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1 Introduction

In stochastic analysis for diffusion processes, the Bismut formula (also called Bismut-Elworthy-Li formula
[7]) and the integration by parts formula are two fundamental tools. Let, for example, {X;};>0 be
a diffusion process on R™ generated by an elliptic differential operator and {P;}+>0 be the associated
Markov semigroup. The Bismut formula is of type

VePif(x) = B{f(X7)M;'},  f € Zy(RY), >0,

where M} is a random variable independent of f, and V¢ is the directional derivative along £. This
formula is applied to various aspects such as functional inequalities, heat kernel estimates, strong Feller
properties and sensitivity analysis, see [1,2,7,14] and the references therein for diffusion cases and
jump-diffusion cases. In recent years, there exist some results for jump processes. For example, Norris
established an integration by parts formula and obtained the heat kernel estimates in [8] for SDEs driven
by jump processes; in [17] and [19], Bismut formula for linear SDEs driven by Lévy processes were derived
by using coupling method; in [22], the formula was also investigated for nonlinear SDEs driven by a-
stable processes. With the help of Malliavin calculus for jump processes, Dong et al. [6] obtained Bismut
formula for linear SDEs driven by general Lévy processes. There are some other results about this topic,
such as [3,13,21] and so on.

Let {Pi}i>0 and {Pi(x, ) }+>0 be the semigroup and transition probability kernel for a strong Markov
process on a Polish space U. If X := {X;}i>0 and YV := {Y;}1>0 are two processes with the same
transition probability kernel {P,(z,-)}i>0, then {X,Y} = {X;,Y:}i>0 is called a coupling of the strong
Markov process with coupling time T, , := inf{t > 0 : X; = Y;}. The coupling is called successful if
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T, < 00 a.s. The recent results for coupling and applications in SDEs were summarized in [18] for both
diffusion and jump processes, see also [11,12,16] and the references therein.

The dimension-free Harnack inequality was first introduced in [15] by Wang using couplings constructed
through Girsanov transforms for diffusion semigroups on manifolds. It can be formulated as

(P f)*(x) < Pof*(z +y) exp{Ca(y, 1)},

where a > 1 is a constant, and C, (y,t) is a positive function on R™ x (0, 00) with C,(0,t) = 0, which is
determined by the underlying stochastic equation. Since arguments used in most of references essentially
rely on special properties of the Brownian motion (see [1,2,5,16] and so on), they do not apply to the jump
setting. For SDEs driven by pure jump processes, a different version of Harnack inequality was presented
in [20]. In [17] and [19], with helps of coupling and new Girsanov transform on the configuration space,
Wang succeeded in establishing derivative formula and dimension-free Harnack inequality for linear SDEs
driven by Lévy processes.

In this paper, we aim to investigate Bismut formula, gradient estimates, dimension-free Harnack in-
equality and coupling property for the transition semigroups associated to a kind of semilinear SDEs
driven by jump processes. From now on, for i = 1,2, we use Cf(R") to denote the family of C* functions
f such that f and its partial derivatives up to order i are bounded. We denote the uniform norm with
respect to by || - [|so. Let A, (R™) be the class of all bounded measurable functions on R™. The rest of
this paper is organized as follows: in the second section, we list some notation and our main results; in
the last section, we shall give the proofs of main results.

2 Notation and main results

For ¢ = 1,2, let W; be the space of all cadlag functions from [0,00) to R™ vanishing at 0, which is
endowed with the Skorohod topology and the probability measure P such that the coordinate process
Li(w') = wi is a Lévy process. Furthermore, we assume that L' := {L}};>¢ is a purely jump process
with Lévy measure vi(dz) := p(z)dz, where p : Rj — (0,00) is a differentiable function satisfying
ng( 22 A1)p(2)dz < oo.

