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Abstract In this paper, we investigate some properties of g-Bernoulli polynomials arising from g-umbral
calculus. We find a formula for expressing any polynomial as a linear combination of g-Bernoulli polynomials
with explicit coefficients. Also, we establish some connections between g-Bernoulli polynomials and higher-order
g-Bernoulli polynomials.
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1 Introduction and preliminaries

Throughout this paper we will assume ¢ to be a fixed number between 0 and 1. We denote by D, the
g-derivative of a function (see [8,10])

f(qz) — f(z)
(¢g—Dz

The Jackson definite g-integral of the function f is defined by (see [8,12,13])

(Dgf) (x) = (1.1)

o0

/ et = (1 - 0) S f (") g (1.2)

a=0

From (1.1) and (1.2), we note that

D, /Ox f@)dqt = f(x), /ab f(z)dgx = /Ob f(z)dgx — /Oa f(z)dgz.

In this paper, we use the following notation:

T n—1
mq:lf_qq’ (a+0)y =[] (a+qb) (nez’) (1.3)
=0
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and
oo

(t+a)y =] A +da), [nl!=[nlgln— 1) 2141, (1.4)
j=0

The g-analogue of exponential function is defined by (see [5,6,8,10])

W= 1 g (15)

In [10], the g-analogues of Bernoulli polynomials are defined by the generating function to be (see [8—14])

t’ﬂ

t oo
en(t) - L ealat) = an,q(x) il (1.6)

q-

In the special case, x =0, By, (0) = By, 4 is called the n-th g-Bernoulli number.

The reader is referred to [1-3,17] for other types of g-Bernoulli polynomials and to [7] for some related
work.

From (1.6), we can derive the following equation:

L n _ L n
Buae) =3 (1) B = Y Bua'(7) | (1.7
q q

1=0 1=0
n [nlg!  _ [nlgln— 1] “[n—l+1],
where (z) [q!n—1]g" — !
Let C be the complex number ﬁeld and let F be the set of all formal power series in variable ¢ over C
with
00 ax
= = ap € C 5. (1.8)
k]q'
k=0

Let P = C[t] and let P* be the vector space of all linear functionals on P. Now we denote by (L|p(x)) the
action of the linear functional L on the polynomial p(z). We remind that the vector space operations on
P* are defined by (L + M|p(z)) = (L|p(z)) + (M|p(x)), {(cL|p(x)) = ¢(L|p(x)), where ¢ is any constant
in C (see [15,16]).

For f(t) =Y rep g]’“ (t*F € F, we define the linear functional on P by setting

(ft)|=") = an, foralln>0. (1.9)
Thus, by (1.8) and (1.9), we note that
(t*|2") = [n]!6nk, 1,k =0, (1.10)

where 6, is the Kronecker’s symbol.

Let fr(t) = > 20 L‘z t*. Then, by (1.8) and (1.9), we see that (fL(t)|z") = (L|2™) and so as linear
functionals L = f1(¢ ) It is easy to show that the map L — f1(¢) is a vector space isomorphism from
P* onto F. Henceforth, F denotes both the algebra of formal power series in ¢ and the vector space of
all linear functionals on P, and so an element f(t) of F is thought of as both a formal power series and
a linear functional. We call F the g-umbral algebra. The g-umbral calculus is the study of g-umbral
algebra. By (1.5) and (1.10), we easily see that (e, (yt)|z™) = y™ and so (eq(yt)|p(x)) = p(y).

Notice that for all f(¢) in F,
=S <fik)]‘f e (1.11)

k= a

(e}

and for all polynomials p(z) (see [15,16]),

(#[p(a) L

I
ol
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For fi(t), fa(t),..., fu(t) € F, we have

