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1 Introduction and preliminaries

Throughout this paper we will assume q to be a fixed number between 0 and 1. We denote by Dq the

q-derivative of a function (see [8, 10])

(Dqf) (x) =
f (qx)− f (x)

(q − 1)x
. (1.1)

The Jackson definite q-integral of the function f is defined by (see [8, 12, 13])

∫ x

0

f(t)dqt = (1− q)

∞∑
a=0

f (qax)xqa. (1.2)

From (1.1) and (1.2), we note that

Dq

∫ x

0

f(t)dqt = f(x),

∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx−
∫ a

0

f(x)dqx.

In this paper, we use the following notation:

[x]q =
1− qx

1− q
, (a+ b)

n
q =

n−1∏
i=0

(
a+ qib

) (
n ∈ Z

+
)

(1.3)
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and

(1 + a)
∞
q =

∞∏
j=0

(
1 + qja

)
, [n]q! = [n]q[n− 1]q · · · [2]q[1]q. (1.4)

The q-analogue of exponential function is defined by (see [5, 6, 8, 10])

eq(t) =
1

(1− (1− q) t)
∞
q

=

∞∑
n=0

tn

[n]q!
. (1.5)

In [10], the q-analogues of Bernoulli polynomials are defined by the generating function to be (see [8–14])

t

eq(t)− 1
eq(xt) =

∞∑
n=0

Bn,q(x)
tn

[n]q!
. (1.6)

In the special case, x = 0, Bn,q(0) = Bn,q is called the n-th q-Bernoulli number.

The reader is referred to [1–3, 17] for other types of q-Bernoulli polynomials and to [7] for some related

work.

From (1.6), we can derive the following equation:

Bn,q(x) =
n∑

l=0

(
n

l

)
q

xn−lBl,q =
n∑

l=0

Bn−l,qx
l

(
n

l

)
q

, (1.7)

where
(
n
l

)
q
=

[n]q!
[l]q![n−l]q !

=
[n]q[n−1]q···[n−l+1]q

[l]q !
.

Let C be the complex number field and let F be the set of all formal power series in variable t over C

with

F =

{
f(t) =

∞∑
k=0

ak
[k]q!

tk
∣∣∣∣ ak ∈ C

}
. (1.8)

Let P = C[t] and let P∗ be the vector space of all linear functionals on P. Now we denote by 〈L|p(x)〉 the
action of the linear functional L on the polynomial p(x). We remind that the vector space operations on

P
∗ are defined by 〈L+M |p(x)〉 = 〈L|p(x)〉 + 〈M |p(x)〉 , 〈cL|p(x)〉 = c 〈L|p(x)〉 , where c is any constant

in C (see [15, 16]).

For f(t) =
∑∞

k=0
ak

[k]q !
tk ∈ F , we define the linear functional on P by setting

〈f(t)|xn〉 = an, for all n � 0. (1.9)

Thus, by (1.8) and (1.9), we note that

〈tk|xn〉 = [n]q!δn,k, n, k � 0, (1.10)

where δn,k is the Kronecker’s symbol.

Let fL(t) =
∑∞

k=0
〈L|xk〉
[k]q !

tk. Then, by (1.8) and (1.9), we see that 〈fL(t)|xn〉 = 〈L|xn〉 and so as linear

functionals L = fL(t). It is easy to show that the map L �−→ fL(t) is a vector space isomorphism from

P∗ onto F . Henceforth, F denotes both the algebra of formal power series in t and the vector space of

all linear functionals on P, and so an element f(t) of F is thought of as both a formal power series and

a linear functional. We call F the q-umbral algebra. The q-umbral calculus is the study of q-umbral

algebra. By (1.5) and (1.10), we easily see that 〈eq(yt)|xn〉 = yn and so 〈eq(yt)|p(x)〉 = p(y).

Notice that for all f(t) in F ,

f(t) =

∞∑
k=0

〈f(t)∣∣xk〉
[k]q!

tk, (1.11)

and for all polynomials p(x) (see [15, 16]),

p(x) =

∞∑
k=0

〈tk∣∣p(x)〉
[k]q!

xk. (1.12)
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For f1(t), f2(t), . . . , fn(t) ∈ F , we have

〈f1(t) · · · fm(t)|xn〉 =
∑

i1+···+im=n

(
n

i1, . . . , im

)
q

〈f1(t)|xi1 〉 · · · 〈fm(t)|xim 〉, (1.13)

where
(

n
i1,...,im

)
q
=

[n]q !
[i]q !···[im]q !