Consider the following product probability space, (2,.7,P) := (W; x Wy, B(W1) x B(Ws), P! x P?),
and define Ly = L} + L3, ie., for w = (w',w?) € Q, Ly(w) = w} + w?. Then {L;}:>¢ is a Lévy process
on (2, .7,P) with two independent parts and its Lévy measure denoted by v satisfies v(dz) > p(z)dz.
Denote by {.%;}+>0 the smallest filtration generated by {L;}:>0. We use N! and N! to denote the jump
measure and martingale measure of {L}};>0. Let E and E! be the associated expectations of P and P*

respectively.
This paper is concerned with the following stochastic differential equation (SDE) with jumps,

{dXt = b(X,)dt + oydLy, 1)

X():{E,

where b : R” — R"™ and o : [0,00) — R™ @ R" are measurable. It is well known that there exists a
unique solution of (2.1) provided the coefficient b satisfies Lipschitz conditions and the solution can be
formulated as

t t
X =z+ / b(Xs)ds —l—/ osdLg, t>=0. (2.2)
0 0

We gather here the hypotheses which will be made on (2.1).
(H1) b € C*(R™) with Vb bounded and Lipschitz continuous. There exists a constant 3 > 0 such that
los1| < B for any s > 0.
(H2) There is a constant K > 0, such that (b(z) — b(y),r — y) < —K|z — y|? for any z,y € R™.
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As we know, A\g := f]R" p(z)dz is either finite or infinite. If Ay = oo, then we aim to investigate the
0
Bismut formula, gradient estimate and coupling property for the associated semigroup

Pf(z):=Ef(X}), t=0, xe€R", [fecB(R".
Otherwise, we consider P} instead of P,
P f(z) =E{f(X)) x>y}, t=>0, z€R", feBR"),

where N; = N1([0,¢] x R™).
Recall that the solution has successful coupling if and only if (see [4])

lim [|Py(z,) = Po(y, )lvar =0, 2,y € R,
t—o00

where P, (z,-) is the transition probability of X and || - ||var denotes the total variation norm.
Let J; be the derivative of X} w.r.t. the initial value 2. We have the following main results.

Theorem 2.1.  Let (H1) hold and p € C'(R™) with [, |Vp(z)|dz < co. Fort > 0, { € R" and
f € Cy(R™), we have

ngsf(m:—E{f(Xf)I“j;f” / t anmgp(z)-<a;1.fse>ﬁ<dz,ds>}.

Furthermore,

1 45!Vl —Xot _ o—Aot
IVPL I < ) T A=t el [ 9

Theorem 2.2.  Let (H1)-(H2) hold and p € C*(R™) with [,

4 KX
[Pz, -) = Pe(y, )llvar < N / IVp(2)|dzla — y| +2 e~ 4%,
KXo Jgn

Vp(2)|dz < 0o. Then fort > Ko,

The above two results are under the condition that p(z)dz is a finite measure. Before we introduce the
main results in the o-finite case, we would like to list some notation. Denote

L= {h R"—HR‘/ Wevi(dz) <oo} 1=1,2;

LY ={h|h>0and he L'}
¢ = {h:R" — R | h is differential and has compact support in R{ }.

For h € €, we define a weighted norm as

o= { [ |Vh<z>|2m<dz>}é [ h2<z>|v1ogp<z>|2m<dz>}é.

Let €' be the closure of % under | -1l,- Denote H, ={h € LY NL? | h € 7l

We have the following results.
Theorem 2.3. Let (H1) hold and p € C*(RY). If 6 := liminf, oo ” ([?Oii_l}) > 0 for some h € H,,
then for t > 1) EeR"™ and f € Cp(R™),

and Vh is bounded}.

(9/\1)(1—e

VP, f(z) = IE{ [ / . v pfjg;( ) o1y N (dz, ds)

+H;2/O / Vh(z)-(JSleh(z)f)Nl(dz,ds)]},
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where Hy = fot Jgn h(2)N*(dz,ds). Furthermore,
0

1
wrslesc(ie, o slsleen(I Vo

(OA1)(1—e—1)
Vi)
o s IRV RTINS

where C' is a constant independent of t.

Theorem 2.4.  Let (H1)-(H2) hold and p € C*(Ry). If liminf, nza™) for some h € H,,

logxz

then for any « € (0,1), there exists a constant C(«) independent of t such that

L

Cla
1B (2, ) — Py, ) lvar < QEWM.

Remark 2.5. Under either the conditions of Theorem 2.2 or Theorem 2.4, if there exists at least one
invariant measure for {X7}+>0 and each invariant measure is integrable, then {X[}:>¢ is exponentially
ergodic.

