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Abstract A k-colouring (not necessarily proper) of vertices of a graph is called acyclic, if for every pair of

distinct colours i and j the subgraph induced by the edges whose endpoints have colours i and j is acyclic. We

consider acyclic k-colourings such that each colour class induces a graph with a given (hereditary) property. In

particular, we consider acyclic k-colourings in which each colour class induces a graph with maximum degree at

most t, which are referred to as acyclic t-improper k-colourings. The acyclic t-improper chromatic number of

a graph G is the smallest k for which there exists an acyclic t-improper k-colouring of G. We focus on acyclic

colourings of graphs with maximum degree 4. We prove that 3 is an upper bound for the acyclic 3-improper

chromatic number of this class of graphs. We also provide a non-trivial family of graphs with maximum degree

4 whose acyclic 3-improper chromatic number is at most 2, namely, the graphs with maximum average degree

at most 3. Finally, we prove that any graph G with Δ(G) � 4 can be acyclically coloured with 4 colours in such

a way that each colour class induces an acyclic graph with maximum degree at most 3.
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1 Introduction

We consider only finite, simple graphs. We use standard notation. For a graph G, we denote its vertex

set and edge set by V (G) and E(G), respectively. Let v ∈ V (G). By NG(v) (or N(v)) we denote the

set of the neighbours of v in G. The cardinality of NG(v) is called the degree of v, denoted by dG(v) (or

d(v)). The maximum and minimum vertex degrees in G are denoted by Δ(G) and δ(G), respectively.

The notation H ⊆ G means that H is a subgraph of G. For undefined concepts, we refer the reader

to [22].

A k-colouring of a graph G is a mapping c from the set of vertices of G to the set {1, . . . , k} of colours.

We can also regard a k-colouring of G as a partition of the set V (G) into colour classes V1, . . . , Vk such

that each Vi is the set of vertices with colour i. In many situations, it is desired that the particular set Vi

has some property. For example, if we require that each set Vi is independent, then we have a proper

k-colouring. Assuming each Vi induces a graph with maximum degree at most t yields a t-improper

k-colouring. One can also require that for any pair of distinct colours i and j, the subgraph induced by

the edges whose endpoints have colours i and j satisfies a given property, for example, is acyclic. This
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yields to the concept of acyclic colouring. In this paper, we will mainly concentrate on colourings, which

are both t-improper and acyclic. To precise this notion, we need to introduce or recall several definitions

and notation.

Let P1, . . . ,Pk be nonempty classes of graphs closed with respect to isomorphism. A k-colouring of a

graph G is called a (P1, . . . ,Pk)-colouring of G if for i ∈ {1, . . . , k} the subgraph induced in G by the

colour class Vi belongs to Pi. Such a colouring is called an acyclic (P1, . . . ,Pk)-colouring if for every

two distinct colours i and j the subgraph induced by the edges whose endpoints have colours i and j

is acyclic. In other words, every bichromatic cycle in G contains at least one monochromatic edge. A

bichromatic cycle (resp. path) having no monochromatic edge is called an alternating cycle (resp. path).

By P1 ◦ · · ·◦Pk we denote the class of all graphs having a (P1, . . . ,Pk)-colouring. Similarly, P1�· · ·�Pk

stands for the class of all graphs having an acyclic (P1, . . . ,Pk)-colouring.

A graph property P is called hereditary, if G ∈ P andH ⊆ G impliesH ∈ P . For a survey on hereditary

graph properties, see [8]. Assume that P1, . . . ,Pk are hereditary graph properties. It is well known that

(P1, . . . ,Pk)-colourings are monotone (see [8]). It is straightforward that acyclic (P1, . . . ,Pk)-colourings

are also monotone. Below we state this fact formally.

Observation 1. If G has an acyclic (P1, . . . ,Pk)-colouring and the properties P1, . . . ,Pk are hered-

itary, then each subgraph of G also has an acyclic (P1, . . . ,Pk)-colouring. It means that the property

P1 � · · · � Pk is hereditary.

In this paper, we focus on two hereditary graph properties: The class of graphs with bounded maximum

degree and the class of acyclic graphs. We use the following notation:

Sd = {G : Δ(G) � d},
D1 = {G : G is an acyclic graph}.