.

The order O (f(t)) of the power series f(t) (�= 0) is the smallest integer k for which ak does not vanish.

If O(f(t)) = 0, then f(t) is called an invertible series. If O(f(t)) = 1, then f(t) is called a delta series.

Let p(k)(x) = Dk
q p(x). Then, by (1.12), we get

p(k)(x) =

∞∑
l=k

〈tl∣∣p(x)〉
[l]q!

[l]q[l − 1]q · · · [l − k + 1]qx
l−k. (1.14)

From (1.14), we have

p(k)(0) = 〈tk∣∣p(x)〉 and 〈1|p(k)(x)〉 = p(k)(0). (1.15)

By (1.15), we get

tkp(x) = p(k)(x) = Dk
q p(x). (1.16)

Let f(t), g(t) ∈ F with O (f(t)) = 1 and O (g(t)) = 0. Then there exists a unique sequence

sn(x) (deg sn(x) = n) of polynomials such that
〈
g(t)f(t)k|sn(x)

〉
= [n]q!δn,k (n, k � 0), which is de-

noted by sn(x) ∼ (g(t), f(t)). The sequence sn(x) is called the q-Sheffer sequence for (g(t), f(t)). For

h(t), f(t), g(t) ∈ F and p(x) ∈ P, we have

h(t) =

∞∑
k=0

〈h(t)|sk(x)〉
[k]q!

g(t)f(t)k, p(x) =

∞∑
k=0

〈g(t)f(t)k|p(x)〉
[k]q!

sk(x), (1.17)

and
1

g(f̄(t))
eq(yf̄(t)) =

∞∑
k=0

sk(y)

[k]q!
tk, for all y ∈ C, (1.18)

where f̄(t) is the compositional inverse of f(t) [15, 16].

Recently, several authors have studied q-Bernoulli and Euler polynomials. In this paper, we investigate

some properties of q-Bernoulli polynomials arising from q-umbral calculus. Finally, we derive some

interesting identities of q-Bernoulli polynomials from our results.

2 q-Bernoulli polynomials and q-umbral calculus

From (1.6), we note that

Bn,q(x) ∼
(
eq(t)− 1

t
, t

)
. (2.1)

By (2.1), we get

Bn,q(x) =

(
t

eq(t)− 1

)
xn, n � 0. (2.2)

From (1.7) and (1.16), we note that

tBn,q(x) = DqBn,q(x) = [n]qBn−1,q(x). (2.3)

By (1.1) and (1.10), we easily see that〈
eq(t)− 1

t

∣∣∣∣xn

〉
=

1

[n+ 1]q

〈
eq(t)− 1

t

∣∣∣∣txn+1

〉
=

1

[n+ 1]q
〈eq(t)− 1

∣∣xn+1〉

=
1

[n+ 1]q
=

∫ 1

0

xndqx. (2.4)
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Thus, from (2.4), we have 〈
eq(t)− 1

t

∣∣∣∣p(x)
〉

=

∫ 1

0

p(x)dqx, for p(x) ∈ P. (2.5)

In particular, if we take p(x) = Bn,q(x), then∫ 1

0

Bn,q(x)dqx =

〈
eq(t)− 1

t

∣∣∣∣Bn,q(x)

〉
=

〈
1

∣∣∣∣eq(t)− 1

t
Bn,q(x)

〉
= 〈t0∣∣xn〉 = [n]q!δn,0. (2.6)

From (1.7), we can derive

∫ 1

0

Bn,q(x)dqx =

n∑
k=0

Bn−k,q

(
n

k

)
q

∫ 1

0

xkdqx =

n∑
k=0

Bn−k,q

[k + 1]q

(
n

k

)
q

. (2.7)

Therefore, by (2.6) and (2.7), we obtain the following proposition.

Proposition 1. For n ∈ Z+, we have

B0,q = 1,

n∑
k=1

(
n

k

)
q

1

[k + 1]q
Bn−k,q = −Bn,q, n > 0.