We shall use Malliavin calculus for jump processes to prove the above results. So it is necessary for us
to recall the notion of L!-derivative and an integration by parts formula for jump processes. For T > 0,
let V= {V(s,2)}s<rT,2crp be a predictable process satisfying E| fOT ng V(s,z)N'(dz,ds)| < co. Define

a perturbed random measure N1 by
t
NY(B x [0,4]) = / / Ii(z + V(s, 2))N'(dz, ds), (2.3)
0 JRy

where [, p(z)dz < co. Let {L§}o<i<r be the associated Lévy process perturbed by eV, i.e.,

t
Ly =1L+ e/ / V(s,z)N*(dz,ds).
0 Jry

Definition 2.6 (See [3]). A function Fy(L) := F({Ls}s<:) is called to have an L'-derivative in the
direction V, if there exists an integrable random variable denoted by Dy F}(L), such that

Fi(LF) — Fi(L)

lim E‘
€

— Dy F,(L)| =0.
e—0
With this notion, we have an integration by parts formula. Denote

V={V:Qx][0,T] x Ry — R" |V is predictable with V" and D,V bounded,
Uy C Rf compact, s.t. SuppV C [0,T] x Up}.

Proposition 2.7.  Let p € CY(RY). If a bounded function F;(L) has an L'-derivative Dy Fy(L) for
VeV, then

E{DvF(L)} = —E{F,(L)R.}, (2.4)

B t div(p(2)V (s, 2)) A1 2. ds
Rt_/o/g p(z) A

This proof can be obtained by the same argument of Proposition 2.2 in [6].

Remark 2.8. Denote

where

V={V:Qx[0,T] x R} —R" |V is predictable with V and D.V bounded,
3U C R" compact,s.t. SuppV C [0,T] x U}.

If the condition p € C*(R}) is replaced by p € C1(R™), which implies p(z)dz is a finite measure, then
(2.4) also holds for V e V.
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3 Proofs of main results

In this section, we would like to give the proofs of the theorems listed in Section 2. Before we move on,
it is necessary for us to show the existence of L!-derivative of (2.2). For T' > 0, denote

T
L*([0,T]) = {k; :[0,7] — [0, 00) ‘ / k*(s)ds < oo}.
0
Lemma 3.1.  Assume b € C?(R") with bounded derivatives. Let V be a predictable process satisfying
[V(s,2z)| < k(s)h(z), Vsel0,T], VzeRy,

for a nondecreasing function k € L*([0,T)) and h € L** N L%. Then X; has an L'-derivative. Moreover,
the L'-derivative satisfies the following equations,

dDy X = Vb(Xy) Dy X dt + o4 / V(t,z)N'(dz, dt),
Ry (3.1)
Dy Xy =0.

We omit this proof since it is standard and can be found in [3].
Let J; = V,X. Then J; satisfies

dJy = Vb(X?)Jdt,
! (X (3.2)
Jo=1.
The inverse matrix J[l solves the following equations,
dJ; "t = —J; ' Vb(XP)dt,
tl t (X7) (3.3)
Jy o =1.
Combining (3.1)—(3.3), we can obtain
t
Dy X, = Jt/ / J o Vs, 2)N(dz, ds). (3.4)
0 JRy

Proof of Theorem 2.1. Due to an approximation argument, the proof can be divided into two steps.

Stepl. b e C?(R") with bounded derivatives. For k € N, take Uy, = {z € R" | |2] < k} and

z € U,
(14cos(m(|z| = k))), 2z € Upy1\Uy, (3.5)
S Rn\Uk;Jrl.

or(z) =

O — -

Then Iy, < ¢ < Iy,,, and |V¢r| < JIgmy,,,. For any & € R", set Vi(s,2) = o7 ' Js&¢r(z) and
V(s,z) = o7 Js&. Let x : [0,00) — [0,00) be a smooth function satisfying x(0) = 0 and x(i) = 1 for all
i € N. Then x(N¢) = I[n,>1)- In the following steps, we can use x(NV¢) to replace I|n,>1) if necessary. It
follows from (2.4) and Remark 2.2 that