An acyclic (P1, . . . , Pk)-colouring of G is called an acyclic k-colouring, if for i ∈ {1, . . . , k} the class Pi is

the set of all edgeless graphs. The minimum k such that G has an acyclic k-colouring is called the acyclic

chromatic number of G, denoted by χa(G). An acyclic (P1, . . . , Pk)-colouring such that for i ∈ {1, . . . , k}
the class Pi is the set of graphs with maximum degree at most t, (i.e., G[Vi] ∈ St, for i ∈ {1, . . . , k}) is
called an acyclic t-improper k-colouring. The acyclic t-improper chromatic number χt

a(G) is the smallest k

for which there exists an acyclic t-improper k-colouring of G. Thus, χ0
a(G) equals χa(G).

The concept of acyclic colouring of graphs was introduced by Grűnbaum [16] and has been widely

considered in the recent past. Even more attention has been paid to this problem since it was proved

by Coleman et al. [12, 13] that acyclic colorings can be used in computing Hessian matrices via the

substitution method, see also [14, 15].

However, determining χa(G) is quite difficult. Kostochka [18] proved that it is an NP-complete problem

to decide for a given arbitrary graph G whether χa(G) � 3. The acyclic chromatic number was studied

for several classes of graphs, below we mention only some of the results. A lot of attention has been paid

to acyclic colourings of planar graphs. A famous theorem of Borodin [5] states that the acyclic chromatic

number of a planar graph is at most 5. The reader interested in other results in this direction is referred

to, for instance, [2, 6, 7].

Focusing on the family of graphs with small maximum degree, it was shown [16] that χa(G) � 4 for

any graph with maximum degree 3 (see also [21]). Burstein [11] proved that χa(G) � 5 for any graph

with maximum degree 4. Recently, Kostochka and Stocker [19] proved that χa(G) � 7 for any graph with

maximum degree 5. Concerning graphs with maximum degree 6, Hocquard [17] proved that 11 colours

are enough for an acyclic colouring.

In 1999, Boiron et al. [3, 4] began the study on the problem of acyclic (P1, . . . ,Pk)-colourings of

outerplanar and planar graphs, and bounded degree graphs. In particular, they proved that any graph

G ∈ S3 has an acyclic (D1,S2)-colouring as well as an acyclic (S1,S1,S1)-colouring [4]. Addario-Berry et

al. [1] proved that each graph from S3 has an acyclic (S2,S2)-colouring, i.e., χ
2
a(G) � 2 for any G ∈ S3.

This theorem was also proved in [9], where a polynomial-time algorithm was presented. The above result

cannot be generalised for graphs with arbitrary maximum degree, since it was shown in [9] that for all
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d � 4 there exists a graph G with maximum degree d and with χd−1
a (G) � 3. In [10], a polynomial-time

algorithm that provides an acyclic (D1,LF)-colouring of any graph from S3 \ {K4,K3,3} was given (LF
is the set of acyclic graphs with maximum degree at most 2, i.e., linear forests).

In this paper, we continue the previous work and consider acyclic improper colourings of graphs with

maximum degree at most 4. We prove that χ3
a(G) � 3 for every graph G ∈ S4 (Theorem 3.1) and

we show an example of a graph with maximum degree 4, whose acyclic 3-improper chromatic number

equals 3. Thus, Theorem 3.1 is optimal (with respect to the number of colours). This motivated us

to ask the question, which graphs with maximum degree 4 admit acyclic 3-improper 2-colourings? We

use the notion of the maximum average degree of a graph (denoted Mad(G)). We prove that if G ∈ S4

and Mad(G) � 3, then χ3
a(G) � 2. Next, we focus on such acyclic colourings in which each colour class

induces an acyclic graph. Observe first that, for n � 2, Kn+1 needs n colours for any such colouring.

Thus, we have the following.

Proposition 1.1. For d � 2, Sd �⊆ P1 � P2 � · · · � Pd−1, where Pi = D1 (i = 1, . . . , d− 1).

We prove that each graph G ∈ S4 has an acyclic (D1,D1,D1,D1)-colouring (Theorem 4.1). By Propo-

sition 1.1, the number of colours in this theorem cannot be reduced. But this result can be improved in

another way. Namely, instead of D1, one can try to take a “smaller” property. Indeed, we prove that

every graph with maximum degree at most 4 can be acyclically coloured with 4 colours in such a way

that each colour class induces an acyclic graph with maximum degree at most 3.