By (1.17) and (2.1), we get

p(x) =

∞∑
k=0

1

[k]q!

〈
eq(t)− 1

t
tk
∣∣∣∣p(x)

〉
Bk,q(x) =

∞∑
k=0

1

[k]q!

〈
eq(t)− 1

t

∣∣∣∣tkp(x)
〉
Bk,q(x)

=
∞∑
k=0

1

[k]q!
Bk,q(x)

∫ 1

0

tkp(x)dqx. (2.8)

It is known that

(x− 1)
n
q = (x− 1) (x− q) · · · (x− qn−1) ∼ (eq(t), t) (2.9)

From (1.17) and (2.9), we have

Bn,q(x) =

n∑
k=0

1

[k]q!
〈eq(t)tk|Bn,q(x)〉(x − 1)kq =

n∑
k=0

1

[k]q!
〈eq(t)|tkBn,q(x)〉(x − 1)kq

=
n∑

k=0

(
n

k

)
q

Bn−k,q(1)(x − 1)kq . (2.10)

From (1.3), we can derive

(x− 1)nq =

n∑
m=0

(
n

m

)
q

(−1)n−mq(
n−m

2 )xm. (2.11)

Thus, by (2.11), we get

tk(x− 1)nq =
n∑

m=k

(
n

m

)
q

(−1)n−mq(
n−m

2 ) [m]q!

[m− k]q!
xm−k

=
[n]q!

[n− k]q!

n−k∑
m=0

(
n− k

m

)
q

(−1)n−k−mq(
n−k−m

2 )xm

=
[n]q!

[n− k]q!
(x− 1)n−k

q . (2.12)

By (1.17) and (2.12), we get

(x− 1)nq =

n∑
k=0

1

[k]q!

〈
eq(t)− 1

t
tk
∣∣∣∣(x− 1)nq

〉
Bk,q(x)
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=
n∑

k=0

(
n

k

)
q

Bk,q(x)

〈
eq(t)− 1

t

∣∣∣∣(x− 1)n−k
q

〉

=

n∑
k=0

(
n

k

)
q

Bk,q(x)

∫ 1

0

(x− 1)n−k
q dqx

=

n∑
k=0

n−k∑
m=0

(
n

k

)
q

(
n− k

m

)
q

Bk,q(x)(−1)n−k−mq(
n−k−m

2 ) 1

[m+ 1]q
. (2.13)

From (1.6) and (1.10), we note that

〈
t

eq(t)− 1

∣∣∣∣xn

〉
=

∞∑
k=0

Bk,q

[k]q!
〈tk∣∣xn〉 = Bn,q. (2.14)

Let Pn = {p(x) ∈ C[x] | deg p(x) � n}. For p(x) ∈ Pn, let us assume that

p(x) =

n∑
k=0

bk,qBk,q(x). (2.15)

By (2.1), we see that 〈(
eq(t)− 1

t

)
tk
∣∣∣∣Bn,q(x)

〉
= [n]q!δn,k, n, k � 0. (2.16)

Thus, from (2.15) and (2.16), we have

〈(
eq(t)− 1

t

)
tk
∣∣∣∣p(x)

〉
=

n∑
l=0

bl,q

〈(
eq(t)− 1

t

)
tk
∣∣∣∣Bl,q(x)

〉
=

n∑
l=0

bl,q[l]q!δl,k = [k]q!bk,q. (2.17)

From (1.16), (2.5) and (2.17), we have

bk,q =
1

[k]q!

〈(
eq(t)− 1

t

)
tk
∣∣∣∣p(x)

〉
=

1

[k]q!

〈
eq(t)− 1

t

∣∣∣∣Dk
q p(x)

〉
=

1

[k]q!

∫ 1

0

p(k)(x)dx, (2.18)

where p(k)(x) = Dk
q p(x). Therefore, by (2.15) and (2.18), we obtain the following theorem.

Theorem 2. For p(x) ∈ Pn, let p(x) =
∑n

k=0 bk,qBk,q(x). Then we have

bk,q =
1

[k]q!

〈
eq(t)− 1

t

∣∣∣∣p(k)(x)
〉

=
1

[k]q!

∫ 1

0

p(k)(x)dqx,

where p(k)(x) = Dk
q p(x).