RO RIS I (R G B! (113)
it tim=n Nt
i)y = (il ot

The order 0 (f( )) of the power series f(t) (% 0) is the smallest integer k for which aj does not vanish.
If O(f(t)) =0, then f(¢) is called an invertible series. If O(f(¢)) = 1, then f(t) is called a delta series.
Let p®) (z) = DFp(z). Then, by (1.12), we get

where (

00 4l
P (2) Z (t ‘p Jll =g [l =k + 12" (1.14)
1=
From (1.14), we have
pM(0) = (t*|p(x)) and  (1p™)(2)) = p™ (0). (1.15)
By (1.15), we get
t*p(a) = p™ (x) = Dyp(a). (1.16)
Let f(t),g(t) € F with O(f(t)) = 1 and O(g(t)) = 0. Then there exists a unique sequence

sn(x) (degsn(z) =n) of polynomials such that (g(t)f(t)*|s,(x)) = [n]g!6nk (n,k > 0), which is de-
noted by sn(z) ~ (g(t), f(t)). The sequence s,(z) is called the g-Sheffer sequence for (g(t), f(t)). For
h(t), f(t),g(t) € F and p(x) € P, we have

— Sk(x © k(g
:kz:% <h(t[)]|€];( Dot FF, pla) :kZ:O <g(t)f[(]:])q!lp( D (@), (L.17)
and
1 7 _ S sk(y)
Mmﬁ@@—gmﬂﬂmwwﬂ (1.18)

where f(t) is the compositional inverse of f(t) [15,16].

Recently, several authors have studied ¢g-Bernoulli and Euler polynomials. In this paper, we investigate
some properties of g-Bernoulli polynomials arising from g¢-umbral calculus. Finally, we derive some
interesting identities of ¢g-Bernoulli polynomials from our results.

2 g-Bernoulli polynomials and g-umbral calculus

From (1.6), we note that

Bg(z) ~ (6‘1(2_ 1,t) (2.1)
By (2.1), we get
By q(x) = (eq(;_l)x", n=0 (2.2)
From (1.7) and (1.16), we note that
tBp () = DyByp ¢(x) = [n]qBn-14(z). (2.3)

By (1.1) and (1.10), we easily see that

<eq(t)t— 1 a:"> _ [n—il]q<eq(t1—1

1 L.
= i+ 1], :/0 x"dg. (2.4)

n+1l\ __ 1 n+1
ta™t >— [n_’_l]q(eq(t)—l}a: )
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Thus, from (2.4), we have

<eq(t3j -1 ‘p(x)> . /Olp(x)dqx, for p(x) € P.

In particular, if we take p(x) = B, 4(x), then

/01 By, q(x)dgr = <eq(t3j 1

From (1.7), we can derive

! - n ! " Bk n
B, q(x)dgr = Z Bnk,q< > / dge = Z ne ( ) .
/0 k=0 k qv/0 k=0 [k + 1]‘1 k q

Therefore, by (2.6) and (2.7), we obtain the following proposition.

Proposition 1.  Forn € Z*, we have

" /n 1
By, =1, Bp_tg=—Bng n>0.
0,9 kZ:1 (k)q[k:—l— 1]q k,q N}

By (1.17) and (2.1), we get

oSS Lo fea® =T oS b e =1 i
p(x) ;;o[’“]q!< A )>Bk,q( ) kzzo [k]q,< t*p( )>Bk7q( )
_ - 1 T ! k P o
- ;} [k]q!Bkﬂl( )/0 t p( )dq

It is known that
(=1 =(x—-1)(x—q)-(x—q""") ~ (et),1)

From (1.17) and (2.9), we have

CEVEDY (Z)q(—l)”—mq<"2"‘>[ mle’ gme

m — klg!

(2.6)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)
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_ - n ) -1 7 — n—k
2 (1) e < )
:z;)(k By g(x a:—l)" Fdgx
n n—~k
— n —k ) (— n—k—m ("_l;_m) 1
>3 (1), ( ) B0 L 213
From (1.6) and (1.10), we note that
(i) et
q —o Fla:
Let P, = {p(z) € Clz] | degp(z) < n}. For p(z) € P,, let us assume that
= brgBrg(). (2.15)
k=0
By (2.1), we see that
< (eq(ti_ 1> tk Bn,q(x)> = [n)g!0nk, 1,k >0. (2.16)