2 Notation

The following definitions and notation, which will be used later in the proofs, deal with a partial k-

colouring of a graph G, defined as an assignment c of colours from the set {1, . . . , k} to a subset C of

V (G). Given a partial k-colouring c of G, the set C is the set of coloured vertices. Notice that it may

happen that C is empty or equals V (G). For W ⊆ V (G) let c(W ) =
⋃

v∈W∩C c(v). Let Cv denote the

multiset of colours assigned by c to the coloured neighbors of v. A coloured vertex v is called t-saturated,

if it has exactly t neighbours coloured with c(v). If it is clear from the context, then we will skip the

parameter t and simply call such a vertex saturated. A vertex v (coloured or not) is called rainbow, if all

its coloured neighbours have distinct colours.

Let c be a partial k-colouring of G and i, j be distinct colours. An (i, j)-alternating cycle (resp. path)

is an alternating cycle (resp. path) with each vertex coloured i or j. Let F be a cycle in G containing v.

Cycle F is called (i, j)-dangerous for v, if colouring v with i results in an (i, j)-alternating cycle. A cycle

is called i-mono-dangerous for v, if colouring v with i results in a monochromatic cycle containing v.

When it is convenient, all (i, j)-dangerous cycles and l-mono-dangerous cycles for v will be called simply

dangerous cycles for v.

A partial k-colouring of G such that the set of coloured vertices induces a graph with an acyclic

(P1, . . . ,Pk)-colouring is called a partial acyclic (P1, . . . ,Pk)-colouring. A partial (acyclic) t-improper

k-colouring of G is defined analogously.

Given a partial (acyclic) t-improper k-colouring c of G, a colour i is called admissible for a vertex v,

if assigning i to v results in the colouring that has neither an alternating cycle containing v nor a

monochromatic subgraph K1,t+1 containing v.

3 Acyclic improper colourings

In this section, we consider acyclic 3-improper colourings of graphs from S4. First, we prove that each

such graph has an acyclic 3-improper 3-colouring; using the terminology of hereditary properties, it means

that S4 ⊆ S3 � S3 � S3.

Theorem 3.1. If G ∈ S4, then χ3
a(G) � 3.
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Proof. Let G ∈ S4. First, we consider the case G is 4-regular. At the beginning, we observe that G has

a 3-improper 3-colouring. (It follows from the well-known and more general theorem due to Lovász [20]

which states that Sp+q+1 ⊆ Sp ◦ Sq, for any p, q � 0.) We choose such a colouring c with the smallest

possible number of alternating cycles. We will show that we can recolour some vertices of G in such a

way that we obtain a 3-improper 3-colouring of G that has less alternating cycles than c. Let F be an

(1, 2)-alternating cycle of G and w1, v, w2 be three consecutive vertices of F . Without loss of generality,

we assume that c(w1) = c(w2) = 1 and c(v) = 2. For ti ∈ V (F ) we denote N ′(ti) = N(ti) \ {ti−1, ti+1},
where (t1, t2, . . . , tp) are consecutive vertices of F (all indices are mod p). Let N ′(v) = {u1, u2}. In the

six cases we consider all possible colours of u1, u2.

Case 1. c(u1) = 2, c(u2) = 3.

Since w1, w2 are not saturated, the colour 1 is admissible for v. Thus, we recolour v with colour 1. In

this way, we destroy the alternating cycle F , and no new alternating cycle appears, and the new colouring

is still a 3-improper 3-colouring of G.

In all the remaining cases, we assume that there is no admissible colour for v, since otherwise we can

recolour v. We also assume that we consider the next case only if none of the preceding cases can be

applied to any vertex of F .

Case 2. c(u1) = 1, c(u2) = 2.

Since colour 1 is not admissible for v, the vertex u1 must be saturated. Since u1 is saturated and 3 is

not admissible for v, there exists a (1, 3)-alternating path joining w1 and w2. Thus, w1 has a neighbour

coloured with 3 that is not saturated. Since we are not in Case 1, the second vertex of N ′(w1), namely w,

is coloured either with 2 or 3. If colour 3 is admissible for w1, we recolour w1. Otherwise, there must

be a (3, 2)-dangerous cycle for w1 or w1 has a saturated neighbour coloured with 3. Thus, the vertex w

is coloured with 2 and is not saturated or w is coloured with 3 and is saturated. In both cases, we can

recolour w1 with 2 and after such a move G is still 3-improperly 3-coloured and we have less alternating

cycles.

Case 3. c(u1) = 2, c(u2) = 2.

Since colour 1 is not admissible for v, there must be a (1, 2)-dangerous cycle for v. Thus, vertices u1

and u2 both have a neighbour coloured with 1. Since colour 3 is also not admissible for v, there is also

a (3, 1)-dangerous or a (3, 2)-dangerous cycle for v. This cycle goes through w1, w2 or u1, u2. This leads

us to two subcases:

Subcase 3.1. The (3, 1)-dangerous cycle for v goes through w1, w2.