E{ka (f(Xf)I“j\f”)} = —E{f(Xf)IU\;\‘f” /Ot / div(p(’;)(g(s’z))ﬁ(dz,ds)}

_ _E{f(Xt’C)I[]Xil] /Ot/”(mogp(z)-(agle£¢k(z))

+ o7 T Vo (2))N1(dz, ds)}. (3.6)
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Note that
o LIV =1 e AN
B|Dy, (7060 P2 ) - o ()
< || Vfll<E[Dy, Xi — Dy X[|
< el VU=t T £l / (1= du(2))p(z)dz = 0, & — oo,
t —
E\ | [ 910802)- (0700 — ue)N ) =0, ko
O R?L
and

t
1 . ATL
E\ [ [ o Vo Nz, )

Let k — oo in (3.6), then we obtain

e{ov (50 ™) = —e{son ™3 [ ] Viospte)- (o N | )

It follows from (3.4) that Dy X7 = Ny Ji€, then

—0, k—oo.

I[NtZ

N, Dy X = Jilin,o). (38)
t

By (3.7) and (3.8) one arrives at

Ny
—s{pvsoen " = ey (0 )

——E{f(Xf)IU}/\‘il] /Ot/nwogp(z).(asleg)Kfl(dz,ds)}. (3.9)

I
VeE{F(XP) vy} = B{VF(Xew) Sy, 51} = E{W(Xf) e Dva}

Note that

g T _ _WZ LQot) _ e gR k1 (00t
N, R dt &k (k1)

e—kot & ()\Ot)k-‘,-l 2
<2 = 1 —e Mot — g0t \gp).
Aot ; G 1)~ a7 € ot)

Then,
Ve f(@)| = IVeE{f(X) x50}
I t —
B ‘E{f o) [ viosnte) - (o7 LN d@}\

1
<2 eI 3l [ [Tp(alazE Ty
R Ny

4
< o IV Blel (1 = e — e Niat) [ Vp(a)ldz. (3.10)

Step 2. b € CYR™) with Vb bounded and Lipschitz continuous. Now we can choose a sequence
of functions {by}r>1 C C%(R") such that by — b and Vby — Vb in pointwise sense as k — oo and
Sup>1 || Vb |loo < 00. For each k > 1, consider the following equations,

(3.11)

dth = bk(th)dt + O'tst,
Xkt =u.
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Let {X[}i>0 be the solution of (3.11) and {J}};>0 be the associated derivative with respect to z. It is
easy to prove that limy_,o E{sup,, | X[ — X[} = 0 and limy_,oc E{sup <, |JF — J;|} = 0. So with the
help of dominated convergence theorem, we can obtain that (3.9) holds with b € C*(R™) and Vb bounded
and Lipschitz continuous. Furthermore,

46t Vbl
p 1 —e Mot —

VPl < T Nt [ (90021 0

Proof of Theorem 2.2. By (H2) we can get
dIXT — X712 =2(b(XF) - b(X}), XF — X)dt < —2K|XF — X7)?dt.
Gronwall’s inequality implies | X7 — X/| < e” %!z — y|, which can derive
FAR S (3.12)

(3.10) and (3.12) yield

VP! f ()| = ]E{f(Xf)I[Nf”] / [ Viogo(s)- <o;1.fse>N1<dz7ds>}]
o Jrn

Ny
t Ity >1)
<2lsllel [ Vilds [ (9ol T
0 R t
sl
< .
< ony | IV
Furthermore,
IPuf(@) = P () < 1PLf(2) = PAEG)| + B T =o) — BSOX) o)
< IVPA el — yl + 2] F o B(N, = 0)
4B¢| “ ot
< - or,
< ot | 1P el =]+ 21 e

Combining this with (3.12) and using Markov property, we have, for ¢t > s > 0,

[Pf(x) = Pof(y)| < B[Po(XT,) — Po(X{ )]

48 N
< forgs Jo, VPNl X0y = XE |+ 2] o™
< IV o(2)]dz|| fllooe™ 5 |z — y| + 2| f[loce™ 0%
K)\QS R~
Let t > 12 and s = K . Then

4p

Ps@ - sl < { 2

_ KXo,
/ [Vp(2)ldzlz —y[ + 2 p|[flloce™ <+20".
R"L
Furthermore,

45 _ KXo 4
[ Pe(z,-) = Pe(y, )llvar < IVo(2)ldzle —y[ + 2 pe” K20,
K)\Q R™
The proof is complete.
Due to Theorem 2.1 and Young’s inequality, we have further estimates.