Let us consider the q-Bernoulli polynomials of order r as follows:

(
t

eq(t)− 1

)r

eq(xt) =

(
t

eq(t)− 1

)
× · · · ×

(
t

eq(t)− 1

)
︸ ︷︷ ︸

r times

eq(xt) =

∞∑
n=0

B(r)
n,q(x)

tn

[n]q!
. (2.19)

In the special case, x = 0, B
(r)
n,q(0) = B

(r)
n,q is called the n-th q-Bernoulli number of order r. It is easy to

show that 〈(
t

eq(t)− 1

)r ∣∣∣∣xn

〉
=

∞∑
k=0

B
(r)
k,q

[k]q!
〈tk|xn〉 = B(r)

n,q. (2.20)

From (1.13), (2.14) and (2.20), we note that

B(r)
n,q =

〈(
t

eq(t)− 1

)r ∣∣∣∣xn

〉
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=
∑

i1+···+ir=n

(
n

i1, . . . , ir

)
q

〈
t

eq(t)− 1

∣∣∣∣xi1

〉
· · ·

〈
t

eq(t)− 1

∣∣∣∣∣xir

〉

=
∑

i1+...+ir=n

(
n

i1, · · · , ir

)
q

Bi1,q · · ·Bir ,q. (2.21)

Therefore, by (2.21), we have the following lemma.

Lemma 3. For n � 0, we have

B(r)
n,q =

∑
i1+···+ir=n

(
n

i1, . . . , ir

)
q

Bi1,q · · ·Bir ,q.

By (2.19), we easily get

B(r)
n,q(x) ∼

((
t

eq(t)− 1

)r

, t

)
(2.22)

and

B(r)
n,q(x) =

(
t

eq(t)− 1

)r

xn, (2.23)

where n, r ∈ Z
+. Let us take p(x) = B

(r)
n,q(x) =

∑n
k=0

(
n
k

)
q
B

(r)
n−k,qx

k ∈ Pn. Then we may write

p(x) = B(r)
n,q(x) =

n∑
k=0

bk,qBk,q(x). (2.24)

From (2.24), we have

p(k)(x) = Dk
qB

(r)
n,q(x) = [n]q[n− 1]q · · · [n− k + 1]qB

(r)
n−k,q(x) = [k]q!

(
n

k

)
q

B
(r)
n−k,q(x). (2.25)

By (2.18) and (2.25), we get

bk,q =
1

[k]q!

〈(
eq(t)− 1

t

)
tk
∣∣∣∣p(x)

〉
=

1

[k]q!

〈
eq(t)− 1

t

∣∣∣∣Dk
q p(x)

〉

=

(
n

k

)
q

〈
eq(t)− 1

t

∣∣∣∣B(r)
n−k,q(x)

〉
=

(
n

k

)
q

〈
t0
∣∣∣∣
(

t

eq(t)− 1

)r−1

xn−k

〉

=

(
n

k

)
q

B
(r−1)
n−k,q. (2.26)

Therefore, by Theorem 2 and (2.24), we obtain the following theorem.

Theorem 4. For n � 0, we have

B(r)
n,q(x) =

n∑
k=0

(
n

k

)
q

〈
eq(t)− 1

t

∣∣∣∣B(r)
n−k,q(x)

〉
Bk,q(x) =

n∑
k=0

(
n

k

)
q

B
(r−1)
n−k,qBk,q(x).

For p(x) ∈ Pn, let us assume that

p(x) =

n∑
k=0

b
(r)
k,qB

(r)
k,q(x). (2.27)

By (2.22), we easily get 〈(
eq(t)− 1

t

)r

tk
∣∣∣∣B(r)

n,q(x)

〉
= [n]q!δn,k, n, k � 0. (2.28)

From (2.27) and (2.28), we have

〈(
eq(t)− 1

t

)r

tk
∣∣∣∣p(x)

〉
=

n∑
l=0

b
(r)
l,q

〈(
eq(t)− 1

t

)r

tk
∣∣∣∣B(r)

l,q (x)

〉
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=
n∑

l=0

b
(r)
l,q [l]q!δl,k = [k]q!b

(r)
k,q. (2.29)

By (2.29), we get

b
(r)
k,q =

1

[k]q!