Thus, the vertex w1 has a neighbour x ∈ N ′(w1) coloured with 3. Furthermore, x also has a neighbour

coloured with 1. Let y ∈ N ′(w1) \ {x}. Suppose that 3 is not admissible for w1. Hence, y has colour 3

and is saturated or there is a (3, 2)-dangerous cycle for w1, i.e., c(y) = 2 and y has a neighbour colored

with 3. In both cases, colour 2 is admissible for w1.

Subcase 3.2. The (3, 2)-dangerous cycle for v goes through u1, u2.

Clearly, u1 has a neighbour x coloured with 1 and a neighbour y coloured with 3. Let z ∈ N(u1) \
{v, x, y}. First, we recolour v with 1. Then we consider several cases, depending on the colour of z.

If z has colour 2, then we recolour vertex u1 with 1. After that we obtain a 3-improper 3-colouring in

which F is not an alternating cycle. Suppose now that c(z) = 1. If z is saturated, then we recolour u1

with 3. If z is not saturated, then we recolour u1 with 1. Assume now that z is coloured with 3. If z

is saturated, then we recolour u1 with 1. Otherwise, we recolour u1 with 3. It is easy to observe that

there is neither an alternating cycle containing v nor an alternating cycle containing u1 and that the new

colouring is still a 3-improper 3-colouring.

Case 4. c(u1) = 3, c(u2) = 3.

Since colour 1 is not admissible for v, each of u1, u2 has a neighbour coloured with 1 that is not

saturated. Since colour 3 is not admissible for v, there is a (3, 1)-alternating cycle that goes through w1

and w2. Thus, w1 has a neighbour in N ′(w1) that is coloured with 3 and is not saturated. Let w be the

other vertex in N ′(w1). Since we are not in Case 1, c(w) = 2 or c(w) = 3.
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Subcase 4.1. c(w) = 2.

If colour 2 is not admissible for w1, then w is saturated. Suppose that also 3 is not admissible for w1.

Since w1 has no saturated neighbour coloured with 3, there must be a (3, 2)-dangerous cycle for w1

that goes through v. Thus, u1 or u2 belongs to this cycle. Assume that u1 belongs to this cycle. Let

N(u1) \ {v} = {x, y, z}. Hence c(x) = 1, c(y) = 2. First, we recolour v with 1. Next, we consider all

possible colours of z. If c(z) = 3, then we recolour u1 with 1. Suppose that c(z) = 2. If z is saturated,

then we also recolour u1 with 1, otherwise we recolour u1 with 2. Suppose that c(z) = 1. If z is saturated,

then we recolour u1 with 2, otherwise we recolour u1 with 1.

Subcase 4.2. c(w) = 3.

Suppose that colour 3 is not admissible for w1. Thus, w1 has a saturated neighbour coloured with 3 or

there is a dangerous cycle for w1. If w1 has a saturated neighbour, then we recolour w1 with 2. Otherwise,

there is a (3, 2)-dangerous cycle for w1 that goes through v and either u1 or u2. Assume that u1 belongs

to this cycle. Let N(u1) \ {v} = {x, y, z}. Hence, c(x) = 1, c(y) = 2. Then similarly as in Subcase 4.1 we

consider all colourings of z to show that we can recolour v and u1.

Case 5. c(u1) = 1, c(u2) = 3.

Since colour 1 is not admissible for v, the vertex u1 is saturated. Since we cannot recolour v with 3, it

follows that v has a saturated neighbour coloured with 3 or there is a dangerous cycle for v.

Subcase 5.1. u2 is saturated.

If we can recolour u1 with 2 or 3, then we obtain Case 1 or Case 4, respectively. Assume that colours 2

and 3 are both not admissible for u1. Thus, there is a (2, 1)-dangerous cycle and a (3, 1)-dangerous cycle

for u1. This implies that there is a neighbour x ∈ N(u1) \ {v} that has the neighbours coloured with 2

and 3. Let us denote N(x) \ {u1} = {x1, x2, x3}, c(x1) = 2, c(x2) = 3 and x1, x2 are not saturated. We

recolour v with 1 and then we consider some cases depending on the colour of x3. If c(x3) = 1, then we

recolour x with 3. Assume that c(x3) = 2. If x3 is saturated, then we recolour x with 3. Otherwise, we

recolour x with 2. Suppose now that c(x3) = 3. If x3 is saturated, then we recolour x with 2. Otherwise,

we recolour x with 3.