Thus, from (2.15) and (2.16), we have

() e = 2omel (07

From (1.16), (2.5) and (2.17), we have

bg = [k}q!< (e‘l(ti - 1> th p(x)> - [qu! <eq(t1_ 1 ‘D];p(x)> - [qu! /Olpw)(x)dx, (2.18)

where p() (z) = DFp(x). Therefore, by (2.15) and (2.18), we obtain the following theorem.
Theorem 2.  For p(z) € Py, let p(z) = >} bk, Br,q(z). Then we have

1 Jegt) -1 R
o= g, (0 @) = i [ e
where p™*) (z) = Dlp(x).

Let us consider the g-Bernoulli polynomials of order r as follows:

(eq(tf— 1)”"6(1(“) :\(eq(tf— 1) . <eq(t§_ 1>Jeq(”) = iBr(f?z(x) [:L]nq,- (2.19)

n=0
~

r times

By q(x > Zblq 01,6 = [K]q!br,q- (2.17)

In the special case, z = 0, B,(:Z(O) B(rq is called the n-th ¢-Bernoulli number of order r. It is easy to

show that )
Leir-) |

From (1.13), (2.14) and (2.20), we note that

wa-{(d)

[e'e] 7“)
B}
> > o SRy = BY). (2.20)

k=0
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. ) €T a’:"
P rn S PRRRRY I/ eq(t) —1 eq(t) —1
n
Z ( ; ) Bilvq o .Bir7q'
11,7 q

i1t...t+ir=n

Therefore, by (2.21), we have the following lemma.

Lemma 3. Forn >0, we have

r n
B7(L2] = 2 : (Z'I i ) Bihq o 'Bim(I'
et/ g

i1t tip=n

BY)(x) ~ (<eq(t§— 1)r’t>

B0 =, 1)

where n,7 € Z*. Let us take p(z) = B,(ZTZ(a:) =Y} )qBT(:)k " € P, Then we may write

By (2.19), we easily get

and

( ) B7(qu Zbk qu(I
From (2.24), we have
pe) = DYBEY) =l = Ay [ = ko 1,50, ) = W2 () B )

By (2.18) and (2.25), we get

Therefore, by Theorem 2 and (2.24)7 we obtain the following theorem.

Theorem 4. Forn >0, we have

B{)(z) = z”: (Z)q<eq(ti ! ‘Br(f)k,q(a:)>Bk,q(ar) = z": (Z) qB,(:ikllek q().

k=0

For p(z) € P,, let us assume that

By (2.22), we easily get

From (2.27) and (2.28), we have

(0

o) =S (1) ¢

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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By (2.29), we get

2= (eq(ti )

Therefore, by (2.27) and (2.30), we obtain the following theorem.
Theorem 5.  For p(z) € Py, let p(z) = >}, b,ir;B,ir;(x) Then we have

b = [k}q!< (eq“i - 1>rtk p(x)>.

Let us take p(x) = B,, 4(x). Then, by Theorem 1.5, we get
n
B glx) = p(x) = 3B, B, (@),

k=0
e (0 )= L (401 )
For k < r, by (2.32), we have
= a0 =07 L Bt

1 (z)q r (7”) B n+r—=k m
e e, 2 )T 22 ),
—k
(n +7:1 )an+r k—m,q

Let us assume that k > r. Then, by (2.32), we get

ia = [zjq.«eq(t) D" 17" B g(®))
- [zjq.[ nlgln =g+ [n =k + 7+ Ug{(eq(t) = 1) | Buprg(2))

ST )Z() TR —
SRRSO ST IRV SR VR (R |

qJO m0m1++mm

% (@ |Bn ktr,q(T))

[m]q!

SO 2 (),

m=0 mi+--+m;=m

1873

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
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(nkJrr
X

o )anka,q. (2.34)

Therefore, by (2.31), (2.33) and (2.34), we obtain the following theorem.
Theorem 6. Forn € ZT and r € N, we have

n—k+r

By, 4(z) = ;Zl [r}q! (nJEIE)—qk)q { i: (;) (=1 Z Z (mh m va)q

=0 r—k Jq *i=0 Mm=0 myt-m;=m

("I Breriona B +Z [f]iéiq

T

A () Yoy (ml,.@.,mj)q(n _nliw)q

7=0 m=0 mi+---+m;i+m

x Bnkﬂ,m,q}B,gf;(x).
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