Let t > K+λ0

K and s = Kt
K+λ0

. Then

|Ptf(x)− Ptf(y)| �
{

4β

Kλ0

∫
Rn

|∇ρ(z)|dz|x− y|+ 2

}
‖f‖∞e−

Kλ0
K+λ0

t.

Furthermore,

‖Pt(x, ·)− Pt(y, ·)‖Var �
{

4β

Kλ0

∫
Rn

|∇ρ(z)|dz|x− y|+ 2

}
e−

Kλ0
K+λ0

t.

The proof is complete.

Due to Theorem 2.1 and Young’s inequality, we have further estimates.

Proposition 3.2. Let (H1) hold and ρ ∈ C1(Rn) with |∇ log ρ| bounded. For any t > 0, ξ ∈ R
n and

a positive function f ∈ Cb(R
n), we have ∇ξ logP

1
t f(x) � βtet‖∇b‖∞‖∇ log ρ‖∞|ξ|(1 + λ0).
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Proof. As in the proof of Theorem 2.1, we also take V (s, z) = σ−1
s Jsξ. Since DV Nt = 0, we have

DV (
I[Nt�1]

Nt
) = 0. Moreover,

E

{
I[Nt�1]

Nt
Rt

}
= 0, (3.13)

where Rt =
∫ t

0

∫
Rn ∇ log ρ(z) · (σ−1

s Jsξ)Ñ1(dz, ds). For some ε > 0 and f ∈ C2
b (R

n), by (3.9), (3.13) and

Young’s inequality (see [2]) we have

∇ξP
1
t f(x) = −E

{
f(Xx

t )

(
I[Nt�1]

Nt
Rt

)}
= E

{
(f(Xx

t )I[Nt�1] + ε)

(
− I[Nt�1]

Nt
Rt

)}
� δE{(f(Xx

t )I[Nt�1] + ε) log δ(f(Xx
t )I[Nt�1] + ε)}

− δE{f(Xx
t )I[Nt�1] + ε} log δE{f(Xx

t )I[Nt�1] + ε}

+ δE{f(Xx
t )I[Nt�1] + ε} logE exp

{
− I[Nt�1]

δNt
Rt

}
. (3.14)

Note that

E exp

{
− I[Nt�1]

δNt
Rt

}
� E exp

{
I[Nt�1]

δNt

∫ t

0

∫
Rn

|∇ log ρ(z) · σ−1
s Jsξ|N1(dz, ds)

+
I[Nt�1]

δNt

∫ t

0

∫
Rn

|∇ log ρ(z) · σ−1
s Jsξ|ρ(z)dzds

}
� exp

{
βtet‖∇b‖∞

δ
‖∇ log ρ‖∞|ξ|(1 + λ0)

}
. (3.15)

Combining this with (3.14), one can derive

∇ξP
1
t f(x) � δE{(f(Xx

t )I[Nt�1] + ε) log δ(f(Xx
t )I[Nt�1] + ε)}

− δE{f(Xx
t )I[Nt�1] + ε} log δE{f(Xx

t )I[Nt�1] + ε}
+ E{f(Xx

t )I[Nt�1] + ε}{βtet‖∇b‖∞‖∇ log ρ‖∞|ξ|(1 + λ0)}. (3.16)

By dominated convergence theorem and letting δ → 0+, one arrives at

∇ξP
1
t f(x) � E{f(Xx

t )I[Nt�1] + ε}{βtet‖∇b‖∞‖∇ log ρ‖∞|ξ|(1 + λ0)}.

Let ε → 0+, then ∇ξP
1
t f(x) � βtet‖∇b‖∞‖∇ log ρ‖∞|ξ|(1 + λ0)P

1
t f(x).

With the help of the proof of Proposition 3.2, the following dimension-free Harnack inequality for P 1
t

can be derived.

Theorem 3.3. Let (H1) hold and ρ ∈ C1(Rn) with |∇ log ρ| bounded. For t > 0, ξ ∈ R
n, α > 1 and a

positive function f ∈ Cb(R
n), we have

(P 1
t f)

α(x) � P 1
t f

α(x + y) exp

{
βtet‖∇b‖∞‖∇ log ρ‖∞|y|(1 + λ0)

lnα

α− 1

}
.