Subcase 5.2. There is a (3, 1)-dangerous cycle for v.

Thus, this cycle goes through w1. Let us denote N
′(w1) = {x, y}. Hence c(x) = 3. Since we are neither

in Case 1 nor in Case 4, c(y) = 2. From the fact that colour 2 is not admissible for w1 it follows y is

saturated. Since we are not in Subcase 5.1, the vertex u2 is not saturated. We recolour v with 3 and w1

with 3.

Case 6. c(u1) = 1, c(u2) = 1.

Since we are not in any of the Cases 1, . . . , 5, each vertex of N ′(w1) ∪ N ′(w2) is coloured with 2.

Colour 3 is admissible neither for v nor for w1, hence there is a (3, 1)-dangerous cycle for v and there is

a (3, 2)-dangerous cycle for w1. Hence vertices of N ′(v) and N ′(w1) are not saturated. We recolour v

with 1 and w1 with 2.

To finish the proof it is enough to observe that for any graph H ∈ S4 which is not 4-regular, there

exists a 4-regular graph G such that H ⊂ G. As we have shown, G has an acyclic 3-improper 3-colouring.

Thus, H has such a colouring too.

Theorem 3.1 implies that every graph with maximum degree at most 4 has an acyclic 3-improper

3-colouring. The graph presented in Figure 1 is an example of a graph with maximum degree 4 having

no acyclic 3-improper 2-colouring. Thus the number of colours in Theorem 3.1 cannot be reduced.

These motivated us to ask a question, which graphs with maximum degree 4 admit acyclic 3-improper

2-colourings? In the next theorem, we provide a non-trivial family of such graphs. We use the notion of

the maximum average degree Mad(G) of a graph G, defined as follows:

Mad(G) = max

{
2|E(H)|
|V (H)| : H ⊆ G

}
.

Theorem 3.2. Let G ∈ S4 be a graph such that Mad(G) � 3. Then χ3
a(G) � 2.
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Figure 1 The graph with maximum degree 4 having no acyclic 3-improper 2-colouring

The proof of this theorem is based on a lemma, which provides some structural properties of graphs

with maximum degree at most 4 and maximum average degree at most 3. Before we proceed, we introduce

one more notation. For a vertex v ∈ V (G), by ld(v) we denote the cardinality of the set of vertices of

degree d in the neighbourhood of v.

Lemma 3.3. Let G ∈ S4 satisfy δ(G) � 2, Δ(G) = 4 and Mad(G) � 3. If G contains a vertex

of degree 4 adjacent to at most one vertex of degree 2, then G contains at least one of the following

configurations:

(A1) A vertex of degree 2 adjacent to at least one vertex of degree at most 3.

(A2) A vertex of degree 4 adjacent to at least three vertices of degree 2.

Proof. Let G = (V,E) be a graph satisfying the assumptions of the lemma. We use the discharging

method. Initially, we define a mapping w on V as follows: For each x ∈ V , let w(x) = d(x). Clearly, the

fact that Mad(G) � 3 yields ∑
x∈V

w(x) � 3|V |. (3.1)

In the discharging step, the values of w are redistributed between adjacent vertices according to the rule

described below. In this way, we obtain a new mapping w′. After this procedure, each x ∈ V has a new

value w′(x), but the sums of values of w′ and w, counting over all the vertices, are the same. We show

that if G contains neither A1 nor A2, then for each vertex x we have w′(x) � 3 and that there exists at

least one vertex for which this value is strictly greater than 3, obtaining an obvious contradiction with

inequality (3.1). We have only one rule for distributing the values between adjacent vertices:

(R) If x is a vertex of degree 4, then x gives 1
2 to each neighbour of degree 2.

Now, we compute the values of vertices of G considering several cases, depending on the degree of

x ∈ V .

If d(x) = 2, then w′(x) = 2 + 2 · 1
2 = 3, because G does not contain Configuration (A1).

If d(x) = 3, then w′(x) = w(x) = 3.

If d(x) = 4, then x can be adjacent to at most two vertices of degree 2, since otherwise Configura-

tion (A2) occurs. Hence, w′(x) � 4− 2 · 1
2 = 3.