Proposition 3.2.  Let (H1) hold and p € C*(R™) with |V log p| bounded. For anyt > 0, £ € R" and
a positive function f € Cy(R™), we have V¢ log P} f(z) < Btell Vb=V log p|loo|€](1 + Xo).
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Proof.  As in the proof of Theorem 2.1, we also take V(s,2) = o 1Js¢. Since Dy N; = 0, we have

T
Dy (""}>"") = 0. Moreover,

I
]E{ [Ne>1] Rt} =0, (3.13)

where R; = fot Jn Viogp(z) - (071J,€)N1(dz, ds). For some ¢ > 0 and f € CZ(R™), by (3.9), (3.13) and
Young’s inequality (see [2]) we have

ver! o) = -e{ o) (7R b= B{ GO + o - 7R |

SOB{(f(X) N, 1) + €) log 0(f (X ) N, >1) +€)}
— OE{ f(X{) v, >1) + €} log OR{ f (X[ ) [n,>1) + €}

1
OB s + loBexp { - 2, . (3.14)
Note that
I
[N:>1] [N, >1] - 1
E — <E 1 v |
eXP{ 0Ny Rt} eXp{ 6Nt // |Viogp(z) - o " Js&|N*(dz, ds)
Nt>1 _1
1 S
tetHVbe
<exp{6 5 |VI0gp|oo|€|(1+)\O)}. (3.15)

Combining this with (3.14), one can derive

VeP! f(z) < SE{(f(X]) N, 51) + €) log d(f(X]) [y, 1) + €)}
— OE{ f(X{) [N, 1) + €} log OE{ f(X) [, >1) + €}
+ E{f(XP) x5y + eH{Bte' IVl |V log pllo €] (1 + Ao)}- (3.16)

By dominated convergence theorem and letting 6 — 0+, one arrives at
VP! f(w) SE{f(XF) v 1) + eH{Bte' IVl ||V log plloc €](1 + Ao)}-

Let € — 0+, then V¢ P} f(z) < Btell V=V log p|loo|€](1 + Xo) PLf ().

With the help of the proof of Proposition 3.2, the following dimension-free Harnack inequality for P}
can be derived.

Theorem 3.3.  Let (H1) hold and p € C*(R™) with |V log p| bounded. Fort>0,& €R", a>1 and a
positive function f € Cp(R™), we have

|
(PLf)* (@) < P/ f*(x +y) exp {ﬂtet“w”w||v1ogp|oo|y|(1 +Xo) n_o‘l},
Proof.  Set 0(s) =14 (o — 1)s, then 6(0) = 1 and (1) = o. Due to (3.15), we have

d (log(P}f)) ol (2 + sy))

ds
e~ D{PHF O log ) ~ PP Oog PP} LoV, BP0
- 0(s)2 P} 0 VT gs)prpoe Y
o a—14p! 0(s) lo 0(s)\ _ pl 0(s) log PL 0(s) Vv, Pl 0(s)
_ {P(f gf )19§f g b f }(x—f—sy)— yltgfs (z + sy)
0(s) L 0(s) Pl fo P/} o)

ala—1) —0(s) Iin,>1 « ¢
> — logE tZ > — Volloo 171 <lyl(1 . 1
iy toume { TN R L o B S T log (14 o). (317
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Taking integral over [0, 1] w.r.t. ds, we arrive at

1
log(P! f*)(z +y) — log(P} f)*(z) > —teIV?l= [V log p]| |yl (1 + )\0)/0 9?5) ds

In o

= — eIV [V log pllclyl(1 + 20) "

Therefore, (P} f)*(x) < P f*(z + y) exp{Bte!l VP~ Vlog pll o [yl(1 + Ao) 2
As an immediate consequence of Theorem 3.3, the following result can be obtained.

Corollary 3.4.  Under the conditions of Theorem 3.3, the following estimate holds:

(P (@) <P} f(a +y) exp{ Bte’ V1=V log pll ooyl (1 + Ao) -

We would like to give an example to illustrate that conditions for p in Theorem 2.1 can be satisfied.