Proof. Set θ(s) = 1 + (α− 1)s, then θ(0) = 1 and θ(1) = α. Due to (3.15), we have

d

ds
(log(P 1

t f
θ(s))

α
θ(s) (x+ sy))

=
α(α− 1){P 1

t (f
θ(s) log fθ(s))− P 1

t f
θ(s) logP 1

t f
θ(s)}

θ(s)2P 1
t f

θ(s)
(x + sy)− α∇yP

1
t f

θ(s)

θ(s)P 1
t f

θ(s)
(x+ sy)

=
α

θ(s)

{
α− 1

θ(s)

{P 1
t (f

θ(s) log fθ(s))− P 1
t f

θ(s) logP 1
t f

θ(s)}
P 1
t f

θ(s)
(x + sy)− ∇yP

1
t f

θ(s)

P 1
t f

θ(s)
(x + sy)

}
� −α(α− 1)

θ2(s)
logE exp

{−θ(s)

α − 1

I[Nt�1]

Nt
Rt

}
� − α

θ(s)
βtet‖∇b‖∞‖∇ log ρ‖∞|y|(1 + λ0). (3.17)
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Taking integral over [0, 1] w.r.t. ds, we arrive at

log(P 1
t f

α)(x+ y)− log(P 1
t f)

α(x) � −βtet‖∇b‖∞‖∇ log ρ‖∞|y|(1 + λ0)

∫ 1

0

α

θ(s)
ds

= −βtet‖∇b‖∞‖∇ log ρ‖∞|y|(1 + λ0)
lnα

α− 1
.

Therefore, (P 1
t f)

α(x) � P 1
t f

α(x+ y) exp{βtet‖∇b‖∞‖∇ log ρ‖∞|y|(1 + λ0)
lnα
α−1}.

As an immediate consequence of Theorem 3.3, the following result can be obtained.

Corollary 3.4. Under the conditions of Theorem 3.3, the following estimate holds:

(P 1
t f)(x) �P 1

t f(x+ y) exp{βtet‖∇b‖∞‖∇ log ρ‖∞|y|(1 + λ0)}.

We would like to give an example to illustrate that conditions for ρ in Theorem 2.1 can be satisfied.

Example 3.5. Take ρ(z) = e−S(|z|), where S : (0,∞) → [0,∞) is differentiable and satisfies:

(1) limr→+∞ r
S(r) � C for C � 0;

(2)
∫∞
0 S′(r)e−rdr < ∞.

A simple choice of S is S(r) = rk for k � 1.

As we know, in order to obtain strong Feller property of Pt, it is crucial for Lévy measure to be an

infinite measure, see [9] and [19]. Let us first give the following result about the pure jump processes.

Let {Mt}t�0 be a Lévy process on R
n with jump measure NM (dz, dt) and characteristic measure κ. Let

h : Rn → [0,∞) be a function satisfying
∫
R

n
0
h(z)κ(dz) < ∞. Define HM,t :=

∫ t

0

∫
R

n
0
h(z)NM (dz, ds).

Proposition 3.6. If θ := lim infx→∞
κ([h�x−1])

log x > 0, then for p � 1 and t > 2p
(θ∧1)(1−e−1) there exists

a constant C(p) independent of t such that

EH−p
M,t � C(p)

(
1 +

1

t− 2p
(θ∧1)(1−e−1)

)
.

Proof. Since θ > 0, there exists x0 > 1 such that κ([h � x−1]) � 1
2 (θ ∧ 1) log x for any x � x0.

Therefore, ∫
R

n
0

(1− e−xh(z))κ(dz) �
∫
[h�x−1]

(1− e−1)κ(dz) � θ ∧ 1

2
(1− e−1) log x. (3.18)

Let Ft(dx) be the distribution function of HM,t and Γ(x) denote the Γ-function. Recall the formula

x−p =
1

Γ(p)

∫ ∞

0

rp−1e−rxdr, x > 0. (3.19)

By (3.18) and (3.19), we have

EH−p
M,t =

∫ ∞

0

x−pFt(dx) =

∫ ∞

0

(
1

Γ(p)

∫ ∞

0

rp−1e−rxdr

)
Ft(dx)

=
1

Γ(p)

∫ ∞

0

(∫ ∞

0

e−rxFt(dx)

)
rp−1dr

=
1

Γ(p)

∫ ∞

0

rp−1 exp

{
− t

∫
R

n
0

(1− e−rh(z))κ(dz)

}
dr

� xp
0

pΓ(p)
+

1

Γ(p)

∫ ∞

x0

rp−1 exp

{
− t

θ ∧ 1

2
(1− e−1) log r

}
dr

=
xp
0

pΓ(p)
+

1

Γ(p)

x
p− θ∧1

2 (1−e−1)t
0

θ∧1
2 (1 − e−1)t− p

� C(p)

(
1 +

1

t− 2p
(θ∧1)(1−e−1)

)
. (3.20)