As we have shown, for each vertex x of G the value w′(x) is greater than or equal to 3. To obtain

a contradiction with (3.1), it remains to prove that there exists at least one vertex, say x, such that

w′(x) > 3. Observe that a vertex of degree 4 may have the final charge 3 if and only if it has exactly

two neighbours of degree 2. From the assumption there exists a vertex of degree 4 which has at most one

vertex of degree 2 in its neighbourhood and hence with the final charge greater than 3.

Proof of Theorem 3.2. LetG = (V,E) be a minimal, with respect to the number of edges, counterexample

to the theorem. There is no loss of generality in assuming G is connected. Observe at the beginning,

that G does not contain vertices of degree 1. Indeed, if v would be such a vertex, then by removing v we

obtain a graph that has an acyclic 3-improper 2-colouring. Clearly, this colouring can be extended to an

acyclic 3-improper 2-colouring of G. Now we provide some additional properties of G.

Claim 1. G contains no vertex of degree 2 adjacent to a vertex of degree at most 3.
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Proof. Assume to the contrary that there is a vertex v of degree 2 adjacent to a vertex u of degree at

most 3. Let G′ = G− vu. From the fact that G is a minimal counterexample it follows G′ has an acyclic

3-improper 2-colouring c. We claim that we can extend this colouring. Observe at the beginning, that if

c(v) = c(u), then the colouring c can be extended to G (because dG(u) � 3). Therefore, we may assume

c(v) �= c(u), w.l.o.g., c(v) = 1, c(u) = 2. If we cannot extend the colouring c to an acyclic 3-improper

2-colouring of G, then there is an alternating (1, 2)-path from v to u. Let w be the second neighbour

of v. It follows c(w) = 2 and w is not saturated. Hence we can recolour v with 2. Clearly, the obtained

colouring can be extended.

Claim 2. G contains no vertex of degree 4 adjacent to at least three vertices of degree 2.

Proof. Assume to the contrary that v is a vertex of degree 4 with l2(v) � 3. Let u1, u2 and u3 be the

vertices of degree 2 adjacent to v and let u4 be the remaining neighbour of v. We may assume d(u4) = 4.

We consider a graph G′ = G− vu1. G
′ has an acyclic 3-improper 2-colouring c, because G is a minimal

counterexample. We show that the colouring c can be extended. To this aim, we consider two cases. Let

w1 be the neighbour of u1.

Case 1. Let c(v) = c(u1) = 1.

Observe that we cannot extend the colouring c only if v is saturated, i.e., c(u2) = c(u3) = c(u4) = 1. If

we can recolour u1 with 2, then we are done, because the obtained colouring can be extended. It follows

c(w1) = 2, dG(w1) = 4 and w1 is saturated. If we can recolour v with 2, then we are also done. Observe

that v cannot be recoloured only if there exists a (2, 1)-dangerous cycle for v. Obviously, any such cycle

is passing through at least one of the vertices u2, u3. W.l.o.g., we may assume that such a cycle is passing

through u2. Let w2 be the neighbour of u2, w2 �= v. It follows c(w2) = 2 and w2 is not saturated. We

recolour u2 with 2. We obtain an acyclic 3-improper 2-colouring which can be extended (because v is not

saturated).

Case 2. Assume c(v) �= c(u1), w.l.o.g., c(v) = 1, c(u1) = 2.

If the colouring c cannot be extended, then there is an alternating (1, 2)-path from v to u1. Hence,

c(w1) = 1 and w1 is not saturated. We recolour u1 with 1 and obtain a colouring considered in Case 1.

Claim 3. G contains a vertex v of degree 4 adjacent to at most one vertex of degree 2.

Proof. Assume to the contrary that each vertex of degree 4 has at least two neighbours of degree 2.

By Claim 2, we may assume that each vertex of degree 4 has exactly two neighbours of degree 2. Let v

be such a vertex and w1, w2 ∈ N(v) be of degree 2. Assume w3, w4 are the remaining neighbours of v.

Let u1 ∈ N(w1) \ {v}, u2 ∈ N(w2) \ {v}. Let G′ = G − vw1. G being a minimal counterexample

implies G′ has an acyclic 3-improper 2-colouring c. At the beginning we assume c(v) �= c(w1), w.l.o.g.,

c(v) = 1, c(w1) = 2. If we cannot extend c, then there is an alternating (1, 2)-path from v to w1. Hence

c(u1) = 1 and neither v nor u1 is saturated. We recolour w1 with 1, obtaining an acyclic 3-improper

2-colouring which can be extended. Therefore, we may assume c(v) = c(w1) = 1. The fact we cannot

extend the colouring c implies v is saturated. If we can recolour w1 with 2, then we are done, because

such a colouring can be extended. Hence c(u1) = 2, dG(u1) = 4, and u1 is saturated. Similarly, if we can

recolour w2 with 2, then we are also done. Thus, c(u2) = 2, dG(u2) = 4, and u2 is saturated. We focus

on v. If v can be recoloured with 2, then the obtained colouring can be extended. Otherwise, there is an

alternating (1, 2)-path P from w3 to w4. Up to symmetry, there are two cases to consider.