〈(
eq(t)− 1

t

)r

tk
∣∣∣∣p(x)

〉
. (2.30)

Therefore, by (2.27) and (2.30), we obtain the following theorem.

Theorem 5. For p(x) ∈ Pn, let p(x) =
∑n

k=0 b
(r)
k,qB

(r)
k,q(x). Then we have

b
(r)
k,q =

1

[k]q!

〈(
eq(t)− 1

t

)r

tk
∣∣∣∣p(x)

〉
.

Let us take p(x) = Bn,q(x). Then, by Theorem 1.5, we get

Bn,q(x) = p(x) =
n∑

k=0

b
(r)
k,qB

(r)
k,q(x), (2.31)

where

b
(r)
k,q =

1

[k]q!

〈(
eq(t)− 1

t

)r

tk
∣∣∣∣p(x)

〉
=

1

[k]q!

〈(
eq(t)− 1

t

)r

tk
∣∣∣∣Bn,q(x)

〉
. (2.32)

For k < r, by (2.32), we have

b
(r)
k,q =

1

[k]q!

〈
(eq(t)− 1)

r 1

tr−k

∣∣∣∣Bn,q(x)

〉

=
1

[k]q!

(
1

[n+ r − k]q · · · [n+ 1]q

)〈
(eq(t)− 1)

r

(
1

t

)r−k ∣∣∣∣tr−kBn+r−k,q(x)

〉

=

(
1

[k]q![r − k]q!

)(
[r − k]q!

[n+ r − k]q · · · [n+ 1]q

)
〈(eq(t)− 1)r |Bn+r−k,q(x)〉

=
1

[r]q!

(
r
k

)
q(

n+r−k
r−k

)
q

r∑
j=0

(
r

j

)
(−1)r−j〈(eq(t))j |Bn+r−k,q(x)〉

=
1

[r]q!

(
r
k

)
q(

n+r−k
r−k

)
q

r∑
j=0

(
r

j

)
(−1)r−j

n+r−k∑
m=0

∑
m1+···+mj=m

(
m

m1, . . . ,mj

)
q

×
(
n+ r − k

m

)
q

Bn+r−k−m,q. (2.33)

Let us assume that k � r. Then, by (2.32), we get

b
(r)
k,q =

1

[k]q!
〈(eq(t)− 1)

r |tk−rBn,q(x)〉

=
1

[k]q!
[n]q[n− 1]q · · · [n− k + r + 1]q〈(eq(t)− 1)

r |Bn−k+r,q(x)〉

=
[k − r]q !

[k]q!

(
n

k − r

)
q

r∑
j=0

(
r

j

)
(−1)r−j〈(eq(t))j |Bn−k+r,q(x)〉

=
1

[r]q!

(
n

k−r

)
q(

k
r

)
q

r∑
j=0

(
r

j

)
(−1)r−j

n−k+r∑
m=0

∑
m1+···+mj=m

(
m

m1, . . . ,mj

)
q

× 〈tm|Bn−k+r,q(x)〉
[m]q!

=
1

[r]q!

(
n

k−r

)
q(

k
r

)
q

r∑
j=0

(
r

j

)
(−1)r−j

n−k+r∑
m=0

∑
m1+···+mj=m

(
m

m1, . . . ,mj

)
q
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×
(
n− k + r

m

)
q

Bn−k+r−m,q. (2.34)

Therefore, by (2.31), (2.33) and (2.34), we obtain the following theorem.

Theorem 6. For n ∈ Z
+ and r ∈ N, we have

Bn,q(x) =
r−1∑
k=0

1

[r]q!

(
r
k

)
q(

n+r−k
r−k

)
q

{ r∑
j=0

(
r

j

)
(−1)r−j

n−k+r∑
m=0

∑
m1+···+mj=m

(
m

m1, . . . ,mj

)
q

×
(
n− k + r

m

)
q

Bn+r−k−m,q

}
B

(r)
k,q(x) +

n∑
k=r

(
n

k−r

)
q

[r]q !
(
r
k

)
q

×
{ r∑

j=0

(
r

j

)
(−1)r−j

n−k+r∑
m=0

∑
m1+···+mj+m

(
m

m1, . . . ,mj

)
q

(
n− k + r

m

)
q

×Bn−k+r−m,q

}
B

(r)
k,q(x).
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