The proof is complete.
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Proof of Theorem 2.3. For ξ ∈ R
n and h ∈ Hρ, we set V (s, z) = σ−1

s Jsh(z)ξ. By (3.4), one can obtain

DV Xt = HtJtξ, (3.21)

where Ht :=
∫ t

0

∫
R

n
0
h(z)N1(dz, ds). Choose {hk} ⊂ C such that ‖hk − h‖ρ → 0 as k → ∞. Let

Vk(s, z) = σ−1
s Jshk(z)ξ. Then (2.4) holds for Vk. By the same argument as the beginning of the proof of

Theorem 2.1, we can obtain that (2.4) holds for V . Therefore, for f ∈ C2
b (R

n), (2.4) and (3.21) yield

∇ξEf(X
x
t ) = E{∇f(Xx

t )Jtξ} = E{∇f(Xx
t )H

−1
t DV X

x
t } = E{H−1

t DV f(X
x
t )}

= E{DV {H−1
t f(Xx

t )} −DV (H
−1
t )f(Xx

t )} = E{f(Xx
t ){−H−1

t Rt −DV (H
−1
t )}}

= −E

{
f(Xx

t )

[
H−1

t

∫ t

0

∫
R

n
0

∇(ρ(z)h(z))

ρ(z)
· (σ−1

s Jsξ)Ñ1(dz, ds)

+H−2
t

∫ t

0

∫
R

n
0

∇h(z) · (σ−1
s Jsh(z)ξ)N

1(dz, ds)

]}
. (3.22)

By Proposition 3.6, for t > 8
(θ∧1)(1−e−1) , there exists a constant C large enough and independent of t

such that

(EH−4
t ) ∨ (EH−2

t ) � C

(
1 +

1

t− 8
(θ∧1)(1−e−1)

)
. (3.23)

Combining this with the triangle inequality and Hölder’s inequality, one can obtain

|∇ξEf(X
x
t )| � ‖f‖∞

{
E

{
H−1

t

∣∣∣∣ ∫ t

0

∫
R

n
0

∇(ρ(z)h(z))

ρ(z)
· (σ−1

s Jsξ)Ñ1(dz, ds)

∣∣∣∣}
+ E

{
H−2

t

∣∣∣∣ ∫ t

0

∫
R

n
0

∇h(z) · (σ−1
s Jsξ)N

1(dz, ds)

∣∣∣∣}}

� ‖f‖∞
{
(EH−2

t )
1
2

(
E

∫ t

0

∫
R

n
0

(∇(ρ(z)h(z))

ρ(z)
· (σ−1

s Jsξ)

)2

ρ(z)dzds

) 1
2

+ (EH−4
t )

1
2

(
E

∣∣∣∣ ∫ t

0

∫
R

n
0

∇h(z) · (σ−1
s Jsξ)N

1(dz, ds)

∣∣∣∣2) 1
2
}

� C

(
1 +

1

t− 8
(θ∧1)(1−e−1)

)
e‖∇b‖∞tβ‖f‖∞|ξ|

×
{∥∥∥∥ |∇(hρ)|

ρ

∥∥∥∥
L2

+ 2‖∇h‖∞
√
‖h‖2L2 + ‖h‖2L1

}
.

Corollary 3.7. Let (H1) hold. If ρ(z) = Cα

|z|n+α with Cα > 0 and 0 < α < 2, then for t � 1 + 8
1−e−1 ,

ξ ∈ R
n, f ∈ Cb(R

n) and γ � α
2 + 2, ‖∇ξPtf‖∞ � C(n, γ, α)‖f‖∞|ξ|βe‖∇b‖∞t, where C(n, γ, α) denotes

a constant only depending on n, γ and α.

Proof. Let φ : R
n −→ [0,∞) be a smooth function satisfying 0 � φ � 1, φ(z) = 1 for |z| � 1

2

and φ(z) = 0 for |z| � 1. Take h(z) = |z|γφ(z) with γ � 2 + α
2 . Then h is bounded and so is

Dh(z) = γ|z|γ−2zφ(z) + |z|γ∇φ(z).

We can check h ∈ Hρ. In fact, one can easily obtain the following three estimates:∫
R

n
0

h2(z)ρ(z)dz �
∫
R

n
0

h(z)ρ(z)dz �
∫
[0<|z|�1]

|z|γ Cα

|z|n+α
dz � Cαωn

∫ 1

0

rγ−1−αdr =
Cαωn

γ − α
, (3.24)∫

R
n
0

|∇h(z)|2ρ(z)dz � Cα

∫
0�|z|�1

|z|2γ−2−n−αdz + Cα‖∇φ‖2∞
∫
0�|z|�1

|z|2γ−n−αdz

� Cαωn

2γ − α− 2
+

Cα‖∇φ‖2∞ωn

2γ − α
, (3.25)
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R

n
0

h2(z)
|∇ρ(z)|2
ρ(z)

dz � Cα

(n+ α)2

∫
0�|z|�1

|z|2γ−2−n−αdz � Cαωn

(n+ α)2(2γ − α− 2)
. (3.26)

For each k ∈ N, define

φk(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, |z| � 1

k
,

1

2
{1 + cos(k(k + 1)|z| − (k + 1))π}, 1

k + 1
� |z| � 1

k
,

0, |z| � 1

k + 1
.