Case 1. Assume w3 is of degree 4.

Thus, l2(w3) = 2. Let N(w3) = {v, t1, t2, t3} and d(t1) = d(t2) = 2. At the beginning, we consider the

situation when P is passing through t1 or t2, say t1. Let p1 be the neighbour of t1, different from w3. It

follows c(t1) = 2, c(p1) = 1 and p1 is not saturated. We recolour t1 with 1. In this way, we destroy the

path P . Observe, that P was the only one alternating path from w3 to w4, because c was acyclic. Now

we can recolour v with 2. We obtain an acyclic 3-improper 2-colouring, which can be extended. Thus,

we may assume P is passing through t3. Clearly, c(t3) = 2 and t3 is not saturated. We try to recolour

w3 with 2. If this is possible, then we are done, since v is no longer saturated and the obtained colouring

can be extended. On the other hand, such a recolouring cannot be done only if there is an alternating
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(1, 2)-path from t1 to t2. It follows c(t1) = c(t2) = 1 and p1 is coloured with 2 and is not saturated.

Hence we can recolour t1 with 2, w3 with 2 and extend the obtained colouring.

Case 2. Assume w3 and w4 are both of degree 3.

Observe that none of w3, w4 can be recoloured with 2 (if this was possible, then we would be done).

Let t1, t2 be the neighbours of w3 different from v. Assume that P is passing through t1. Hence c(t1) = 2

and t1 is not saturated. We cannot recolour w3, thus c(t2) = 2, d(t2) = 4 and t2 is saturated. From the

assumptions we have l2(t2) = 2. Let s1, s2 ∈ N(t2) be of degree 2. Assume for a moment that we can

recolour t2 with 1. In this case we are done, because we recolour w3 with 2 and the obtained colouring

can be extended. Hence t2 cannot be recoloured. It follows there is an alternating (1, 2)-path P ′ joining
two neighbours of t2. W.l.o.g., we may assume P ′ is passing through s1. We recolour s1 with 1, w3

with 2. The obtained colouring can be extended, since v is not saturated.

To finish the proof it is enough to observe that Claim 3 impliesG satisfies the assumptions of Lemma 3.3.

Hence G should contain (A1) or (A2), but this is impossible, because of Claims 1 and 2.

4 Acyclic colourings in which each colour class induces an acyclic graph

In Section 4, we consider acyclic colourings of graphs from S4 such that each colour class induces an

acyclic graph, i.e., a graph from D1. We prove that S4 ⊆ D1�D1�D1�D1. Since by Proposition 1.1 the

graphK5 needs 4 colours in every such colouring, we cannot reduce the number of colours in Theorem 4.1.

Theorem 4.1. S4 ⊆ D1 �D1 �D1 �D1.

Before we can proceed with the proof, we need to observe the following easy fact.

Proposition 4.2. For every partial acyclic (D1,D1,D1,D1)-colouring of a graph G ∈ S4 and a rainbow

vertex u of G, we can colour or recolour u with each of the 4 colours.

Proof of Theorem 4.1. We claim that it is enough to prove that the theorem holds for 4-regular graphs.

Indeed, for any H ∈ S4 there exists a 4-regular graph G such that H ⊆ G. Furthermore, the existence

of an acyclic (D1,D1,D1,D1)-colouring of G implies that H has such a colouring too, what follows from

Observation 1. Therefore, we assume G is 4-regular. Let c be a partial acyclic (D1,D1,D1,D1)-colouring

of G and v be an uncoloured vertex. We show that we can colour v. Let N(v) = {x, y, z, w}. The

vertex v cannot be coloured only if for each colour i (i = 1, . . . , 4) there is an (i, j)-dangerous cycle or an

i-mono-dangerous cycle for v.

By Proposition 4.2, it is enough to consider the following three cases:

Case 1. Two neighbours of v have the same colour (say c(x) = c(y) = 1), others have distinct colours,

and different from 1, or are uncoloured.

Since every (i, 1)-dangerous cycle for v and every 1-mono-dangerous cycle for v must go through x, we

can colour v with a colour j such that j �∈ c(N(x)).