Example 3.5. Take p(z) = ’S(‘Z‘), where S : (0,00) — [0, 00) is differentiable and satisfies:
( ) im0 S( T) < Cfor C >
2) 78 (r)e "dr < oo.
A simple Choice of Sis S(r) =r* for k > 1.

As we know, in order to obtain strong Feller property of P, it is crucial for Lévy measure to be an
infinite measure, see [9] and [19]. Let us first give the following result about the pure jump processes.
Let {M;}>0 be a Lévy process on R™ with jump measure Nj(dz,dt) and characteristic measure . Let
h:R™ — [0,00) be a function satisfying f]R” z)k(dz) < oco. Define Hypy := fo f]R" 2)Np(dz, ds).

Proposition 3.6.  If 0 := liminf, ., UIL;I DS 0, then forp>1 andt > (9/\1)(1—e*1) there exists
a constant C(p) independent of t such that
. 1
EH )/ <C(p)|{ 1+ 2 .

T (A1) (1—e 1)

Proof.  Since 6 > 0, there exists zo > 1 such that x([h > 27']) > 1(0 A 1)logz for any = > .
Therefore,

/ (1 — e M=)k (dz) >/ (1 —e Hr(dz) > 921(1 —e Ylog. (3.18)
o [h=x—1]

Let Fy(dx) be the distribution function of Hys ¢ and I'(x) denote the I'-function. Recall the formula

_ 1 /°° 1
P = rP= e ™ dr, x> 0. (3.19)
L'(p) Jo

By (3.18) and (3.19), we have

EH,/, = / h x’;oFt(dx) /O h (F(lp) /0 h rple”’dr) Fy(da)
i ([
(

- P(lp) OOO exp{ —t/g 1—e—*h<z>)ﬁ(dz)}dr

<C(p>(1+t L ) (3.20)

T (9A1)(1—e"1)

=]
—~
—
3
~

The proof is complete.
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Proof of Theorem 2.3. For £ € R™ and h € H,, we set V (s,z) = o, ' J;h(2)€. By (3.4), one can obtain
DVXt == Htth, (321)

where H; := fo f]R" (z)N'(dz,ds). Choose {hy} C ¢ such that ||hy — k||, = 0 as k — oo. Let

Vi(s,2) = ot hk( ). Then (2.4) holds for Vj,. By the same argument as the beginning of the proof of
Theorem 2.1, we can obtain that (2.4) holds for V. Therefore, for f € CZ(R™), (2.4) and (3.21) yield

VeES(XY) = E{VF(X7)Ji&} = E{VF(X])H; ' Dy X[} = E{H; ' Dy f(X])}

— B{Dv{H; " f(X7)} - Dy (H; ) f (Xx)} E{f(X?){—H'R, — Dv(H ")}
= — p(z 071 N1 2, ds
_ E{ { // p(z (07 €N (dz, ds)
2 (ot sh(z ! Z,ds . .
e [ R CRCENERT) (3:22)

By Proposition 3.6, for ¢t > ® A1)(§7e71)v there exists a constant C' large enough and independent of ¢
such that

1

(EH, )V (EH, ?) < C<1 + < > (3.23)
T (A1) (1—e—1)

Combining this with the triangle inequality and Hélder’s inequality, one can obtain

V(p(2)h(z))
n p(2)

/ Vh(z) - (o5 J&) N (dz, ds)
o Jrz

(071 J,€) N (dz, ds) }
y
||f||oo{ e[ [ (V’)L()’; V0109 leieas)’

( ‘/ . Vh(z) - (071 Js&) N (dz, ds) 2>%}

VEF(XT)| < ||f||oo{E{H-1

+ E{th

C<1 . )eWb“wtﬁnfn q
T (OA1)(1—e 1)
[V (hp)]
x {H + 2V hlloor/ 112 + 11131 -
p L2
Corollary 3.7.  Let (H1) hold. If p(z) = ‘Z‘C,;iu with Co, > 0 and 0 < a < 2, then fort > 1+ lfi—l;

EER™, fFeCR") andy = § 42, ||VePf]loo < C(n,’y,oz)||f||oo|§|6ewb”°°t, where C(n, vy, a) denotes
a constant only depending on n, v and .
Proof. Let ¢ : R" —» [0,00) be a smooth function satisfying 0 < ¢ < 1, ¢(z) = 1 for |z] < |
and ¢(z) = 0 for [z| > 1. Take h(z) = |2]7¢(z) with v = 2+ §. Then h is bounded and so is
Dh(z) = ]2[722¢(2) + |27V (2).