(3.27)

Then φk is a smooth function. It satisfies 0 � φk � 1, |∇φk| � k(k+1)π
2 I[ 1

k+1<|z|< 1
k ] and for each z ∈ R

n,

φk(z) → 1 as k → ∞. Let hk = hφk, then hk ∈ C for each k ∈ N. Moreover,

‖hk − h‖ρ =

{∫
R

n
0

|∇hk(z)−∇h(z)|2ρ(z)dz
} 1

2

+

{∫
R

n
0

|hk(z)− h(z)|2 |∇ρ(z)|2
ρ(z)

dz

} 1
2

=

{∫
R

n
0

|∇(h(z)φk(z))−∇h(z)|2ρ(z)dz
} 1

2

+

{∫
R

n
0

h2(z)
|∇ρ(z)|2
ρ(z)

(1− φk(z))
2dz

} 1
2

�
√
2

{∫
R

n
0

|∇h(z)|2(1− φk(z))
2ρ(z)dz

} 1
2

+
√
2

{∫
R

n
0

|h(z)|2|∇φk(z)|2ρ(z)dz
} 1

2

+

{∫
R

n
0

h2(z)
|∇ρ(z)|2
ρ(z)

(1− φk(z))
2dz

} 1
2

�
√
2

{∫
R

n
0

|∇h(z)|2(1− φk(z))
2ρ(z)dz

} 1
2

+ π

{
k2(k + 1)2

∫
1

k+1<|z|< 1
k

|z|2γ Cα

|z|n+α
dz

} 1
2

+

{∫
R

n
0

h2(z)
|∇ρ(z)|2
ρ(z)

(1− φk(z))
2dz

} 1
2

�
√
2

{∫
R

n
0

|∇h(z)|2(1− φk(z))
2ρ(z)dz

} 1
2

+ π

{
ωnCαk

2(k + 1)2
∫ 1

k

1
k+1

r2γ−α−1dr

} 1
2

+

{∫
R

n
0

h2(z)
|∇ρ(z)|2
ρ(z)

(1− φk(z))
2dz

} 1
2

�
√
2

{∫
R

n
0

|∇h(z)|2(1− φk(z))
2ρ(z)dz

} 1
2

+ π

√
ωnCα

γ − α

{
k2(k + 1)2

kγ−α
− k2(k + 1)2

(k + 1)γ−α

} 1
2

+

{∫
R

n
0

h2(z)
|∇ρ(z)|2
ρ(z)

(1− φk(z))
2dz

} 1
2

.

Combining this with (3.21) and (3.25), by dominated convergence theorem, we can obtain ‖hk−h‖ρ → 0

as k → ∞. Therefore, h ∈ Hρ.

Note that

θ := lim inf
x→∞

∫
[h�x−1]

ρ(z)dz

log x
� lim inf

x→∞

∫
[ 1
2γ

�|z|γ�x−1] ρ(z)dz

log x

= lim
x→∞

CαCn

∫ 1
2

x−1 r
−1−αdr

log x
= lim

x→∞
CαCn(x

α
γ − 1)

α log x
= ∞,

where Cn is a constant depending on n. Combining above estimates and Theorem 2.3, we have, for t �
1+ 8

1−e−1 , ‖∇ξPtf‖∞ � C(n, γ, α)‖f‖∞|ξ|βe‖∇b‖∞t, where C(n, γ, α) denotes a constant only depending

on n, γ and α.
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Proof of Theorem 2.4. From the proof of Theorem 2.2, we can arrive at |Jt| � e−Kt|x− y|. Combining

this with Theorem 2.3, for t � 1 + 8
(θ∧1)(1−e−1) , one can derive

‖∇Ptf‖∞ � C‖f‖∞
∫ t

0

|Js|ds � C

K
‖f‖∞, (3.28)

where C is a constant independent of t and the values may be different from line to line. For t >
1

1−α + 8
(1−α)(θ∧1)(1−e−1) , it follows from (3.28) and Markov property that

|Ptf(x)− Ptf(y)| � E|P(1−α)tf(X
x
αt)− P(1−α)tf(X

y
αt)| �

C

K
‖f‖∞|Xx

αt −Xy
αt| �

C

K
‖f‖∞e−αKt.

This implies ‖Pt(x, ·) − Pt(y, ·)‖Var � C(α)
K e−αKt for a proper constant C(α) and any t > 0.
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