Case 2. Three neighbours of v have the same colour (say c(x) = c(y) = c(z) = 1), the remaining one

has a colour different from 1 or is uncoloured.

If v cannot be coloured with any colour, then each of colours must be contained in at least two different

multisets among Cx, Cy , Cz. We have four colours, hence at least one of x, y, z is rainbow. We recolour

this vertex with a colour i �= c(w) or with 2, if w is uncoloured, and we are in Case 1.

Case 3. Four neighbours of v have the same colour (say, c(x) = c(y) = c(z) = c(w) = 1) or two pairs

of neighbours have the same colour (say, c(x) = c(y) = 1, c(z) = c(w) = 2).

If v cannot be coloured, then for every colour i there is an (i, j)-dangerous cycle or an i-mono-

dangerous cycle for v. Thus, each of colours must be contained in at least two different multisets among

Cx, Cy, Cz , Cw. If at least one vertex of x, y, z, w is rainbow, then we recolour this vertex (with 3) and we

are either in Case 1 or in Case 2. Otherwise, each vertex of x, y, z, w belongs to at least two dangerous (or

mono-dangerous) cycles for v and has two neighbours coloured with distinct colours. We focus on x. Let

N(x) \ {v} = {x1, x2, x3}. W.l.o.g. we may assume that both x1 and x2 belong to some dangerous (or
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mono-dangerous) cycles for v and c(x1) = c1, c(x2) = c2, c(x3) = c2, c1 �= c2. First, we assume c1, c2 �= 1.

The vertex x is in both the (c1, 1)-dangerous cycle and the (c2, 1)-dangerous cycle for v, hence x1 has

two neighbours coloured with 1 and x2 has two neighbours coloured with 1. Now, we claim that we can

recolour x. If we can recolour x with 2, then we are in Case 2. Otherwise, x2 must have a neighbour

coloured with 2. If we can recolour x neither with 3 nor with 4, then x2 must have a neighbour coloured

with 3 and a neighbour coloured with 4. Since d(x2) � 4, this is impossible. Thus, we can recolour x

and obtain either Case 1 or Case 2. The case c1 = 1 or c2 = 1 can be done similarly.

In the next theorem, we improve the previous result.

Theorem 4.3. S4 ⊆ P1 � P2 � P3 � P4, where Pi = S3 ∩D1 (i = 1, . . . , 4).

Proof. Let G ∈ S4. As above, we may assume G is 4-regular. Theorem 4.1 implies that there exists an

acyclic (D1,D1,D1,D1)-colouring of G. Let c be such a colouring with the smallest possible number of

vertices that have four neighbours coloured with its colour. Let v be such a vertex. We will show that

we can recolour v or a neighbour of v in such a way that the new colouring is an acyclic (D1,D1,D1,D1)-

colouring of G with smaller number of vertices having four neighbours coloured with its colour. Assume

c(v) = 1 and Cv = {1, 1, 1, 1}.
If we cannot recolour v, then for every colour i, i ∈ {2, 3, 4}, there is an (i, 1)-dangerous cycle for v.

Thus, there is a neighbour x of v that is in at least two dangerous cycles for v. Let N(x) = {x1, x2, x3, v}.
Without loss of generality, we may assume that x is in both a (2, 1)-dangerous and a (3, 1)-dangerous

cycle for v and vertices x1, x2 also belong to these cycles. Hence, c(x1) = 2, c(x2) = 3 and x1, x2 are

not saturated. If c(x3) = 4, then we can recolour x with 2, since x is rainbow and x1 is not saturated.

If c(x3) = 1, then also we can recolour x with 2. Observe that such a colouring does not create any

alternating cycle, since an alternating cycle cannot go through v (v has three neighbours in its colour).

Suppose now that c(x3) = 2 (the case c(x3) = 3 is similar). If we cannot recolour x with 3, then there must

be a (3, 2)-dangerous cycle for x. Thus, x1 and x3 both have a neighbour coloured with 3. If we cannot

recolour x with 2, then there must be a 2-mono-dangerous cycle for x, hence x1 must have a neighbour

coloured with 2. Since x1 has two neighbour coloured with 1 (x1 is in the (2, 1)-dangerous cycle for v)

and d(x1) = 4, we can recolour x with 4. In all cases, we obtain an acyclic (D1,D1,D1,D1)-colouring of

G with smaller number of vertices having four neighbours coloured with its colour, a contradiction with

the choice of c.
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