We can check h € H,. In fact, one can easily obtain the following three estimates:

C ! Cow
h%(2)p(2)dz < / h(z)p(z)dz < / |2]7 % dz < Cawn/ pITimedr = T (3.24)
/6‘ s [0<|2[<1] |z |t 0 e
/ [Vh(2)[*p(2)dz < Ca / 2|72y 4 Cu | Ve / 2|27
o <lz<1 0<]z|<1

Cawn Call Vol Zown

< , 3.25
2y —a—2 27—« ( )
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2 C Caw
} h2(z) IVpp((ZZ))| dz < n +“a)2 /0<|z|<1 L[2r2n—ag, < (n+ a)2(;7n— «_2) (3.26)
For each k € N, define
1 RN
1 1 K 1
o) = ) U bbb Dl = (e )m), << (327)
0 Izl < k+1
Then ¢y, is a smooth function. It satisfies 0 < ¢ < 1, [Voi| < k(szrl)wI[k}r1<|z|<;] and for each z € R™,

ox(z) = 1 as k — oo. Let hy = hoy, then hy € € for each k € N. Moreover,

=l ={ [ R Vh<z>|2p<z>dz}é +{/ ) h 'V”(Z)'de}é

p(2)
-{U,
< %2{/]R

IV (h(=)be(2) —Vh<z>|2p<z>dz}2 n { / w2 (o) VPR —¢k<z>>2dz}2

o p(2)

VAR - anlois ) +ved [ RV )

n
0 0

+{ [ 12 NACNE qsk(z))%z;:}é
< ¢2{ /]R IVh(=)]2(1 - ¢k(z))2p(z)dz}2 + w{k:Q(k +1) /,31<z<,1 22 |Z|ana dz}2

+{ [ we ) “a- <z>k<z>>2dz}é

o p(2)
1 1 1

< ¢2{/ |Vh(z)|2(1—qbk(z))zp(z)dz}z +7r{wn(](,k:2(k+1)2/k rQV_a_ldr}z

1
k+1

<vo{ [ wnpa - qsk<z>>2p<z>czz}é +w\/ ono (IR 1 _ 1) }%

v —a kv—a (k4 1)7—«
N\ Z O L
[ e 0 sz

n
Combining this with (3.21) and (3.25), by dominated convergence theorem, we can obtain ||hx — k||, = 0
as k — oo. Therefore, h € H,.

Note that

Jinza-1 p(2)dz i sizpsa P(2)dz

0 := lim inf > liminf
T—00 log x T—00 log x
1
C.C z —l-ay C, >
= lim “ nf“’ " TzthC(xv 1):oo,
00 log = z—00 alogx

where C), is a constant depending on n. Combining above estimates and Theorem 2.3, we have, for t >
1+ 1_§_1 NVeP:flloo < C(ny 7y, @) || flloolé]Bel VoIt swhere C'(n, 7, ) denotes a constant only depending
on n, v and a.
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Proof of Theorem 2.4. From the proof of Theorem 2.2, we can arrive at |J;| < e %*|z — y|. Combining
this with Theorem 2.3, for ¢t > 1 + (0/\1)(§—e*1)’ one can derive
! C
IVPloe < Clifle [ 1ulds < 1o (3.29
0

where C is a constant independent of ¢ and the values may be different from line to line. For ¢ >
lia + (17a)(0A8i)(17e—1)’ it follows from (3.28) and Markov property that

@ c . C N
P f () = Pif )] < E[Pu-ayf(X5:) = Paay f(XE < - AF ool X8 = X8l < M1 F looe ™.
This implies || Pi(z, ) — Pi(y, ) |lvar < Cl(f‘)e*am for a proper constant C'(«) and any ¢t > 0.
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